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Rees quotients of numerical semigroups

Manuel Delgado and Vı́tor H. Fernandes*

Abstract. We introduce a class of finite semigroups obtained by considering Rees quotients
of numerical semigroups. Several natural questions concerning this class, as well as par-
ticular subclasses obtained by considering some special ideals, are answered while others
remain open. We exhibit nice presentations for these semigroups and prove that the Rees
quotients by ideals of N, the positive integers under addition, constitute a set of generators
for the pseudovariety of commutative and nilpotent semigroups.
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1. Introduction and motivation

A numerical semigroup is a co-finite subsemigroup of the non-negative integers,

under addition. It is well known that a numerical semigroup has a (unique)

minimal set of generators, which is finite. The smallest integer from which all

the integers belong to a numerical semigroup is called the conductor of that

semigroup. The (finite) set of elements of the semigroup not greater than the con-

ductor, named small elements, also determines the semigroup. We just mentioned

two (in general) di¤erent finite sets of integers that determine a given numerical

semigroup but others could be considered. This motivates the following somehow

vague question, which has been the starting point for the research presented in this

paper:

Question 1.1. Can a numerical semigroup be thought as a finite semigroup?
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We consider this question imprecise due to the usual fact that one does not dis-

tinguish between isomorphic semigroups. In the above motivation, concrete finite

sets determining the numerical semigroups have been considered.

The following is a particular case of the approach we have taken. Given a

numerical semigroup S we choose a cutting point k a S and a distinguished ele-

ment l not in S. Let F ¼ fs a S j sa kg and take Q ¼ F A flg. In Q we define

a (commutative and associative) operation as follows: la q ¼ qal ¼ l, for

any q a Q; for a; b a F , aa b ¼ aþ b if aþ b a F and aa b ¼ l otherwise. The

set F is called the finite part of the finite commutative semigroup Q. Notice that Q

is a Rees quotient of S by an ideal (formed by the elements of S that are greater

than k), which justifies the use of the terminology Rees quotient semigroup.

One could be tempted to ask whether taking as cutting point an integer greater

than any of the minimal generators, or greater than the conductor, the finite quo-

tient obtained by the above construction contains su‰cient data to determine the

numerical semigroup and somehow answering positively Question 1.1. This is far

from being the case: we can have more than one numerical semigroup giving rise

to the same quotient (up to isomorphism), as many of the forthcoming examples

show.

This paper is written as follows: after this brief section mainly devoted to the

motivation for the research presented, we give the main definitions and introduce

the notation to be used. We proceed with a section containing examples and sim-

ple remarks that intend to give answers to several questions that can naturally be

raised once one wants to consider the class of finite semigroups introduced in this

paper: Rees quotients of numerical semigroups. Next we obtain a nice presenta-

tion for a Rees quotient numerical semigroup once it is known the defining pair

(numerical semigroup, ideal). Observe that the study of presentations appears

naturally in both the theories of numerical semigroups and of finite semigroups.

In particular, classifying finite semigroups into pseudovarieties is one of the main

subjects of study in finite semigroup theory. In Section 5 we determine the pseu-

dovariety generated by the Rees quotients of numerical semigroups (in fact, the

quotients of N su‰ce): it is the class of finite commutative nilpotent semigroups.

In a final section we raise several questions for which we have not been able to get

answers and left them as open problems, pointing out that some research work on

this subject can be pursued.

2. Definitions and notation

Our reference for numerical semigroups is a book by Rosales and Garcı́a-Sánchez

[7]. One may use the GAP [9] package [3] for computations with numerical semi-

groups so as with (relative) ideals. Other relevant reference for this paper is [1]. It

94 M. Delgado and V. H. Fernandes



contains everything we need on finite semigroups, namely the result on pseudo-

varieties of commutative semigroups used to prove Theorem 5.1. For general

background on semigroup theory we refer the reader to [6].

Except for numerical semigroups or their quotients, as usual, we always as-

sume multiplicative notation.

2.1. Numerical Semigroups. In this paper, for convenience, we shall use the

terminology numerical semigroup for a co-finite subsemigroup of the non-negative

integers, under addition. Traditionally, it is required that a numerical semigroup

contains the 0, which works as an identity, and therefore numerical semigroups

are monoids. The terminology ‘‘numerical monoid’’ also appears in the literature.

This makes usually no di¤erence in the theory development. Despite, the follow-

ing notation is useful: given a numerical semigroup S, we denote by S0 the

monoid obtained from S by adjoining the integer 0 (which is the identity). In par-

ticular, denoting by N the semigroup of positive integers, N0 denotes the monoid

of non-negative integers under addition.

Given a subsemigroup S of N, let d ¼ gcdðSÞ. It is easy to see that
�

s
d
j s a S

�
is a co-finite subsemigroup of N (thus a numerical semigroup) that is isomorphic

to S. Therefore, each isomorphism class of the set of subsemigroups of N contains

a numerical semigroup. That contains exactly one (which implies that di¤erent

numerical semigroups are non isomorphic) is well known and is a consequence of

the following proposition which may be seen as a direct proof of this fact and is

stated here for the sake of completeness.

Proposition 2.1. Let j : S ! T be a surjective homomorphism from a numerical

semigroup S to a numerical semigroup T. Then S ¼ T.

Proof. Let A ¼ fa1; a2; . . . ; ang be a set of generators of S. In particular,

gcdðAÞ ¼ 1. Since j is surjective, then jðAÞ is a set of generators of T and there-

fore, as T is a numerical semigroup, we obtain gcd
�
jðAÞ

�
¼ 1.

For each i a f1; . . . ; ng, we have a1jðaiÞ ¼ jða1aiÞ ¼ jðaia1Þ ¼ aijða1Þ. It

follows that a1 j aijða1Þ, for all i a f1; . . . ; ng. Since gcdða1; a2; . . . ; anÞ ¼ 1, we

get that a1 j jða1Þ and that
jða1Þ
a1

j jðaiÞ, for any i a f1; . . . ; ng. This implies

that
jða1Þ
a1

j gcd
�
jðAÞ

�
and so a1 ¼ jða1Þ. Consequently ai ¼ jðaiÞ, for any i a

f1; . . . ; ng. Thus S ¼ T , as required. r

2.2. Notable elements. Let S be a numerical semigroup. The greatest integer

not belonging to S is called the Frobenius number of S and denoted F ðSÞ. The

successor of the Frobenius number is called the conductor of S. It is the least

element of S such that all the integers greater than it belong to S and is denoted

by cðSÞ. The least (positive) element of S, which is also the minimum of the

unique minimal set of generators, is called the multiplicity of S and is denoted by
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mðSÞ. The embedding dimension of S is the cardinality of the minimal generating

set of S and is denoted by eðSÞ.
The positive integers that do not belong to S are called the gaps of S and the

number of such elements is called the genus of S and denoted gðSÞ.

2.3. Ideals. When studying numerical semigroups it is common to consider rela-

tive ideals (see [2]). Given a numerical semigroup S, a relative ideal IS of S has

a (unique) finite minimal ideal generating system, say G, such that IS ¼ G þ S0.

Since we are interested in forming quotients, we are only interested in those rela-

tive ideals that are contained in their ambient semigroups (and which are in fact

the semigroup ideals). As in [7], these are called ideals. Notice that the ideals

of a numerical semigroup S are precisely those relative ideals whose minimal

ideal generating system is contained in S. Given a positive integer k, the set

IkðSÞ ¼ fx a S j xb kg is an ideal of S; we say that it is an ideal determined

by the cutting point k. When the ambient semigroup is understood, we write I

(respectively IkÞ for IS (respectively IkðSÞ).
Let S be a numerical semigroup with multiplicity m and conductor c. Observe

that if kb cðSÞ, then Ik ¼ fx a N j xb kg. The minimal generating system of

the numerical semigroup Ik is fk; k þ 1; . . . ; 2k � 1g, while the minimal ideal gen-

erating system of IkðSÞ may be smaller. In fact, we have

IkðSÞ ¼ fk; k þ 1; . . . ; k þm� 1g þ S0:

Moreover, when kb cðSÞ, we can easily conclude that fk; k þ 1; . . . ; k þm� 1g is
the minimal ideal generating system of Ik.

2.4. Rees quotients. Given a numerical semigroup S and an ideal IS we can

form the Rees quotient

rqnsðS; ISÞ ¼ S=IS;

which is obtained from S by identifying all elements of IS to a distinguished

element.

Throughout this paper we will call Rees quotient numerical semigroup (rqns,

for short) any semigroup that is isomorphic to a Rees quotient of a numerical

semigroup by an ideal.

The distinguished element considered in the construction of a rqns is an

absorbing element, usually named the zero in multiplicative language, and will

be denoted by l. Despite we assume the additive notation for a rqns, we still

designate its element l by zero. The non-zero elements of a rqns are said to

be finite and the set of finite elements is said to be the finite part of the rqns.

We denote by RQNS the class of all Rees quotient numerical semigroups.
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2.5. Nilpotency. Let S be a finite semigroup. Let n be a positive integer. As

usual, we write Sn for fs1 . . . sn j s1; . . . ; sn a Sg. We say that S is nilpotent if

jSnj ¼ 1, for some positive integer n. The least such n is called the nilpotency class

of the nilpotent semigroup S. As usual when dealing with finite semigroups, xo

denotes the idempotent that is a power of x, for any element x of the semigroup.

The following fact is well known.

Fact 2.2. Let S be a semigroup with zero. The following conditions are equivalent:

i) S is nilpotent;

ii) S satisfies an equation of the form x1 . . . xn ¼ 0, for some n a N;

iii) S satisfies an equation of the form xn ¼ 0, for some n a N;

iv) S satisfies the pseudoequation xo ¼ 0.

Notice that, being z a (pseudo)word, the expression z ¼ 0 is just an abbrevia-

tion for the (pseudo)equations zy ¼ yz ¼ z, with y a fixed variable not occurring

in z.

The following is immediate.

Remark 2.3. A rqns is a nilpotent finite commutative semigroup. Furthermore,

if S is a numerical semigroup with multiplicity m and conductor c, then the nil-

potency class of rqnsðS; IcÞ is the least positive integer k such that kmb c.

2.6. Some classes of finite semigroups. A pseudovariety of semigroups is a class

of finite semigroups closed under the formation of finite direct products, subse-

migroups and homomorphic images.

Among the classes of finite semigroups considered in this paper are the classes

N of nilpotent semigroups and Com of commutative semigroups. Remark 2.3 tells

us that RQNSJNBCom:

Other classes also considered here are subclasses of RQNS, obtained by consid-

ering ideals determined by cutting points. Specifically, we consider

CQNS ¼ fS=IkðSÞ jS is a numerical semigroup and k a Ng and

CN ¼ fN=Ik j k a Ng:

A semigroup in CQNS will be referred as a quotient determined by the numerical

semigroup S and the cutting point k.

As follows from the definitions we have CNJCQNSJRQNS and therefore

we have the following chain:

CNJCQNSJRQNSJNBCom: ð1Þ
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All the inclusions are strict, as we shall see in Section 3. In Section 5 we prove

that the pseudovariety generated by the smallest of these classes, CN, is NBCom,

getting this way a nice set of generators for the pseudovariety NBCom. Before,

in Section 4, we give presentations for semigroups of RQNS. Then, we devote

Section 6 to open problems. Among these problems are possible definitions corre-

sponding to the notable elements.

3. Examples and simple remarks

When we want to represent a set of integers that contains all the integers from,

say, an on, we use the notation fa1; . . . ; a>n g instead of the more commonly used

fa1; . . . ; an;!g mainly because it is more compact and makes the table in Sub-

section 6.2 more readable. Singleton sets will be usually represented by the single

element they contain. The exceptions occur when we want to stress out which are

the elements in an equivalence class.

The following just intends to give a first example that helps gaining some

intuition. We observe that the finite semigroup involved appears as quotient of

two di¤erent numerical semigroups.

Example 3.1. Consider the following numerical semigroups, ideals and Rees

quotients:

S ¼ 32; 54; IS ¼ f6; 7g þ S ¼ f6>g and

Q1 ¼ rqnsðS; ISÞ ¼ ff2g; f4g; f5g;lg;
T ¼ 33; 54; IT ¼ f8; 9; 10g þ S ¼ f8>g and

Q2 ¼ rqnsðT ; ITÞ ¼ ff3g; f5g; f6g;lg:

It is straightforward to observe that the function j : Q1 ! Q2 defined by

jðf2gÞ ¼ f3g, jðf4gÞ ¼ f6g, jðf5gÞ ¼ f5g and jðlÞ ¼ l is an isomorphism.

When a rqns is defined by a numerical semigroup and a cutting point, there

exists a numerical semigroup such that the cutting point is the conductor of the

semigroup, as stated in the following remark.

Remark 3.2. Let S be a numerical semigroup and k a positive integer. There

exists a numerical semigroup T such that rqnsðS; IkÞ ¼ rqnsðT ; IcðTÞÞ.

Proof. If ka cðSÞ, then take T ¼ SA fn a N j nb kg. If k > cðSÞ, then take

T ¼ 2SA fn a N j nb 2kg. r

Example 3.3. Let S ¼ 33; 54 and take k ¼ 10 as cutting point. We get S=Ik ¼
f3; 5; 6; 8; 9;lg. One may take T ¼ f6; 10; 12; 16; 18; 20>g. As cðTÞ ¼ 20, we

get T=IcðTÞ ¼ f6; 10; 12; 16; 18;lg, which is isomorphic to S=Ik.
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Notice that if a, b, c are finite elements of a rqns such that if aþ b ¼ aþ c is

finite, then b ¼ c. We state this property in the following proposition.

Proposition 3.4. The cancellation law holds in the finite part of a rqns.

This proposition is the main ingredient used in the examples of the following

subsection which show that there exist quotients of numerical semigroups that are

not Rees quotients by ideals, and that the direct product of Rees quotient numer-

ical semigroups is not necessarily a rqns, respectively.

3.1. RQNSANBCom. The following examples show that the class RQNS is not

a pseudovariety. In fact, it fails to be closed under the formation of homomorphic

images (Example 3.5) and under the formation of direct products (Example 3.6).

The pictures show the structure in Green’s D-classes of the semigroups considered.

The relevant elements are highlighted and the box containing the idempotent is

marked by using a star.

Example 3.5. Let S ¼ rqnsð34; 54; f12>gÞ ¼ f4; 5; 8; 9; 10;lg and let y be the

congruence of S generated by the pair ð9; 10Þ. Then, it is easy to verify that

S=y ¼ ff4g; f5g; f8g; f9; 10g; f12>gg (f12>g is an absorbing element). We have

that f4g þ f5g ¼ f9; 10g ¼ f5g þ f5g, whence S=y does not satisfy the ‘‘cancella-

tion law’’ (Proposition 3.4) and therefore is not the Rees quotient of a numerical

semigroup.

Example 3.6. Let S ¼ rqnsð32; 54; f4>gÞ ¼ f2;lg and T ¼
rqnsð32; 74; f6>gÞ ¼ f2; 4;lg. Then, the direct product

S � T ¼ fð2; 2Þ; ðl; 2Þ; ð2; 4Þ; ðl; 4Þ; ð2;lÞ; ðl;lÞ ¼ lg

is not isomorphic to a rqns. In fact, we have ð2; 2Þ þ ð2; 2Þ ¼ ð2; 2Þ þ ðl; 2Þ ¼
ðl; 2Þ þ ðl; 2Þ ¼ ðl; 4Þ, which can not happen in a rqns, due (again) to the

‘‘cancellation law’’ (Proposition 3.4).
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Corollary 3.7. The class RNQS is not closed under neither the formation of homo-

morphic images nor the formation of direct products.

3.2. CQNSARQNS. The following lemma, whose statement is inspired on

Distler’s work [4] on the classification of finite nilpotent semigroups, will allow

us to prove that not every rqns is determined by a numerical semigroup and a

cutting point. Observe that for an integer i, and a finite nilpotent semigroup S,

the set S i consists of the elements of S that can be written as the product of at

least i minimal generators. Therefore, S inS iþ1 consists of the elements that can

be written as the product of exactly i minimal generators.

Lemma 3.8. Let S be a commutative nilpotent semigroup minimally generated

by fa; bg, such that a3 ¼ b3 ¼ 0, jS2nS3j ¼ 2 and jS3nS4j ¼ 1. Then S is not deter-

mined by a numerical semigroup and a cutting point.

Prior to the proof we give an example of a semigroup fulfilling the conditions

of the lemma.

Example 3.9. Let us consider the numerical semigroup N ¼ 33; 54 ¼ f3; 5; 6; 8>g
and its ideal IN ¼ f6g þN 0 ¼ f6; 9; 11; 12; 14>g. The quotient S ¼ N=IN ¼
f3; 5; 8; 10; 13;lg has the following multiplication table

a 3 5 8 10 13 l

3 l 8 l 13 l l

5 8 10 13 l l l

8 l 13 l l l l

10 13 l l l l l

13 l l l l l l

l l l l l l l
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and the following structure in Green’s D-classes

Observe that the constructed semigroup is a rqns, which proves the following

Corollary:

Corollary 3.10. A rqns is not necessarily determined by a numerical semigroup

and a cutting point.

Next we prove Lemma 3.8.

Proof. Suppose that there exist a numerical semigroup M, a positive integer k

and an isomorphism f : M=Ik ! S. Let p : M ! M=Ik be the canonical projec-

tion, i.e.

pðmÞ ¼ fmg; m < k

l; mb k;

�

for all m a M, and take the surjective homomorphism g ¼ f � p : M ! S.

Clearly, being fn1; n2; . . . ; ntg, with n1 < n2 < � � � < nt, the minimal generators

of M, we have tb 2 and fgðn1Þ; gðn2Þg ¼ fa; bg. Without loss of generality,

we may admit that gðn1Þ ¼ a. Now, as S is commutative, we have S2nS3 J
fa2 ¼ gð2n1Þ; ab ¼ gðn1 þ n2Þ; b2 ¼ gð2n2Þg. Moreover, since 2n1 < n1 þ n2 <

2n2 and jS2nS3j ¼ 2, we deduce that S2nS3 ¼ fa2; abg. Thus, again by the

commutativity of S, we obtain S3nS4 J fa3 ¼ gð3n1Þ; a2b ¼ gð2n1 þ n2Þ; ab2 ¼
gðn1 þ 2n1Þg. Now, as a3 ¼ 0, we get ka 3n1 < 2n1 þ n2 < n1 þ 2n2, whence

a2b ¼ ab2 ¼ 0 and so S3nS4 ¼ j, a contradiction. r

4. Presentations

We refer the reader to [8] for presentations of semigroups in general. Presenta-

tions of numerical semigroups may be found in our general reference [7].
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Our aim is to find a nice presentation for a rqns. We use the presentation ob-

tained to give a practical method to compute the automorphism group of a rqns.

4.1. Rees quotient semigroup presentations. We start with some generalities.

Let S be a semigroup without identity. We denote by S i the semigroup S with

an adjoined identity. An element x a S is called indecomposable in S if there are

no elements a; b a S such that x ¼ ab. Let I be a proper ideal of S. Then, clearly,

an element x a SnI is indecomposable in S if and only if ½x�I ¼ fxg is inde-

composable in S=I . On the other hand, if X is a set of generators of S then

f½x�I ¼ fxg j x a XnIgA fIg is a set of generators of S=I . Notice that, if SnI is

not a subsemigroup of S, then f½x�I ¼ fxg j x a XnIg generates S=I (thus I does

not need to be added as a generator).

Given a set X , we denote by X þ the free semigroup on X .

Let 3X jR4 be a presentation of S. For each y a I , denote by wy a (fixed)

word of X þ representing the element y. Let Y be an ideal generating system of

I , i.e. a non-empty subset Y of I such that I ¼ S iYS i (notice that any set of

generators of I is also an ideal generating system of I ). Then, it is a routine matter

to show:

Lemma 4.1. The semigroup S=I is defined by the presentation with zero

3X jR;wy ¼ 0 ðy a YÞ4.

Recall that, in a presentation (of semigroups) 3A jR4 with zero, the free

semigroup with zero Aþ
0 (i.e. the free semigroup Aþ with an absorbing element

adjoined) plays the same role as Aþ in a usual presentation (of semigroups).

Next, let 3X jR4 be a presentation of S and let Y be any subset of I (not

necessarily an ideal generating system) such that

3X jR;wy ¼ 0 ðy a YÞ4

is a presentation (with zero) of S=I . We define from R the following sets of

relations on ðXnIÞþ0 :

R1 ¼ fðu; vÞ j ðu; vÞ a R and u; v a ðXnIÞþg;
R2 ¼ fðu; 0Þ j ðu; vÞ a R or ðv; uÞ a R; with u a ðXnIÞþ and v a X þnðXnIÞþg

and

R 0 ¼ R1AR2: ð2Þ

Let Y 0 ¼ fy a Y jwy a ðXnIÞþg (in addition, we may assume that, for each ele-

ment y a I BX , we have taken wy as the word y and so, in this case, Y 0BX ¼ j).
Under these conditions, we have:
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Lemma 4.2. The semigroup S=I is defined by the presentation with zero

3XnI jR 0;wy ¼ 0 ðy a Y 0Þ4.

Proof. First, observe that, clearly, all the relations of 3XnI jR 0;wy ¼ 0 ðy a Y 0Þ4
are satisfied by S=I . Therefore, it remains to prove that all the equalities, between

words of ðXnIÞþ, satisfied by S=I are consequences of R 0A fwy ¼ 0 j y a Y 0g.
Let w;w 0 a ðXnIÞþ be such that the equality w ¼ w 0 is satisfied by S=I . Then

w and w 0 both represent elements of I or w ¼ w 0 is satisfied by S (and, in this

case, we may suppose that w and w 0 represent an element of SnI ).
If this last case occurs, since S is presented by 3X jR4, then there exists a finite

sequence of elementary R-transitions w ! w1 ! � � � ! wn�1 ! w 0 over X þ. As

each word of this sequence represents the same element of SnI , then all the letters

involved must belong to XnI . Hence w ! w1 ! � � � ! wn�1 ! w 0 is also a finite

sequence of elementary R1-transitions over ðXnIÞþ and so, in particular, w ¼ w 0 is
a consequence of R 0A fwy ¼ 0 j y a Y 0g.

Next, suppose that w represents an element of I . Since 3X jR;wy ¼ 0 ðy a YÞ4
is a presentation of S=I and the equality w ¼ 0 is satisfied by S=I , then there exist

a finite sequence of elementary R-transitions w ! w1 ! � � � ! wn�1 over X þ and

an elementary fwy ¼ 0 j y a Yg-transition wn�1 ! 0 over X þ. Now, we consider

two possibilities. First, if w1; . . . ;wn�1 a ðXnIÞþ, then w ! w1 ! � � � ! wn�1 is

also a finite sequence of elementary R1-transitions over ðXnIÞþ (notice that,

we have taken w a ðXnIÞþ) and wn�1 ! 0 is an elementary fwy ¼ 0 j y a Y 0g-
transition over ðXnIÞþ, whence w ¼ 0 is a consequence of R 0A fwy ¼ 0 j y a Y 0g.
Secondly, we suppose that there exists an index i a f1; . . . ; n� 1g such that

wi a X þnðXnIÞþ and take the smallest of such indexes. Thus w ! w1 ! � � � !
wi�1 (where wi�1 denotes the word w, for i ¼ 1) is a finite sequence of elementary

R1-transitions over ðXnIÞþ and wi�1 ! wi is an elementary fðu; vÞg-transition, for
some u a ðXnIÞþ and v a X þnðXnIÞþ such that ðu; vÞ a R or ðv; uÞ a R. Hence

w ! w1 ! � � � ! wi�1 ! 0 is a finite sequence of elementary R1AR2-transitions

over ðXnIÞþ and so again we conclude that w ¼ 0 is a consequence of

R 0A fwy ¼ 0 j y a Y 0g.
Therefore, if w and w 0 both represent elements of I , from the last paragraph we

deduce that w ¼ w 0 is a consequence of R 0A fwy ¼ 0 j y a Y 0g, as required. r

4.2. Presentations of rqns’s. Now, let S be a numerical semigroup and let I be

a proper ideal of S. Take an ideal generating system G of I (whence I ¼ G þ S0)

and a presentation 3X jR4 of S. Then, as a particular case of Lemma 4.1, we

have:

Corollary 4.3. The rqns S=I is defined by the presentation with zero 3X jR;
wg ¼ 0 ðg a GÞ4.
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Example 4.4. Let m ¼ mðSÞ and let kb cðSÞ be an integer. Recall that the

minimal ideal generating system of the ideal Ik of S is fk; k þ 1; . . . ; k þm� 1g.
Thus

3X jR;wk ¼ wkþ1 ¼ � � � ¼ wkþm�1 ¼ 04

is a presentation of S=Ik.

Next, we suppose that X is the minimal generating system of S. Then (the set

of classes of the elements of ) XnI is a set of generators of S=I (since SnI is never

a subsemigroup of S). Moreover, as XnI JS=I is also a set of indecomposable

elements of S=I , then XnI is a minimum set (for set inclusion) of generators of

SnI . We call to XnI the minimal generating system of the rqns S=I .

In particular, if the ideal I does not contain any element of the minimal gen-

erating system X of S, then X is also the minimal generating system of S=I . In

this case, the presentation of S=I given by Corollary 4.3 (considering there X as

being the minimal generating system of S) is already over its minimal generating

system.

In what follows, we aim to determine a presentation over the minimal generat-

ing system of any rqns.

Let G be the minimal ideal generating system of I . Recall that, for each g a G,

we denote by wg a fixed word of X þ representing the element g. Then, we have:

Lemma 4.5. For any g a G, wg a ðXnIÞþ if and only if g a GnX.

Proof. If g a X then g is indecomposable, whence wg should be the word g

(despite, in any case, we could have chosen wg equal g) and so wg B ðXnIÞþ.
Conversely, suppose that wg B ðXnIÞþ. Then g ¼ x1 þ � � � þ xn, with

x1; . . . ; xn a X (nb 1) and xi a I , for some 1a ia n. Then, as xi is indecom-

posable and xi a G þ S0, we must have xi a G (since xi ¼ xi þ 0 is the unique

decomposition permitted). Now, if gAxi, then I ¼ G þ S0 J ðGnfggÞ þ S0 J I

(observe that, given x a S0, we have gþ x ¼ xi þ ðx1 þ � � � þ xi�1 þ xiþ1 þ � � � þ
xn þ xÞ a ðGnfggÞ þ S0), which contradicts the minimality of G. Thus g ¼ xi a X

and so the lemma is proved. r

Let R 0 be the set of relations over ðXnIÞþ0 obtained from R as defined in gen-

eral in (2). Thus, combining Lemma 4.2 with Lemma 4.5, we immediately have:

Theorem 4.6. The rqns S=I is defined by the presentation with zero 3XnI jR 0;
wg ¼ 0 ðg a GnXÞ4 over its minimal generating system.

4.3. Isomorphisms of rqns’s. In what follows, all Rees quotient numerical

semigroups considered are constructed from proper ideals.

104 M. Delgado and V. H. Fernandes



Let S1 and S2 be two Rees quotient numerical semigroups with minimal gen-

erating systems X1 and X2, respectively.

Lemma 4.7. If j : S1 ! S2 is a surjective homomorphism, then X2 J jðX1Þ. In

particular jX2ja jX1j.

Proof. Since j is surjective, then jðX1Þ generates S2. Thus X2 J jðX1Þ, by the

minimality of X2. Moreover, jX2ja jjðX1Þja jX1j, as required. r

It follows immediately that:

Proposition 4.8. Let j : S1 ! S2 be an isomorphism. Then jðX1Þ ¼ X2. In

particular jX1j ¼ jX2j.

Let S and T be (any) two semigroups and let 3X jR4 be a presentation of S.

Let f : X ! T be a mapping and let f : X þ ! T be the (unique) homomor-

phism extending f (regarding X as a set of letters). If f satisfies R, i.e. fðuÞ ¼
fðvÞ, for all ðu; vÞ a R, then the mapping j : S ! T defined by jðsÞ ¼ fðwsÞ, where
ws is any (fixed) word of X þ representing s, for all s a S, is the unique homomor-

phism extending f (regarding X as a generating set of S). Moreover, f ðXÞ gen-
erates T if and only if j : S ! T is a surjective homomorphism. In particular,

supposing that S is a finite semigroup, if f ðXÞ generates T and jSj ¼ jT j, then
j : S ! T is an isomorphism.

Conversely, let j : S ! T be a homomorphism and let f : X ! T be the

restriction of j to X . Then, clearly, f must satisfy R.

In view of Proposition 4.8 and the above observations, we have the follow-

ing interesting conclusion regarding isomorphisms of Rees quotient numerical

semigroups.

Theorem 4.9. Let S1 and S2 be two Rees quotient numerical semigroups with

minimal generating systems X1 and X2, respectively. Let 3X1 jR4 be a ( fixed ) pre-

sentation of S1. If jS1j ¼ jS2j then the isomorphisms from S1 to S2 are precisely the

homomorphisms j : S1 ! S2 extending bijections f : X1 ! X2 satisfying R.

For a numerical semigroup S with multiplicity m and embedding dimension

e, we may compute a presentation with less than or equal to
ð2m�eþ1Þðe�2Þ

2 þ 1

relations [7]. Thus, if I is an ideal of S with minimal ideal generating system

G, regarding Theorem 4.6, we may compute a presentation (with zero) for the

rqns S=I over its minimal generating system with less than or equal to
ð2m�eþ1Þðe�2Þ

2 þ jGj þ 1 relations. Therefore, Theorem 4.9 gives us a reasonable

practical method to compute all the isomorphisms between two Rees quotient
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numerical semigroups (at least for the ones having small-size minimal generating

systems) and, in particular, to compute the automorphism group of a rqns:

Corollary 4.10. Let S be a rqns with minimal generating system X and let

3X jR4 be a ( fixed ) presentation of S. Then, the automorphisms of S are the

endomorphisms of S that extend permutations of X satisfying R.

A recent paper by Garcı́a-Garcı́a and Moreno [5] treats problems on mor-

phisms of commutative monoids which at first sight could be thought as similar

to the ones treated in this subsection, but we have not discovered any strong

connection.

5. Generators of the pseudovariety NBCom

Recall that CN ¼ frqnsðN; IkÞ j k a Ng. We show that this small class, consist-

ing of easily described finite semigroups, forms a set of generators of the pseudo-

variety of finite nilpotent and commutative semigroups.

Theorem 5.1. The class CN generates the pseudovariety NBCom.

Proof. Let V be the pseudovariety generated by CN. Then, as VHCom, by

[1, Theorem 6.2.6], V is admits a finite basis of pseudoidentities of the form

SA fxy ¼ yx; pðxÞxo ¼ xog;

where p is a pseudoword on one variable such that VBG is defined by the pseu-

doidentities p ¼ 1 and xy ¼ yx and S consists of pseudoidentities which are valid

in V of the form xa1
1 . . . xan

n ¼ x
b1
1 . . . x

bn
n , with a1; . . . ; an; b1; . . . ; bn a N0A fog and

variables x1; . . . ; xn not necessarily distinct.

As N is defined by the pseudoidentity xo ¼ 0 and VHN, we may replace

pðxÞxo ¼ xo simply by xo ¼ 0.

Next, suppose that V is strictly contained in NBCom. Hence V must satisfy a

non-trivial pseudoidentity, which is not satisfied by NBCom, of the form

xa1
1 . . . xan

n ¼ x
b1
1 . . . x

bn
n , with a1; . . . ; an; b1; . . . ; bn a N0A fog and x1; . . . ; xn not

necessarily distinct. As V also satisfies xo ¼ 0, it follows that this pseudoidentity

must be an identity of the form xa1
1 . . . xan

n ¼ 0, with a1; . . . ; an a N or of the form

xa1
1 . . . xan

n ¼ x
b1
1 . . . x

bn
n , with a1; . . . ; an; b1; . . . ; bn a N0. Moreover, in both cases,

we may assume that the variables x1; . . . ; xn are distinct.

Let r be a positive integer and consider the semigroup Qr ¼ rqnsðN; IrÞ. If

r > a1 þ � � � þ an, then we have a1 þ � � � þ anAl in Qr, whence Qr does not
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satisfy the identity xa1
1 . . . xan

n ¼ 0 and so the taken pseudoidentity cannot be of this

form. Now, let r > maxfa1 þ � � � þ ai�1 þ 2ai þ aiþ1 þ � � � þ an j 2a ia ng. Since

Qr must satisfy the identity xa1
1 . . . xan

n ¼ x
b1
1 . . . x

bn
n , on one hand, we have

lA a1 þ � � � þ ai�1 þ ai þ aiþ1 þ � � � þ an

¼ b1 þ � � � þ bi�1 þ bi þ biþ1 þ � � � þ bn ð3Þ

in Qr and, on the other hand, for 2a ia n (by considering xj ¼ 1, for jA i, and

xi ¼ 2), we have

lA a1 þ � � � þ ai�1 þ 2ai þ aiþ1 þ � � � þ an

¼ b1 þ � � � þ bi�1 þ 2bi þ biþ1 þ � � � þ bn ð4Þ

in Qr. Hence, for each 2a ia n, by combining (3) with (4), we deduce that

ai ¼ bi. Then, by (3) it follows also that a1 ¼ b1. Therefore, the identity

xa1
1 . . . xan

n ¼ x
b1
1 . . . x

bn
n is trivial, which is a contradiction.

Thus V ¼ NBCom, as required. r

6. Open problems

In this section we state some natural questions which we have not yet been able to

answer, opening this way a line of research.

We divide the section into subsections, one of which contains a table where

the numerical semigroups with Frobenius number up to 10 are listed. An anal-

ysis of this table (and some other computations of the same kind) leads to

several questions and conjectures. We state a decidability question in the last

subsection.

6.1. Some more terminology. Next we grasp some more terminology from our

references.

A numerical semigroup is irreducible if it cannot be expressed as the intersec-

tion of two numerical semigroups properly containing it.

An irreducible numerical semigroup is either symmetric, if its Frobenius num-

ber is odd, or is pseudo-symmetric, if its Frobenius number is even.

The elements of a numerical semigroup that are not greater than the conductor

are called small elements. (The name is taken from the numericalsgps GAP pack-

age [3], although the current version of the package always includes the 0 as a

small element of a semigroup.)

As the set of small elements of a numerical semigroup completely determines

it, we can represent the numerical semigroup through its small elements.
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6.2. A table of semigroups with small Frobenius numbers. Table 1 lists the nu-

merical semigroups whose conductor is not greater than 11. The use of gray tones

will be explained in the next subsection.

The table has been constructed with the help of the numericalsgps GAP package

[3]. For instance, the data in the following example was used to produce the line

corresponding to the semigroups with Frobenius number 8.

Example 6.1. The following lines correspond to a GAP session where the irreduc-

ible numerical semigroups with Frobenius number 8 are determined.

gap> LoadPackage("numericalsgps");

true

gap> n := 8;;

gap> irrn := IrreducibleNumericalSemigroupsWithFrobeniusNumber(n);;

gap> List(irrn,s->SmallElementsOfNumericalSemigroup(s));

[ [ 0, 5, 6, 7, 9 ], [ 0, 3, 6, 7, 9 ] ]

In the same GAP session, the non irreducibles can be determined as follows:

gap> fn:=NumericalSemigroupsWithFrobeniusNumber(n);;

gap> nirrn:=Filtered(fn,s->not IsIrreducibleNumericalSemi group(s));;

gap> List(nirrn,s->SmallElementsOfNumericalSemigroup(s));

[ [ 0, 5, 7, 9 ], [ 0, 6, 7, 9 ], [ 0, 7, 9 ], [ 0, 5, 6, 9 ],

[ 0, 3, 6, 9 ], [ 0, 5, 9 ], [ 0, 6, 9 ], [ 0, 9 ] ]

The numbers in the first column of Table 1 indicate the Frobenius numbers

of the numerical semigroups on the right cells. The second column contains the

irreducible semigroups and the third contains the non irreducible ones.

6.3. Analysis of the table. Let S be a numerical semigroup. We observe that

the size of the Rees quotient rqnsðS; IcðSÞÞ is precisely the number of small ele-

ments of S.

The set of small elements can also be used to represent the rqns where the con-

ductor has been taken as cutting point. Notice that, contrary to what happens

when using this form of representing a numerical semigroup, several sets of inte-

gers can represent the same quotient semigroup (since we do not make any distinc-

tion between isomorphic objects).

In this way, Table 1 represents also the Rees quotient numerical semigroups

obtained from the numerical semigroups with Frobenius number less than 11

through the use of the conductor as cutting point. There are many repetitions,

since many of the numerical semigroups in the table lead to isomorphic quotients.

Quotients of the same size (which, as observed, are obtained from numerical
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semigroups with the same number of small elements) that are isomorphic are rep-

resented using the same gray tone.

The reader can check without any di‰culty that the isomorphism classes

of the quotient semigroups in the table are completely determined by the size

and the nilpotency class of the semigroups. In fact, in all cases of semigroups

of the same size and nilpotency class, it is straightforward to construct an

isomorphism. (We observe that these arguments would need to be greatly

refined in order to deal with numerical semigroups with larger Frobenius

numbers.)

The following seems to be true, but we still have no proof:

Conjecture 6.2. Di¤erent symmetric numerical semigroups correspond to non-

isomorphic quotient numerical semigroups.

Table 1. Numerical semigroups with conductor up to 11

F Irreducibles Non irreducibles

1 f2>g

2 f3>g

3 f2; 4>g f4>g

4 f3; 5>g f5>g

5 f3; 4; 6>g; f2; 4; 6>g f3; 6>g; f4; 6>g; f6>g

6 f4; 5; 7>g f5; 7>g; f4; 7>g; f7>g

7 f3; 5; 6; 8>g; f4; 5; 6; 8>g;
f2; 4; 6; 8>g

f4; 5; 8>g; f5; 6; 8>g; f3; 6; 8>g; f5; 8>g;
f4; 8>g; f4; 6; 8>g; f6; 8>g; f8>g

8 f5; 6; 7; 9>g; f3; 6; 7; 9>g f5; 7; 9>g; f6; 7; 9>g; f7; 9>g; f5; 6; 9>g;
f3; 6; 9>g; f5; 9>g; f6; 9>g; f9>g

9 f5; 6; 7; 8; 10>g; f4; 6; 7; 8; 10>g;
f2; 4; 6; 8; 10>g

f5; 6; 7; 10>g; f6; 7; 8; 10>g; f5; 7; 8; 10>g;
f4; 7; 8; 10>g; f5; 6; 8; 10>g; f6; 7; 10>g;
f5; 7; 10>g; f5; 6; 10>g; f7; 8; 10>g;
f4; 6; 8; 10>g; f6; 8; 10>g; f5; 8; 10>g;
f4; 8; 10>g; f7; 10>g; f6; 10>g;
f5; 10>g; f8; 10>g; f10>g

10 f4; 7; 8; 9; 11>g; f6; 7; 8; 9; 11>g;
f3; 6; 8; 9; 11>g

f7; 8; 9; 11>g; f4; 8; 9; 11>g; f6; 7; 9; 11>g;
f7; 9; 11>g; f3; 6; 9; 11>g; f6; 7; 8; 11>g;
f4; 7; 8; 11>g; f6; 7; 11>g; f6; 8; 9; 11>g;
f8; 9; 11>g; f6; 9; 11>g; f9; 11>g;
f7; 8; 11>g; f6; 8; 11>g; f4; 8; 11>g;
f7; 11>g; f6; 11>g; f8; 11>g; f11>g
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A quick look at the first part of the table could lead to ask whether one could

obtain all the Rees quotient numerical semigroups determined by a cutting point

by using the symmetric numerical semigroups and the conductors as cutting

points. The last part of the table shows that this is not the case, since the Rees

quotient of the pseudo-symmetric numerical semigroup f3; 6; 8; 9; 11>g obtained

by cutting through its conductor is not isomorphic to any Rees quotient of a sym-

metric numerical semigroup with the same number of small elements cutting by its

conductor. (Notice that the nilpotency class of f3; 6; 8; 9;lg is 4, while the nilpo-

tency classes of the quotients obtained from symmetric numerical semigroups with

Frobenius number 9 are 2, 3 or 5.)

One could now make the same question replacing symmetric by irreducible,

although the unicity would in this case be out of question. More precisely, being

N a numerical semigroup and k a cutting point, does there exist an irreducible

numerical semigroup M such that rqnsðN=IkÞUrqnsðM; IcðSÞÞ? The answer is

‘‘No’’, as follows from the remaining part of this subsection.

Consider the semigroup 34; 11; 13; 184 and take the conductor, 15, as cutting

point. The quotient is a nilpotent semigroup of size 6 which has 3 minimal gener-

ators and nilpotency class 4, as the following GAP session may help to confirm.

gap> N := NumericalSemigroup(4,11,13,18);;

gap> SmallElementsOfNumericalSemigroup(N);

[ 0, 4, 8, 11, 12, 13, 15 ]

From basic results on irreducible numerical semigroups (see [7]) it follows that

an irreducible numerical semigroup with 6 small elements must have Frobenius

number 11 or 12. These can be computed as follows:

Example 6.3. gap> n := 11;;

gap> irrn := IrreducibleNumericalSemigroupsWithFrobeniusNumber(n);;

gap> List(irrn,s->SmallElementsOfNumericalSemigroup(s));

[ [ 0, 5, 7, 8, 9, 10, 12 ], [ 0, 4, 5, 8, 9, 10, 12 ],

[ 0, 3, 6, 7, 9, 10, 12 ], [ 0, 6, 7, 8, 9, 10, 12 ],

[ 0, 2, 4, 6, 8, 10, 12 ], [ 0, 4, 6, 8, 9, 10, 12 ] ]

gap> n := 12;;

gap> irrn := IrreducibleNumericalSemigroupsWithFrobeniusNumber(n);;

gap> List(irrn,s->SmallElementsOfNumericalSemigroup(s));

[ [ 0, 7, 8, 9, 10, 11, 13 ], [ 0, 5, 8, 9, 10, 11, 13 ] ]

The only one with nilpotency class 4 is obtained from f3; 6; 7; 9; 10; 12>g, but it
only has 2 minimal generators, therefore is not isomorphic to f4; 8; 11; 12; 13;lg.
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6.4. Notable elements in quotients. It would be interesting to be able to find

a reasonable correspondence between the definitions of notable elements in nu-

merical semigroups given in Subsection 2.2 and similar notions to be defined in

Rees quotient numerical semigroups. For instance, one should be able to give a

reasonable definition for the Frobenius number of a rqns. At some point of our

research we had the hope that one could do this via some irreducible numerical

semigroup in the same isomorphism class, but the examples in the previous subsec-

tion show that something di¤erent must be tried.

6.5. Decidability.

Question 6.4. Let Q be a finite commutative nilpotent semigroup. Give an e¤ective

way to construct a numerical semigroup S and an ideal IS such that Q and S=IS are

isomorphic, if such numerical semigroup and ideal exist.

As usual, we say that a class of finite semigroups is decidable if there is an

algorithm that having as input a finite semigroup, it outputs whether the semi-

group belongs to the class given. The following question, to which Section 5 is

related and which would have a positive answer if Question 6.4 had a positive

answer, appears naturally:

Question 6.5. Is RQNS decidable?
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