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Abstract. This paper deals with the well-known notion of PF-rings, that is, rings in which
principal ideals are flat. We give a new characterization of PF-rings. Also we provide a
necessary and su‰cient condition for R ffl I (resp. R=I when R is a Dedekind domain or
I is a primary ideal) to be a PF-ring. The article includes a brief discussion of the scope
and precision of our results.
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1. Introduction

Throughout this work, all rings are commutative with identity element, and all

modules are unitary. We start by recalling some definitions.

A ring R is called a PF-ring if principal ideals of R are flat in [12]. Recall that

R is a PF-ring if and only if RQ is a domain for every prime (resp. maximal) ideal

Q of R. For example, any domain, any ring R with wgl: dimRa 1, and any semi-

hereditary ring is a PF-ring (since a localization of a ring R with wgl: dimRa 1

(resp. semihereditary) is locally a domain). Note that a PF-ring is reduced by

[11], Theorem 4.2.2, p. 114. See for instance [11], [12], [15].

An R-module M is called P-flat if x a ð0 : sÞM for any ðs; xÞ a R�M such

that sx ¼ 0, where ð0 : sÞ ¼ AnnRðsÞ. If M is flat, then M is naturally P-flat.

When R is a domain, M is P-flat if and only if it is torsion-free. When R is

an arithmetical ring, then any P-flat module is flat (by [5], p. 236). Also, every

P-flat cyclic module is flat (by [5], Proposition 1 (2)). See for instance [5], [11].

The amalgamated duplication of a ring R along an ideal I is a ring that is

defined as the following subring with unit element ð1; 1Þ of R� R:

R ffl I ¼ fðr; rþ iÞ j r a R; i a Ig:



This construction was studied in the general case and from the di¤erent point of

view of pullbacks by D’Anna and Fontana [8]. Also, in [7], they considered the

case of amalgamated duplication of a ring, along a multiplicative canonical ideal

in the sense of [14], in a not necessarily Noetherian setting. In [6] D’Anna studied

some properties of R ffl I to construct reduced Gorenstein rings associated with

Cohen–Macaulay rings, and applied this construction to curve singularities.

On the other hand, Maimani and Yassemi in [18] studied the diameter and girth

of the zero-divisor graph of the ring R ffl I . Some references are [7], [8], [9], [10],

[18].

Let A and B be rings and let j : A ! B be a ring homomorphism making B an

A-module. We say that A is a module retract of B if there exists a ring homomor-

phism c : B ! A such that coj ¼ idA. The homomorphism c is called retraction

of j. See for instance [11].

Our first main result in this paper is Theorem 2.1, which provides a new char-

acterization of PF-rings. Also we provide a necessary and su‰cient condition for

R ffl I (resp., R=I when R is a Dedekind domain or I is a primary ideal) to be

a PF-ring. The results produce new and original examples of new families of

PF-rings with zero-divisors.

2. Main results

Recall that an R-module M is called P-flat if x a ð0 : sÞM for any ðs; xÞ a R�M

with sx ¼ 0. Now we give a new characterization for a class of PF-rings, which is

the first main result of this paper.

Theorem 2.1. Let R be a commutative ring. Then the following conditions are

equivalent:

(1) Every ideal of R is P-flat.

(2) Every principal ideal of R is P-flat.

(3) R is a PF-ring, that is, every principal ideal of R is flat.

(4) For any elements ðs; xÞ a R2 with sx ¼ 0 there exists a a ð0 : sÞ such that

x ¼ ax.

Proof. (1) ) (2) Clear.

(2) ) (3) follows from [5], Proposition 1 (2).

(3) ) (4). Let ðs; xÞ be an element of R2 such that sx ¼ 0. Our aim is to show

that there exists b a ð0 : sÞ such that x ¼ bx. The principal ideal generated by x is

P-flat (since it is flat), so there exists a a ð0 : sÞ and r a R such that x ¼ arx ¼ bx

with b ¼ ar a ð0 : sÞ.
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(4) ) (1). Let I be an ideal of R and let ðs; xÞ a R� I such that sx ¼ 0. Then

there exists a a ð0 : sÞ such that x ¼ ax and so x a ð0 : sÞI . Therefore, I is P-flat,

as desired. r

Corollary 2.2. Let R be a ring. The following conditions are equivalent:

(1) Every ideal of R is P-flat.

(2) Every ideal of RQ is P-flat for every prime ideal Q of R.

(3) Every ideal of Rm is P-flat for every maximal ideal m of R.

(4) RQ is a domain for every prime ideal Q of R.

(5) Rm is a domain for every maximal ideal m of R.

Proof. This is a consequence of Theorem 2.1, Lemma 3.1 [19], and [11], Theorem

4.2.2. r

Recall that a ring R is called an arithmetical ring if the lattice formed by

its ideals is distributive and is said to have weak global dimensiona 1

(wgl: dimðRÞa 1) if every finitely generated ideal of R is flat. If wgl: dimðRÞa 1,

then R is an arithmetical ring. See for instance [2], [3], [12]. In the domain con-

text, all these forms coincide with the definition of a Prüfer domain.

Now we add a condition with arithmetical in order to have equivalence be-

tween arithmetical and wgl: dimðRÞa 1.

Proposition 2.3. Let R be a ring. Then the following conditions are equivalent:

(1) wgl: dimðRÞa 1.

(2) R is arithmetical and a PF-ring.

(3) R is arithmetical and every principal ideal of R is flat.

(4) R is arithmetical and every principal ideal of R is P-flat.

(5) R is arithmetical and every ideal of R is P-flat.

Proof. (1) ) (2). Assume that wgl: dimðRÞa 1. Then R is arithmetical by [13],

Theorem 3.2.1. Let I be an ideal of R. As wgl: dimðRÞa 1, every finitely gener-

ated subideal of I is flat. Hence I is flat by [21], Proposition 3.48, and I is P-flat.

(2) ) (3) ) (4) ) (5) by Theorem 2.1.

(5) ) (1). Assume that the ring R is arithmetical and every ideal of R is P-flat.

Our aim is to show that wgl: dimðRÞa 1. Let I be a finitely generated ideal of R.

Then I is P-flat, and so I is flat (since R is arithmetical by [5], p. 236), which com-

pletes the proof. r

Now we show that the localization of a PF-ring is always a PF-ring.
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Proposition 2.4. Let R be a PF-ring and let S be a multiplicative subset of R.

Then, S�1ðRÞ is a PF-ring.

Proof. This is straightforward by [19], Lemma 3.1. r

Now we study the transfer of the PF-ring property to the direct product.

Proposition 2.5. Let ðRiÞi AL be a family of commutative rings. Then R ¼
Q

i AL Ri

is a PF-ring if and only if Ri is a PF-ring for all i a L.

Proof. Straightforward. r

Next we study the transfer of the PF-ring property to homomorphic images.

First, the following example shows that the homomorphic images of a PF-ring is

not always a PF-ring.

Example 2.6. Let A be a domain, X an indeterminate and let R ¼ A½X �. Then

(1) R is a PF-ring since it is a domain,

(2) R=ðX nÞ (for nb 2) is not a PF-ring since X n ¼ 0 and X A 0.

Recall that if R is a Dedekind domain and I is a nonzero ideal of R, then, by a

celebrated Theorem by E. Noether, I ¼ Pa1
1 . . .Pan

n for some distinct prime ideals

P1; . . . ;Pn uniquely determined by I and some positive integers a1; . . . ; an uniquely

determined by I (see also [16], Theorem 3.14).

Now, when R is a Dedekind domain or I is a primary ideal, we give a charac-

terization of R and I such that R=I is a PF-ring.

Theorem 2.7. Let R be a ring and let I be an ideal of R. Then:

(1) Assume that R is a Dedekind domain and I ¼ Pa1
1 . . .Pan

n is a non-zero ideal of

R, where P1; . . . ;Pn are the prime ideals defined by I. Then R=I is a PF-ring if

and only if ai ¼ 1 for all i a f1; . . . ; ng.
(2) I is a primary ideal of R and R=I is a PF-ring if and only if I is a prime ideal

of R.

Proof. (1) Let R be a Dedekind domain and let I ¼ Pa1
1 . . .Pan

n for P1; . . . ;Pn be a

nonzero prime ideals of R. Then R=I ¼
Qn

i¼1ðR=P
ai
i Þ.

Assume that ai ¼ 1 for all 1a ia n. Hence R=Pi is a PF-ring since R=Pi is an

integral domain, and so R=I ¼
Qn

i¼1ðR=P
ai
i Þ is a PF-ring by Proposition 2.5.

Conversely, assume that R=I ¼
Qn

i¼1ðR=P
ai
i Þ is a PF-ring. Let i a f1; . . . ; ng.

Then R=Pai
i is a PF-ring by Proposition 2.5. Hence R=Pai

i is reduced, and so the

intersection of all prime ideals Q of R=Pai
i is zero (i.e., 7

Q A SpecðR=Pai
i
Þ Q ¼ f0g)
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by [1], Proposition 1.8. On the other hand, for every prime ideal Q of R=Pai
i

there exists a prime ideal Q 0 of R such that Pai
i HQ 0 and Q ¼ Q 0=Pai

i . Thus

Pi=P
ai
i HQ. It follows that f0g ¼ 7

Q A SpecðR=P ai
i
Þ Q ¼ Pi=P

ai
i and so Pi ¼ Pai

i .

Since R is Dedekind domain, ai ¼ 1.

(2) It is obvious that if I is a prime ideal, then R=I is a PF-ring and I is a pri-

mary ideal.

Conversely, assume that I is a primary ideal and R=I is a PF-ring. Our aim is

to show that I is a prime ideal of R. Let ðx; yÞ a R2 such that xy a I . We claim

that x a I or y a I . Without loss of generality, we may assume that x B I . Since

xy a I , there exists an integer n > 0 such that yn a I (since I is a primary ideal).

Thus yn ¼ 0 and so y ¼ 0 since R=I is a PF-ring. Then y a I . Therefore, x a I or

y a I , and so I is a prime ideal of R, as desired. r

As a consequence of Theorem 2.7 (1) we are able to give examples of PF-rings

and non-PF-rings.

Example 2.8. (1) Z=4Z is not a PF-ring.

(2) Z=30Z is a PF-ring.

Now we study the transfer of a PF-property to an amalgamated duplication of

a ring R along an ideal I .

Let R be a ring. An ideal I of R is called a pure submodule of R if for every

R module M the sequence 0 ! I nR M ! RnR M ! R=I nR M ! 0 is exact;

equivalently, Im ¼ 0 or Rm for any maximal ideal m of R.

Theorem 2.9. Let R be a ring, and let I be an ideal of R. Then R ffl I is a PF-ring

if and only if R is a PF and I is pure.

We need the following lemma before proving this theorem.

Lemma 2.10. Let R and S be a rings and let j : R ! S be a ring homomorphism

making R a module retract of S. If S is a PF-ring, then so is R.

Proof. Let j : R ! S be a ring homomorphism and let c : S ! R be a ring

homomorphism such that coj ¼ idR. Let ðx; yÞ a R2 such that xy ¼ 0. Then

jðxÞjðyÞ ¼ jðxyÞ ¼ 0. Hence there exists an element a a S such that ajðxÞ ¼ 0

and jðyÞ ¼ ajðyÞ (since S is a PF-ring) and so y ¼ c
�
jðyÞ

�
¼ c

�
ajðyÞ

�
¼

cðaÞy and cðaÞx ¼ c
�
ajðxÞ

�
¼ cð0Þ ¼ 0, as desired. r

Proof of Theorem 2.9. Assume that R ffl I is a PF-ring. We must to show that R

is a PF-ring and I is a pure ideal of R. We can easily show that R is a module

retract of R ffl I , where the retraction map j is defined by jðr; rþ iÞ ¼ r, and so

R is a PF-ring by Lemma 2.10.
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We claim that Im a f0;Rmg for every maximal ideal m of R. Let m be an

arbitrary maximal ideal of R. Then I Jm or I Um. If I Um, then Im ¼ Rm. If

I Jm, assume by contradiction that Im B f0;Rmg and so ðR ffl IÞM ¼ Rm ffl Im,

where M a maximal ideal of R ffl I such that MBR ¼ m. Since Rm is a domain,

Rm ffl Im is reduced and O1ð¼ f0g � ImÞ and O2ð¼ Im � f0gÞ are the only minimal

prime ideals of ðR ffl IÞM by [8], Proposition 2.1. Hence it is not a PF-ring by [11],

Theorem 4.2.2 (since ðR ffl IÞM is local), the desired contradiction. Therefore,

Im a f0;Rmg for every maximal ideal m of R.

Conversely, assume that R is a PF-ring and I is a pure ideal of R, i.e., Im a
f0;Rmg for every maximal ideal m of R. Our aim is to prove that R ffl I is a

PF-ring. Using Corollary 2.2, we need to prove that ðR ffl IÞM is a PF-ring when-

ever M is a maximal ideal of R ffl I . Let M be an arbitrary maximal ideal of

R ffl I and set m ¼ MBR. Then M a fM1;M2g, where M1 ¼ fðr; rþ iÞ j r a m;

i a Ig and M2 ¼ fðrþ i; rÞ j r a m; r a Ig, by [7], Theorem 3.5. On the other hand,

Im a f0;Rmg. Then, testing all cases of [6], Proposition 7, we have two cases:

(a) ðR ffl IÞM GRm if Im ¼ 0 or I Um.

(b) ðR ffl IÞM GRm � Rm if Im ¼ Rm and I Jm.

Since Rm is a PF-ring (by Corollary 2.2), so is Rm � Rm by Proposition 2.5 and

hence ðR ffl IÞM is a PF-ring. r

Corollary 2.11. Let R be a domain and let I be a proper ideal of R (I AR and

I A 0). Then R ffl I is never a PF-ring.

Corollary 2.12. Let ðR;mÞ be a local ring and let I be a proper ideal of R (I AR

and I A ð0Þ). Then R ffl I is never a PF-ring.

Now we are able to construct a class of PF-rings.

Example 2.13. Let R be a PF-ring and let I ¼ Re, where e is an idempotent ele-

ment of R. Then R ffl I is a PF-ring by Theorem 2.9.

The following example shows that a subring of PF-ring is not always a

PF-ring. For any ring R, we denote by TðRÞ the total ring of quotients of R.

Example 2.14. Let R be an integral domain, I a proper ideal of R and let

S ¼ R ffl I . Then:

(1) Sð¼ R ffl IÞ is not a PF-ring by Corollary 2.11.

(2) R ffl I JR� R and R� R is a PF-ring by Proposition 2.5 (since R is a

PF-ring).

(3) TðSÞ ¼ TðR� RÞ ¼ K � K , where K ¼ TðRÞ.
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We end this paper by showing that the transfer of the PF-ring property to pull-

back is not always a PF-ring.

Example 2.15. Let R be a domain and I a proper ideal of R. Then:

(1) The ring R ffl I can be obtained as a pullback of R and R� R over R� ðR=IÞ.
(2) The ring R ffl I is not a PF-ring by Corollary 2.11.

(3) The rings R and R� R are PF-rings.
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