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Variations of gwistor space

Rui Albuquerque*

Abstract. We study natural variations of the G2 structure s0 a L3
þ existing on the unit

tangent sphere bundle SM of any oriented Riemannian 4-manifold M. We find a circle
of structures for which the induced metric is the usual one, the so-called Sasaki metric,
and prove how the original structure has a preferred role in the theory. We deduce the
equations of calibration and cocalibration, as well as those of W3 pure type and nearly-
parallel type.
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1. Introduction

In [6] it was shown how a natural G2 ¼ AutO structure is associated to the unit

tangent sphere bundle p : SM ! M of any given oriented Riemannian 4-manifold

M. The techniques are twistorial, such as those learned by the author from [14],

so we have chosen to give the name of G2-twistors or simply gwistors to the new

spaces.

The theory starts by a construction of the octonions inside TTM, restricted to

the 3-sphere fibre bundle SM, which we take a moment to explain. Recall the

Levi-Civita connection of the base induces a canonical splitting of the tangent

bundle of TM. Both vertical and horizontal subbundles V , H become isometric

to p�TM with the pull-back metric. The direct-sum metric over TM is called the

Sasaki metric of this manifold. Independently of the metric, V has a tautological

section, denoted U and defined by Uu ¼ u; hence also a vertical vector field on

SM ¼ fu a TM : kuk ¼ 1g. Now each point Uu is identified with the identity

*The author acknowledges the support of Fundação Ciência e Tecnologia, Portugal, through
CIMA-UÉ, Centro de Investigação em Matemática e Aplicações da Universidade de Évora, and through
SFRH/BSAS/895/2009 (sabbatical scholarship).



element, the generator of the real line in TuTMUO. Then we use the volume

form p� volM coupled with U , to induce a cross-product on u? HV . A conjuga-

tion map is equally trivial to define. Together these induce a quaternionic struc-

ture on V . Then, applying the well-known Cayley-Dickson process, we obtain the

structure of O in V aH.

The pull-back of TM also inherits a metric connection ‘� ¼ p�‘ and hence

parallel identifications of horizontals with verticals, passing through p�TM, cf.

loc. cit. and [15]. The manifold SM is endowed with the induced metric from

the canonical or Sasaki metric on TM. Clearly TSM coincides with V1aH

where V1 ¼ fv a V : 3Uu; v4 ¼ 0g at each point u. Since u is pointing outwards,

our space SM inherits a G2-structure, for which it receives the name of gwistor

space. Recall G2 ¼ AutO, but clearly the structure is the extension of an SOð3Þ
structure. The connection induces a projection ‘�

: U : TSM ! V with kernel H

and the identity on V .

By a Theorem of Y. Tashiro in [7] it is known that SM has a metric almost

contact structure for a Riemannian base of arbitrary dimension. As these are rigid

geometrical objects, the contact structure is bound to be K-contact if and only ifM

has constant sectional curvature 1. Then it turns out also to be Sasakian. Locally

the space is the same as the Stiefel manifold V5;2 ¼ SOð5Þ=SOð3Þ.
Now we leave aside the Cayley–Dickson process and concentrate on the

five invariant 3-forms which are naturally defined on SM. Then we may try to

find other interesting G2 structures. This article is devoted to them, the varia-

tions of gwistor space, which may also be called g-natural G2-structures on the

unit tangent sphere bundle, in analogy with the terms for the metrics used by

[1], [2] and many references therein. On the other hand, the terms deformation

or perturbation are also used in similar context by other authors, so we made a

choice.

We readily announce the support of some computer algebra software for the

proof of Theorem 1.13 below. It is a polynomial computation of the 7th order in

four variables which we believe anyone can reproduce easily.

This work was started during the author’s sabbatical leave at Philipps Univer-

sität, Marburg, and only later finished at IHES, Bures-sur-Yvette. He kindly

acknowledges the hospitality of both institutions and expresses his thanks to

I. Agricola, Th. Friedrich, M. Kontsevich and S. Meinhardt for fruitful conver-

sations.

The author dedicates this work to Marta Barata.

1.1. The basic 3-forms. We start by abbreviating the notation and write

SM ¼ G. There is, as we have seen, an isometry connecting H with V , which

we denote by B. We extend it by 0 to V , thus defining an endomorphism B of

TTM. Then the transpose tangent vector field BtU generates a real line bundle,
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contained in TG, and a 1-form y ¼ ðBtUÞ[. We may write a splitting, with

H1 ¼ BtV1:

T �G ¼ RyaH �
1 aV �

1 : ð1Þ

We pass to the language of di¤erential forms. The 1-form y is the aforementioned

almost contact structure, satisfying

yuðvÞ ¼ 3u; dpðvÞ4 for all u a G; v a TG:

The usual pull-back (horizontal) of the volume form of M is also denoted by vol.

The vertical pull-back of vol a W4ðMÞ contracted with U is denoted by a; then we

define analogously a 3-form a3 ¼ ðBtUÞPvol. Of course,

yba3 ¼ vol; volba ¼ VolG:

As shown in [4], it is possible to find locally an ‘adapted’ frame, i.e. an oriented

orthonormal frame e0; e1; . . . ; e6 respecting (1). In particular such that (with usual

notation for the co-framing, eab...c ¼ eabebb� � �bec)

y ¼ e0; a3 ¼ e123; a ¼ e456: ð2Þ

It is easy to compute that dyðv;wÞ ¼ 3ðBt � BÞv;w4 for all v;w a TG, which re-

stricts to a symplectic 2-form on the vector bundle H1aV1 and hence is written

as dy ¼ e41 þ e52 þ e63.

The endomorphism B allows one to construct two other 3-forms. We turn the

reader to [4] for the invariant definition, i.e., to see these forms depend only of the

metric on M and not of the choice of adapted frame. They are:

a1 ¼ e156 þ e264 þ e345

and

a2 ¼ e126 þ e234 þ e315:

One can prove the five 3-forms a; a1; . . . ; a3, ybdy correspond to a basis for

the space of invariants in L3ðRaR3aR3Þ under the action of SOð3Þ, the

underlying structure group of G, i.e., there are five irreducible 1-dimensional

submodules1.

1The author acknowledges I. Agricola and Th. Friedrich for this computation.
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The five 3-forms satisfy the ‘first structure equations’ for all i ¼ 1; 2; 3:

�a ¼ yba3 ¼ vol ¼ p� volM ; �a1 ¼ �yba2; �a2 ¼ yba1;

�dy ¼ 1

2
ybðdyÞ2; �ðdyÞ2 ¼ 2ybdy; �ðdyÞ3 ¼ 6y;

a1ba2 ¼ 3a3ba ¼ 3 � y ¼ 1

2
ðdyÞ3; ð3Þ

dybai ¼ dyb�ai ¼ a3bai ¼ 0;

dyba ¼ dyb�a ¼ aba1 ¼ aba2 ¼ 0:

The natural G2 structure on G to which we have referred is given2 by the

3-form

s0 ¼ a2 � aþ ybdy:

This form gives the canonical representation theory without changing the ca-

nonical orientation of G; namely it gives the usual G2-modules L2
7, L

2
14 (which

appeared from opposite highest weights in [4], [5], [6]).

The integrability of s0 was studied in the case of the Levi-Civita connection on

M in the seminal article [6], and in the case of metric connections with torsion,

which clearly allow the same construction, in [4]. For the first case we know that

the G2-twistor structure is cocalibrated, i.e., d � s0 ¼ 0, if and only if the base M is

an Einstein manifold.

1.2. Variations of G2 structures. Let us recall the definition of stable forms

from the theory of G2-manifolds, [8], [9].

Let s denote a linear G2 structure on a 7-dimensional oriented vector space V ,

i.e., some identification of V with the canonical R7 is assumed. A consequence

of the study of the Lie group G2 ¼ Aut sH SOð7Þ is that it is connected and

14-dimensional; henceforth, that the orbit of s under GLð7;RÞ is an open set

inside the module L3V �. This orbit is denoted L3
e and known as the space of

stable G2-structures on V . We detect the boundaries of such stability by the

non-degeneracy of the induced Euclidean product. Indeed, the inner product

3 ; 4s is given by the clearly symmetric map vnw 7! vPsbwPsbs—with this

image 7-form required to be, on the diagonal of V , a positive multiple of the

chosen orientation. The given s satisfies this condition by assumption. Allowing

also s to vary, we do have a GLð7;RÞ-equivariant map

V nV nL3V � ! L7V �:

2Actually the structure was given first by the opposite, �s0, but we take the opportunity here to make
the change.
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Since L7V �n0 has two connected components, we conclude L3
e is the union of two

open orbits under the action of the subgroup GLþð7;RÞ, identified bijectively by

a� sign because ð�1Þ3 ¼ ð�1Þ7. Moreover, the orientation Vols in V induced by

the first map itself is preserved in each of these orbits. Next we shall be concerned

only with the positive-definite side L3
þ of L3

e.

We further remark on the existence of split-octonionic structures, with auto-

morphism group the non-compact dual form of G2, this time inducing metrics

of signature ð3; 4Þ or ð4; 3Þ. In the following applications to gwistor space we shall

not be worried with the parallelism with the split-octonionic structures, since such

study may be much more easily undertaken later.

We return to the gwistor space G ! M and consider a variation of the stan-

dard structure s0. We let f0; . . . ; f4 be scalar functions on G and define

s ¼ f0aþ f1a1 þ f2a2 þ f3a3 þ f4ybdy: ð4Þ

The original G2 structure s0 is given by � f0 ¼ f2 ¼ f4 ¼ 1, f1 ¼ f3 ¼ 0. At least

for su‰ciently close values to the standard, we do obtain new G2-structures. For

the fixed orientation VolG ¼ e0...6, induced by the Sasaki structure on TM and the

vector field U , we have that on any two vectors v, w:

vPsbwPsbs ¼ 63v;w4s Vols ¼ 63v;w4smVolG:

The second identity defines m > 0 as a scalar function of s, by linearity and be-

cause, as explained, s determines both the metric and the volume form, given the

orientation. m : G ! R is already assumed to be positive—as we may without

loss of regularity, if the fi are smooth, or significant generality of the same set of

functions.

Lengthy but easy computations yield the result which we present next.

Lemma 1.1. The metric matrix of 3�; �4s with respect to the adapted frame is

½3ei; ej4s� ¼ t

f 24
x z

x z

x z

z y

z y

z y

2
666666666664

3
777777777775
;

where we have simplified notation by writing

t ¼ f4

m
; x ¼ f 22 � f1 f3; y ¼ f 21 � f0 f2; z ¼ f1 f2 � f0 f3: ð5Þ
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Notice that s0 corresponds to the identity 17. Computing determinants, the

metric is positive-definite if f4 > 0, x > 0 and xy� z2 > 0. This proves the follow-

ing result.

Theorem 1.2. If a set of scalar functions f0; . . . ; f4 induces a G2 structure on G,

then it satisfies f4 > 0, f 22 � f1 f3 > 0 and

3f0 f1 f2 f3 � f0 f
3
2 � f 20 f

2
3 � f3 f

3
1 > 0: ð6Þ

Remark 1.3. The homogeneous fourth degree polynomial is irreducible and has

no critical values in the domain.

Remark 1.4. The metrics obtained are all natural metrics in the sense of [1], [2]

and other references therein.

Using the Gram–Schmidt process on the new metric, we obtain the oriented

orthonormal frame, for i ¼ 1; 2; 3,

~ee0 ¼
1

f4
ffiffi
t

p e0; ~eei ¼
1ffiffiffiffiffi
tx

p ei; ~eeiþ3 ¼
ffiffiffiffi
x

th

r
eiþ3 �

z

x
ei

� �
; ð7Þ

where h is the polynomial in (6):

h ¼ xy� z2: ð8Þ

A dual co-frame is then

~ee0 ¼ f4
ffiffi
t

p
e0; ~eei ¼

ffiffiffiffiffi
tx

p
ei þ z

ffiffiffi
t

x

r
eiþ3; ~eeiþ3 ¼

ffiffiffiffi
th

x

r
eiþ3: ð9Þ

We obtain also the useful formulas

e0 ¼ 1

f4
ffiffi
t

p ~ee0; ei ¼ 1ffiffiffiffiffiffiffi
txh

p ð
ffiffiffi
h

p
~eei � z~eeiþ3Þ; eiþ3 ¼

ffiffiffiffi
x

th

r
~eeiþ3: ð10Þ

Indeed the frame (7) is oriented, i.e., ~ee0123456 ¼ me0123456 is a positive multiple of

the chosen orientation. Immediately through (5) and (9) we find that

m ¼ f4h
1=3: ð11Þ
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1.3. G2-structures s compatible with the Sasaki metric. Let s be a variation

of s0.

Proposition 1.5. The metric induced by s coincides with the Sasaki metric on G if

and only if

f 20 þ f 21 ¼ 1; f2 ¼ �f0; f3 ¼ �f1; f4 ¼ 1:

Under the action of SOð7Þ the orbit of 3-forms which can be written in the form (4) is

a circle S1.

Proof. By hypothesis, we have tf 24 ¼ tx ¼ ty ¼ 1 and z ¼ 0. Hence f 34 ¼ f4x ¼
f4y ¼ m and h ¼ xy ¼ f 44 . Knowing m must equal 1 or equating through (11)

we get all these equal to 1, except for z. Now solving the system (5) we deduce

the equivalence in the first part of the result. The second follows from the first

(as the metric is preserved) and the analysis of the orbit of s0 ¼ a2 � aþ ybdy

through known methods. So, we note that already Uð3ÞH SOð7Þ acts as a real

group, fixing e0, on the vector space E ¼ H1aV1, which has a natural complex

structure. Moreover,

ðe1 þ
ffiffiffiffiffiffiffi
�1

p
e4Þbðe2 þ

ffiffiffiffiffiffiffi
�1

p
e5Þbðe3 þ

ffiffiffiffiffiffiffi
�1

p
e6Þ

¼ a3 � a1 þ
ffiffiffiffiffiffiffi
�1

p
ða2 � aÞ ¼: h a L3E ð1;0Þ �:

Since SUð3ÞHG2, we have only to consider maps g such that gjE ¼ e is1E for some

s a R. One finds easily the role of g as a real map. Immediately we deduce g fixes

the 3-form ybdy ¼ e041 þ e052 þ e063. On the other hand g � h ¼ g3h. Letting g

be such that g3 ¼ f0 þ
ffiffiffiffiffiffiffi
�1

p
f1 a S1 we find that this real map solves (= denotes

imaginary part)

g � s0 ¼ g � ð=hþ ybdyÞ ¼ =ðg3hÞ þ ybdy

¼ �f0a� f1a1 þ f0a2 þ f1a3 þ ybdy:

The result follows (notice the space SOð7Þ=G2 is 7-dimensional so we have to

restrict our statement to the specific forms). r

For the following computations we apply formulas which have been deduced

in [4], [6]. We start by the particular case found above, when the Sasaki metric

is preserved.

Theorem 1.6. Suppose the Riemannian manifold M is connected. Let s be a

variation of gwistor space satisfying the condition that the induced metric coincides

151Variations of gwistor space



with the Sasaki metric on G, that is, s ¼ �f0a� f1a1 þ f0a2 þ f1a3 þ ybdy with

ð f0; f1Þ : G ! S1 a smooth function. Then we have:

1. dsA 0.

2. If ð f0; f1ÞA ðe1; 0Þ, then d � s ¼ 0 if and only if the functions f0, f1 are constant

and the Riemannian base M has constant sectional curvature.

3. If ð f0; f1Þ ¼ ðe1; 0Þ, then d � s ¼ 0 if and only if M is Einstein.

The proof follows by recalling the list of derivatives of the fundamental

3-forms in (19), which were deduced in [4], Proposition 2.3. Result (1) is the par-

ticular case of Theorem 1.12 (below). For (2) we may easily compute d � s. If it is

to vanish, then we deduce a curvature equation R0123 ¼ 0, which implies constant

sectional curvature on the base, and that f0df0 ¼ �f1df1 is a multiple of y, which

implies ð f0; f1Þ is constant. Finally, if the base metric has constant sectional cur-

vature k, then another curvature term appearing satisfies RUa ¼ �kyba1, and we

find this is the solution required in case f1A 0.

Theorem 1.6 shows that the original gwistor space structure we found, the

standard s0, is indeed preferred; it has greater interest than the others on the circle

(of course, besides the antipodal of s0, a duality which as explained in section 1.2

we shall not explore here).

We shall now see a result concerning the type of ds with respect to the

G2-decomposition of L4T �G. We follow the description by [10] also found in

several good references such as [3], [8], [9]. A structure is said to be of pure

type W3 if ds ¼ �t3 with t3 the W3 part, that is satisfying t3bs ¼ t3b�s ¼ 0.

Theorem 1.7. The gwistor space ðG; sÞ of a constant sectional curvature k man-

ifold with s given as before and f0, f1 constant, is of pure type W3 if and only if

k ¼ �2.

Proof. Our invoked Riemann tensor satisfies Rijpq ¼ kðdqi d
p
j � d

p
i d

q
j Þ for a constant

sectional curvature metric (this is not a sign convention; it is a compatibility con-

dition between required tensors on G and tensors on the base manifold). By defi-

nitions in (20), (21), seen below but known from [4], we have RUa ¼ �kyba1,

RUa1 ¼ �2kyba2.

Now, since the metric is Einstein we have d � s ¼ 0 by Theorem 1.6 and thence

ds ¼ l � sþ �t3 (in other words, cf. [9], we have t1 ¼ t2 ¼ 0). The condition of

pure type W3, equivalently l ¼ 0 a R, corresponds by a simple argument to

ðdsÞbs ¼ 0.

With s ¼ �f0a� f1a1 þ f0a2 þ f1a3 þ ybdy, we get the following formula:

ds ¼ ybð�3f1aþ f0ðk þ 2Þa1 þ f1ð2k þ 1Þa2 � 3f0ka3Þ þ ðdyÞ2: ð12Þ
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Using the ‘first structure equations’ from (3) or [4], Proposition 2.1, and

f 20 þ f 21 ¼ 1, we have

dsbs ¼
�
3f 21 þ 3f 20 ðk þ 2Þ þ 3f 21 ð2k þ 1Þ þ 3f 20 k þ 6

�
VolG

¼
�
6f 21 þ 6f 20 þ 6ð f 21 þ f 20 Þk þ 6

�
VolG

¼ 6ð2þ kÞVolG:

Hence the result. r

We recover, in particular, the result in [4], Corollary 3.1, for the preferred

s0 ¼ a2 � aþ ybdy on hyperbolic space of sectional curvature �2. Notice how-

ever the independency from the pair ð f0; f1Þ a S1. The same is true with the

following quite noticeable formula.

Proposition 1.8. Assuming the above conditions, kdsk2 ¼ 12ðk2 þ k þ 2Þ. In par-

ticular, kdsk2 ¼ 48 if and only if k ¼ �2 or k ¼ 1.

Proof. Immediate from (12). r

1.4. Properties of the general case. Let us consider some metric problems

related with the variations of gwistor space.

Suppose ð f0; . . . ; f4Þ : G ! R5 is a function satisfying the conditions in Theo-

rem 1.2. We study those 3-forms

s ¼ f0aþ f1a1 þ f2a2 þ f3a3 þ f4ybdy ð13Þ

which define G2-structures on G ! M.

Remark 1.9. 1. Recall a metric almost contact structure is said to be K-contact

if the characteristic vector field is Killing. In the case of the Sasaki metric,

ðG; y;BtUÞ is K-contact if and only if M is locally isometric to S4 of radius 1, a

result due to Y. Tashiro. In general, our metrics 3� ; �4s induced from s turned out

to be ‘g-natural’ contact metrics in the sense of e.g. [1] (in particular the immediate

question of 3� ; �4s being K-contact is solved in the same reference).

2. Another feature of gwistor theory is that s seems to be never preserved by

the vector field BtU . This is known both as the geodesic spray or the geodesic

flow vector field, cf. [13], [15]. Indeed, computations for constant fi have shown

that the equation LBtUs ¼ 0 has no solution s a L3
þ. For any fi defined on G, or

even just the pull-back of functions on M, one may write interesting di¤erential

equations.
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Now we shall compute the exterior derivatives of the G2-structures. From the

formulas in (10) we deduce

y ¼ 1

f4t1=2
~yy; dy ¼ 1

th1=2
fdydy; a ¼ x3=2

ðthÞ3=2
~aa;

a1 ¼
x1=2

t3=2h
~aa1 �

z

h1=2
~aa

� �
;

a2 ¼
1

x1=2ðthÞ3=2
ðh~aa2 � 2h1=2z~aa1 þ 3z2~aaÞ;

a3 ¼
1

ðtxhÞ3=2
ðh3=2~aa3 � hz~aa2 þ h1=2z2~aa1 � z3~aaÞ:

The forms with a tilde are defined algebraically using the orthonormal basis

for s, formally introduced as the respective y; dy; a; . . . ; a3. For instance ~yy ¼ ~ee0,fdydy ¼ ~ee41 þ ~ee52 þ ~ee63, cf. (2). In particular, we note that we may use the already

mentioned ‘first structure equations’ from (3) but with a tilde!

We also need the inverse formulas of the above:

gybdyybdy ¼ f4t
3=2h1=2ybdy; ~aa ¼ ðthÞ3=2

x3=2
a;

~aa1 ¼
ht3=2

x3=2
ðxa1 þ 3zaÞ;

~aa2 ¼
h1=2t3=2

x3=2
ðx2a2 þ 2xza1 þ 3z2aÞ;

~aa3 ¼
t3=2

x3=2
ðx3a3 þ x2za2 þ xz2a1 þ z3aÞ:

Using the ‘first structure equations’ for the Hodge operator of the metric and

orientation induced by s, and writing back in terms of the usual frame, we obtain

the following result.

Theorem 1.10.

�sðybdyÞ ¼ t1=2h1=2

2f4
ðdyÞ2; ð14Þ

�sa ¼ f4t
1=2

h3=2
ybðx3a3 þ x2za2 þ xz2a1 þ z3aÞ; ð15Þ

�sa1 ¼ � f4t
1=2

xh3=2
yb

�
3x3za3 þ x2ðhþ 3z2Þa2

þ xð2hzþ 3z3Þa1 þ ð3hz2 þ 3z4Þa
�
; ð16Þ
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�sa2 ¼
f4t

1=2

x2h3=2
yb

�
3x3z2a3 þ x2ð2hzþ 3z3Þa2

þ xðh2 þ 4hz2 þ 3z4Þa1 þ ð3h2zþ 6hz3 þ 3z5Þa
�
; ð17Þ

�sa3 ¼ � f4t
1=2

x3h3=2
yb

�
x3z3a3 þ x2ðhz2 þ z4Þa2

þ xðh2zþ 2hz3 þ z5Þa1 þ ðh3 þ 3h2z2 þ 3hz4 þ z6Þa
�
: ð18Þ

Corollary 1.11. The Hodge � operator is homogeneous of degree 1
3 on 3-forms

viewed as a map s c �s.

Proof. From definitions, we see x, y, z have degree 2 and thence h has degree

4; then m ¼ f4h
1=3 and Vols have degree 7

3 and finally t ¼ f4=m has degree � 4
3 .

Finally, observing (14) the result follows (though quite easily seen as a corollary

from the above, this result also follows from the definition of �s). r

Now we recall the formulas from [4], Proposition 2.3:

da ¼ RUa;

da1 ¼ 3ybaþRUa1;

da2 ¼ 2yba1 � r vol;

da3 ¼ yba2:

ð19Þ

RUa, RUa1 are linearly independent forms depending on the curvature R of

M, and r is a scalar function on G defined by rðuÞ ¼ rðu; uÞ, with R and r the

usual Riemann and Ricci curvature tensors. Concretely, cf. [4], formulas 25

and 26,

RUa ¼
X

0ai< ja3

Rij01e
ij56 þ Rij02e

ij64 þ Rij03e
ij45; ð20Þ

RUa1 ¼
X

0ai< ja3

Rij01ðeij26 þ eij53Þ þ Rij02ðeij61 þ eij34Þ þ Rij03ðeij15 þ eij42Þ: ð21Þ

In particular ybRUa1 ¼ �rbvol, where r ¼
P3

i¼1 rðei; e0Þeiþ3.

Theorem 1.12. For any functions f0; . . . ; f4, we have dsA 0.

Proof. Indeed, since dybai ¼ 0 for all i ¼ 0; 1; 2; 3, a0 ¼ a, we have by the

Bianchi identity
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ybdybds ¼ ybdyb
�
f4ðdyÞ2 þ

X
dfibai þ fi dai

�
¼

�
6f4 þ f0ðR2301 þ R3102 þ R1203Þ

�
VolG ¼ 6f4 VolG:

However, we saw f4 must be positive. r

From now on we assume the functions f0; . . . ; f4 are constant.
Returning to the Hodge duals of Theorem 1.10, then we have by simple

reasons

d
�
�sðybdyÞ

�
¼ 0; ð22Þ

dð�saÞ ¼ � f4t
1=2

h3=2
ybðxz2RUa1 þ z3RUaÞ; ð23Þ

dð�sa1Þ ¼
f4t

1=2

xh3=2
yb

�
xð2hzþ 3z3ÞRUa1 þ ð3hz2 þ 3z4ÞRUa

�
; ð24Þ

dð�sa2Þ ¼ � f4t
1=2

x2h3=2
yb

�
xðh2 þ 4hz2 þ 3z4ÞRUa1

þ ð3h2zþ 6hz3 þ 3z5ÞRUa
�
; ð25Þ

dð�sa3Þ ¼
f4t

1=2

x3h3=2
yb

�
xðh2zþ 2hz3 þ z5ÞRUa1

þ ðh3 þ 3h2z2 þ 3hz4 þ z6ÞRUa
�
: ð26Þ

Adding up the above with the respective coe‰cients from (4), we find the

vanishing of the two polynomials

p1 ¼ �f0x
3z2 þ f1x

2ð2hzþ 3z3Þ � f2xðh2 þ 4hz2 þ 3z4Þ

þ f3ðh2zþ 2hz3 þ z5Þ; ð27Þ

p2 ¼ f0x
3z3 � f1x

2ð3hz2 þ 3z4Þ þ f2xð3h2zþ 6hz3 þ 3z5Þ

� f3ðh3 þ 3h2z2 þ 3hz4 þ z6Þ ð28Þ

is a su‰cient condition for the vanishing of dð�ssÞ:

dð�ssÞ ¼
f4t

1=2

x3h3=2
ybðxp1RUa1 � p2R

UaÞ:

Also the reader understands now why we chose constant coe‰cients. If zA 0, we

may multiply the first polynomial by z, add to the second and factor out a hð> 0Þ
from the result to obtain

�f1x
2z2 þ 2f2xhzþ 2f2z

3x� f3h
2 � 2f3hz

2 � f3z
4: ð29Þ
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Finally, introducing equations (5), (8) and resorting to some computer algebra

software, we are able to find two independent expressions in the original parame-

ters f0; . . . ; f3:

p1 ¼ �f0ð f 21 � f0 f2Þð�f 22 þ f1 f3Þ2 ð30Þ

p2 ¼ ð f 22 � f1 f3Þ3ð�2f0 f
3
1 f

3
2 þ 3f 20 f1 f

4
2 � f 61 f3 þ 6f0 f

4
1 f2 f3 � 6f 20 f

2
1 f

2
2 f3

� 2f 30 f
3
2 f3 � 3f 20 f

3
1 f

2
3 þ 6f 30 f1 f2 f

2
3 � f 40 f

3
3 Þ ð31Þ

Notice they are homogeneous, as expected, and notice the factor y ¼ f 21 � f0 f2 in

the second polynomial and the common factor x ¼ f 22 � f1 f3, which must both be

positive by hypothesis. From equivalence we get the simple expression

ð f 31 � 2f0 f1 f2 þ f 20 f3Þð f 22 � f1 f3Þ3 ð¼ ð29ÞÞ: ð32Þ

Theorem 1.13. A 3-form s as above defining a G2-structure, with f0; . . . ; f4 con-

stant, satisfies d �s s ¼ 0 if and only if any one of the following occurs:

(i) The polynomial p2 from (31) vanishes and M is Einstein.

(ii) M has constant sectional curvature.

Proof. Notice first that d �s s ¼ 0 if and only if both ybp1R
Ua1 and ybp2R

Ua

vanish. Also we note that, if f0 ¼ 0, then neither f1 or f3 can vanish (otherwise we

would get y ¼ 0 or h ¼ 0 from definition). So the two main polynomials cannot

vanish simultaneously, as we see directly, or from the implied equation (32).

Now, if p2 vanishes, then we may conclude that f0A 0, i.e., the first poly-

nomial p1 does not vanish. So the cocalibration equation becomes equivalent

to the vanishing of ybRUa1 ¼ �rbvol, which happens if and only if M is

Einstein. Conversely, if the polynomial p2 does not vanish, then the equation

relies on a metric such that ybRUa ¼ 0; equivalently, R1201 ¼ R2301 ¼ 0, etc.

This is the same as M having constant sectional curvature. In particular, M being

Einstein. r

For example, if f0 ¼ 0, then we are certainly bound to the second case.

Noteworthy is the case when f1 f2 ¼ f0 f3 (or z ¼ 0), which generalizes Propo-

sition 1.6. By formulas (22)–(26) we see that

d �s s ¼ f3
f4t

1=2

x3h3=2
h3ybRUa ¼ f3 f4t

1=2h3=2

x3
ybRUa:

A question put to the author by colleagues was: if we could always find,

invariant of the metric on M, a natural G2 structure which would be co-closed.
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The answer is no, because the two polynomials do not vanish simultaneously. By

the contrary we stress the relevance of G2 cocalibration goes much beyond the

known cases and examples.

1.5. Nearly-parallel G2-structures. Nearly-parallel G2-structures on 7-

dimensional manifolds are defined by d �s s ¼ 0 and ds ¼ c �s s for some con-

stant c. Clearly, if cA 0, the condition is simply the latter equation.

We consider a variation of the G2 structure on G, as in (13). In order to find a

nearly-parallel structure s, we may assume already that it is cocalibrated (cA 0).

Recall the Hodge � operator is homogeneous of degree 1=3 on 3-forms viewed as a

map s c �s. Hence if we find a solution to the above in our subspace of s a L3
þ,

we find a line of solutions:

dðssÞ ¼ cs �s s ¼ cs�1=3 �ss ss; s a Rþ:

We restrict here to the case z ¼ f1 f2 � f0 f3 ¼ 0, the less ‘prohibitive’ condition.

And continue to assume the coe‰cients are constants.

Theorem 1.14. Under the previous condition, the only metric on an oriented

Riemannian 4-manifold M for which a ðG; sÞ is nearly-parallel is the constant sec-

tional curvature 1 metric. Then there are two classes of solutions, represented by the

following two G2-structures:

se¼e

ffiffiffi
2

p

2
ða2 � aþ a3 � a1Þ þ

ffiffiffi
3

2

r
ybdy;

both satisfying ds ¼
ffiffiffi
6

p
�s s.

Proof. Since we assume z ¼ 0 and this is maintained on the line Rþs, there exists
a positive multiple of s such that ð f0; f1Þ is in the unit circle. Then we easily

deduce x ¼ y ¼ 1 and f2 ¼ �f0, f3 ¼ �f1. Hence h ¼ 1 ¼ t and m ¼ f4, cf. (11).

From formulas (14)–(18) and the hypothesis of s being nearly-parallel, we see

the 4-form ds is again SOð3Þ-invariant. Then we easily deduce the curvature

restriction: it must be of the constant kind. The equation ds ¼ c �s s is solved

using those same formulas. Looking at components, we find a system (k is the

sectional curvature)

c ¼ 2f4;

f0 f1 � kf 2
0 ¼ 0;

2f0 f1k þ f0 f1 � 3f 21 ¼ 0;

3f1 � 2f0 f
2
4 ¼ 0;

2f0 þ kf0 � 2f0 f
2
4 ¼ 0:

8>>>>><
>>>>>:
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This yields f0 ¼ f1, which occurs twice in the circle; and k ¼ 1, f4 ¼
ffiffiffiffiffiffiffiffi
3=2

p
,

c ¼
ffiffiffi
6

p
. The given 3-forms satisfy the equation and are genuine G2-structures.

r

Notice that the metric on G is the same on both solutions. Now we recall the

classification of nearly-parallel G2 structures in [12]. The ones we got correspond

to the Stiefel manifold V5;2 ¼ SOð5Þ=SOð3Þ in their Table 2, which is of course

the unit tangent sphere bundle of S4. The G2 structure is constructed as a Uð1Þ-
bundle over the complex quadric G5;2, the Grassmannian of 2-planes, with a

Kähler-Einstein metric. The resulting nearly-parallel G2 structure is said to be

Einstein-Sasakian for some homogeneous SOð5Þ-invariant metric. We have thus

found more detail of this case. It is also most interesting to see that our result

gives a metric coinciding precisely with the Einstein metric on V5;2 deduced in

[2], Theorem 4. It has Riemannian scalar curvature 63
4 , by a formula there.
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203, Birkhäuser, Boston 2002. Zbl 1011.53001 MR 1874240

[8] R. L. Bryant, Metrics with exceptional holonomy. Ann. of Math. (2) 126 (1987),
525–576. Zbl 0637.53042 MR 916718

[9] R. L. Bryant, Some remarks on G2 structures. In Proceedings of the Gö kova
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