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Abstract. The Krohn–Rhodes complexity of the Brauer type semigroups Bn and An is
computed. In three-quarters of the cases the result is the ‘expected’ one: the complexity
coincides with the (essential) J-depth of the respective semigroup. The exception (and
perhaps the most interesting case) is the annular semigroup A2n of even degree in which
case the complexity is the J-depth minus 1. For the ‘rook’ versions PBn and PAn it is
shown that cðPBnÞ ¼ cðBnÞ and cðPA2n�1Þ ¼ cðA2n�1Þ for all nb 1. The computation of
cðPA2nÞ is left as an open problem.
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1. Introduction and background

It follows from the famous Krohn–Rhodes Prime Decomposition Theorem [11]

that each finite semigroup S divides an iterated wreath product

An o Gn o An�1 o � � � o A1 o G1 o A0

were the Gi are groups and the Ai are aperiodic semigroups. The number n of non-

trivial group components of the shortest such iterated product is the group com-

plexity or Krohn–Rhodes complexity of the semigroup S. The question whether

this number is algorithmically computable given the semigroup S as input is

perhaps the most fruitful research problem in finite semigroup theory. To the
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presentation of the paper.



author’s knowledge, this problem is still open despite the tremendous e¤ort that

has been spent on it over the years.

Concerning classes of abstract semigroups, the pseudovariety LG�m A is the

largest one which contains semigroups of arbitrarily high complexity and for

which at present an algorithm is known which computes the complexity of each

member—this includes DS and thus completely regular semigroups (unions of

groups). Another result is that the ‘‘complexity-12’’ pseudovarieties A �G and

G � A have decidable membership (the latter being contained in LG�m A). On

the other hand, the complexity of many naturally occurring individual and con-

crete semigroups is known: these include the semigroup of all transformations of

a finite set and the semigroup of all endomorphisms of a finite vector-space [17], as

well as the semigroup of all binary relations on a finite set [18]. More recently,

Kambites [10] calculated the complexity of the semigroup of all upper triangular

matrices over a finite field. The present paper intends to contribute to the latter

kind of results. Indeed, we shall present a calculation of the complexity of the

Brauer semigroup Bn and the annular semigroup An (these occur originally in rep-

resentation theory of associative algebras but have recently attracted considerable

attention among semigroup theorists). It turns out that the cases of Bn and A2nþ1

can be treated in a straightforward fashion by the use of arguments that apply to

transformation semigroups and linear semigroups. The case of the annular semi-

group A2n of even degree is somehow di¤erent. Although the problem can be

solved by use of the machinery developed by the Rhodes school, the solution re-

quires quite a bit of care and is much less obvious. Actually, the author was not

able to compute the complexity cðA2nÞ directly. The strategy is rather to look at a

certain natural subsemigroup EA2n first and calculate the complexity of this sub-

semigroup. In a second step it is then shown that the complexity of the full semi-

group A2n does not exceed the complexity of the ‘even’ subsemigroup EA2n. It

should be mentioned that none of the semigroups Bn or An is contained in

LG�m A except for n ¼ 1.

The paper is organized as follows. In Section 2 we collect all preliminaries on

Brauer and annular semigroups as well as the basics of Krohn–Rhodes complexity

needed in the sequel. In Section 3 the complexity of the Brauer semigroup is com-

puted to be cðBnÞ ¼
�
n
2

�
which is exactly the (essential) J-depth. It is also shown

that the partial Brauer semigroup PBn has the same complexity as the ‘total’

counterpart Bn. In Section 4 we first treat the annular semigroup of even degree

and show that cðAnÞ ¼ n
2 � 1. This is the di‰cult case and is treated with the help

of a certain subsemigroup, the even annular semigroup EAn. Afterwards the odd

degree case is treated which is again, in a sense, standard. Finally, some remarks

on the partial versions PAn are given. In the odd case, the complexity is the same

as that of their total counterparts while the computation of the complexity in the

even case is left as an open problem.
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Throughout the paper, all semigroups are assumed to be finite. For back-

ground information on (finite) semigroups the reader is referred to the mono-

graphs by Almeida [1] and Rhodes and Steinberg [19].

2. Preliminaries

2.1. Brauer type semigroups. Here we present the basic definitions and results

concerning Brauer type semigroups. For each positive integer n we are going to

define:

• the partition semigroup Cn,

• the Brauer semigroup Bn,

• the partial Brauer semigroup PBn,

• the Jones semigroup Jn,

• the annular semigroup An,

• the partial annular semigroup PAn.

The semigroups Cn, Bn, An and Jn arise as vector space bases of certain associa-

tive algebras which are relevant in representation theory [6], [8], [9], [7]. The semi-

group structure and related questions for the above-mentioned semigroups have

been studied by several authors, see, for example, [3], [4], [12], [14], [15], [16].

We start with the definition of Cn. For each positive integer n let

½n� ¼ f1; . . . ; ng; ½n� 0 ¼ f1 0; . . . ; n 0g; ½n� 00 ¼ f1 00; . . . ; n 00g

be three pairwise disjoint copies of the set of the first n positive integers and put

e½n� ¼ ½n�A ½n� 0:

The base set of the partition semigroup Cn is the set of all partitions of the set e½n�;
throughout, we consider a partition of a set and the corresponding equivalence

relation on that set as two di¤erent views of the same thing and without further

mention we freely switch between these views, whenever it seems to be convenient.

For x; h a Cn, the product xh is defined (and computed) in four steps [21]:

(1) Consider the 0-analogue of h: that is, define h 0 on ½n� 0A ½n� 00 by

x 0 h 0 y 0 :() x h y for all x; y a e½n�:
(2) Let 3x; h4 be the equivalence relation on e½n�A ½n� 00 generated by xA h 0, that is,

set 3x; h4 :¼ ðxA h 0Þ t where t denotes the transitive closure.
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(3) Forget all elements having a single prime 0: that is, set

3x; h4� :¼ 3x; h4j½n�A½n� 00 :

(4) Replace double primes with single primes to obtain the product xh: that is, set

x xh y :() f ðxÞ 3x; h4� f ðyÞ for all x; y a e½n�
where f : e½n� ! ½n�A ½n� 00 is the bijection

x 7! x; x 0 7! x 00 for all x a ½n�:

For example, let n ¼ 5 and

Then

and
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This multiplication is associative making Cn a semigroup with identity 1

where

1 ¼ ffk; k 0g j k a ½n�g:

The group of units of Cn is the symmetric group Sn (acting on ½n� on the right)

with canonical embedding Sn ,! Cn given by

s 7! ffk; ðksÞ0g j k a ½n�g for all s a Sn:

More generally, the semigroup of all (total) transformations Tn of ½n� acting on the

right is also naturally embedded in Cn by

f 7! ffk 0gA kf�1 j k a ½n�g: ð1Þ

If k is not in the image of f then fk 0g forms by definition a singleton class. The

equivalence classes of some x a Cn are usually referred to as blocks; the rank rk x

is the number of blocks of x whose intersection with ½n� as well as with ½n� 0 is not
empty—this coincides with the usual notion of rank of a mapping on ½n� in case

x is in the image of the embedding (1). It is known that the rank characterizes

the D-relation in Cn [15], [12]: for any x; h a Cn, one has x D h if and only if

rk x ¼ rk h.

The semigroup Cn admits a natural inverse involution making it a regular

*-semigroup: consider first the permutation � on e½n� that swaps primed with un-

primed elements, that is, set

k � ¼ k 0; ðk 0Þ� ¼ k for all k a ½n�:

Then define, for x a Cn,

x x� y :() x� x y� for all x; y a e½n�:
That is, x� is obtained from x by interchanging in x the primed with the unprimed

elements. It is easy to see that

x�� ¼ x; ðxhÞ� ¼ h�x� and xx�x ¼ x for all x; h a Cn: ð2Þ

The elements of the form xx� are called projections. They are idempotents (as one

readily sees from the last equality in (2)). We note that in the group H-class of

any projection, the involution � coincides with the inverse operation in that group.

The Brauer semigroup Bn can be conveniently defined as a subsemigroup of

Cn: namely, Bn consists of all elements of Cn all of whose blocks have size 2; the

partial Brauer semigroup PBn consists of all elements of Cn all of whose blocks
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have size at most 2. It is useful to think of the elements of PBn respectively Bn in

terms of diagrams. These are pictures like the one in Figure 1.

Both semigroups Bn and PBn are closed under �. In both types of semi-

groups, the group H-class of a projection xx� of rank t is isomorphic (as a regular

*-semigroup) with the symmetric group St. Let x a Bn be of rank t and let

fk1; l 01g; . . . ; fkt; l 0tg; for some ki; li a ½n�;

be the blocks of x which contain an element of ½n� and of ½n� 0. Then fk1; . . . ; ktg
and fl 01; . . . ; l 0tg is the domain dom x respectively range ran x of x. For any projec-

tion e we obviously have ran e ¼ ðdom eÞ0.
The Jones semigroup (also called Temperley–Lieb semigroup, see also [20])1

Jn is the subsemigroup of Bn consisting of all diagrams that can be drawn in the

plane within a rectangle (as in Figure 1) in a way such that any two of its lines

have empty intersection. These diagrams are called planar. It is well-known and

easy to see that Jn is aperiodic [13].

Next we define the annular semigroup An [9] and the partial annular semi-

group PAn. These will also be realized as certain subsemigroups of the (partial)

Brauer semigroup. For this purpose it is convenient to first represent the elements

of PBn (and therefore of Bn) as annular diagrams. Consider an annulus A in the

complex plane, say A ¼ fz j 1 < jzj < 2g and identify the elements of e½n� with cer-

tain points of the boundary of A via

k 7! e2piðk�1Þ=n and k 0 7! 2e2piðk�1Þ=n for all k a ½n�:

For x a PBn (in particular, for x a Bn) take a copy of A and link any x; y a e½n�
with xA y and fx; yg a x by a path (called string) running entirely in A (except

for its endpoints). For example, the element x a PB4 given by

x ¼ ff1g; f1 0g; f20; 40g; f2; 30g; f3; 4gg

1Following [13], we use the term Jones semigroup.

Figure 1. A diagram in PB7
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can then be represented by the annular diagram in Figure 2. Paths representing

blocks of the form fx; y 0g [fx; yg and fx 0; y 0g, respectively] for some x; y a ½n�
are called through strings [inner and outer strings, respectively]. The annular semi-

group An by definition consists of all elements of Bn that have a representation as

an annular diagram any two of whose strings have empty intersection. One can

compose annular diagrams in an obvious way, modelling the multiplication in

Bn—from this it follows that An is closed under the multiplication of Bn. Clearly,

An is closed under �, as well. Analogously, one gets the partial annular semigroup

PAn by considering all elements of PBn which admit a representation by an annu-

lar diagram in which any two distinct strings have empty intersection. Again each

PAn is closed under �.
The notions of ‘‘planar diagram’’ and ‘‘annular diagram’’ make sense also for

the elements of Cn; one can define the planar monoid Pn consisting of all members

of Cn that admit a representation as a planar diagram in which (the prepresenta-

tion of ) any two distinct blocks have empty intersection (for example, the ele-

ments x and h in the example after the definition of the multiplication in Cn belong

to P5), see [3], [8]. Similarly, one could define the planar annular monoid PAn,

consisting of all members of Cn that admit a representation as an annular diagram

in which (the representation of ) any two distinct blocks have empty intersection.

However, from our point of view, this gives nothing new: Pn is known to be iso-

morphic with J2n for each n [3], [8] while PAn can be shown to be isomorphic with

the even annular monoid EA2n (to be defined below) for each n.

Finally, we fix the following notation: if the semigroup M happens to be a

monoid then its group of units is denoted by M� while the singular part of M,

that is, the subsemigroup of all non-invertible elements MnM� is denoted by

SingM.

Figure 2. Annular diagram representation of a member of PA4
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2.2. Krohn–Rhodes complexity. Here we present the basics of Krohn–Rhodes

complexity needed in the sequel. A comprehensive treatment of the subject can be

found in Part II of the monograph [19]. Throughout, the complexity of a semi-

group S is denoted by cðSÞ. A J-class of a semigroup is essential if it contains a

non-trivial subgroup. The depth of a semigroup is the length n of the longest chain

J1 > J2 > � � � > Jn of essential J-classes. The complexity cðSÞ of a semigroup S

can never exceed its depth [19], Theorem 4.9.15.

Lemma 2.1. For each semigroup S and for each ideal I of S the inequality cðSÞa
cðIÞ þ cðS=IÞ holds.

The latter statement is usually known as the Ideal Theorem [19], Theorem

4.9.17. The next result (due to Allen and Rhodes) can be also found as Proposi-

tion 4.12.20 in [19].

Lemma 2.2. Let S be a semigroup and let e be an idempotent of S; then

cðSeSÞ ¼ cðeSeÞ.

The following result ([19], Proposition 4.12.23) is useful for computing the

complexity of the full transformation semigroup Tn and the full linear semigroup

MnðFqÞ over a finite field. In our situation it is helpful for the Brauer semigroup

Bn and the annular semigroup A2nþ1 of odd degree. For any semigroup S, we

denote by EðSÞ the set of all idempotents of S.

Proposition 2.3. Suppose that S is a monoid with non-trivial group of units G

such that S ¼ 3G; e4 for some idempotent e B G and SeSJ 3EðSÞ4. Then cðSÞ ¼
cðeSeÞ þ 1.

According to ([19], Definition 4.12.11) a semigroup S is a T1-semigroup if there

exists an L-chain s1aL s2aL � � �aL sn of elements of S such that S is generated

by s1; . . . ; sn. The type II subsemigroup KGðSÞ of a semigroup S consists of all ele-

ments of S that relate to 1 under every relational morphism from S to a group G.

Ash’s famous theorem [2] (verifying the Rhodes type II conjecture) states that

KGðSÞ is the smallest subsemigroup of S that contains all idempotents and is

closed under weak conjugation. The combination of Theorems 4.12.14 and

4.12.8 in [19] yields:

Proposition 2.4. For each T1-semigroup S which is not aperiodic, the inequality

c
�
KGðSÞ

�
< cðSÞ holds.

The final preliminary result presents the well known characterization of the

members of the pseudovariety A �G. Indeed, by the definition of the Mal’cev

Product [19], a semigroup S belongs to A�m G if and only if KGðSÞ belongs to A;

from A �G ¼ A�m G [19], Theorem 4.8.4, we get:
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Proposition 2.5. A semigroup S belongs to A �G if and only if KGðSÞ belongs

to A.

3. The Brauer semigroup Bn

It should be mentioned that the full partition semigroup Cn has complexity n� 1

for each n. Indeed, it has n� 1 essential J-classes hence cðCnÞ can be at most

n� 1. On the other hand, the full transformation semigroup Tn on n letters

embeds into Cn and it is a classical result [19], Theorem 4.12.31 that cðTnÞ ¼
n� 1. So cðCnÞ has to be at least n� 1. Of course, the Jones semigroup Jn has

complexity 0 for each n.

Let us next consider the Brauer semigroup Bn. Note that B2n as well as B2nþ1

have n essential J-classes. For each pair i < j with i; j a ½n� define the diagram gij
as follows:

gij :¼ ffi; jg; fi 0; j 0g; fk; k 0g j kA i; jg: ð3Þ

Each gij is a projection of rank n� 2. Proposition 2 in [14] tells us that the singu-

lar part of Bn is generated by the projections gij:

SingBn ¼ 3gij j 1a i < ja n4: ð4Þ

Recall that the group of units of Bn is the symmetric group on n letters, denoted

Sn. Another result to be essential is that Bn is generated by its group of units

together with g12—see the first paragraph of Section 3 in [12] (in fact, for every

i < j, gij can be used here instead of g12):

Bn ¼ 3Sn; g124: ð5Þ

Then Bng12Bn ¼ SingBn holds, and so we have Bng12Bn J 3EðBnÞ4 by (4).

Therefore, since Bn�2 G g12Bng12, Proposition 2.3 implies:

Proposition 3.1. The equality cðBnÞ ¼ cðBn�2Þ þ 1 holds for each nb 3.

Taking into account that cðB1Þ ¼ 0 and cðB2Þ ¼ 1 we obtain already the main

result of this section:

Theorem 3.2. The equality cðB2nÞ ¼ cðB2nþ1Þ ¼ n holds for each positive integer n.

For the partial analogue PBn let nb 2 and denote by PBðn�2Þ
n the ideal of PBn

consisting of all elements of rank at most n� 2. The Rees quotient PBn=PBðn�2Þ
n
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is an inverse semigroup and therefore has complexity 1 (see, for example, [19],

Cor. 4.1.8). Since PBðn�2Þ
n ¼ PBng12PBn and g12PBng12 GPBn�2 and by use

of the Ideal Theorem (Lemma 2.1) and Lemma 2.2 it follows that cðPBnÞa
cðPBn�2Þ þ 1 holds for each nb 3. In other words, the transition from PBn�2 to

PBn increments the complexity by at most 1. Since cðPB1Þ ¼ 0 and cðPB2Þ ¼ 1

(the former is aperiodic, the latter has only one essential J-class) it follows by in-

duction that cðPB2nÞa n and cðPB2nþ1Þa n for all n. On the other hand, since

cðPBnÞb cðBnÞ the reverse inequalities also hold by Theorem 3.2. Altogether we

have proved:

Corollary 3.3. The equality cðPBnÞ ¼ cðBnÞ ¼
�
n
2

�
holds for each positive

integer n.

4. The annular semigroup An

4.1. Even degree. This seems to be the most interesting case. It is not possible

to apply Proposition 2.3 here because SingAn is not idempotent generated (nor

contained in the type II subsemigroup). We shall not calculate the complexity of

An directly but rather study a certain natural subsemigroup—the even annular

semigroup EAn—, calculate the complexity of the latter and then show that An

has no bigger complexity than EAn.

Throughout this subsection let n be even. Let a a An be of rank r and let

a1 < a2 < � � � < ar and b 0
1 < b 0

2 < � � � < b 0
r be the elements of dom a and ran a,

respectively. Then the numbers ai are alternately even and odd, and likewise are

the numbers bi. This is because the nodes strictly between ai and aiþ1 as well as

strictly between b 0
i and b 0

iþ1 are entirely involved in inner strings respectively outer

strings and hence an even number of nodes must be between ai and aiþ1 respec-

tively b 0
i and b 0

iþ1. A through string fi; j 0g of a is even if i � j is even, and other-

wise it is odd. Suppose that fa1; b 0
sþ1g is a through string of a. Then, by the defi-

nition of An, the other through strings of a are exactly the strings fai; b 0
sþig (where

the sum sþ i has to be taken mod r). It follows that either all through strings of a

are even or all are odd. Define the element a to be even if every through string of a

is even (or equivalently, if a has no odd through string)—note that the even mem-

bers of An coincide with the oriented diagrams in [9]. All diagrams of rank 0 are

even, by definition. Let a; b a An and suppose that s ¼ is a through string

in ab. By definition of the product in An there exist a unique number sb 1 and

pairwise distinct u1; v1; u2; . . . ; vs�1; us a ½n� such that s is obtained as the concate-

nation of the strings
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where u :¼ is a through string of a, v :¼ is a through string of b,

all are inner strings of b and all are outer strings of a. It is easy

to see that for each outer string fi; jg and each inner string fg 0; h 0g of any ele-

ment g of An the inequalities i2 j mod 2 and g2 h mod2 hold. It follows that

ui 2 vi 2 uiþ1 mod 2 and therefore ui C uiþ1 mod 2 for all i whence u1C us mod 2.

Consequently, s is even if and only if u and v are both even or both odd while

s is odd if and only if exactly one of u and v is even. In particular, the set EAn

of all even members of An forms a submonoid of An. Moreover, since each

projection is even, each idempotent (being the product of two projections) is

also even so that EAn contains all idempotents of An. A direct inspection

shows that each planar diagram a a Jn is also even, whence Jn is a submonoid

of EAn.

Similarly as in An and Jn, Green’s J-relation in EAn is characterized by the

rank: two diagrams of EAn are J-related if and only if they have the same rank.

The argument is as follows: let e and h be arbitrary projections of rank t with

a1 < a2 < � � � < at the domain of e and b 0
1 < b 0

2 < � � � < b 0
t the range of h; define g

to be the element having the same inner strings as e, the same outer strings as h

and the through strings fa1; b 0
1g; . . . ; fat; b 0

tg in case a1C b1 mod 2 while in case

a12 b1 mod 2 the through strings of g can be chosen to be fa1; b 0
2g; fa2; b 0

3g; . . . ;
fat; b 0

1g. Then g a EAn, e ¼ gg� and h ¼ g�g.
As far as the group of units EA�

n of EAn is concerned, we see that the

diagram

z ¼ ff1; 2 0g; f2; 3 0gg; . . . ; fn; 1 0gg ð6Þ

is odd and so definitely does not belong to EAn. On the other hand,

z2 ¼ ff1; 3 0g; f2; 4 0g; . . . ; fn� 1; 1 0g; fn; 2 0gg

is even whence the group of units EA�
n is cyclic of order n

2 . More generally, for

each even, positive r with r < n the maximal subgroups of the J-class of all

rank-r-elements of EAn are cyclic of order
r
2 .

We are going to define two actions S and T of Z on An. The action of S is by

automorphisms, but that of T is by translations. For k a Z let Sk;Tk : An ! An

be defined as follows: aSk is the diagram obtained from a by replacing each string

fi; jg [respectively fi; j 0g, fi 0; j 0g] by fi þ k; j þ kg [respectively fi þ k; ð j þ kÞ0g,
fði þ kÞ0; ð j þ kÞ0g]; aTk is obtained from a by replacing each string fi; j 0g [respec-

tively fi 0; j 0g] by fi; ð j þ kÞ0g [respectively fði þ kÞ0; ð j þ kÞ0g]. The addition þ
has to be taken mod n, of course. We call Sk the shift by k and Tk the (outer) twist

by k. Note that an outer twist leaves unchanged all inner strings. We could sim-

ilarly define the inner twist by k but we will not need it.
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Shifts and twists can be expressed in terms of the unit element z defined in (6).

Namely, for each a a An and each k a Z the following hold:

aSk ¼ z�kazk and aTk ¼ azk: ð7Þ

For later use we note that aSk is even for every k if and only of a is itself even,

and, for every even k, aTk is even if and only if a itself is even.

In the following we shall show that the singular part of EAn is idempotent

generated. In order to simplify notation, we set, for each i a ½n�, gi :¼ gi; iþ1, that

is, gi denotes the projection

gi ¼ ffi; i þ 1g; fi 0; ði þ 1Þ0g; fk; k 0g j kA i; i þ 1g:

(Addition has to be taken mod n.) More precisely, we intend to show that

SingEAn is generated by the projections g1; . . . ; gn. Set S :¼ 3g1; . . . ; gn4; then ob-

viously SJ SingEAn and S is closed under �. Moreover, S is closed under Se1

and therefore closed under Sk for all k a Z. This is immediate from the fact that

the set fg1; . . . ; gng is closed under Se1 and that each Sk is an automorphism.

Next, we note that

gn�1 . . . g1 ¼ ffn� 1; ng; f1 0; 2 0g; fk; ðk þ 2Þ0g j k ¼ 1; . . . n� 2g ¼: l

(see Figure 3).

The element l clearly belongs to S, and therefore so does each shifted ver-

sion lSk of l. Let a be a singular element of An containing the outer string

fðn� 1Þ0; n 0g. Then a direct calculation shows that

al ¼ aT2:

Figure 3. The element l.
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More generally, if a is an arbitrary singular element of An then there exists i a ½n�
such that the outer string fði � 1Þ0; i 0g belongs to a. A similar calculation then

shows that

a � lS�ðn�iÞ ¼ aT2:

As a consequence, ST2 JS, and, since T�2 ¼ Tn�2 we infer that S is closed under

twists Tk for all even k. We are ready for a proof of the aforementioned result

concerning SingEAn and refer to Lemma 2.8 of [9] for an analogous result in the

context of annular algebras. We shall crucially use:

Lemma 4.1 ([5], Lemma 2). SingJn ¼ 3g1; . . . ; gn�14.

Proposition 4.2. SingEAn ¼ 3g1; . . . ; gn4.

Proof. Let a a SingEAn and suppose first that a has non-zero rank, that is, a

admits a through string. Then there exists some k a Z such that aSk contains a

through string of the form f1; j 0g for some j. Since a, and therefore also aSk is

even, j must be odd. Then aSkT�ð j�1Þ is still even but contains the through string

f1; 1 0g, whence aSkT�ð j�1Þ belongs to SingJn and therefore, by Lemma 4.1,

aSkT�ð j�1Þ a 3g1; . . . ; gn�14JS. Consequently,

a a STj�1S�k JS;

as required. Finally, it is easy to see that each rank-zero element of An belongs

actually to Jn. Consequently each rank zero element belongs to S, again as a con-

sequence of Lemma 4.1. r

For the following considerations let nb 6 and let the (planar) projection e of

rank n� 4 be defined by

e :¼ ff2; 3g; f2 0; 3 0g; fn� 1; ng; fðn� 1Þ0; n 0g; fk; k 0g j kA 2; 3; n� 1; ng: ð8Þ

The following subsemigroup of EAn will play a crucial role:

EA 0
n :¼ 3EA�

n ; gn�1; gngn�1; e4:

First we notice that

gn�1gngn�1 ¼ gn�1:

Consequently,

gn�1 L gngn�1 ¼ ðgngn�1Þ
2: ð9Þ
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Since e ¼ egn�1 it follows that EA 0
n is a T1-semigroup. By Proposition 2.4 we

obtain:

Corollary 4.3. For each even nb 6 the inequality c
�
KGðEA 0

nÞ
�
< cðEA 0

nÞ holds.

The group of units EA�
n of EAn consists of the powers of z

2, that is,

EA�
n ¼ fz2; z4; . . . ; zn�2; 1g:

Next, we observe that

z�2gn�1z
2 ¼ g1; z

�4gn�1z
4 ¼ g3; . . . ; z

�ðn�2Þgn�1z
n�2 ¼ gn�3:

It follows that

gi a EA 0
n for each odd i: ð10Þ

The same argument applied to gngn�1 instead of gn�1 implies that

giþ1gi a EA 0
n for each odd i: ð11Þ

We note that each element of the form giþ1gi is idempotent.

Next we show that EAn�2 can be embedded into the idempotent generated

subsemigroup 3EðEA 0
nÞ4 of EA 0

n. First of all, there is an obvious embedding

EAn�2 ,! EAn, namely

a 7! aA ffn� 1; ng; fðn� 1Þ0; n 0gg

the image of which is exactly the local submonoid gn�1EAngn�1. Hence it suf-

fices to show that the latter is contained in 3EðEA 0
nÞ4. The group of units of

gn�1EAngn�1 is generated by the diagram

x :¼ ff1; 3 0g; f2; 4 0g; . . . ; fn� 3; 1 0g; fn� 2; 2 0g; fn� 1; ng; fðn� 1Þ0; n 0gg

and it is not hard to see that

x ¼ lðgngn�1Þ ¼ gn�1ðgn�2gn�3Þ . . . ðg2g1Þðgngn�1Þ

(see Figure 4). Therefore, the element x belongs to 3EðEA 0
nÞ4 by (11) and since

each giþ1gi is idempotent. Consequently, the group of units of gn�1EAngn�1 is con-

tained in 3EðEA 0
nÞ4. It remains to show that the singular part of gn�1EAngn�1 is

contained in 3EðEA 0
nÞ4. First of all, the projections

g 01 :¼ g1gn�1; g
0
3 :¼ g3gn�1; . . . ; g

0
n�3 :¼ gn�3gn�1
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are all contained in EðEA 0
nÞ by (10). We note that xðn�2Þ=2 ¼ gn�1 (the identity

of the local monoid) and therefore x� ¼ xðn�4Þ=2. The latter element belongs to

3EðEA 0
nÞ4 since x does so. It follows that the projections

g 02 :¼ e; g 04 :¼ x�ex; . . . ; g 0n�2 :¼ ðx�Þðn�4Þ=2exðn�4Þ=2

are also contained in 3EðEA 0
nÞ4. But by Proposition 4.2, applied to EAn�2 G

gn�1EAngn�1 the singular part of that monoid is generated by the n� 2 projections

g 01; . . . ; g
0
n�2. We have thus proved the following:

Lemma 4.4. For each even nb 6, EAn�2 is isomorphic to a subsemigroup of

3EðEA 0
nÞ4.

In combination with Corollary 4.3 we are able to formulate the next (crucial)

statement.

Proposition 4.5. For each even nb 6 the inequality cðEAn�2Þ < cðEAnÞ holds.

Proof. This follows from

cðEAn�2Þa c
�
3EðEA 0

nÞ4
�

by Lemma 4:4

a c
�
KGðEA 0

nÞ
�

< cðEA 0
nÞ by Corollary 4:3

a cðEAnÞ: r

It is straightforward that cðEA2Þ ¼ 0; in EA4 the only essential J-class is the

set of all rank 4 elements hence cðEA4Þ ¼ 1. For each n a N we have that

cðEA2nÞa cðEA2n�2Þ þ 1. Indeed, EA2n�2 G gn�1EA2ngn�1, whence cðEA2n�2Þ ¼
cðEAngn�1EAnÞ by Lemma 2.2 and the latter semigroup is the ideal SingEAn of

Figure 4. The element x.
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all singular elements of EAn; the claim then follows from Lemma 2.1 by taking

into account that cðEAn=SingEAnÞ ¼ 1. This, in combination with Proposition

4.5, then gives cðEA2nÞ ¼ cðEA2n�2Þ þ 1 for all nb 2. By induction we get:

Theorem 4.6. The equality cðEA2nÞ ¼ n� 1 holds for each positive integer n.

An immediate consequence is that cðA2nÞb n� 1 for all positive integers. On

the other hand, since the depth of A2n is n we also have cðA2nÞa n for all n. In

order to determine the exact value we need to look at small values of n. Clearly,

cðA2Þ ¼ 1 since A2 has exactly one essential J-class. It turns out that the crucial

point is the value cðA4Þ. Although A4 has two essential J-classes its complexity is

only 1.

Lemma 4.7. cðA4Þ ¼ 1.

Proof. By Proposition 2.5 it su‰ces to show that the type II subsemigroup

KGðA4Þ is aperiodic. Define relations t1 : A4 ! A�
4 and t2 : A4 ! f�1; 1g as

follows:

xt1 ¼
x if x a A�

4 ;

A�
4 if x B A�

4

�

and

xt2 ¼
�1 if rk xb 2 and x is odd;

1 if rk xb 2 and x is even;

f�1; 1g if rk x ¼ 0:

8><
>:

It is easily checked that t1 and t2 are relational morphisms. Let t ¼ t1 � t2; then

1t�1 ¼ SingEA4A f1g. Since SingEA4 is idempotent generated we infer that

KGðA4Þ ¼ SingEA4A f1g and the latter is aperiodic. r

It is worth to point out that the preceding Lemma is also a consequence

of Tilson’s 2J-class Theorem [19], Theorem 4.15.2. As in the case of the even

annular semigroup, we have cðA2nÞa cðA2n�2Þ þ 1 (the argument is very much

analogous to the one before the statement of Theorem 4.6). This, in combination

with cðA4Þ ¼ 1 and cðA2nÞb n� 1 for all n then leads to the main result in this

subsection.

Theorem 4.8. The equality cðA2nÞ ¼ n� 1 holds for each integer nb 2; for n ¼ 1

the equality cðA2Þ ¼ 1 holds.
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4.2. Odd degree. Throughout this subsection let n be odd. This case is easier

since the singular part SingAn is idempotent generated. An analogous statement

in the context of annular algebras has been mentioned without proof in [9],

Remark 2.9. We retain the notation of the preceding subsection.

Proposition 4.9. For each odd positive integer n, SingAn ¼ 3g1; . . . ; gn4.

Proof. The proof is similar to that of Proposition 4.2; let S :¼ 3g1; . . . ; gn4. Once

again, S is closed under all shifts Sk. As in the case for even n, for

x ¼ gn�1gn�2 . . . g1gngn�1

we obtain

x ¼ ff1; 3 0g; f2; 4 0g; . . . ; fn� 3; 1 0g; fn� 2; 2 0g; fn� 1; ng; fðn� 1Þ0; n 0gg

(see Figure 4). Thus xj½n�2� realizes the cyclic permutation on ½n� 2� given by

x 7! xþ 2 ðmod n� 2Þ. Since n� 2 is odd, this permutation has order n� 2 and

so x generates the group H-class of gn�1. More specifically,

xðn�1Þ=2 ¼ ff1; 2 0g; f2; 3 0g; . . . ; fn� 2; 1 0g; fn� 1; ng; fðn� 1Þ0; n 0gg:

It follows that

t :¼ xðn�1Þ=2gn ¼ ff1; 2 0g; f2; 3 0g; . . . ; fn� 2; ðn� 1Þ0g; fn� 1; ng; f1 0; n 0gg

(see Figure 5), and t belongs to S. Suppose now that a is a singular element of An

containing the outer string fðn� 1Þ0; n 0g. Then at ¼ aT1. More generally, if a is

an arbitrary singular element of An then it contains the outer string fði � 1Þ0; i 0g
for some i. A direct calculation shows that

a � tS�ðn�iÞ ¼ aT1:

Figure 5. The element t.
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As a consequence, ST1 JS. Since T�1 ¼ Tn�1, S is also closed under T�1. Al-

together, S is closed under twists Tk for each k a Z. Let now a be an arbitrary

element of SingAn. Then there exist integers k, l such that aSkTl contains the

through string f1; 1 0g. But then aSkTl is planar and by Lemma 4.1 aSkTl a
3g1; . . . ; gn�14JS so that

a a ST�lS�k JS:

Altogether we have obtained the inclusion SingAn JS. r

Since each gi is contained in 3A�
n ; gn�14 it also follows that An ¼ 3A�

n ; gn�14
and we may apply Proposition 2.3.

Proposition 4.10. The equality cðA2nþ1Þ ¼ cðA2n�1Þ þ 1 holds for each positive in-

teger n.

Proof. We apply Proposition 2.3 to S ¼ A2nþ1 and e ¼ g2n. Since A2n�1 G
g2nA2nþ1g2n we obtain cðA2nþ1Þ ¼ cðA2n�1Þ þ 1. r

Since cðA1Þ ¼ 0 we get by induction:

Theorem 4.11. The equality cðA2n�1Þ ¼ n� 1 holds for each positive integer n.

4.3. The partial annular semigroup PAn. We are going to treat the partial ver-

sion PAn of An. First of all we clearly have

cðPAnÞb cðAnÞ for each positive integer n: ð12Þ

The next arguments are analogous to the corresponding ones in the context of the

Brauer semigroups. Let PAðn�2Þ
n be the ideal of PAn consisting of all elements

of rank at most n� 2. The Rees quotient PAn=PAðn�2Þ
n is an inverse semigroup

whence its complexity is 1. The Ideal Theorem then implies

cðPAnÞa cðPAðn�2Þ
n Þ þ 1:

Moreover, since PAðn�2Þ
n ¼ PAng1PAn and PAn�2 G g1PAng1 Lemma 2.2 implies

cðPAnÞa cðPAn�2Þ þ 1 ð13Þ

for all nb 2. Since cðPA1Þ ¼ 0, in combination with (12) and Theorem 4.11 this

yields:

Theorem 4.12. The equality cðPA2n�1Þ ¼ cðA2n�1Þ ¼ n� 1 holds for each positive

integer n.
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The even case is again more di‰cult. The results obtained so far imply that

n� 1a cðPA2nÞa n for all n. The complexity of PA2 is of course equal to 1.

The author does not know whether cðPA4Þ equals 1 or 2. The same argument

as for A4 in order to show that cðPA4Þ ¼ 1 cannot be applied since the type II

subsemigroup KGðPA4Þ is not aperiodic. In particular, PA4 is not contained in

A �G. It is easy to see that PA4 is neither contained in G � A (not even in

LG�m A).

That K :¼ KGðPA4Þ is not aperiodic can be seen as follows. The even dia-

grams and belong to K (since they are in SingEA and so, by Proposition

4.2 in 3EðA4Þ4). Conjugation of the former element by shows that is in K.

Since K is closed under shifts, is in K. For symmetry reasons, also is

in K. The product is equal to which is a (¼ the) non-idempotent

member of the group H-class of the idempotent and is contained in K.

Since PA4 has three essential J-classes, Tilson’s Theorem ([19], Theorem

4.15.2) cannot be applied to compute cðPA4Þ. However, it can be checked that

each divisor of PA4 which has at most 2 essential J-classes has complexity at

most 1. It should be clear from the discussion in the present section that if

cðPA4Þ ¼ 1 happened to hold then we immediately would know that cðPA2nÞ ¼
n� 1 ¼ cðA2nÞ for all nb 2, while, if cðPA4Þ ¼ 2 were true then the we could

not draw any conclusion about the value of cðPA2nÞ other than n� 1a cðPA2nÞ
a n for all nb 2 (though it is very likely that in the latter case cðPA2nÞ ¼ n holds

for all nb 1).
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