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Abstract. We show that the path construction integration of Lie algebroids by Lie
groupoids is an actual equivalence from the of integrable Lie algebroids and complete Lie
algebroid comorphisms to the of source 1-connected Lie groupoids and Lie groupoid
comorphisms. This allows us to construct an actual symplectization functor in Poisson
geometry. We include examples to show that the integrability of comorphisms and Poisson
maps may not hold in the absence of a completeness assumption.
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1. Introduction

A classical result in di¤erential geometry is that any finite dimensional Lie algebra

G can be integrated by a 1-connected Lie group SðGÞ (conversely, any Lie group

endows its tangent space at the unit with the structure of a Lie algebra). This

bijective correspondence between finite dimensional Lie algebras and 1-connected

finite dimensional Lie groups is actually the object component of an integration

functor

S : LieAlg! LieGp;

which is an equivalence from the of finite dimensional Lie algebras to the of finite

dimensional 1-connected Lie groups.
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There are several generalizations of finite dimensional Lie algebras: infinite-

dimensional (e.g Banach) Lie algebras, Lie algebroids, Poisson manifolds, and

Ll-algebras, for instance. In each case, it is natural to ask whether there is a

corresponding integration functor. For this, we need to find out the right notion

for the objects integrating these generalized Lie algebras as well as the right notion

of morphisms between them.

We will be concerned here with Lie algebroids and Poisson manifolds (see

[14] for a general reference), each of whose have natural integrating objects: Lie

groupoids for Lie algebroids and symplectic groupoids for Poisson manifolds.

However, unlike finite dimensional Lie algebras, not all Lie algebroids are

integrable by Lie groupoids. In [7], Crainic and Fernandes worked out a criterion

to select those that are. In this paper, we will construct an integration functor for

the class of integrable Lie algebroids. To allow non-integrable Lie algebroids to

be in the domain of an integration functor, one must consider integration by mi-

crogroupoids (i.e. germs of groupoids) in the spirit of [3] or by di¤erentiable stacks

as in [18].

We will focus on an integration functor for Lie algebroids that translates into

an integration functor for Poisson manifolds (also called ‘‘symplectization func-

tor’’ by Fernandes [10]). For this, the main ingredient is to replace the usual

notion of morphisms between Lie groupoids (i.e. smooth functors between the

underlying groupoids, see [11], [14]) and their corresponding infinitesimal version

for Lie algebroids by that of comorphisms. Lie algebroid and Lie groupoid comor-

phisms were introduced by Higgins and Mackenzie in [12]. (This notion for Lie

groupoids had been studied earlier under a di¤erent name and with a di¤erent,

but equivalent, definition by Zakrzewski in [19] and Stachura in [17].) Already

there, comorphisms were seen as the ‘‘correct’’ notion of morphisms between Lie

algebroids to be used with applications to Poisson geometry in mind.

From the perspective of Poisson geometry, Lie algebroid and Lie groupoid

morphisms are not very well-suited, since a Poisson map f from X to Y induces

a Lie algebroid morphism from T �X to T �Y (that integrates to a symplectic

groupoid morphism) only when f is a di¤eomorphism. This prevents us from con-

structing an integration functor whose domain would contain all Poisson maps.

On the other hand, the cotangent map T �f to a Poisson map f is always a comor-

phism from T �X to T �Y .

There are also a number of facts independent of Poisson geometry that make

comorphisms the ‘‘correct’’ notion of morphisms between Lie groupoids. For

instance, a comorphism between Lie groupoids naturally induces a group mor-

phism between the corresponding groups of bisections as well as a C �-algebra
morphism between the corresponding convolution C �-algebras (see [17]). This

gives functors from the of Lie groupoids and comorphisms to the of groups and

to the of C �-algebras (see [17]). Moreover, the graph of a Lie groupoid comor-

114 A. S. Cattaneo, B. Dherin and A. Weinstein



phism is a monoid map in the ‘‘ ’’ of di¤erentiable relations between the monoid

objects associated to the multiplication graph of the corresponding Lie groupoids

(see [19]).

On the other hand, in contrast to Lie algebroid morphisms, Lie algebroid

comorphisms do not always integrate to Lie groupoid comorphisms. The same

holds in Poisson geometry, where completeness of Poisson maps insures integrabil-

ity in terms of (symplectic) comorphisms. We will give an example of a non com-

plete Lie algebroid comorphism that is also non integrable, and whose dual is a

non complete and non integrable Poisson map.

Dazord in [9] already stated without proof that both complete Lie algebroid

comorphisms and Poisson maps always do integrate to comorphisms. In [19],

Zakrzewski proved that complete Poisson maps are integrable to what he called

‘‘morphisms of regular D�-algebras,’’ which turn out to be nothing but symplectic

comorphisms.

More recently, Caseiro and Fernandes in [1] proved that a complete Poisson

map f from integrable Poisson manifolds X to Y always integrates to a natural

left action of the symplectic groupoid SðYÞ on X with moment map f. This

action naturally induces an embedded lagrangian subgroupoid integrating the

graph of the Poisson map. Their proof, at contrast with the one of Zakrzewski

which uses the method of characteristics, is readily transposable to complete Lie

algebroid comorphisms. They use the existence of lifting properties by complete

Poisson maps for both admissible paths and their homotopies, which also holds

for complete Lie algebroid comorphisms and makes them resemble ‘‘Serre fibra-

tions’’ in topology.

These lifting properties (Proposition 4.2 and 4.3) will also be central to our

main result (Theorem 5.1): namely, that the path construction of [4], [8], [7], which

associates a source 1-connected Lie groupoid SðAÞ to each integrable Lie algeb-

roid A, is an actual equivalence from the of integrable Lie algebroids and complete

Lie algebroid comorphisms to the of source 1-connected Lie groupoids and Lie

groupoid comorphisms.

As a corollary, we obtain that Lie algebroid comorphisms are integrable if and

only if they are complete, which strengthens Dazord’s statement. We show that

this implies a corresponding theorem in Poisson geometry, where the path con-

struction implements an equivalence between the of integrable Poisson manifolds

and complete Poisson maps and the of source 1-connected symplectic groupoids

and symplectic comorphisms. From this, we may conclude that Poisson maps

are integrable if and only if they are complete, which was already shown by

Zakrzewski in the language of regular D�-algebras.
Let us conclude this introduction by remarking that the composition of the

path construction with the functor constructed by Stachura in [17] yields a sort

of ‘‘prequantization’’ functor that takes an integrable Poisson manifold to the
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convolution C �-algebra of its integrating symplectic groupoid and a complete

Poisson map to a C �-algebra morphism between these convolution C �-algebras.

2. Morphisms and comorphisms

Much of what follows in this section may already be found in [5], [9], [11], [12].

We work in the smooth. Let a : A! X and b : B! Y be submersions, which

we may think of as families of manifolds parametrized by X and Y .

A map f from X to Y together with a map F to A from the pullback

f!B ¼ X �Y B will be called a comorphism from a to b; f will be called the core

map of the comorphism. When the families are vector bundles and F is linear

on fibres, we call ðf;FÞ a vector bundle comorphism. It induces a dual vector

bundle map F� from a� : A� ! X to b� : B� ! Y covering f and a pullback

map Fy to the space GðAÞ of sections of A from GðBÞ.
On the other hand, a morphism from a to b is simply a map of fibrations, which

we also denote by ðf;FÞ, where the core map f is the base map of the bundle

map, and F is a collection of smooth maps Fx from the fibers Ax to BfðxÞ. When

a and b are vector bundles and F is linear on fibers, a morphism ðf;FÞ is a vector

bundle map.

As observed in [12], the notions of morphisms and comorphisms for vector

bundles are dual to each other in the sense that ðf;FÞ is a comorphism from a

to b if and only if ðf;F�Þ is a morphism from a� to b� (and conversely).

We now specialize the notion of morphisms and comorphisms to Lie algeb-

roids and Lie groupoids, and we introduce corresponding Lie functors (see also

[11], [12]).

2.1. Lie algebroids. If A and B are Lie algebroids, a vector bundle comorphism

ðf;FÞ is called a Lie algebroid comorphism if F� is a Poisson map for the natural

Lie-Poisson structures on the dual Lie algebroids. Equivalently, Fy is a homomor-

phism of Lie algebras, and

f� � rA �Fy ¼ rB; ð1Þ

where rA and rB are the anchor maps of respectively A and B. In terms of

diagrams, we can represent a comorphism and relation (1) as follows:

A  ���F
B???y
???y

X ���!
f

Y

GðAÞ  ���Fy
GðBÞ

rA

???y
???yrB

vectðXÞ ���!
f�

vectðYÞ
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On the other hand, a vector bundle morphism ðf;FÞ is called a Lie algebroid

morphism if F� induces a chain map from the Lie algebroid complexe Gðb�B�Þ
to Gðb�A�Þ (see [11]).

We denote by Algdþ the category of Lie algebroids and Lie algebroid

morphisms and Algd� the of Lie algebroids and Lie algebroid comorphisms.

Observe that the graph of both a Lie algebroid morphism and a Lie algebroid

comorphism is a Lie subalgebroid of the Lie algebroid product A� B and that

morphisms and comorphisms coincide (up to the direction of arrows when the

core map is a di¤eomorphism.

Example 2.1. Let f : X ! Y be a smooth map. The tangent map Tf is a Lie

algebroid morphism from TX to TY (seen as algebroids with identity as anchor

and the usual Lie bracket on vector fields), while the cotangent map T �f is a Lie

algebroid comorphism from T �X to T �Y (seen as Lie algebroids with zero anchor

and zero bracket). Tf and T �f are both, at the same time, Lie algebroid mor-

phisms and comorphisms when f is a di¤eomorphism.

Example 2.2. If A ¼ TX and B ¼ TY carry the usual Lie algebroid structures

(as in the previous example), then ðf;FÞ is a comorphism from TX to TY when

f is a submersion and F is the horizontal lift map of a flat Ehresmann connection

over the open submanifold fðXÞJY .

Example 2.3. If A and B are Lie algebras, considered as Lie algebroids over a

point, then a Lie algebroid comorphism from A to B is a Lie algebra morphism

from B to A, while a Lie algebroid morphism from A to B is a Lie algebra mor-

phism from A to B.

As already noted by Higgins and Mackenzie in [12], Lie algebroid comor-

phisms are closely related to Lie algebroid actions. Without entering into much

details here, let us recall these relations briefly. First of all, a comorphism ðf;FÞ
from A to B induces an action of B on the map f : X ! Y , which endows the

vector bundle pullback f!B with the structure of a Lie algebroid. This algebroid

is called the action Lie algebroid, and there is a Lie algebroid morphism from it

to A� B, whose image is the comorphism graph. This map establishes a Lie

algebroid isomorphism between the comorphism seen as an algebroid over the

graph of f and the action algebroid.

In a reciprocal way, an action of a Lie algebroid B on a map f : X ! Y

induces a Lie algebroid comorphism from the tangent bundle TX to B. This

remark together with the previous paragraph show that a comorphism ðf;FÞ
from A to B always induces another comorphism from TX to B; the original

comorphism can then be decomposed into this particular comorphism from TX

and a base-fixing one as observed by Higgins and Mackenzie in [12].
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Example 2.4. Infinitesimal action of a Lie algebra G on a manifold X (i.e. Lie

algebra morphism from G to the Lie algebra of vector fields on X ) are in one-to-

one correspondence with comorphisms from TX to G.

2.2. Lie groupoids. Now let GxX and HxY be groupoids with target and

source maps lG, rG, lH and rH . A comorphism ðf;FÞ from rG to rH is called a

comorphism of groupoids if

(1) F takes unit elements to unit elements;

(2) it is compatible with the target maps in the sense that, for any ðx; hÞ in the

pullback X �Y H, ðf � lGÞ
�
Fðx; hÞ

�
¼ lHðhÞ;

(3) it is multiplicative in the sense that Fðy; h1ÞFðz; h2Þ ¼ Fðz; h1h2Þ whenever the
products are defined; i.e., when fðyÞ ¼ lHðh2Þ.

A groupoid comorphism as above may be represented by its graph gðf;FÞ, which is

the smooth closed subgroupoid of G �HxX � Y consisting of those pairs ðg; hÞ
for which g ¼ F

�
rGðgÞ; h

�
. The objects of gðf;FÞ are just the points of the graph of

f, and the projection to H of the source fibre of gðf;FÞ over
�
x; fðxÞ

�
is a di¤eo-

morphism onto the source fibre of H over fðxÞ. These properties characterize

those subgroupoids of G �H which are the graphs of comorphisms.

Remark 2.5. Zakrzewski in [19] introduced the notion of regular D�-algebra and

showed that it coincides with that of Lie groupoid, observing though that their

natural morphisms do not correspond to Lie groupoid morphisms. D�-algebra
morphisms were further studied by Stachura in [17], who called them simply

‘‘groupoid morphisms.’’ From Lemma 4.1 in [19] and Proposition 2.6 in [17],

one sees that D�-algebra morphisms are exactly the Lie groupoid comorphisms in-

troduced later on by Higgins and Mackenzie in [12]. However, neither Zakrzewski

nor Stachura discussed a corresponding notion for Lie algebroids.

As for Lie algebroid comorphisms, a Lie groupoid comorphism ðf;FÞ from
G to H induces a groupoid action of B on the map f : X ! Y , which turns the

pullback

f!H ¼ Xf �rH H

into a smooth groupoid, the action groupoid (see [12]). There is also a groupoid

morphism from the action groupoid to G �H, whose image is precisely gðf;FÞ,
implementing a groupoid isomorphism between gðf;FÞ seen as a groupoid over

gr f and the action groupoid. Conversely, a groupoid action of H on a map

f : X ! Y yields a comorphism from the fundamental groupoid pðXÞ (or the

pair groupoid X � X ) to H. Based on that fact, there is a decomposition of
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Lie groupoid comorphisms similar to the decomposition of Lie algebroid comor-

phisms described above.

Example 2.6. There is a one-to-one correspondence between actions of a Lie

group G on a manifold X and Lie groupoid comorphisms from the pair groupoid

X � X (or the fundamental groupoid pðXÞ) to G seen as a groupoid over a point.

A morphism of Lie groupoids is a functor between the underlying groupoids,

whose object and morphism components are smooth.

We denote by Gpdþ the of Lie groupoids and Lie groupoid morphisms and

Gpd� the of Lie groupoids and Lie groupoid comorphisms.

Correspondingly, there are two Lie functors

Lie : Gpde! Algde;

as defined in [12], [14], which agree on objects (i.e. they both send a Lie groupoid

to its associated Lie algebroid) but one sends morphisms to morphisms while

the other sends comorphisms to comorphisms. Geometrically though, the mor-

phism component of both functors can be defined the ‘‘same way,’’ using the

object component. Namely, the underlying graph gðf;FÞ of a groupoid morphism

or a groupoid comorphism (which, in both cases, we denote by ðf;FÞ) from G to

H is itself a groupoid (actually, a subgroupoid of G �H). Then Lieðgðf;FÞÞ is
a subalgebroid of LieðGÞ � LieðHÞ, which is the graph of a Lie algebroid mor-

phism when ðf;FÞ is a Lie groupoid morphism and the graph of a Lie algebroid

comorphism when ðf;FÞ is a Lie groupoid comorphism.

The two Lie functors are essentially the same on Lie algebras, since morphisms

and comorphisms are the same in this case except for arrow direction.

2.3. Integrability and completeness. We say that a Lie algebroid comorphism

between integrable Lie algebroids is integrable if it is in the image of the Lie

functor. This means that the (possibly only immersed) Lie subgroupoid integrat-

ing the comorphism graph (which is a Lie subalgebroid) is, at the same time, a

closed embedded Lie subgroupoid and a comorphism (the latter implying the

former).

If A and B are the Lie algebroids of groupoids G and H, then every Lie algeb-

roid comorphism from A to B may be integrated locally to a groupoid comor-

phism from G to H. In contrast with Lie algebroid morphisms, which are always

integrable to Lie groupoid morphisms under a simple connectivity assumption (see

[15], Appendix for instance), the global situation for Lie algebroid comorphisms

is more complicated. The following example gives a Lie algebroid comorphism

whose graph integrates, as a Lie algebroid, to an embedded Lie subgroupoid that

is not the graph of a Lie groupoid comorphism.
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Example 2.7. The inclusion i of an open subset X in a manifold Y yields the

Lie algebroid comorphism ði; idÞ from TX to TY with the natural Lie algeb-

roid structure. The integration of the Lie subalgebroid gði; idÞ is the embedded

subgroupoid

fðx; x; x; xÞ : x a XgxX � iðXÞ

of the groupoid product ðX � XÞ � ðY � YÞxX � Y . This is not the graph of

a comorphism, although there are partially defined maps (namely the identity

restricted to X ) from fxg � Y to fxg � X for each x a X , the union of whose

graphs is the integrating subgroupoid.

Although ‘‘partially defined’’ Lie groupoid comorphisms as in the example

above still compose, and thus form a, even worse situations can arise. In general,

a Lie algebroid comorphism can be integrated only to what Dazord calls a ‘‘rela-

tion,’’ and which we will call a hypercomorphism. A hypercomorphism from

GxX to HxY consists of a map f : X ! Y and a groupoid R over the graph

of f along with a homomorphism to G �H which is an immersion such that the

projection to H is étale between source fibres of R and H. It is a comorphism just

when these maps between source fibres are di¤eomorphisms. The image of the

immersion R! G �H is a subgroupoid which can sometimes be neither smooth

nor closed, as we will see in the next section.

As we will show in Theorem 5.1, global integrability in terms of Lie groupoid

comorphisms is guaranteed if the source fibres of H are 1-connected and the Lie

algebroid comorphism is complete. This means that the pullback map on sections

takes complete sections of B to complete sections of A, where a section of a Lie

algebroid is called complete if the anchor maps it to a complete vector field.1

This result on global integrability was first announced in [9] without proof.

To the best of our knowledge, such a proof has never appeared, although very

close results have been achieved in the context of Poisson geometry for complete

Poisson maps (which induce complete Lie algebroid comorphisms as we shall see

in Section 6) by Caseiro and Fernandes in [1] and by Zakrzewski in [19]. We will

give one in Section 5.1 using the path integration techniques developed recently in

[4], [7], [8].

We can already see the following:

Proposition 2.8. Let G and H be Lie groupoids over X and Y respectively, and

let ðf;FÞ be a groupoid comorphism from G to H. Then ðf;TFÞ ¼ Lieðf;FÞ is a
complete comorphism from LieðGÞ to LieðHÞ, where

ðTFÞðx; vÞ :¼ D2F
�
x; fðxÞ

�
v;

1If A is integrable to a Lie groupoid G, completeness of a section of A means that the section is the
initial derivative of a 1-parameter group of bisections of G.
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and D2 denotes the derivative w.r.t. the second argument. In other words, integrable

Lie algebroid comorphisms are complete.

Proof. To simplify notation, set A ¼ LieðGÞ and B ¼ LieðHÞ. Let s be a complete

section of B. It induces a complete right-invariant vector field xs
H on the integrat-

ing groupoid H (see [13], Appendix), whose corresponding left-invariant flow CH
t

exists thus for all t. Using ðf;FÞ, we define a left-invariant flow on G, which also

exists for all times:

CG
t ðgÞ ¼ Rg

�
F
�
rGðgÞ;CH

t

�
f
�
rGðgÞ

���
;

where Rgðg 0Þ ¼ g 0g is the right-translation in G (where it makes sense).

On the other hand, the section ðTFÞys induces a right-invariant vector

field x
ðTFÞys
G on G, whose flow CG

t projects on the flow CX
t on X of rAðTFÞys,

that is,

CX
t

�
lGðgÞ

�
¼ lG

�
CG

t ðgÞ
�
:

What remains to be proven is that CG
t coincides with CG

t : Since the latter exists

for all t, this would imply that CX
t exists for all t and, thus, that the image ðTFÞys

of a complete section s by ðf;TFÞ is complete. To see this, let us check that both

flows are flows of the same vector field. Namely, since CG
t is left-invariant, we

have that

d

dtjt¼0
CG

t ðgÞ ¼ DRg

�
rGðgÞ

�
D2F

�
rGðgÞ; f

�
rGðgÞ

�� d
dtjt¼0

CH
t

�
f
�
rGðgÞ

��
;

¼ DRg

�
rGðgÞ

�
ðTFÞ

�
rGðgÞ; s

�
f
�
rGðgÞ

��
;

¼ DRg

�
rGðgÞ

��
ðTfÞys

��
rGðgÞ

�
;

which, by definition, coincides with d
dtjt¼0 C

G
t ðgÞ. r

Example 2.9. Let ðf;FÞ be a comorphism between tangent bundle Lie algebroids

TX and TY . As noted above, this corresponds to a flat Ehresmann connection,

i.e. a ‘‘horizontal’’ foliation of X for which the projection of each leaf to Y is étale.

The comorphism is complete when the connection is complete in the sense that

these projections are all covering maps, i.e. when each path s : ½0; 1� ! Y has a

horizontal lift starting at any point in f�1
�
sð0Þ

�
.

To integrate this comorphism to a hypercomorphism between the fundamental

groupoids pðXÞ and pðYÞ integrating TX and TY respectively, we let R be the

leafwise fundamental groupoid of the foliation of X . This is a (1-connected, but

possibly non-Hausdor¤ ) Lie groupoid over X and may hence be considered as a
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groupoid over the graph of f : X ! Y . An element of R is a homotopy class of

paths with fixed endpoints and contained in a single leaf of the foliation. Let

us call these ‘‘foliated paths’’. Mapping each such class of foliated paths to the

homotopy class of paths in X (without the ‘‘leafwise’’ restriction) in which it is

contained, and to the class of the image in Y , is a groupoid morphism from R to

G �H. Restricting this morphism to a source fibre of R and projecting to pðYÞ
takes the homotopy classes of foliated paths beginning at some x a X to the

homotopy classes of paths in Y beginning at fðxÞ. A neighborhood, in a source

fibre of R, of the class of a foliated path s may be identified with a neighborhood

of sð1Þ in its leaf, and a neighborhood of the class of the projected path may be

identified with a neighborhood of f
�
sð1Þ

�
in Y . The projection from the first

neighborhood to the second is étale by the definition of a flat Ehresmann con-

nection, so the requirements for R to be a hypercomorphism are met. We may

describe the relation R in rough terms by saying that it takes a point x a X and

a path r in Y beginning at fðxÞ to its horizontal lift through x. But this hor-

izontal lift may not exist if ðf;FÞ is not complete, and it might not be unique

since a homotopy of paths in Y may not have a horizontal lift in the absence of

completeness.

3. An example

We give in this section an example of an Ehresmann connection, the graph of

whose integration is neither closed nor embedded.

Let Y be R2 with cartesian coordinates ðx; yÞ and polar coordinates ðr; yÞ. X

will be an open subset of R2 � C� R with polar coordinates ðr; yÞ on the first fac-

tor, a complex coordinate z ¼ ReiY on the second, and real coordinate h on the

third one. As the notation suggests, f will be the projection on the first factor.

X and Y will be 1-connected, so the source 1-connected groupoids integrating

TX and TY will be X � X and Y � Y . Since Y is 1-connected, the leaves of

any foliation defined by a complete Ehresmann connection over Y are simply con-

nected and therefore have trivial holonomy.

We define X as R2 � C� RnJ, where J is the three-dimensional slab

fðr; y;R;Y; hÞ j r ¼ 0;�1a ha 1g:

Although J is of codimension 2, the restriction on h leaves X simply connected,

so that its fundamental groupoid is still X � X . Nevertheless, we can con-

struct an interesting Ehresmann connection for the submersion f : X ! Y . For

�1a ha 1, the horizontal subspaces of the connection are spanned by the vector

fields q=qr and q=qyþ nðhÞq=qY, where n is a smooth function, not identically
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zero, supported in the interval � 1
2 a ha 1

2 . This makes sense since r is not zero

for these values of h. Outside the support of n, the vector fields q=qr and q=qy may

be replaced by the cartesian coordinate vector fields q=qx and q=qy, which extend

to the entire ðx; yÞ plane.
We will think of our Ehresmann connection as a family, parametrized by h, of

unitary connections on the trivial complex Lie bundle over Y with fibre coordinate

z. The connection form in this description is inðhÞ dy, and the holonomy around

a loop encircling the origin in the ðx; yÞ plane is multiplication by e2pinðhÞ: In the

region where �1a ha 1 (and so r is not zero), each leaf lies in a fixed level of R

and h and is a covering of the punctured ðr; yÞ plane. The covering is a di¤eo-

morphism if R ¼ 0. For positive R, the covering has k sheets when nðhÞ has
order k as an element of R=Z; this includes the possibilities k ¼ 1 and k ¼l.

Over the region where �1 < h < 1, the leafwise fundamental groupoid may be

parametrized by

G ¼ ðRþ � S1Þ � ðRþ � RÞ � C� ð�1; 1Þ:

The element

g ¼ ðr; y; r 0; t; z; hÞ

of G corresponds to the homotopy class of the horizontal path

t 7!
�
rþ ðr 0 � rÞt; yþ tt; einðhÞttz; h

�
; 0a ta 1:

Thus, the source map is

ðr; y; r 0; t; z; hÞ 7! ðr; y; z; hÞ;

and the target is

ðr; y; r 0; t; z; hÞ 7! ðr 0; yþ t; einðhÞtz; hÞ:

The unit elements of the groupoid are defined by the conditions r ¼ r 0 and t ¼ 0,

while the isotropy groups are defined by r ¼ r 0, t a 2pZ, and nðhÞt a 2pZ.

We now look at the leafwise fundamental groupoid as the integration of the

Lie algebroid comorphism given by the flat Ehresmann connection. The Lie

algebroid sits inside TX � TY ; since X and Y are simply connected, the integrat-

ing subgroupoid S should sit inside X � X � Y � Y ; it is the image of G under the

target-source map

ðr; y; r 0; t; z; hÞ 7!
�
ðr; y; z; hÞ; ðr 0; yþ t; einðhÞtz; hÞ; ðr; yÞ; ðr 0; yþ tÞ

�
:
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To study the immersion of G into X � X � Y � Y , we can forget about the last

two factors, since they are redundant (namely, the image of G lies in the graph of

f� f, which can be identified with X � X ). This image consists of all 8-tuples

ðr; y; z; h; r 0; y 0; z 0; h 0Þ for which there exists t such that y 0 ¼ yþ t, z 0 ¼ einðhÞtz;
and h 0 ¼ h. The two conditions involving t can be combined, with the elimina-

tion of t, to give z 0 ¼ einðhÞðy
0�yÞz: Where z is nonzero, these define, for each h,

a hypersurface in the 4-torus with coordinates ðy; arg z; y 0; arg z 0Þ. The sub-

groupoid SHX � X � Y � Y sits as a family of these hypersurfaces inside the

8-dimensional submanifold defined by jz 0j ¼ jzj and h 0 ¼ h, which is a bundle of

these 4-tori over the space parametrized by ðr; z; hÞ.
From this description, we see immediately that S is not closed. In fact, when

nðhÞ is irrational, each of our hypersurfaces is dense but not closed in its 4-torus.

To see that S has nontrivial self-intersections, we must look at the section z ¼ 0 of

our complex line bundle, since otherwise we are simply dealing with flat hypersur-

faces in tori. In fact, when z ¼ 0, adding an integer multiple of 2p to t does not

change the value of the target-source map, but it does change the image of the

derivative as long as nðhÞ is not an integer. This results in the sought-for nontrivial

self-intersections.

4. Path construction

In this section, we start by briefly recalling the integration of Lie algebroids by Lie

groupoids in terms of quotients of certain admissible path sets by homotopies, as

in [4], [7]. We explain how this path construction allows us to integrate comor-

phisms between Lie algebroids to comorphisms between Lie groupoids. Then we

show that a complete Lie algebroid comorphism from A to B allows us to lift

admissible paths and homotopies in B to A (Proposition 4.2 and 4.3). These lifting

properties, which make complete comorphisms resemble ‘‘Serre fibrations,’’ will

be the main ingredients in the proof of Theorem 5.1 in the next section.

Similar lifting properties in the context of Poisson map integration have

already been considered by Caseiro and Fernandes in [1].

4.1. Lie algebroid integration. All the source 1-connected Lie groupoids inte-

grating an integrable Lie algebroid A! X are isomorphic to the following con-

struction in terms of homotopy classes of paths [4], [7]. Consider the space PðAÞ
of admissible paths; i.e., the set of paths g : ½0; 1� ! A, gðtÞ ¼

�
xðtÞ; hðtÞ

�
, where

xðtÞ a X and hðtÞ lies in the fiber of A over xðtÞ, such that

dxðtÞ
dt
¼ r

�
xðtÞ

�
hðtÞ;
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where r is the anchor map of A. The source 1-connected Lie groupoid integrating

A can be realized as the quotient of PðAÞ by a homotopy relation P that fixes

the endpoints of the base component of the admissible path (see [4], [7]). More

precisely,
�
x1ðtÞ; h1ðtÞ

�
is homotopic to

�
x2ðtÞ; h2ðtÞ

�
i¤ there is a family

�
x1ðtÞ; h1ðtÞ

�
 �s¼0

�
xðt; sÞ; hðt; sÞ

�
�!s¼1

�
x2ðtÞ; h2ðtÞ

�
of admissible paths parametrized by s a ½0; 1� that satisfies the following condition:

There exists a section b of A defined along xðt; sÞ that vanishes for t ¼ 0; 1, such

that, locally,

qxiðt; sÞ
qs

¼ r i
a

�
xðt; sÞ

�
b aðt; sÞ; ð2Þ

qhcðt; sÞ
qs

¼ qb cðt; sÞ
qt

þ f c
ab

�
xðt; sÞ

�
haðt; sÞb bðt; sÞ; ð3Þ

where r i
aðxÞ : U ! R and f c

abðxÞ : U ! R are the structure functions of respec-

tively the anchor map and the Lie bracket on the sections of A expressed in terms

of a system of trivializing sections ea : U ! AjU (where a ranges from 1 to the

dimension of the fibers in A) over the local patch with coordinates xi.

We denote by SðAÞ the quotient of PðAÞ by this homotopy relation and by

½g� the homotopy class of g. Since A is assumed to be integrable, SðAÞ is a Lie

groupoid over X , whose source and target maps r; l : SðAÞxX are given by the

endpoints of the path projection on the base: rð½g�Þ ¼ xð0Þ and lð½g�Þ ¼ xð1Þ. The

groupoid product is given by concatenation of paths ½g�½g 0� ¼ ½gg 0�, where g a ½g�
and g 0 a ½g 0� are two representatives whose ends rð½g�Þ ¼ lð½g 0�Þ match smoothly,

and where

ðgg 0ÞðtÞ ¼ 2gð2tÞ; 0a ta 1
2 ;

2g 0ð2t� 1Þ; 1
2 < ta 1:

�

From now on, we will reserve the notation SðAÞxX for the source 1-connected

Lie groupoid integrating A coming from the construction above.

Note that SðAÞ exists as a groupoid but not as a manifold if A is not integrable:

for non-integrable Lie algebroids, SðAÞ can be realized as a smooth stack (see

[18]).

4.2. Comorphism integration. Suppose that A 0 ! X 0 is a subalgebroid of an

integrable Lie algebroid A! X with integrating 1-connected Lie groupoid

SðAÞxX . Then A 0 is automatically integrable as a Lie algebroid, and we can

take its integrating Lie groupoid to be the one obtained by the path construction;

namely, SðA 0ÞxX 0. An admissible path in A 0 is by definition also an admissible
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path in A. Moreover, if two admissible paths are homotopic in A 0, they also are

homotopic in A. Therefore, we have a natural immersion

i : SðA 0Þ ! SðAÞ;

which is a groupoid morphism. However, this map is, in general, not an embed-

ding nor is its image a closed submanifold. When the Lie subalgebroid A 0 is over
the same base as A, then Moerdijk and Mrčun in [16] gave a necessary and su‰-

cient condition for i to be a closed embedding.

The situation is similar for the integration of a comorphism ðf;FÞ from a Lie

algebroid A! X to a Lie algebroid B! Y , since a comorphism graph gðf;FÞ is a
Lie subalgebroid (over the graph of f) of the direct product of the Lie algebroids

A and B. If A and B are integrable, we can thus realize the hypercomorphism

between the Lie groupoids SðAÞ and SðBÞ in terms of the path construction as

the groupoid immersion

i : Sðgðf;FÞÞ ! SðAÞ � SðBÞ:

Section 3 gave an explicit example of a comorphism for which i is not an embed-

ding and its image is not a closed submanifold.

Let us now describe Sðgðf;FÞÞ in more explicit terms. It can be realized as the

set of homotopy classes ½g� of paths gðtÞ ¼
�
gðtÞ; hðtÞ

�
, where gðtÞ is an admissible

path in the Lie algebroid A! X and hðtÞ is an admissible path in the Lie algeb-

roid B! Y of the form

gðtÞ ¼
�
xðtÞ;F

�
xðtÞ; xðtÞ

��
; ð4Þ

hðtÞ ¼
�
f
�
xðtÞ

�
; xðtÞ

�
: ð5Þ

In other words, g is an admissible path in the Lie algebroid gðf;FÞ ! gr f which

satisfies the following equations

_xxðtÞ ¼ rA
�
xðtÞ

�
F
�
xðtÞ; xðtÞ

�
;

f�
�
_xxðtÞ

�
¼ rB

�
f
�
xðtÞ

��
xðtÞ;

where rA and rB are, respectively, the anchor maps of A and B. The immersion i

from Sðgðf;FÞÞ into SðAÞ � SðBÞ is the groupoid morphism given explicitly by

i : ½ðg; hÞ� ! ð½g�; ½h�Þ; ð6Þ

where ½ðg; hÞ� is the class of admissible paths up to homotopy in gðf;FÞ, while
ð½g�; ½h�Þ is the corresponding pair of admissible paths up to homotopy in A and

B, respectively.
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4.3. Homotopy lifting property. In this section, we prove some lifting proper-

ties for admissible paths and homotopies via complete comorphisms. Let us start

by stating two simple facts concerning complete Lie algebroid sections and comor-

phisms:

• Let sAt and sBt be (time-dependent) complete sections of Lie algebroids A! X

and B! Y , respectively. Then, ~sst ¼ sAt � sBt is a complete section of the Lie

algebroid product A� B! X � Y .

• For i ¼ 1; 2; let ðfi;FiÞ be complete comorphisms from Ai ! Xi to Bi ! Yi.

Then ðf1 � f2;F1 �F2Þ is a complete comorphism from A1 � A2 ! X1 � X2

to B1 � B2 ! Y1 � Y2.

Lemma 4.1. Let ðf;FÞ be a complete Lie algebroid comorphism from A! X to

B! Y and let st : Y ! B be a complete (time-dependent) section of B. Then

ðFystÞðxÞ ¼ F
�
x; st

�
fðxÞ

��
is a complete (time-dependent) section of A.

Proof. To remove the time-dependency, we can lift st to the Lie algebroid

B� TR! Y � R by considering the section

~ssðy; tÞ ¼ stðyÞ þ qt;

which remains complete but which is now time-independent. The product
~FF ¼ ðf� idR;F� idTRÞ is a complete comorphism from A� TR to B� TR,

since both factors are complete comorphisms. Thus, the lift

ð~FFy~ssÞðx; tÞ ¼ ðFystÞðxÞ þ qt

is a complete section of A� TR, and the induced flow on X � R

~CCtðx; tÞ ¼
�
CtðxÞ; t

�
exists for all x a X and all times t a R. Since Ct is the flow generated by the

section Fyst, this implies that Fyst is complete. r

Proposition 4.2 (Path lifting). Let ðf;FÞ be a complete comorphism from the Lie

algebroid A! X to the Lie algebroid B! Y, and let gðtÞ ¼
�
yðtÞ; xðtÞ

�
be an

admissible path in PðBÞ. Then, through any point x a f�1
�
yð0Þ

�
, there exists a

smooth curve xðtÞ starting at x, which projects onto yðtÞ via f, and such that

~ggðtÞ :¼
�
xðtÞ;F

�
xðtÞ; xðtÞ

��
is an admissible path in PðAÞ.
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Proof. It is enough to show that we can lift the admissible path g piecewise in

coordinate patches. In a local chart, we can regard the base component yðtÞ of a
admissible path gðtÞ ¼

�
yðtÞ; xðtÞ

�
as being the integral curve of a time-dependent

vector field; namely,

XtðyÞ ¼ rBðyÞ
�
wðyÞ~xxðtÞ

�
; ð7Þ

where we consider stðyÞ :¼ wðyÞ~xxðtÞ to be a local (time-dependent) section of B. In

(7), w is a cuto¤ function that vanishes outside a compact containing the image

of the curve yðtÞ and that is equal to 1 on a smaller compact containing it, and ~xx

is a smooth extension of x to R that coincides with x on ½0; 1�.
The idea is to pullback (7) to a vector field on X and to obtain the lift of our

admissible path as an integral curve of this new vector field.

Because of the cuto¤ function, Xt is compactly supported and thus complete.

By Lemma 4.1, we obtain that Fyst is complete. Thus the integral curve xðtÞ of
rAF

yst starting at the point

xð0Þ a f�1
�
yð0Þ

�
;

exists for all t, and, in particular, for all t a ½0; 1�. On this interval, we have that

_xxðtÞ ¼ rA
�
xðtÞ

�
F
�
xðtÞ; xðtÞ

�
;

which shows that �
xðtÞ;F

�
xðtÞ; xðtÞ

��
is an admissible path that lifts the one we started with. r

Now we can apply Proposition 4.2 to homotopies

gðt; sÞ ¼
�
yðt; sÞ; xðt; sÞ

�
between admissible paths in PðBÞ. By definition of homotopy, the path

gs : t 7! gðt; sÞ is an admissible path in PðBÞ for each fixed value s a ½0; 1� of the
homotopy parameter. Then, given a complete comorphism ðf;FÞ from A to B

and a starting point x a f�1
�
yð0; 0Þ

�
, Proposition 4.2 gives us a family of admis-

sible paths,

~ggsðtÞ ¼
�
xðt; sÞ;F

�
xðt; sÞ; xðt; sÞ

��
; ð8Þ

in PðAÞ indexed by s a ½0; 1�, and such that f
�
xðt; sÞ

�
¼ yðt; sÞ for all t and s.
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Proposition 4.3 (Homotopy lifting). The family ~ggðt; sÞ :¼ ~ggsðtÞ as above is a homo-

topy between admissible paths in PðAÞ.

Proof. Consider the Lie algebroid product ~AA :¼ A� TI � TJ (resp. ~BB :¼ B�
TI � TJ). We denote by t the variable in I ¼ ½0; 1� and by s the variable in

J ¼ ½0; 1�. We introduce the following local sections of ~BB:

sxðy; t; sÞ ¼ xðt; sÞ þ qt;

sbðy; t; sÞ ¼ bðt; sÞ þ qs;

where xðt; sÞ is the fiber component of the homotopy gðt; sÞ and where bðt; sÞ is
the local expression of the associated section bt, restricted to yðt; sÞ. Now the Lie

algebroid bracket between these sections is

½sx; sb� ~BB ¼ ½xðs; tÞ; bðs; tÞ� þ ½xðs; tÞ; qs� þ ½qt; bðs; tÞ�;

which in components yields

½sx; sb�c~BB ¼ f c
abx

ab b � qsxðs; tÞc þ qtbðs; tÞc;

and thus vanishes, since g is a homotopy. Moreover, for each fixed s the curve

t 7!
�
yðt; sÞ; t; s

�
is an integral curve of ~rrBsx, while, for each fixed t, the map

s 7!
�
yðt; sÞ; t; s

�
is an integral curve of ~rrBsb, where yðt; sÞ is the base component

of the homotopy gðt; sÞ.
We can now lift the local sections sx and sb of ~BB to local sections ~FFysx and ~FFysb

of ~AA via the comorphism ð ~ff; ~FFÞ from ~AA to ~BB defined by

~ff ¼ f� idI � idJ ; ~FF ¼ F� idTI � idTJ :

Because ½sx; sb� ~BB ¼ 0 and because ~FFy and ~rrA are Lie morphisms, we obtain that

½~FFysx; ~FFysb� ¼ 0 and ½ ~rrA ~FFysx; ~rrA ~FFysb� ¼ 0: ð9Þ

Now consider the family of curves

gðt; sÞ :¼
�
xðt; sÞ; t; s

�
;

where xðt; sÞ is the base component of the lift ~ggðt; sÞ in (8). A straightforward com-

putation shows that the curve gð�; sÞ : t 7! gðt; sÞ is an integral curve of ~rrA ~FF
ysx for

each s a ½0; 1� (namely, we obtained these curves as lifts of admissible paths in B

for each s, and thus they are admissible paths in A for each s). Similarly, a direct

computation gives that the curve gð0; �Þ : s 7! gð0; sÞ is an integral curve of ~rrA ~FF
ysb

(this relies mostly on the fact that b0 ¼ 0 and that xð0; sÞ ¼ x is constant). Since
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the vector fields ~rrA ~FF
ysx and ~rrA ~FF

ysb commute, the family of integral curves of

~rrA ~FF
ysb starting at gðt; 0Þ for t a ½0; 1� coincide with the family gðt; �Þ : s 7! gðt; sÞ,

which implies, in particular, that xðt; sÞ satisfies equation (2). Now the vanishing

in (9) implies the second homotopy equation (3) by direct computation. r

Corollary 4.4. Let A! X and B! Y be two integrable Lie algebroids, and let

ðf;FÞ be a complete comorphism from A to B. For all g a PðBÞ with source rBðgÞ
in the image of f, we have that ð~gg; gÞ a Pðgðf;FÞÞ, where ~gg is a lift of g through

x a f�1
�
rBðgÞ

�
. Moreover, if hP g, then ð~hh; hÞP ð~gg; gÞ.

4.4. Analogy with Serre fibrations. There is a certain similarity between com-

plete comorphisms and ‘‘Serre fibrations’’ in topology. Namely, a Serre fibration

is a continuous map f : X ! Y between topological spaces (more precisely CW-

complexes) such that for all nb 0, f : I n ! X and g : I n � I ! Y satisfying

f � f ¼ g � in, where in : I
n ! I n � I is the inclusion given by inð~tt Þ ¼ ð~tt; 0Þ, there

exists ~gg that makes the following diagram commute:

I n
f

X

in

???y
???yf

I n � I ���!
g

Y :
������

!~gg

�����!

When n ¼ 0, I 0 ¼ f?g, and we obtain the path lifting property for f; when n ¼ 1,

we obtain the homotopy lifting property for homotopies between paths in Y .

The analogy comes from the following facts:

• An admissible path in the algebroid A! X is the same thing as a Lie algeb-

roid morphism from TI to A;

• A homotopy between admissible paths is a Lie algebroid morphism from

TI � TI to A;

• The tangent map to the inclusion in is a Lie algebroid morphism from TI n to

TI n � TI .

With this in mind, Propositions 4.2 and 4.3 can be summarized diagrammati-

cally (for n ¼ 0; 1) as follows:

TI n
f

A

Tin

???y
???yF

TI n � TI ���!
g

B
������

!~gg

�����!

130 A. S. Cattaneo, B. Dherin and A. Weinstein



where F is a complete algebroid comorphism from Lie algebroids A! X to

B! Y . For n ¼ 0, g is an admissible path, and, for n ¼ 1, g is a homotopy be-

tween admissible paths.

The problem with the diagram above is that its arrows do not belong to the

same, since it involves morphisms and comorphisms of Lie algebroids. Going

beyond a mere analogy would require a whose objects are the Lie algebroids and

whose morphisms comprise both morphisms and comorphisms of Lie algebroids.

5. The integration functor

In [9], Dazord announced, without proof ([9], Thm. 4.1), that a complete comor-

phism between integrable Lie algebroids always integrates to a unique comor-

phism between the integrating Lie groupoids. We will prove this result here using

the path construction, which, together with Proposition 2.8, yields an improve-

ment of Dazord’s Theorem: namely, that a Lie algebroid comorphism is integrable

if and only if it is complete.

Actually, we will show that the classical integration functor for Lie algebras

generalizes to integrable Lie algebroids and complete comorphisms:

Theorem 5.1. The path construction S is a functor from the of integrable Lie algeb-

roids and complete comorphisms to the of source 1-connected Lie groupoids and

comorphisms. It is an inverse to the Lie functor Lie, and, thus, implements an equiv-

alence between these two categories.

As corollary of Theorem 5.1, Proposition 2.8, and Corollary 5.11 (for the

uniqueness part), we obtain Dazord’s statement:

Corollary 5.2 (Dazord [9]). Let A! X and B! Y be two integrable Lie algeb-

roids with source 1-connected integrating Lie groupoids G and H. Then a Lie algeb-

roid comorphism from A to B integrates to a (unique) Lie groupoid comorphism

from G to H if and only if it is complete.

The rest of this section is devoted to the proof of Theorem 5.1. In Paragraph

5.1, we show that S takes a complete Lie algebroid comorphism to a Lie groupoid

comorphism. In Paragraph 5.2, we show that S is functorial, and in Paragraph 5.3

we show that it is a homotopy inverse to the Lie functor.

Remark 5.3. that a complete Lie algebroid comorphism integrates to a Lie

groupoid comorphism would be to adapt the corresponding proof for complete

Poisson maps of Caseiro and Fernandes (Prop. 4.8 an Prop. 4.9 in [1]) to comor-

phisms and to show that the resulting embedded subgroupoid is the graph of a Lie
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groupoid comorphism. One could also use Corollary 7 in [8], where it is stated

that any complete action of a Lie algebroid SðAÞ on m : S !M determines an

action of the groupoid SðAÞ on S and m�
�
SðAÞ

�
USðm�AÞ as groupoids. Since,

given a comorphism ðf;FÞ from A! X to B! Y induces an action of B on f,

one could then follow the lines of [1]. We thank an anonymous referee for this

remark. We give in Paragraph 5.1 a di¤erent proof, which, however, relies also

on the same kind of lifting properties as in [1] and [8].

5.1. Embeddability. Recall that any source 1-connected Lie groupoid integrat-

ing a Lie algebroid A! X is isomorphic to the Lie groupoid SðAÞ obtained by

the path construction. Therefore, in order to prove the first part of the theorem,

it is enough to show that the immersion

i : Sðgðf;FÞÞ ! SðAÞ � SðBÞ;

½ðg; hÞ� 7! ð½g�; ½h�Þ;

defined in (6) (i.e., the hypercomorphism integrating the comorphism ðf;FÞ from
A to B) is a closed embedding whose image is the graph of a comorphism ðf;CÞ
from SðAÞ to SðBÞ, when ðf;FÞ is complete.

For that consider the diagram

Sðgðf;FÞÞ ���!i SðAÞ � SðBÞ???yrA�idSðBÞ

f!SðBÞ;

 ����
���� K

where f!SðBÞ is the pullback Xf �rB SðBÞ in the category of smooth manifolds;

since rA is a submersion, this pullback is a closed submanifold of X � SðBÞ.
Observe that the composition ðrA � idSðBÞÞ � i has its image in this pullback;

namely,

ðrA � idSðBÞÞ � i :
��
xðtÞ;F

�
xðtÞ; xðtÞ

��
;
�
f
�
xðtÞ

�
; xðtÞ

��
7!

��
xð0Þ;

�
f
�
xðtÞ

�
; xðtÞ

���
;

defining thus the smooth map K . Now the homotopy lifting properties for com-

plete comporphisms in the form of Corollary 4.4 imply that K is invertible. In

turn, this means that rA � idSðBÞ is a di¤eomorphism from the image of i to the

closed submanifold f!SðBÞ. Therefore, the image of i is also a closed submanifold

of the product SðAÞ � SðBÞ, and i itself is an embedding. This yields that the

hypercomorphism i integrating the Lie algebroid comorphism ðf;FÞ is actually a

Lie groupoid comorphism, when the Lie algebroid comorphism is complete.
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Observe that we also obtain a very explicit description of the integrating

comorphism ðf;CÞ from SðAÞ to SðBÞ; namely, the fiber maps are given by

Cxð½g�Þ ¼ ½~gg�;

where ½~gg� is the (unique) homotopy class of the lift of g by the complete Lie algeb-

roid comorphism through the point x a X .

5.2. Functoriality. As we explained in Section 4.2, the path construction S asso-

ciates a source 1-connected Lie groupoid SðAÞ with an integrable Lie algebroid A.

In the previous paragraph, we showed that S associates the comorphism Sðgðf;FÞÞ
from SðAÞ to SðBÞ with a complete comorphism from A to B.

We want to show that S is a functor from the of integrable Lie algebroids

and complete comorphisms to the of source 1-connected Lie groupoids and

comorphisms. For this, we need to show that

SðR2Þ � SðR1Þ ¼ SðR3Þ;

where R1 is the graph of a comorphism ðf1;F1Þ from A to B, R2 is the graph of a

comorphism ðf2;F2Þ from B to C, and R3 is the graph of the composition of

ðf1;F1Þ with ðf2;F2Þ. The bases of the integrable Lie algebroids A, B, and C

are, respectively, X , Y , and Z.

Recall that the composition of comorphisms between Lie algebroids, Lie

groupoids, or, more generally, between fibrations rA : A! X , rB : B! Y and

rC : C ! Z is given by

ðf2;C2Þ � ðf1;C1Þ ¼ ðf2 � f1;C1 ?C2Þ;
ðC1 ?C2Þðx; cÞ ¼ C1

�
x;C2

�
f1ðxÞ; c

��
;

for x a X and c a r�1C

�
f2 � f1ðxÞ

�
. This composition translates in terms of the

comorphism graphs R1 and R2 into the composition of the underlying binary

relations: i.e., the graph of the comorphism composition is the relation R2 � R1 in

A� C obtained by projecting the image of

ðR1 � R2ÞB ðA� DB � CÞ;

where DB is the diagonal in B� B, to A� C. The fact that these relations come

from comorphism graphs guarantees that the result of the composition is a closed

submanifold of A� C.

Remark 5.4. There are three ways of looking at a Lie algebroid comorphism

from A to B: (1) as the pair ðf;FÞ; (2) as the underlying relation gðf;cÞHA� B;
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(3) as the corresponding Lie algebroid gðf;FÞ ! gr f. Similarly, there are three

ways of looking at a Lie groupoid comorphism from G to H: (1) as the pair

ðf;FÞ; (2) as the underlying relation Rðf;FÞHG �H; (3) as the Lie groupoid

Rðf;FÞx gr f.

Lemma 5.5. SðR2Þ � SðR1Þ contains SðR2 � R1Þ.

Proof. Given ½g� a SðR2 � R1Þ, we will exhibit an element ½g1� � ½g2� a SðR1Þ�
SðR2Þ, whose image by the projection

SðAÞ � DSðBÞ � SðCÞ ! SðAÞ � SðCÞ ð10Þ

is precisely ½g�. Namely, a representative of ½g� a SðR2 � R1Þ is of the form

g : t 7!
�
xðtÞ; ðF1 ?F2Þ

�
xðtÞ; xðtÞ

�
; ðf2 � f1Þ

�
xðtÞ

�
; xðtÞ

�
for some path t 7!

�
xðtÞ; xðtÞ

�
. We set

yðtÞ :¼ f1
�
xðtÞ

�
;

hðtÞ :¼ F2

�
yðtÞ; xðtÞ

�
:

This gives us two representatives of paths,

g1 ¼ ðg1; h1Þ in SðR1Þ;
g2 ¼ ðg2; h2Þ in SðR2Þ;

respectively given by

g1 : t 7!
�
xðtÞ;F1

�
xðtÞ; hðtÞ

�
; f1

�
xðtÞ

�
; hðtÞ

�
;

g2 : t 7!
�
yðtÞ;F2

�
yðtÞ; xðtÞ

�
; f2

�
yðtÞ

�
; xðtÞ

�
:

Since h1 ¼ g2 by definition, we obtain that

½g1� � ½g2� a SðAÞ � DSðBÞ � SðCÞ;

and thus ½g1� � ½g2� projects via (10) on the equivalence class of the path

t 7!
�
xðtÞ;F1

�
xðtÞ; hðtÞ

�
; f2

�
yðtÞ

�
; xðtÞ

�
;

which we recognize to be precisely g since

ðF1 ?F2Þ
�
xðtÞ; xðtÞ

�
¼ F1

�
xðtÞ;F2

�
f1
�
xðtÞ

�
; xðtÞ

��
: r
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Lemma 5.6. SðR2 � R1Þ contains SðR2Þ � SðR1Þ.

Proof. For this, consider

½g� ¼ ½ðgA; gBÞ� a SðR1Þ;
½d� ¼ ½ðdB; dCÞ� a SðR2Þ

such that

ð½g�; ½d�Þ a SðAÞ � DSðBÞ � SðCÞ:

This means that ½gB� and ½dB� define the same homotopy class of paths in PðBÞ.
Thus, there is a homotopy

gB c

nB
dB; nBðt; sÞ :¼

�
yðt; sÞ; hðt; sÞ

�
;

from gB to dB. The homotopy lifting property (Proposition 4.3) tells us that we

can lift nB to a homotopy mA (among the admissible paths in PðAÞ) of the form

gA c

mA
dA; mAðt; sÞ :¼

�
xðt; sÞ;F1

�
xðt; sÞ; hðt; sÞ

��
such that

mAðt; 0Þ ¼ gAðtÞ;
f1
�
xðt; sÞ

�
¼ yðt; sÞ;

and where we have set dA :¼ mAðt; 1Þ. Now putting nB and mA together, we obtain

with Corollary 4.4 the homotopy

ðgA; gBÞc
y ðdA; dBÞ; y :¼ ðmA; nBÞ;

among the paths in PðR1Þ. Thus, we can take ðdA; dBÞ as a representative of

½g� a SðR1Þ. Finally, we see that the representative

ð½g�; ½d�Þ :¼
�
½ðdA; dBÞ�; ½ðdB; dCÞ�

�
projects, after reduction, to ½ðdA; dCÞ�, which belongs to SðR2 � R1Þ. r

5.3. Equivalence. We now prove that the functor S is a homotopy inverse to the

Lie functor Lie.

Since, by construction, LieSðAÞ ¼ A for any integrable Lie algebroid A, we

have that Lie � S is the identity functor. We need to show that S � Lie is also

homotopic to the identity functor.
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Given a source 1-connected Lie groupoid G, it is well-known that S
�
LieðGÞ

�
is

isomorphic, as groupoid, to G (see [7] for instance). Moreover for each such G,

there is a canonical groupoid isomorphism aG : S
�
LieðGÞ

�
! G, which is con-

structed as follows:

To begin with, consider the monodromy groupoid ĜG of G, whose elements

are end-point-fixing homotopy classes ½g� of G-paths, that is, paths g : ½0; 1� ! G

such that gð0Þ is a groupoid unit x and gðtÞ stays in the source-fiber of x (i.e.

rG
�
gðtÞ

�
¼ x). When G is source 1-connected, the map

ev : ĜG ! G : ½g� 7! gð1Þ

is a groupoid isomorphism. There is also a groupoid isomorphism D from the

monodromy groupoid ĜG to S
�
LieðGÞ

�
. Namely, given a G-path g,

DðgÞðtÞ ¼ TlGðgðtÞÞLgðtÞ�1 _ggðtÞ;

where LgðhÞ ¼ gh is the groupoid left-translation, is an admissible path in LieðGÞ.
It turns out that D preserves the homotopy classes of G-paths and A-paths and

defines a groupoid isomorphism with inverse D�1 : S
�
LieðGÞ

�
! ĜG. We refer

the reader to [7] for details and proofs.

For each source 1-connected groupoid, we can now define the groupoid

isomorphism

aG :¼ ev �D�1 : S
�
LieðGÞ

�
! G:

Since isomorphisms in Gpdþ and Gpd� coincide, aG is also a comorphism.

Let us show now that the aG’s are the components of a natural isomorphism

between the identity functor and S � Lie; in other words, that, for any Lie group-

oid comorphism ðf;FÞ from G to H, the following diagram commutes:

S � LieðGÞ ���!aG G

S�Lieðf;FÞ

???y
???yðf;FÞ

S � LieðHÞ ���!
aH

H:

This follows from the following lemmas.

Lemma 5.7. The diagram above commutes if and only if

ðaG � aHÞðgS�Lieðf;FÞÞ ¼ gðf;FÞ; ð11Þ

where gS�Lieðf;FÞ and gðf;FÞ are the graphs of the corresponding comorphisms.
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Proof. This comes from the fact that composition of comorphisms is the same as

the composition of their underlying graphs as binary relations (i.e. gðf1;F1Þ � gðf2;F2Þ
¼ gðf1;F1Þ�ðf2;F2Þ). Namely, one checks that for sets G, H, G 0, H 0, bijections

aG : G 0 ! G and aH : H 0 ! H, and binary relations RHG �H and R 0H
G 0 �H 0, we have R � gr aG ¼ gr aH � R 0 (where the composition is the composi-

tion of binary relations) if and only if ðaG � aHÞðR 0Þ ¼ R. r

Lemma 5.8. Let GxX and HxY be Lie groupoids, with H source 1-connected.

Then the graph gðf;FÞ of a comorphism ðf;FÞ from G to H (seen as a subgroupoid of

G �H) is source 1-connected.

Proof. We need to show that the source fiber s�1
�
x; fðxÞ

�
in gðf;FÞ is 1-connected

for all x a X . Since gðf;FÞ is a subgroupoid of G �H, we have that

s�1
�
x; fðxÞ

�
¼ ðsG � sHÞ�1

�
x; fðxÞ

�
B gðf;FÞ ¼ grFx:

Because the domain s�1H

�
FðxÞ

�
of Fx is 1-connected by assumption, so is its graph.

r

Lemma 5.9. We have that aG�H ¼ aG � aH ; for G and H source 1-connected Lie

groupoids. Moreover, the restriction of aG to a source 1-connected Lie subgroupoid

H coincides with aH; in other words, the following diagram commutes:

S � LieðHÞ ���!k S � LieðGÞ

aH

???y
???yaG

H
i

G���������!
where k sends a homotopy class ½g�H of admissible paths in LieðHÞ to the homotopy

class of path ½g�G in LieðGÞ, and i is the inclusion of G in H.

Proof. The first statement follows from the facts that

S � LieðG �HÞ ¼ S � LieðGÞ � S � LieðHÞ;
dG�HG�H ¼ ĜG � ĤH;

evG�H ¼ evG � evH ;

DG�H ¼ DG �DH :

As for the second statement, observe first that k is well-defined, since an admis-

sible path in LieðHÞ is also an admissible path in LieðGÞ, and homotopic
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LieðHÞ-paths are also homotopic as LieðGÞ-paths (since LieðHÞ-homotopies are

also LieðGÞ-homotopies). Moreover, an admissible LieðHÞ-path g integrates to a

H-path, which, considered as a G-path, is the same as the one g integrates to when

considered as a LieðGÞ-path. We can then conclude by chasing in the diagram

above, starting with the representative g. r

Lemma 5.10. The a’s defined above are the components of a natural transformation.

Proof. By Lemma 5.7, we only need to show that the Lie groupoid comorphisms

ðaG � aHÞðgS�Lieðf;FÞÞ and gðf;FÞ coincide. Since gðf;FÞ is a source 1-connected

groupoid by Lemma 5.8, we have that agðf;FÞ is an isomorphism from gS�Lieðf;FÞ to
gðf;FÞ. From Lemma 5.9, we can conclude that the restriction of aG � aH ¼ aG�H
to the subgroupoid gS�Lieðf;FÞ coincides with agðf;FÞ , whose image is exactly gðf;FÞ.

r

Consequently, S is a homotopy inverse to the Lie functor, implementing thus

an equivalence of categories. As corollary, we have that

Corollary 5.11. The Lie functor is faithful. In other words, the Lie groupoid

comorphism integrating a complete Lie algebroid comorphism is unique.

6. The symplectization functor

There is an immediate application of Theorem 5.1 in Poisson geometry. Namely,

this theorem implies, as we will see below, that the integration of Poisson mani-

folds by symplectic groupoids using the path construction is an actual functor

from the of integrable Poisson manifolds and complete Poisson maps to the

SGpd of source 1-connected symplectic groupoids and symplectic comorphisms.

A symplectic comorphism from symplectic groupoids GxX to HxY is a

comorphism ðf;FÞ whose underlying graph gðf;FÞ is a canonical relation from

G to H. In contrast with general canonical relations, symplectic comorphisms

always compose well (because they are comorphisms in the first place), and thus

form a. Observe that the graph gðf;FÞ of a symplectic comorphism is a lagrangian

subgroupoid of G �H.

A complete Poisson map f from X to Y is a Poisson map with the property

that the hamiltonian vector field xf �f on X with hamiltonian f�f is complete if

the hamiltonian vector field xf on Y with hamiltonian f a ClðYÞ is complete.

Fernandes in [10] studied constructions in Poisson geometry involving the

integration of Poisson manifolds seen as a functor, which he called the ‘‘symplec-

tization functor.’’ However, in [10] the domain of this functor comprises all

Poisson maps and its range has for morphisms from G to H all the lagrangian
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subgroupoids of G �H, instead of only those that are graphs of symplectic

comorphisms. This choice has as a consequence that the range is not an honest

(the compositions are not always well-defined). Moreover, if we drop the com-

pleteness condition, there are Poisson maps that do not integrate to symplectic

comorphisms as illustrated in the example below. Hence, the symplectization

functor is not a true functor with this choice of domain and range.

Example 6.1. Consider the non-complete and non-integrable Lie algebroid co-

morphism ðf;FÞ from TX to TY of Section 3. Its dual F� is a non-complete

Poisson map from cotangent bundles T �X to T �Y endowed with their canonical

Poisson structure. Let us see that F� is also non-integrable. Since the graph gr f�

is a coisotropic submanifold of the symplectic manifold T �X � T �Y (with sym-

plectic form W ¼ �oþ o), the (immersed) lagrangian subgroupoid integrating

F� can be identified with the leafwise fundamental groupoid of the characteristic

foliation ~FF of gr f� (whose associated distribution we denote by ~DD). For two

vectors in the tangent space to gr f� (which we identify with vectors v ¼ va yv
in TT �X UTX aT �X ), we have that

Wðv;wÞ ¼ �3ðid �F � TfÞv; yw4þ 3ðid �F � TfÞw; yv4:

From this last equation, we see that Wðv;wÞ ¼ 0 for all vectors v tangent to gr f�

i¤ w a ImFa ðKerTfÞ0, where ImF is the distribution of the foliation given by

the flat Ehresmann connection associated with ðf;FÞ and ðKerTfÞ0 is the annihi-
lator of vertical distribution associated with the submersion f. Hence,

~DD ¼ ImFa ðKerTfÞ0;

and the leafwise fundamental groupoid of ~FF may be parametrized by ~GG ¼ T �G,
where

G ¼ ðRþ � S1Þ � ðRþ � RÞ � C� ð�1; 1Þ

parametrizes the leafwise fundamental groupoid of the Ehresmann connection on

X as described in Section 3. The element

~gg ¼ ðr; y; r 0; t; z; h; xr; xy; x 0r; xt; xz; xhÞ

of ~GG corresponds to the homotopy class of the leafwise path

t 7!
�
rþ ðr 0 � rÞt; yþ tt; einðhÞttz; h; xr þ ðx 0r � xrÞt; xy þ xtt; xz; xh

�
;
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with 0a ta 1. We see that we obtain the same non-trivial self-intersections for

the immersion

~GG! T �X � T �X � T �Y � T �Y

at z ¼ 0 for the exact same reasons as in Section 3.

As with Lie algebroids, there is a Lie functor Lie from SGpd to the of Poisson

manifolds and Poisson maps. It takes a symplectic groupoid GxX to the

Poisson manifold ðX ;PX Þ, where PX is the unique Poisson structure turning rG
into a Poisson map (and lG into an anti-Poisson map). Since the graph of a sym-

plectic comorphism ðf;FÞ from GxX to HxY is a lagrangian subgroupoid

gðf;FÞx gr f, this implies that the graph of f is a coisotropic submanifold (see

[2]), and, hence, that f is a Poisson map. The Lie functor on morphisms is thus

defined as Lieðf;FÞ ¼ f.

The path construction can also be extended in a functorial way to the Poisson

realm. Namely, integrating a Poisson manifold X is equivalent to integrating

its associated Lie algebroid T �X ! X , whose bracket on sections is the Koszul

bracket and whose anchor map is the map Pa : T �X ! TX associated with the

Poisson bivector field P a Gðb2TXÞ. The path construction applied to this

Lie algebroid yields a symplectic groupoid SðT �XÞxX (when the Poisson

manifold is integrable as seen in [4]), that is, a groupoid whose total space

is symplectic and whose multiplication graph is a lagrangian subgroupoid of

SðT �XÞ � SðT �XÞ � SðT �XÞ. (The bar on a Poisson manifold denotes the same

Poisson manifold but with opposite Poisson structure.)

To extend the path construction to Poisson maps, we need the following prop-

osition, which can already be (partly) found in [5] and in [12]:

Proposition 6.2. Let ðX ;PX Þ and ðY ;PY Þ be two Poisson manifolds. A smooth

map f : X ! Y is a Poisson map if and only if its cotangent map T �f is a Lie

algebroid comorphism from T �X to T �Y (with the Lie algebroid structure described

above). Moreover, f is complete if and only if T �f is.

Proof. T �f is a comorphism if and only if its dual, the tangent map Tf from TX

to TY , is a Poisson map with respect to the Poisson structure on TX and TY in-

herited from being duals of Lie algebroids. Thus we only need to show that f is

Poisson if and only if Tf is. Now a smooth map between two Poisson manifolds

is Poisson if and only if its graph is a coisotropic submanifold of the product of the

two Poisson manifolds. Hence, the problem reduces to showing that a submani-

fold C of a Poisson manifold X is coisotropic if and only if TC is coisotropic

in TX .
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Recall that the Poisson structure on TX can be described locally in terms of the

matrix

~PPX ðx; vÞ ¼
0 PX ðxÞ

�PX ðxÞ qkPX ðxÞvk
� �

and that we can identify a vector in Tðx; vÞTC with dxa dv a TxCaTxC. This

further gives the identification of N �ðx; vÞTC with N �xCaN �x C. Now TC is coiso-

tropic i¤ for all ya n a N �ðx; vÞTC, we have that

~PPa
X ðx; vÞðya nÞ ¼ Pa

X ðxÞna
�
�Pa

X ðxÞyþ qkP
a
X ðxÞvkn

�
a TxCaTxC;

which is equivalent to C being coisotropic, since qkP
a
X ðxÞvkn is always in TxC

provided that C is coisotropic (to see this, consider the derivative at 0 of the curve�
xðtÞ;PX

�
xðtÞ

�
n
�
in TC such that xð0Þ ¼ x, _xxð0Þ ¼ v, and n is a section of N �C).

This shows that f is Poisson if and only if T �f is a Lie algebroid comorphism.

Let us check now that f is complete whenever T �f is.

First of all, a direct computation shows that the hamiltonian vector field xf �f
where f a ClðYÞ coincides with Pa

X ðT �fÞ
y
df . Moreover, by definition, xf is

complete if and only if the section df is complete.

Suppose now that the comorphism ðf;T �fÞ is complete. Take a complete

hamiltonian vector field xf . Then ðT �fÞy df is complete (since df is complete)

which implies thus that xf�f is also complete. Therefore, the Poisson map f is

complete.

We prove the converse by contradiction. Suppose that f is complete and that

s a GðBÞ is a complete section with ðT �fÞys non-complete. This means that there

is an integral curve xðtÞ of Pa
X ðT �fÞ

y
s starting at xð0Þ ¼ x that does not exist

beyond a certain time ~tt. Consider the integral curve yðtÞ of Pa
Ys that starts at

y ¼ fðxÞ. As long as xðtÞ exists, we have that f
�
xðtÞ

�
¼ yðtÞ. Now, since s is

complete, the integral curve yðtÞ exists for all times, including (and beyond) ~tt.

Since yðtÞ is contained in a symplectic leaf of X , there is a su‰ciently small e > 0

and an open set U in Y containing yð½~tt� e; ~ttþ e�Þ together with a function

f : M ! R with compact support contained in U , whose hamiltonian vector field

xf coincides with Pa
Ys on the curve yðtÞ (but not necessarily on the whole U).

(One can see this by taking local Darboux coordinates turning yðtÞ into a straight

line and considering a linear hamiltonian.) The Poisson map f being complete,

the integral curve xðtÞ of xf �f starting at xð~tt� eÞ ¼ xð~tt� eÞ exists for all t (includ-
ing and beyon ~tt ). Since xf and Pa

Xs coincide on yðtÞ (for all t a R), their lifts xf �f
and ðT �fÞys coincide on xðtÞ for t a ½~tt� e; ~tt Þ; therefore the integral curves xðtÞ
and xðtÞ coincide on ½~tt� e; ~tt Þ. But now, for t a ½~tt; ~ttþ eÞ, we have that xf �f

�
xðtÞ

�
coincides with Pa

X ðT �fÞ
y
s
�
xðtÞ

�
because xf and Pa

Ys coincide on yðtÞ; thus, the
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integral curve xðtÞ is also an integral curve of Pa
X ðT �fÞ

y
s that extends xðtÞ beyond

~tt. This contradicts our assumption that xðtÞ can not be extended beyond ~tt. r

The graph of a Poisson map f from X to Y is a coisotropic submanifold of the

Poisson manifold product X � Y . Thus, the conormal bundle N � gr f to this

graph is a subalgebroid of the algebroid product T �X � T �Y . Proposition 6.2

tells us that this conormal bundle is actually the graph of the Lie algebroid co-

morphism ðf;T �fÞ from T �X to T �Y . Applying the path construction to this

comorphism yields a hypercomorphism

i : SðN � gr fÞ ! SðT �XÞ � SðT �YÞ

between the integrating symplectic groupoids, which happens to be in general only

a lagrangian immersion (see [2] for instance).

Using Theorem 5.1 and Proposition 6.2, we obtain that, for a complete

Poisson map, the lagrangian immersion i is a closed lagrangian embedding, and

its image, which we denote by SðfÞ, is a closed lagrangian submanifold of

SðT �XÞ � SðT �YÞ. In other words, for complete Poisson maps, SðfÞ is, at the
same time, a canonical relation from SðT �XÞ to SðT �YÞ, a lagrangian subgrou-

poid over the graph of f, and a comorphism from SðT �XÞ to SðT �YÞ.
In complete analogy with the Lie algebroid case, we can summarize the discus-

sion above by the following statements, some of which can already be found in [1],

[9], [19]:

Proposition 6.3 (Zakrzewski [19]). Let G and H be symplectic groupoids over X

and Y respectively, and let ðf;FÞ be a symplectic comorphism from G to H. Then

f ¼ Lieðf;FÞ is a complete Poisson map from X to Y.

Proof. The lagrangian subgroupoid gðf;FÞx gr f integrates the coisotropic sub-

manifold gr f, and, thus, integrates the corresponding Lie subalgebroid N � gr f
(see [2] for instance), which is nothing but the graph of the comorphism T �f
from T �X to T �Y . By Proposition 2.8, we have then that T �f is complete be-

cause integrable, and, hence, that f is complete by Proposition 6.2. r

Theorem 6.4. The path construction S is a functor from the of integrable Poisson

manifolds and complete Poisson maps to the of source 1-connected symplectic

groupoids and symplectic comorphisms. It is an inverse to the Lie functor Lie, and,

thus, implements an equivalence between these two categories.

Corollary 6.5 (Caseiro-Fernandes [1], Dazord [9], Zakrzewski [19]). Let X and Y

be two integrable Poisson manifolds with source 1-connected integrating symplectic

groupoids G and H. Then a Poisson map f from X to Y integrates to a (unique)

symplectic comorphism ðf;FÞ from G to H if and only if it is complete.
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Theorem 6.4 provides a rigorous foundation for constructions in Poisson

geometry involving S in the spirit of Fernandes in [10] where S (which is called

the ‘‘symplectization functor’’) is only considered heuristically.

Remark 6.6. A weaker version of Corollary 6.5 was already stated without proof

by Dazord in [9], where only the implication from complete to integrable was

considered. Recently, Caseiro and Fernandes in [1] proved that the object

integrating a complete Poisson map from integrable Poisson manifolds X to Y

is an embedded lagrangian subgroupoid of the symplectic groupoid product

SðXÞ � SðYÞ, using the path construction and similar lifting properties as de-

scribed in Section 4.3. However, one can find versions and proofs of both this

Corollary and Proposition 6.3 in Zakrzewski’s paper [19], which was written

even before the notion of comorphisms was formally introduced by Higgins and

Mackenzie in [12]. In [19], Zakrzewski integrates complete Poisson maps not to

symplectic comorphisms but to what he called ‘‘morphisms of S �-algebras,’’ which
are defined as special canonical relations satisfying certain algebraic relations.

One can shows that Zakrzewski’s morphisms of S �-algebras are nothing but

symplectic comorphisms. His proof relies mostly on the method of characteristics

for coisotropic submanifolds.
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