Portugal. Math. (N.S.) Portugaliae Mathematica
Vol. 70, Fasc. 3, 2013, 225-242 © European Mathematical Society
DOI 10.4171/PM/1932

Variational analysis for Dirichlet impulsive differential
equations with oscillatory nonlinearity

Ghasem A. Afrouzi, Armin Hadjian and Vicentiu D. Radulescu*

(Communicated by Hugo Beirdo da Veiga)

Abstract. By using variational methods and critical point theory, we establish the existence
of infinitely many solutions for second-order impulsive differential equations with Dirichlet
boundary conditions, depending on two real parameters.
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1. Introduction

Many dynamical systems describing models in applied sciences have an impul-
sive dynamical behaviour due to abrupt changes at certain instants during the
evolution process. The rigorous mathematical description of these phenomena
leads to impulsive differential equations; they characterize various processes of
the real world described by models that are subject to sudden changes in their
states. Essentially, impulsive differential equations correspond to a smooth evolu-
tion that may change instantaneously or even abruptly, as happens in various ap-
plications that describe mechanical or natural phenomena. These changes corre-
spond to impulses in the smooth system, such as for example in the model of a
mechanical clock. Impulsive differential equations also study models in physics,
population dynamics, ecology, industrial robotics, biotechnology, economics, op-
timal control, chaos theory. Associated with this development, a theory of impul-
sive differential equations has been given extensive attention. For an introduc-
tion of the basic theory of impulsive differential equations in R” we refer to [3],
[14], and [22]. Some classical tools have been used to study such problems in
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the literature, such as the coincidence degree theory of Mawhin, the method of
upper and lower solutions with the monotone iterative technique, and some fixed
point theorems in cones (see [10], [15], [20]). Recently, the existence and multi-
plicity of solutions for impulsive boundary value problems by using variational
methods and critical point theory has been considered in [16], [23], [24], [25],
[26].

For a general second order differential equation 7 (¢, u,u’) = 0, one can con-
sider impulses in the position u and the velocity u’. However, as argued in [16], it
is natural to consider in the motion of spacecraft only instantaneous impulses
depending on the position that result in jump discontinuities, but with no change
in position. The impulses only on the velocity occurs also in impulsive mechanics,
see [17].

The purpose of this paper is to show the variational structure underlying of a
class of nonlinear impulsive differential equations. We take as a model a Dirichlet
problem with impulses. For an excellent overview of the most significant mathe-
matical methods employed in this paper we refer to Ciarlet [11].

2. Statement of the problem

The aim of this paper is to study the following nonlinear Dirichlet boundary-value
problem

—(p(u' (1)) + q(oyu(t) = Af (t,u(t)) + ug(t,u(r)), t€[0,T], t#1,
(0) =u(T) =0, (1)
u'(t; (u(y)), j=12,....m,

<

>

T
=1

<

where 7 >0, pe C'([0,7],[0,+(), g € L*([0,T]) with essinf,c[o 71 ¢(1) >0,
€0, +0[, ne [0,—1—00[, f,9:[0,T] x R — R are L'-Carathéodory functions,
O=tg<ti <ta<- - <ty<tma=T, A'(t;y)=u'(t]) —u'(t]) = hmH,+ u'(t) —
lim, - u '(t), and [; : R — R are continuous for every j =1,2,...,m.

We are motlvated by the paper of Bonanno et al. [4] in wh1ch, using two criti-
cal point theorems, the authors ensured the existence of at least three classical

solutions for the nonlinear Dirichlet boundary-value problem

—u"(t) + a(t)' (1) + b(t)u(t) = Ag(t,u(r)), te[0,T], 1+,

where 4 €10, +0f, £ €]0,+0], g:[0,7T] xR — R, a,b e L*([0, T]) satisfy the
conditions essinf,cpo 7y a(t) >0, essinf,cjo71b(1) =20, 0=t <t <t <--- <



Variational analysis for Dirichlet impulsive differential equations 227

th <ty =T, AU()=u'(t])—u'(t]) = lim,ﬂ,lf u'(t) — lim,,- u'(f), and
I; : R — R are continuous for every j=1,2,...,n, by choosing x in a suitable
way and for every A lying in a precise interval.

Our goal in this paper is to obtain some sufficient conditions to guarantee that
problem (1) has infinitely many classical solutions. To this end, we require that
the primitive F of f satisfies a suitable oscillatory behavior either at infinity (for
obtaining unbounded solutions) or at the origin (for finding arbitrarily small solu-
tions), while G, the primitive of g, has an appropriate growth (see Theorems 4.1
and 5.4). Our analysis is mainly based on a general critical point theorem (see
Lemma 3.1 below) contained in [5]; see also [21].

We also refer the interested reader to the papers [1], [2], [6], [7], [8], [9], [12],
[13] and references therein, in which Ricceri’s variational principle and its variants
have been successfully used to obtain the existence of infinitely many solutions for
boundary value problems.

We end this preliminary section with the following theorem, which is a direct
consequence of our main result.

Theorem 2.1. Let h: R — R be a nonnegative continuous and non-zero function.
Define H(t) = foth(é) dé& for all t € R and assume that

H 6 3r/4 _ ,T/4 H

lim inf (f ) < (e ¢ lim sup (f )

M2 ST oD P

Then, for each
eT(12+T?) 2
re g’ g |
3T(e37/4 — eT/4) limsup =2 T(eT — 1) liminf 53
f%«FOO S é%{»oc S

for every arbitrary nonnegative continuous function p: R — R, whose potential
P(1) := f(f p(&E)dE for all t € R, satisfies the condition

P
lim sup@ < 40,
&=+
and for every
T(e — 1) liminf 22
0 2 ) st
M E ) T . P(&) P ’
T(eT —-1) lim sup =3~

E—+00
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the nonlinear problem
u"(1) +u' (1) +
H(O) =u(T) =0,
( ) (u( )) j:1a2a'~‘vm,

~

u(t) = h(u(t)) + pp(u(1)), te€[0,T], t #,

has a sequence of classical solutions which is unbounded in H} (0, T).

3. Auxiliary results

We shall prove our results applying the following smooth version of Theorem
2.1 of [5], which is a more precise version of Ricceri’s variational principle [21],
Theorem 2.5. We point out that Ricceri’s variational principle generalizes the
celebrated three critical point theorem of Pucci and Serrin [18], [19] and is an use-
ful result that gives alternatives for the multiplicity of critical points of certain
functions depending on a parameter.

Lemma 3.1. Let X be a reflexive real Banach space, let ®,%¥ : X — R be two
Gateaux differentiable functionals such that ® is sequentially weakly lower semi-
continuous, strongly continuous and coercive, and Y is sequentially weakly upper
semicontinuous. For every r > inf y @, let

( sup W) - P
Pe= inf S ,
(ﬂ( ) ue® '(—co,r) r— (D(u)

y = hmmf(p( ), and ¢:= liminf ¢(r).

r—+oo r—(infy ®)*

Then the following properties hold:
(a) For every r > infy ® and every 2 € (0,1/¢(r)), the restriction of the functional

I)V =0 - Y
to @~ (—c0,r) admits a global minimum, which is a critical point (local mini-

mum) of I in X.

(b) If y < 40, then for each 1 € (0,1/y), the following alternative holds: either
(by) I, possesses a global minimum, or
(by) there is a sequence {u,} of critical points (local minima) of I, such that

lim ®(u,) = 4o0.

n—-+o0o
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(c) If 6 < 40, then for each /. € (0,1/9), the following alternative holds: either
(c1) there is a global minimum of ® which is a local minimum of I, or
(c3) there is a sequence {uy,} of pairwise distinct critical points (local minima)
of I that converges weakly to a global minimum of ®.

In the Sobolev space H{ (0, T'), consider the inner product
T

T
(u,0) ;:J p(t)u’(l)v’(l)dl+J g(Oyu(t)oli) di,

0 0

which induces the norm

it = (]| o) as |

0

T

q(0) (u(1)) dt)l/ ’

Then the following Poincaré-type inequality holds:

[JTuz(t) dt}l/z I UT(u/)z(t) dz}l/z. )

0 T L)o

Proposition 3.2 ([4], Proposition 2.1). Let u € H}(0,T). Then
ull,, < 2\/ || I, 3)

Let f,9:[0,7] x R — R be two L'-Carathéodory functions. We recall that
f:10,T] x R — Ris an L'-Carathéodory function if

where p* :=min,c o, 7] p(1).

(a) the mapping 7 +— f(¢,x) is measurable for every x € R;
(b) the mapping x — f(¢,x) is continuous for almost every ¢ € [0, T;

(c) for every p > 0 there exists a function /, € L'([0, T]) such that

sup |/ (2,x)| < 1,(1)

x| <p
for almost every ¢ € [0, T;

Corresponding to f, g we introduce the functions F,G:[0,7] x R — R as
follows

X

F(t,x) := J:f(t, &) dé, G(t,x) = JO g(t,&) dé,

for all (¢,x) € [0, T] x R.
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By a classical solution of problem (1), we mean a function

2
ue{we C([0,T]:wly, , € H([tj111])}

that satisfies the equation in (1) a.e. on [0, T]\{#1, ..., £, }, the limits u'(¢]), u'(1;"),
j=1,...,m, exist, satisfy the impulsive conditions Au'(;) = I;(u(t;)) and the
boundary condition u(0) = u(T) = 0.

We say that a function u € H/}(0,T) is a weak solution of problem (1), if u
satisfies

T T

g(Dyu(t)o(e) di — AJ £ (tou0))ole) de

0

JTp(t)u’(l)v'(t) dt+J

0 0

- ﬂJO g(tu(0)v(@)de+ Y (i) (u(y))o(t) =0,
J=1
for any v € HJ (0, T).

Lemma 3.3 ([4], Lemma 2.3). The function u e H}(0,T) is a weak solution of
problem (1) if and only if u is a classical solution of (1).

Lemma 3.4 ([4], Lemma 3.1). Assume that
(A1) there exist constants o, § > 0 and o € [0, 1| such that

l(x)| <o+ px|”  forallxeR, j=1,2,....m.
Then, for any u € H} (0, T), we have

\il o) |

0

u(t;) m B

s ax < 3ol (sl + L) @)
=

Finally, put

*

. i 6p o B 4
pi= p(t), k= , l"c:———|—( )c” ,
2.7 201, + 7204, e

where o, f, o are given by (Al) and c¢ is a positive constant.

4. Existence of infinitely many solutions

In this section we establish the main abstract result of this paper. Let
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A = liminf — = ,
-4 f
3T/4
N AL
B :=limsup 5 ,
E—+0 é
and
YT kTE P T4

With the above notations we establish the following multiplicity property.

Theorem 4.1. Let f:[0,T] x R — R be an L'-Carathéodory function. Assume
that (A1) holds and, moreover,

(A2) F(1,&) =0 for all (1,¢) € ([0,T] U L, T]) x R:
(A3) 4 < kB.

Then, for every i€ (A1,%) and for every arbitrary L'-Carathéodory function
g:[0,T] x R— R, whose potential G(t,x):= [y g(x,&)ds for all (1,x)e€
[0, T] x R, is a nonnegative function satisfying the condition

Gy = limsup——— <+, (5)
Eotoo ¢

if we put

where ug ; = +o0 when G, =0, problem (1) has an unbounded sequence of classi-
cal solutions for every p € [0, ug ;) in Hj (0, T).

Proof. Our aim is to apply Lemma 3.1(b) to problem (1). To this end, fix Je
(41, 42) and ¢ satisfying our assumptions. Since A < 4, we have

)

Now fix 7 € (0, 4, ;) and set

J(t,x) = F(t, %) + % G(1,x)
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for all (7,x) € [0, 7] x R. Take X = H}(0,T) and for each u € X, let the func-
tionals ®, ¥ : X — R be defined by

1
() 1= |l
T 1" u(y)
Y (u) := Jo J(t,u(1)) dr — ij(t,) Jo Ii(x) dx,
=1
and put
E: (u):=®®u)—¥u), uelX.

N

Using the property of f, g and the continuity of I;, j = 1,2,...,m, we obtain that
®,¥ e C'(X,R) and for any v € X, we have

@' (u)(v) = j PO (00 (1) di +j g(u(0)o() dr
0 0
and
, T ﬁ T 1 m
V) = | 0o [ oleau0)owd =33 po) )t
=1

So, with standard arguments, we deduce that the critical points of the functional
E; ; are the weak solutions of problem (1) and so they are classical. We first ob-
serve that the functionals ® and ¥ satisfy the regularity assumptions of Lemma
3.1.

First of all, we show that 2 < 1/y. Hence, let {&,} be a sequence of positive
numbers such that lim,,_., ,, &, = +o0 and

fOT max F(¢,x) dx
N

lim 5 = A.
n—+oo f
n

Put r, := 2%6,2, for all n € N. Then, for all v € X with ®(v) < r,, taking (3) into
account, one has ||v|| , < &,. Note that ®(0) = ¥(0) = 0. Then, foralln e N,

( sup  Y(v) P

(}’ ) - inf ve® ' (—ow0,r,)
PiTn ue(D’l(—:o,r") 'n — CI)(L{)
sup  Y(v)

ved ! (—w,r,)

rn



Variational analysis for Dirichlet impulsive differential equations 233

Ji max J(r.x)di+1p(ag, + A

x| <&,
) =
T jOT max F(t,x)dt p fo max G(t,x)dt ]
< 5 55 +j 55 +Epl"5n .

Since lim,_. ;. I'e, =0, from the assumption (A3) and the condition (5), we
have

n—-+oo - 2

y < liminf ¢(r,) < T (A +§G3C> < +o0. (6)

The assumption i € (0, ;) immediately yields

T 7 T 1554
< A+=G, | < A+—"FF.
/ 2p*< 7 “) 7

Hence,

o
|

oA+ (

Let A be fixed. We claim that the functional EZ.;; 1S unbounded from below.
Since

LY
i 2p*

there exist a sequence {7, } of positive numbers and = > 0 such that lim,_,, ,, 7, =
+o0 and

1 KT [274 F(t,n,)dt
St (7)
y 2p* A

for each n € N large enough. For all n € N define w, € X by

4
;" ‘ te0,7/4],

wa(t) =4 1, t €T /4,3T/4), (8)

4
%(T—z), t€)37/4,T).
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For any fixed n € N, one has

(2Pl + T?llglle) o _ 20"
< = .
(I)(Wn) — 3T 77;1 kT ]7}1 (9>
On the other hand, by (A2) and since G is nonnegative, from the definition of ¥,
we infer
3T/4 15,
o) = || Fm) = DT, (10)

By (7), (9) and (10), we see that

2 3T/ p
Ez’ -(Wn) < 7]2 - AJ F(t7 nn) dt + %’7’3F(ﬂn/‘//;)

kT T/4
e
kT;/]n(l _/17’-) k’lnrn/\/_ (11)

for every n € N large enough. Since ¢ < 1, At > 1 and lim, ., 7, = +0, we
have

lim E; (w,,) = —00.
n——+o0 ’

Then, the functional E;; i is unbounded from below, and it follows that E; i has no
global minimum. Therefore, by Lemma 3.1(b), there exists a sequence {u,} of
critical points of EM? such that

lim ||u,|| = +o0,
n—+00

and the conclusion is achieved. ]

Remark 4.2. Under the conditions 4 = 0 and B = + o0, from Theorem 4.1 we see
that for every 4 > 0 and for each u e [0,%), problem (1) admits a sequence
of classical solutions which is unbounded in X. Moreover, if G, = 0, the result
holds for every 4 > 0 and x> 0.

5. Further results and particular cases

In this section we establish several useful consequences and particular cases of
Theorem 4.1.
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Corollary 5.1. Let f:]0,T] x R — R be an L'-Carathéodory function. Suppose
that hypotheses (A1), (A2) are fulfilled and

Then, for every arbitrary L'-Carathéodory function g : [0, T] x R — R, whose po-
tential G(t,x) := [y g(t,&)d& for all (t,x) € [0, T] x R, is a nonnegative function
satisfying the condition (5), if we put

(T4
:uG,A T TGCIJ 2p* )

where pig ; = 400 when G, = 0, the problem

—(p(Ou' (1)) + q(u(t) = f(t,u(0)) +ug(t,u(?)), tel0,T], t#1,
(

has an unbounded sequence of classical solutions for every pe[0,ug ;) in
H(0,T).

The following result is a special case of Theorem 4.1.

Corollary 5.2. Let (Al) holds and let f: R — R be a nonnegative continuous

function. Put F(& fo t) dt for all £ € R and assume that
lim inf (f) =0, F(f) =+
Eotoo ¢ et €

Then, for every nonnegative continuous function g : R — R satisfying the condition

and for every u € [0 [ the problem

~ (P () + g(0u(s) = £ (u(t)) + pg(u(0). 1€ 0. 7], 1%,
—u(T

admits infinitely many distinct pairwise classical solutions.
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Now, we point out a special situation of our main result when g = 0 and the
nonlinear term has separated variables. To be precise, let k € L'([0, T]) such that
k(t)>0a.e.te[0,T], k#0,and let/: R — R be a nonnegative continuous func-
tion.

Consider the following nonlinear Dirichlet boundary-value problem

"(1) = 2k(DI(u(t)), te€(0,T], t#1,

(): ( ):0 (12)
(t) = (()) j=12,....m

Put L(é) f [(x)dx for all £eR, and set |[k|, := jo t)dt and ko :=

%T/4
1)

Corollary 5.3. Let (A1) holds. Moreover, suppose that

lim 1nfL(§) < ko lim supL(f) .
¢otoo € 2lklly v €
Then, for each
, 4 2
+e L@ |
(Tko) hmsup (T||k|| ) S
E—+o0 S G

problem (12) has an unbounded sequence of classical solutions.

Now put

and

2p ;2P
kTB’ "2 TA

;s,i =

Using Lemma 3.1(c) and arguing as in the proof of Theorem 4.1, we can obtain
the following multiplicity result.
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Theorem 5.4. Let f:[0,T] x R— R be an L'-Carathéodory function and
Ii(x) <0 forallx e R, j=1,...,m. Moreover, assume that (A2) and

(A4) A' < kB'.

are satisfied. Then, for every J. € (11, 45) and for every arbitrary L'-Carathéodory
function g : [0, T] x R — R, whose potential G(t,x) := [; g(x,&)d¢& for all (1,x) €
[0, T] x R, is a nonnegative function satisfying the condition

IoT max G(t, x) dt
<&

Gy := lim sup

< +o0, 13
— & (13)

if we put

2p* TA'
A .
:uG,). T TG() <1 i 2p*>’

where pg; ; = +o0 when Gy = 0, for every w € [0, ug; ;) problem (1) has a sequence
of classical solutions, which strongly converges to zero in H} (0, T).

Proof. Fix /. € (Z{,4;) and let g be a function that satisfies the condition (13).
Since 4 < 43, we obtain

2p* =TA'
/ . _
“6.7 7 TG, (1 g 2p*> =0

Now fix i € (O,,u/G -) and set

Y

J(t,x) := F(t,x) + E G(t, x),

for all (z,x) € [0,7] x R. We take @, ¥ and E; ; as in the proof of Theorem
4.1. Now, as it has been pointed out before, the functionals ® and ¥ satisfy the
regularity assumptions required in Lemma 3.1. As first step, we will prove that
J. < 1/6. Then, let {&,} be a sequence of positive numbers such that lim, .. ., &,
=0 and

foT max F(t, x) dx
. x| <&, ’
lim 5 =4A4".
n—+o é

n

By the fact that infy ® = 0 and the definition of 9, we have § = liminf,_o+ ¢(r).
Put r, := 2%55 for all n € N. Then, for all v € X with ®(v) < r,, taking (3) into
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account, one has ||v||, < &,. Thus, for alln e N,

sup  Y(v)
ved ! (—w0,n,)
p(rn) < r
lo max J(t,x)dt 1| p|l.. S,
< *52
mathxdt max G(¢,x)dt
T Jo < (8,) ujo <&, (1.) gn
<L R : Il |
Zp él‘l i él‘l

Since lim,_4 Cc,, = 0, from the assumption (A4) and the condition (13), we have

n

5 < liminf p(r,) < ~ <A’ +/)—fG0> < +o0.

n—-+o0 - 2p

From f € (0, u’G Z)’ the following inequalities hold

T i T JA
o< (A'+’;‘Go><A’+fi
2p* A 2p* A
Therefore
- 1 1
A= — - < —.

s A+ (1 =5l 2a) /70

Let / be fixed. We claim that the functional EZ.,; does not have a local minimum
at zero. Since

1 T
:<k B,
A 2pt

there exists a sequence {#,} of positive numbers and 7 > 0 such that lim, ., 7,
=0 and

4
1 kT [774" F(t,n,)de
D LA
A 2p* ’7}1

for each n e N large enough. For all n e N, let w, € X defined by (8) with the
above 7,,. Note that Az > 1. Then, since /;(x) <O forallxe R, j=1,...,m, we
obtain
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E 2" o e ar S "
. <L -7 : :
i) < =2 [ FGm) r+;p<z,>jo () d

p* 5 7
<47 n,(1—21) <0,

for every n € N large enough. Then, since

nl—i>I-Pw E;ﬁ(wn) = E/_lﬂ(o) = 0,
we see that zero is not a local minimum of E; .. This, together with the fact that
zero is the only global minimum of ®, we deduce that the energy functional E;
does not have a local minimum at the unique global minimum of ®. Therefore,
by Lemma 3.1(c), there exists a sequence {u,} of critical points of E; which
converges weakly to zero. In view of the fact that the embedding HOl (0, T) —
C°([0, T)) is compact, we know that the critical points converge strongly to zero,

and the proof is complete. O

Remark 5.5. Applying Theorem 5.4, results similar to Corollaries 5.1, 5.2 and 5.3
can be obtained. We omit the discussions here.

Now, consider the nonlinear Dirichlet boundary value problem

—u"(t) 4+ a(t)u' (1) + b(t)u(t) = Ah(t,u(t)) + up(t,u(1)), te[0,T], t #1;,
u(0) =u(T) =0, (14)

where 4, p : [0, T] x R — R are L'-Carathéodory functions, a,h € L* ([0, T]) sat-
isfy the conditions essinf,c(o 77 a(t) > 0, essinf,cpo,716(f) = 0, and I; : R — R are
continuous for every j = 1,2,...,m.

It is easy to see that the solutions of problem (1) are solutions of (14) if

p(t) = e_J-(;a(r)dr, q(t) = b(l‘)e_féa(f)df,
1 u) — h([, u)e—fé a(r) dr7 9(17 u) = p(l, u)e—j(’)a(r)dr.

Let A(¢) be a primitive of a(¢) and put

¢ ¢
H(t,¢) = L h(t,x)dx, P(t,&):= Jo p(t, x) dx,

~ 6@ 7A(T)

k= .
12+ T2 ||be=4]|

By Theorem 4.1, we obtain the following multiplicity property for problem (14).
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Theorem 5.6. Let h:[0,T] x R — R be an L'-Carathéodory function. Assume
that (A1) holds and, moreover,

(A5) H(1,&) >0 for all (t,¢) € ([0,2] U 3F, T]) x R;

(A6) A" < kB", where

J e max H(1, x) dt
" P x| <<
A" := liminf 5 ,
{—+o é
s Jiate () dr
B" :=limsup 5 ,
=+ ¢

Then, for every

2 2
LE |= ,
kTelal, gn’ Tellalli 47

and for every arbitrary L'-Carathéodory function p : [0, T] x R — R, whose poten-
tial P(t,x) := [ p(x,&)d¢& for all (1,x) € [0, T] x R, is a nonnegative function sat-
isfying the condition

e 40 max P(1, x) dt

[x]<&

P, :=limsup

5 < +0o0,
Eotoo ¢

if we put

2 )TeHaHlA”
e = Tl p (1 - ~?>7

where pp ; = +0o0 when P, =0, problem (14) has an unbounded sequence of classi-
cal solutions for every € [0, up ;) in Hg (0, T).

Remark 5.7. Theorem 2.1 follows immediately from Theorem 5.6, setting a(z) =
b(t)=1forallreR.
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