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1. Introduction

Many dynamical systems describing models in applied sciences have an impul-

sive dynamical behaviour due to abrupt changes at certain instants during the

evolution process. The rigorous mathematical description of these phenomena

leads to impulsive di¤erential equations; they characterize various processes of

the real world described by models that are subject to sudden changes in their

states. Essentially, impulsive di¤erential equations correspond to a smooth evolu-

tion that may change instantaneously or even abruptly, as happens in various ap-

plications that describe mechanical or natural phenomena. These changes corre-

spond to impulses in the smooth system, such as for example in the model of a

mechanical clock. Impulsive di¤erential equations also study models in physics,

population dynamics, ecology, industrial robotics, biotechnology, economics, op-

timal control, chaos theory. Associated with this development, a theory of impul-

sive di¤erential equations has been given extensive attention. For an introduc-

tion of the basic theory of impulsive di¤erential equations in Rn we refer to [3],

[14], and [22]. Some classical tools have been used to study such problems in
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the literature, such as the coincidence degree theory of Mawhin, the method of

upper and lower solutions with the monotone iterative technique, and some fixed

point theorems in cones (see [10], [15], [20]). Recently, the existence and multi-

plicity of solutions for impulsive boundary value problems by using variational

methods and critical point theory has been considered in [16], [23], [24], [25],

[26].

For a general second order di¤erential equation Fðt; u; u 0Þ ¼ 0, one can con-

sider impulses in the position u and the velocity u 0. However, as argued in [16], it

is natural to consider in the motion of spacecraft only instantaneous impulses

depending on the position that result in jump discontinuities, but with no change

in position. The impulses only on the velocity occurs also in impulsive mechanics,

see [17].

The purpose of this paper is to show the variational structure underlying of a

class of nonlinear impulsive di¤erential equations. We take as a model a Dirichlet

problem with impulses. For an excellent overview of the most significant mathe-

matical methods employed in this paper we refer to Ciarlet [11].

2. Statement of the problem

The aim of this paper is to study the following nonlinear Dirichlet boundary-value

problem

�
�
pðtÞu 0ðtÞ

� 0 þ qðtÞuðtÞ ¼ lf
�
t; uðtÞ

�
þ mg

�
t; uðtÞ

�
; t a ½0;T �; tA tj;

uð0Þ ¼ uðTÞ ¼ 0;

Du 0ðtjÞ ¼ Ij
�
uðtjÞ

�
; j ¼ 1; 2; . . . ;m;

8><
>: ð1Þ

where T > 0, p a C1ð½0;T �; ½0;þl½Þ, q a Llð½0;T �Þ with ess inf t A ½0;T � qðtÞb 0,

l a �0;þl½, m a ½0;þl½, f ; g : ½0;T � � R ! R are L1-Carathéodory functions,

0 ¼ t0 < t1 < t2 < � � � < tm < tmþ1 ¼ T , Du 0ðtjÞ ¼ u 0ðtþj Þ � u 0ðt�j Þ ¼ limt!tþ
j
u 0ðtÞ �

limt!t�
j
u 0ðtÞ, and Ij : R ! R are continuous for every j ¼ 1; 2; . . . ;m.

We are motivated by the paper of Bonanno et al. [4] in which, using two criti-

cal point theorems, the authors ensured the existence of at least three classical

solutions for the nonlinear Dirichlet boundary-value problem

�u 00ðtÞ þ aðtÞu 0ðtÞ þ bðtÞuðtÞ ¼ lg
�
t; uðtÞ

�
; t a ½0;T �; tA tj;

uð0Þ ¼ uðTÞ ¼ 0;

Du 0ðtjÞ ¼ u 0ðtþj Þ � u 0ðt�j Þ ¼ mIj
�
uðtjÞ

�
; j ¼ 1; 2; . . . ; n;

8><
>:

where l a �0;þl½, m a �0;þl½, g : ½0;T � � R ! R, a; b a Llð½0;T �Þ satisfy the

conditions ess inf t A ½0;T � aðtÞb 0, ess inf t A ½0;T � bðtÞb 0, 0 ¼ t0 < t1 < t2 < � � � <
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tn < tnþ1 ¼ T , Du 0ðtjÞ ¼ u 0ðtþj Þ � u 0ðt�j Þ ¼ limt!tþ
j
u 0ðtÞ � limt!t�

j
u 0ðtÞ, and

Ij : R ! R are continuous for every j ¼ 1; 2; . . . ; n, by choosing m in a suitable

way and for every l lying in a precise interval.

Our goal in this paper is to obtain some su‰cient conditions to guarantee that

problem (1) has infinitely many classical solutions. To this end, we require that

the primitive F of f satisfies a suitable oscillatory behavior either at infinity (for

obtaining unbounded solutions) or at the origin (for finding arbitrarily small solu-

tions), while G, the primitive of g, has an appropriate growth (see Theorems 4.1

and 5.4). Our analysis is mainly based on a general critical point theorem (see

Lemma 3.1 below) contained in [5]; see also [21].

We also refer the interested reader to the papers [1], [2], [6], [7], [8], [9], [12],

[13] and references therein, in which Ricceri’s variational principle and its variants

have been successfully used to obtain the existence of infinitely many solutions for

boundary value problems.

We end this preliminary section with the following theorem, which is a direct

consequence of our main result.

Theorem 2.1. Let h : R ! R be a nonnegative continuous and non-zero function.

Define HðtÞ ¼
Ð t

0 hðxÞ dx for all t a R and assume that

lim inf
x!þl

HðxÞ
x2

<
6ðe3T=4 � eT=4Þ
eT ðeT � 1Þ lim sup

x!þl

HðxÞ
x2

:

Then, for each

l a
eTð12þ T 2Þ

3Tðe3T=4 � eT=4Þ lim sup
x!þl

HðxÞ
x2

;
2

TðeT � 1Þ lim inf
x!þl

HðxÞ
x2

3
75

2
64;

for every arbitrary nonnegative continuous function p : R ! R, whose potential

PðtÞ :¼
Ð t

0 pðxÞ dx for all t a R, satisfies the condition

lim sup
x!þl

PðxÞ
x2

< þl;

and for every

m a 0;
2

TðeT � 1Þ lim sup
x!þl

PðxÞ
x2

1� l

TðeT � 1Þ lim inf
x!þl

HðxÞ
x2

2

0
B@

1
CA

2
64

2
64;
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the nonlinear problem

�u 00ðtÞ þ u 0ðtÞ þ uðtÞ ¼ lh
�
uðtÞ

�
þ mp

�
uðtÞ

�
; t a ½0;T �; tA tj;

uð0Þ ¼ uðTÞ ¼ 0;

Du 0ðtjÞ ¼ Ij
�
uðtjÞ

�
; j ¼ 1; 2; . . . ;m;

8><
>:

has a sequence of classical solutions which is unbounded in H 1
0 ð0;TÞ.

3. Auxiliary results

We shall prove our results applying the following smooth version of Theorem

2.1 of [5], which is a more precise version of Ricceri’s variational principle [21],

Theorem 2.5. We point out that Ricceri’s variational principle generalizes the

celebrated three critical point theorem of Pucci and Serrin [18], [19] and is an use-

ful result that gives alternatives for the multiplicity of critical points of certain

functions depending on a parameter.

Lemma 3.1. Let X be a reflexive real Banach space, let F;C : X ! R be two

Gâteaux di¤erentiable functionals such that F is sequentially weakly lower semi-

continuous, strongly continuous and coercive, and C is sequentially weakly upper

semicontinuous. For every r > infX F, let

jðrÞ :¼ inf
u AF�1ð�l; rÞ

�
sup

v AF�1ð�l; rÞ
CðvÞ

�
�CðuÞ

r�FðuÞ ;

g :¼ lim inf
r!þl

jðrÞ; and d :¼ lim inf
r!ðinfX FÞþ

jðrÞ:

Then the following properties hold:

(a) For every r > infX F and every l a
�
0; 1=jðrÞ

�
, the restriction of the functional

Il :¼ F� lC

to F�1ð�l; rÞ admits a global minimum, which is a critical point (local mini-

mum) of Il in X.

(b) If g < þl, then for each l a ð0; 1=gÞ, the following alternative holds: either

(b1) Il possesses a global minimum, or

(b2) there is a sequence fung of critical points (local minima) of Il such that

lim
n!þl

FðunÞ ¼ þl:
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(c) If d < þl, then for each l a ð0; 1=dÞ, the following alternative holds: either

(c1) there is a global minimum of F which is a local minimum of Il, or

(c2) there is a sequence fung of pairwise distinct critical points (local minima)

of Il that converges weakly to a global minimum of F.

In the Sobolev space H 1
0 ð0;TÞ, consider the inner product

ðu; vÞ :¼
ðT

0

pðtÞu 0ðtÞv 0ðtÞ dtþ
ðT

0

qðtÞuðtÞvðtÞ dt;

which induces the norm

kuk :¼
�ðT

0

pðtÞ
�
u 0ðtÞ

�2
dtþ

ðT

0

qðtÞ
�
uðtÞ

�2
dt
�1=2

:

Then the following Poincaré-type inequality holds:

hðT

0

u2ðtÞ dt
i1=2

a
T

p

hðT

0

ðu 0Þ2ðtÞ dt
i1=2

: ð2Þ

Proposition 3.2 ([4], Proposition 2.1). Let u a H 1
0 ð0;TÞ. Then

kukla
1

2

ffiffiffiffiffiffi
T

p�

s
kuk; ð3Þ

where p� :¼ mint A ½0;T � pðtÞ.

Let f ; g : ½0;T � � R ! R be two L1-Carathéodory functions. We recall that

f : ½0;T � � R ! R is an L1-Carathéodory function if

(a) the mapping t 7! f ðt; xÞ is measurable for every x a R;

(b) the mapping x 7! f ðt; xÞ is continuous for almost every t a ½0;T �;
(c) for every r > 0 there exists a function lr a L1ð½0;T �Þ such that

sup
jxjar

j f ðt; xÞja lrðtÞ

for almost every t a ½0;T �;

Corresponding to f , g we introduce the functions F ;G : ½0;T � � R ! R as

follows

F ðt; xÞ :¼
ð x

0

f ðt; xÞ dx; Gðt; xÞ :¼
ð x

0

gðt; xÞ dx;

for all ðt; xÞ a ½0;T � � R.
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By a classical solution of problem (1), we mean a function

u a fw a Cð½0;T � : wj½tj ; tjþ1� a H 2ð½tj; tjþ1�Þg

that satisfies the equation in (1) a.e. on ½0;T �nft1; . . . ; tmg, the limits u 0ðtþj Þ, u 0ðt�j Þ,
j ¼ 1; . . . ;m, exist, satisfy the impulsive conditions Du 0ðtjÞ ¼ Ij

�
uðtjÞ

�
and the

boundary condition uð0Þ ¼ uðTÞ ¼ 0.

We say that a function u a H 1
0 ð0;TÞ is a weak solution of problem (1), if u

satisfies

ðT

0

pðtÞu 0ðtÞv 0ðtÞ dtþ
ðT

0

qðtÞuðtÞvðtÞ dt� l

ðT

0

f
�
t; uðtÞ

�
vðtÞ dt

� m

ðT

0

g
�
t; uðtÞ

�
vðtÞ dtþ

Xm
j¼1

pðtjÞIj
�
uðtjÞ

�
vðtjÞ ¼ 0;

for any v a H 1
0 ð0;TÞ.

Lemma 3.3 ([4], Lemma 2.3). The function u a H 1
0 ð0;TÞ is a weak solution of

problem (1) if and only if u is a classical solution of (1).

Lemma 3.4 ([4], Lemma 3.1). Assume that

(A1) there exist constants a; b > 0 and s a ½0; 1½ such that

jIjðxÞja aþ bjxjs for all x a R; j ¼ 1; 2; . . . ;m:

Then, for any u a H 1
0 ð0;TÞ, we have

���Xm
j¼1

pðtjÞ
ð uðtjÞ

0

IjðxÞ dx
���a Xm

j¼1

pðtjÞ akukl þ b

sþ 1
kuksþ1

l

� �
: ð4Þ

Finally, put

~pp :¼
Xm
j¼1

pðtjÞ; k :¼ 6p�

12kpkl þ T 2kqkl
; Gc :¼

a

c
þ b

sþ 1

� �
cs�1;

where a, b, s are given by (A1) and c is a positive constant.

4. Existence of infinitely many solutions

In this section we establish the main abstract result of this paper. Let
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A :¼ lim inf
x!þl

Ð T

0 max
jxjax

F ðt; xÞ dt

x2
;

B :¼ lim sup
x!þl

Ð 3T=4

T=4 Fðt; xÞ dt
x2

;

and

l1 :¼
2p�

kTB
; l2 :¼

2p�

TA
:

With the above notations we establish the following multiplicity property.

Theorem 4.1. Let f : ½0;T � � R ! R be an L1-Carathéodory function. Assume

that (A1) holds and, moreover,

(A2) F ðt; xÞb 0 for all ðt; xÞ a
�	
0; T4



A
	
3T
4 ;T


�
� R;

(A3) A < kB.

Then, for every l a ðl1; l2Þ and for every arbitrary L1-Carathéodory function

g : ½0;T � � R ! R, whose potential Gðt; xÞ :¼
Ð x

0 gðx; xÞ dx for all ðt; xÞ a
½0;T � � R, is a nonnegative function satisfying the condition

Gl :¼ lim sup
x!þl

Ð T

0 max
jxjax

Gðt; xÞ dt

x2
< þl; ð5Þ

if we put

mG;l :¼
2p�

TGl
1� l

TA

2p�

� �
;

where mG;l ¼ þl when Gl ¼ 0, problem (1) has an unbounded sequence of classi-

cal solutions for every m a ½0; mG;lÞ in H 1
0 ð0;TÞ.

Proof. Our aim is to apply Lemma 3.1(b) to problem (1). To this end, fix l a
ðl1; l2Þ and g satisfying our assumptions. Since l < l2, we have

m
G;l

:¼ 2p�

TGl
1� l

TA

2p�

� �
> 0:

Now fix m a ð0; m
G;l

Þ and set

Jðt; xÞ :¼ F ðt; xÞ þ m

l
Gðt; xÞ

231Variational analysis for Dirichlet impulsive di¤erential equations



for all ðt; xÞ a ½0;T � � R. Take X ¼ H 1
0 ð0;TÞ and for each u a X , let the func-

tionals F;C : X ! R be defined by

FðuÞ :¼ 1

2
kuk2;

CðuÞ :¼
ðT

0

J
�
t; uðtÞ

�
dt� 1

l

Xm
j¼1

pðtjÞ
ð uðtjÞ

0

IjðxÞ dx;

and put

E
l;m

ðuÞ :¼ FðuÞ � lCðuÞ; u a X :

Using the property of f , g and the continuity of Ij, j ¼ 1; 2; . . . ;m, we obtain that

F;C a C1ðX ;RÞ and for any v a X , we have

F 0ðuÞðvÞ ¼
ðT

0

pðtÞu 0ðtÞv 0ðtÞ dtþ
ðT

0

qðtÞuðtÞvðtÞ dt

and

C 0ðuÞðvÞ ¼
ðT

0

f
�
t; uðtÞ

�
vðtÞ dtþ m

l

ðT

0

g
�
t; uðtÞ

�
vðtÞ dt� 1

l

Xm
j¼1

pðtjÞIj
�
uðtjÞ

�
vðtjÞ:

So, with standard arguments, we deduce that the critical points of the functional

E
l;m

are the weak solutions of problem (1) and so they are classical. We first ob-

serve that the functionals F and C satisfy the regularity assumptions of Lemma

3.1.

First of all, we show that l < 1=g. Hence, let fxng be a sequence of positive

numbers such that limn!þl xn ¼ þl and

lim
n!þl

Ð T

0 max
jxjaxn

F ðt; xÞ dx

x2n
¼ A:

Put rn :¼ 2p�

T
x2n for all n a N. Then, for all v a X with FðvÞ < rn, taking (3) into

account, one has kvkl < xn. Note that Fð0Þ ¼ Cð0Þ ¼ 0. Then, for all n a N,

jðrnÞ ¼ inf
u AF�1ð�l; rnÞ

�
sup

v AF�1ð�l; rnÞ
CðvÞ

�
�CðuÞ

rn �FðuÞ

a

sup
v AF�1ð�l; rnÞ

CðvÞ

rn
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a

Ð T

0 max
jxjaxn

Jðt; xÞ dtþ 1

l
~pp
�
axn þ b

sþ1 x
sþ1
n

�
2p�

T
x2n

a
T

2p�

Ð T

0 max
jxjaxn

F ðt; xÞ dt

x2n
þ m

l

Ð T

0 max
jxjaxn

Gðt; xÞ dt

x2n
þ 1

l
~ppGxn

2
64

3
75:

Since limn!þl Gxn ¼ 0, from the assumption (A3) and the condition (5), we

have

ga lim inf
n!þl

jðrnÞa
T

2p� Aþ m

l
Gl

� �
< þl: ð6Þ

The assumption m a ð0; m
G;l

Þ immediately yields

ga
T

2p� Aþ m

l
Gl

� �
<

T

2p� Aþ
1� T

2p� lA

l
:

Hence,

l ¼ 1
T
2p� Aþ

�
1� T

2p � lA
�
=l

<
1

g
:

Let l be fixed. We claim that the functional E
l;m

is unbounded from below.

Since

1

l
<

kT

2p� B;

there exist a sequence fhng of positive numbers and t > 0 such that limn!þl hn ¼
þl and

1

l
< t <

kT

2p�

Ð 3T=4

T=4 F ðt; hnÞ dt
h2n

ð7Þ

for each n a N large enough. For all n a N define wn a X by

wnðtÞ :¼

4hn
T

t; t a ½0;T=4�;
hn; t a �T=4; 3T=4�;
4hn
T

ðT � tÞ; t a �3T=4;T �:

8>>>><
>>>>:

ð8Þ
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For any fixed n a N, one has

FðwnÞa
ð12kpkl þ T 2kqklÞ

3T
h2n ¼ 2p�

kT
h2n : ð9Þ

On the other hand, by (A2) and since G is nonnegative, from the definition of C,

we infer

CðwnÞb
ð3T=4

T=4

Fðt; hnÞ dt�
1

l

~pp

k
h2nGðhn=

ffiffi
k

p
Þ: ð10Þ

By (7), (9) and (10), we see that

E
l;m

ðwnÞa
2p�

kT
h2n � l

ð3T=4

T=4

F ðt; hnÞ dtþ
~pp

k
h2nGðhn=

ffiffi
k

p
Þ

<
2p�

kT
h2nð1� ltÞ þ ~pp

k
h2nGðhn=

ffiffi
k

p
Þ ð11Þ

for every n a N large enough. Since s < 1, lt > 1 and limn!þl hn ¼ þl, we

have

lim
n!þl

E
l;m

ðwnÞ ¼ �l:

Then, the functional E
l;m

is unbounded from below, and it follows that E
l;m

has no

global minimum. Therefore, by Lemma 3.1(b), there exists a sequence fung of

critical points of E
l;m

such that

lim
n!þl

kunk ¼ þl;

and the conclusion is achieved. r

Remark 4.2. Under the conditions A ¼ 0 and B ¼ þl, from Theorem 4.1 we see

that for every l > 0 and for each m a
	
0; 2p�

TGl

�
, problem (1) admits a sequence

of classical solutions which is unbounded in X . Moreover, if Gl ¼ 0, the result

holds for every l > 0 and mb 0.

5. Further results and particular cases

In this section we establish several useful consequences and particular cases of

Theorem 4.1.
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Corollary 5.1. Let f : ½0;T � � R ! R be an L1-Carathéodory function. Suppose

that hypotheses (A1), (A2) are fulfilled and

A <
2p�

T
; B >

2p�

kT
:

Then, for every arbitrary L1-Carathéodory function g : ½0;T � � R ! R, whose po-

tential Gðt; xÞ :¼
Ð x

0 gðt; xÞ dx for all ðt; xÞ a ½0;T � � R, is a nonnegative function

satisfying the condition (5), if we put

mG;l :¼
2p�

TGl
1� TA

2p�

� �
;

where mG;l ¼ þl when Gl ¼ 0, the problem

�
�
pðtÞu 0ðtÞ

� 0 þ qðtÞuðtÞ ¼ f
�
t; uðtÞ

�
þ mg

�
t; uðtÞ

�
; t a ½0;T �; tA tj;

uð0Þ ¼ uðTÞ ¼ 0;

Du 0ðtjÞ ¼ Ij
�
uðtjÞ

�
; j ¼ 1; 2; . . . ;m;

8><
>:

has an unbounded sequence of classical solutions for every m a ½0; mG;lÞ in

H 1
0 ð0;TÞ.

The following result is a special case of Theorem 4.1.

Corollary 5.2. Let (A1) holds and let f : R ! R be a nonnegative continuous

function. Put F ðxÞ :¼
Ð x

0 f ðtÞ dt for all x a R and assume that

lim inf
x!þl

FðxÞ
x2

¼ 0; lim sup
x!þl

FðxÞ
x2

¼ þl:

Then, for every nonnegative continuous function g : R ! R satisfying the condition

gl :¼ lim
x!þl

Ð x

0 gðxÞ dx
x2

< þl;

and for every m a
	
0; 2p�

T 2gl

	
, the problem

�
�
pðtÞu 0ðtÞ

� 0 þ qðtÞuðtÞ ¼ f
�
uðtÞ

�
þ mg

�
uðtÞ

�
; t a ½0;T �; tA tj;

uð0Þ ¼ uðTÞ ¼ 0;

Du 0ðtjÞ ¼ Ij
�
uðtjÞ

�
; j ¼ 1; 2; . . . ;m;

8><
>:

admits infinitely many distinct pairwise classical solutions.
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Now, we point out a special situation of our main result when m ¼ 0 and the

nonlinear term has separated variables. To be precise, let k a L1ð½0;T �Þ such that

kðtÞb 0 a.e. t a ½0;T �, k2 0, and let l : R ! R be a nonnegative continuous func-

tion.

Consider the following nonlinear Dirichlet boundary-value problem

�u 00ðtÞ ¼ lkðtÞl
�
uðtÞ

�
; t a ½0;T �; tA tj;

uð0Þ ¼ uðTÞ ¼ 0;

Du 0ðtjÞ ¼ Ij
�
uðtjÞ

�
; j ¼ 1; 2; . . . ;m:

8><
>: ð12Þ

Put LðxÞ :¼
Ð x

0 lðxÞ dx for all x a R, and set kkk1 :¼
Ð T

0 kðtÞ dt and k0 :¼Ð 3T=4

T=4 kðtÞ dt.

Corollary 5.3. Let (A1) holds. Moreover, suppose that

lim inf
x!þl

LðxÞ
x2

<
k0

2kkk1
lim sup
x!þl

LðxÞ
x2

:

Then, for each

l a
4

ðTk0Þ lim sup
x!þl

LðxÞ
x2

;
2

ðTkkk1Þ lim inf
x!þl

LðxÞ
x2

3
75

2
64;

problem (12) has an unbounded sequence of classical solutions.

Now put

=c :¼
Xm
j¼1

min
jxjac

ð x

0

IjðxÞ dx; for all c > 0;

A 0 :¼ lim inf
x!0þ

Ð T

0 max
jxjax

F ðt; xÞ dt

x2
;

B 0 :¼ lim sup
x!0þ

Ð 3T=4

T=4 F ðt; xÞ dt
x2

;

and

l 0
1 :¼

2p�

kTB 0 ; l 0
2 :¼

2p�

TA 0 :

Using Lemma 3.1(c) and arguing as in the proof of Theorem 4.1, we can obtain

the following multiplicity result.
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Theorem 5.4. Let f : ½0;T � � R ! R be an L1-Carathéodory function and

IjðxÞa 0 for all x a R, j ¼ 1; . . . ;m. Moreover, assume that (A2) and

(A4) A 0 < kB 0.

are satisfied. Then, for every l a ðl 0
1; l

0
2Þ and for every arbitrary L1-Carathéodory

function g : ½0;T � � R ! R, whose potential Gðt; xÞ :¼
Ð x

0 gðx; xÞ dx for all ðt; xÞ a
½0;T � � R, is a nonnegative function satisfying the condition

G0 :¼ lim sup
x!0þ

Ð T

0 max
jxjax

Gðt; xÞ dt

x2
< þl; ð13Þ

if we put

m 0
G;l :¼

2p�

TG0
1� l

TA 0

2p�

� �
;

where m 0
G;l ¼ þl when G0 ¼ 0, for every m a ½0; m 0

G;lÞ problem (1) has a sequence

of classical solutions, which strongly converges to zero in H 1
0 ð0;TÞ.

Proof. Fix l a ðl 0
1; l

0
2Þ and let g be a function that satisfies the condition (13).

Since l < l 0
2, we obtain

m 0
G;l

:¼ 2p�

TG0
1� l

TA 0

2p�

� �
> 0:

Now fix m a ð0; m 0
G;l

Þ and set

Jðt; xÞ :¼ Fðt; xÞ þ m

l
Gðt; xÞ;

for all ðt; xÞ a ½0;T � � R. We take F, C and E
l;m

as in the proof of Theorem

4.1. Now, as it has been pointed out before, the functionals F and C satisfy the

regularity assumptions required in Lemma 3.1. As first step, we will prove that

l < 1=d. Then, let fxng be a sequence of positive numbers such that limn!þl xn
¼ 0 and

lim
n!þl

Ð T

0 max
jxjaxn

F ðt; xÞ dx

x2n
¼ A 0:

By the fact that infX F ¼ 0 and the definition of d, we have d ¼ lim inf r!0þ jðrÞ.
Put rn :¼ 2p�

T
x2n for all n a N. Then, for all v a X with FðvÞ < rn, taking (3) into
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account, one has kvkl < xn. Thus, for all n a N,

jðrnÞa
sup

v AF�1ð�l; rnÞ
CðvÞ

rn

a

Ð T

0 max
jxjaxn

Jðt; xÞ dt� 1

l
kpkl=xn

2p�

T
x2n

a
T

2p�

Ð T

0 max
jxjaxn

Fðt; xÞ dt

x2n
þ m

l

Ð T

0 max
jxjaxn

Gðt; xÞ dt

x2n
� 1

l
kpkl

=xn

x2n

2
64

3
75:

Since limn!þl
=xn

x2n
¼ 0, from the assumption (A4) and the condition (13), we have

da lim inf
n!þl

jðrnÞa
T

2p� A 0 þ m

l
G0

� �
< þl:

From m a ð0; m 0
G;l

Þ, the following inequalities hold

da
T

2p� A 0 þ m

l
G0

� �
<

T

2p� A
0 þ

1� T
2p� lA

0

l
:

Therefore

l ¼ 1
T
2p� A 0 þ

�
1� T

2p� lA 0
�
=l

<
1

d
:

Let l be fixed. We claim that the functional E
l;m

does not have a local minimum

at zero. Since

1

l
<

kT

2p� B
0;

there exists a sequence fhng of positive numbers and t > 0 such that limn!þl hn
¼ 0 and

1

l
< t <

kT

2p�

Ð 3T=4

T=4 F ðt; hnÞ dt
h2n

for each n a N large enough. For all n a N, let wn a X defined by (8) with the

above hn. Note that lt > 1. Then, since IjðxÞa 0 for all x a R, j ¼ 1; . . . ;m, we

obtain
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E
l;m

ðwnÞa
2p�

kT
h2n � l

ð3T=4

T=4

Fðt; hnÞ dtþ
Xm
j¼1

pðtjÞ
ðwnðtjÞ

0

IjðxÞ dx

<
2p�

kT
h2nð1� ltÞ < 0;

for every n a N large enough. Then, since

lim
n!þl

E
l;m

ðwnÞ ¼ E
l;m

ð0Þ ¼ 0;

we see that zero is not a local minimum of E
l;m

. This, together with the fact that

zero is the only global minimum of F, we deduce that the energy functional E
l;m

does not have a local minimum at the unique global minimum of F. Therefore,

by Lemma 3.1(c), there exists a sequence fung of critical points of E
l;m

which

converges weakly to zero. In view of the fact that the embedding H 1
0 ð0;TÞ ,!

C0ð½0;T �Þ is compact, we know that the critical points converge strongly to zero,

and the proof is complete. r

Remark 5.5. Applying Theorem 5.4, results similar to Corollaries 5.1, 5.2 and 5.3

can be obtained. We omit the discussions here.

Now, consider the nonlinear Dirichlet boundary value problem

�u 00ðtÞ þ aðtÞu 0ðtÞ þ bðtÞuðtÞ ¼ lh
�
t; uðtÞ

�
þ mp

�
t; uðtÞ

�
; t a ½0;T �; tA tj;

uð0Þ ¼ uðTÞ ¼ 0;

Du 0ðtjÞ ¼ Ij
�
uðtjÞ

�
; j ¼ 1; 2; . . . ;m;

8><
>: ð14Þ

where h; p : ½0;T � � R ! R are L1-Carathéodory functions, a; b a Llð½0;T �Þ sat-
isfy the conditions ess inf t A ½0;T � aðtÞb 0, ess inf t A ½0;T � bðtÞb 0, and Ij : R ! R are

continuous for every j ¼ 1; 2; . . . ;m.

It is easy to see that the solutions of problem (1) are solutions of (14) if

pðtÞ ¼ e�
Ð t

0
aðtÞ dt; qðtÞ ¼ bðtÞe�

Ð t

0
aðtÞ dt;

f ðt; uÞ ¼ hðt; uÞe�
Ð t

0
aðtÞ dt; gðt; uÞ ¼ pðt; uÞe�

Ð t

0
aðtÞ dt:

Let AðtÞ be a primitive of aðtÞ and put

Hðt; xÞ :¼
ð x

0

hðt; xÞ dx; Pðt; xÞ :¼
ð x

0

pðt; xÞ dx;

~kk :¼ 6e�AðTÞ

12þ T 2kbe�Akl
:

By Theorem 4.1, we obtain the following multiplicity property for problem (14).
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Theorem 5.6. Let h : ½0;T � � R ! R be an L1-Carathéodory function. Assume

that (A1) holds and, moreover,

(A5) Hðt; xÞb 0 for all ðt; xÞ a
�	
0; T4



A
	
3T
4 ;T


�
� R;

(A6) A 00 < ~kkB 00, where

A 00 :¼ lim inf
x!þl

Ð T

0 e�AðtÞ max
jxjax

Hðt; xÞ dt

x2
;

B 00 :¼ lim sup
x!þl

Ð 3T=4

T=4 e�AðtÞHðt; xÞ dt
x2

;

Then, for every

l a
2

~kkTekak1B 00
;

2

Tekak1A 00

� �

and for every arbitrary L1-Carathéodory function p : ½0;T � � R ! R, whose poten-

tial Pðt; xÞ :¼
Ð x

0 pðx; xÞ dx for all ðt; xÞ a ½0;T � � R, is a nonnegative function sat-

isfying the condition

Pl :¼ lim sup
x!þl

Ð T

0 e�AðtÞ max
jxjax

Pðt; xÞ dt

x2
< þl;

if we put

mP;l :¼
2

Tekak1Pl
1� l

Tekak1A 00

2

� �
;

where mP;l ¼ þl when Pl ¼ 0, problem (14) has an unbounded sequence of classi-

cal solutions for every m a ½0; mP;lÞ in H 1
0 ð0;TÞ.

Remark 5.7. Theorem 2.1 follows immediately from Theorem 5.6, setting aðtÞ ¼
bðtÞC 1 for all t a R.
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