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Abstract. In this paper we prove some upper bounds for the symmetric tensor rank of a
symmetric tensor (or a homogeneous polynomial) in terms of integers associated to any
zero-dimensional scheme evincing the scheme rank of the homogeneous polynomial.
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1. Introduction

Fix an algebraically closed base field K such that charðKÞ ¼ 0. For all positive

integers m, d let K½x0; . . . ; xm�d denote the K-vector space of all homogenous poly-

nomials with degree d in the variables x0; . . . ; xm. We have dimðK½x0; . . . ; xm�dÞ
¼ mþd

m

� �
. For each f a K½x0; . . . ; xm�dnf0g its symmetric tensor rank srð f Þ is the

minimal integer s > 0 such that f ¼
Ps

i¼1 l
d
i for some li a K½x0; . . . ; xm�1 ([8],

[3], [5], [11], [12], [7]). The definition of symmetric tensor rank of a homogeneous

polynomial may be translated into the following language.

Set r :¼ mþd
m

� �
� 1. Let nd : Pm ! Pr denote the Veronese embedding of Pm

induced by K½x0; . . . ; xm�d . For any P a Pr the symmetric tensor rank srm;dðPÞ
of P is the minimal cardinality of some AHPm such that P a 3ndðAÞ4, where
3 4 denote the linear span. Each f a K½x0; . . . ; xm�dnf0g corresponds to a unique

P a Pr and we have srð f Þ ¼ srm;dðPÞ. For a fixed f (or, equivalently, a fixed P)

it is important to give upper bounds for its symmetric tensor rank in terms of m, d

and invariants associated to P ([12], Corollary 5.2, [1]). A very interesting and

useful invariant is the scheme rank (called scheme length in [10], p. 135), i.e. the

minimal degree zm;dðPÞ of a zero-dimensional scheme ZHPm such that P a
3ndðZÞ4 ([4], [2], [1]). The case m ¼ 1 is completely known by a theorem of Syl-

vester ([6], [11], [12], Theorem 4.1, [3]). Hence from now on we assume mb 2.
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For each P a Pm and any integer k > 0 let kP be the zero-dimensional sub-

scheme of Pm with ðIPÞk as its ideal sheaf. We have dimðkPÞ ¼ 0, ðkPÞred ¼
fPg and degðkPÞ ¼ mþk�1

m

� �
. Every zero-dimensional scheme evincing the scheme

rank zm;dðPÞ of some P a Pr is Gorenstein ([4], Lemma 2.4). If mb 2 and kA 1,

then kP is not Gorenstein. However, a connected Gorenstein scheme Zi may

be contained in some wiPi and if Z ¼ Z1 t � � � t Zs with Zi JwiPi, then ZJ
w1P1 t � � � t wsPs. Let ZHPm be a connected zero-dimensional scheme. The

width wðZÞ of Z is the minimal integer k > 0 such that ZJ kP, where

fPg :¼ Zred . Let ZHPm any zero-dimensional scheme. Call Z1; . . . ;Zs the con-

nected components of Z. The width wðZÞ of Z is the integer maxfwðZ1Þ; . . . ;
wðZsÞg; this integer is not a good estimate of the complexity of Z, unless we also

prescribe the integer s :¼aðZredÞ. Now we fix an order Z1; . . . ;Zs of the con-

nected components of Z.

Definition 1.1. The width-vector wðZÞ of Z is the s-ple
�
wðZ1Þ; . . . ;wðZsÞ

�
.

If s > 1 the width-vector of Z is well-defined only if we fix an ordering of the

connected components of Z. We may alway find an ordering, say Zi1 ; . . . ;Zis , of

the connected components of Z such that wðZijÞbwðZihÞ for all ia h. For this

ordering the width-vector of Z, say ðw1; . . . ;wsÞ, has non-decreasing entries, and

the s-ple ðw1; . . . ;wsÞ is uniquely determined by Z.

Write fPig :¼ ðZiÞred and set W :¼ 6s

i¼1 wiPi, where wi :¼ wðZiÞ. W is the

minimal fat-point scheme containing Z. If P a 3ndðZÞ4, then P a 3ndðW Þ4. In

this paper we prove the following upper bound for srm;dðPÞ in terms of m, d and

the width-vector of Z.

Theorem 1.2. Fix P a Pr, r :¼ dþm
m

� �
� 1, and any zero-dimensional scheme

ZHPm such that P a 3ndðZÞ4. Let wðZÞ ¼ ðw1; . . . ;wsÞ be the width-vector of

Z with, say, w1b � � �bws. Let x be the maximal integera s such that wxb 2.

Assume w1a d þ 1. Then

srm;dðPÞa s� 2xþ
Xx

i¼1

ðd � wi þ 1Þ mþ wi � 2

m� 1

� �
þ
Xx

i¼1

mþ wi � 1

m

� �
:

As an easy corollary we state the following result.

Corollary 1.3. Fix P a Pr, r :¼ dþm
m

� �
� 1, and any zero-dimensional scheme

ZHPm, say with width-vector wðZÞ ¼ ðw1; . . . ;wsÞ, such that P a 3ndðZÞ4. Then

srðPÞa
Ps

i¼1 d
mþwi�2
m�1

� �
.

If mb 2 and w is not too small, then the integer degðwPÞ is huge with respect

to the degree of many Gorenstein subschemes of wP. Hence, when Theorem 1.2
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may be applied it often gives upper bounds far better that the one, srm;dðPÞa�
zm;dðPÞ � 1

�
d þ 2� zm;dðPÞ, conjectured in [1], Conjecture 2.

In the case m ¼ 2 we may prove the following stronger result.

Theorem 1.4. Take m ¼ 2 and fix P a Pr, r :¼ dþ2
2

� �
� 1, and any zero-

dimensional scheme ZHP2 such that P a 3ndðZÞ4. Let wðZÞ ¼ ðw1; . . . ;wsÞ be

the width-vector of Z with, say, w1b � � �bws. Let x be the maximal integera s

such that wxb 2. Set y :¼ w1 þ � � � þ wx � xþ 1 and assume ya d. Then

sr2;dðPÞa
d þ 2

2

� �
� d � yþ 2

2

� �
� 1þ s� x:

2. The proofs

Recall that r :¼ mþd
m

� �
� 1. For any reduced projective set Y HPn and any

P a 3Y4 let rY ðPÞ be the minimal cardinality of a finite set SHY such that

P a 3S4. If Y JW HPn, then rW ðPÞa rY ðPÞ. The definition of symmetric ten-

sor rank gives srm;dðPÞ ¼ rnd ðPmÞðPÞ for all P a Pr. For all schemes EHW JPn

let IE;W be the ideal sheaf of E in W . For any t a Z let Hi
�
W ;IE;W ðtÞ

�
be the

i-th cohomology group of the sheaf IE;W ðtÞ. Set hi
�
W ;IE;W ðtÞ

�
:¼

dimK Hi
�
W ;IE;W ðtÞ

�
. If W ¼ Pn we often write IE , H

i
�
IEðtÞ

�
and hi

�
IEðtÞ

�
instead of IE;W , Hi

�
W ;IE;W ðtÞ

�
and hi

�
W ;IE;W ðtÞ

�
.

We recall that the one-dimensional case of [12], Proposition 5.1, holds for any

connected curve, not just for integral ones (see [5], Lemma 8.1). Hence we will use

it in the following form.

Lemma 2.1. Let Y HPn be a reduced and connected curve spanning Pn. Then

rY ðPÞa n for all P a Pn.

Lemma 2.2. Fix integers dbw� 1b 0 and mb 2. Let HHPm be a hyper-

plane. Fix O a PmnH and a set EHH such that aðEÞ ¼ mþw�2
m�1

� �
and

h0
�
H;IE;Hðw� 1Þ

�
¼ 0 (e.g., take as E a general subset of H with cardinality

mþw�2
m�1

� �
). Let DHPm be the union of all lines spanned by P and a point of E.

Then dim
�
3ndðDÞ4

�
¼ �1þ ðd � wþ 1Þ mþw�2

m�1

� �
þ mþw�1

m

� �
.

Proof. The cone D is the one considered in [9], Proposition 4. The cone D is re-

duced and connected. Let paðDÞ be the arithmetic genus of D, i.e. paðDÞ ¼
h1ðD;ODÞ. We have deg

�
ndðDÞ

�
¼ d �aðEÞ ¼ d mþw�2

m�1

� �
. Since dimðDÞ ¼ 1, the

exact sequence

0 ! IDðtÞ ! OPmðtÞ ! ODðtÞ ! 0
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gives h1
�
D;ODðtÞ

�
¼ h2

�
IDðtÞ

�
for all tb 0. Since aðEÞ ¼ mþw�2

m�1

� �
and

h0
�
H;IEðw� 1Þ

�
¼ 0, we have h1

�
H;IE;Hðw� 1Þ

�
¼ 0. Castelnuovo-

Mumford’s lemma gives h1
�
H;IE;HðtÞ

�
¼ 0 for all tbw. Since E is zero-

dimensional, we have h2
�
H;IE;HðtÞ

�
¼ 0 for all tb 0. Since HBD ¼ E, for

each integer t we have an exact sequence

0 ! IDðt� 1Þ ! IDðtÞ ! IE;HðtÞ ! 0 ð1Þ

Since D is a cone with E as a basis, the cone with vertex O of any hypersurface

of H containing E is a hypersurface of Pm containing D. Hence for every t a Z

the restriction map H 0
�
IDðtÞ

�
! H 0

�
H;IE;HðtÞ

�
is surjective. From (1) we

get that h1
�
IDðt� 1Þ

�
a h1

�
IDðtÞ

�
for all t a Z. Since h1

�
IDðtÞ

�
¼ 0 if tg 0,

we get h1
�
IDðtÞ

�
¼ 0 for all t a Z. From (1) we get h2

�
IDðt� 1Þ

�
a h2

�
IDðtÞ

�
for all tbw� 1. Since h2

�
IDðtÞ

�
¼ 0 if tg 0, we get h2

�
IDðw� 2Þ

�
¼ 0.

Since h1
�
D;ODðw� 2Þ

�
¼ 0, we have h1

�
D;ODðw� 1Þ

�
¼ 0. Since dbw� 2,

we get h1
�
D;ODðdÞ

�
¼ 0. Hence h0

�
D;ODðdÞ

�
¼ d mþw�2

m�1

� �
þ 1� paðDÞ and

h0
�
D;ODðw� 1Þ

�
¼ ðw� 1Þ mþw�2

m�1

� �
þ 1� paðDÞ (Riemann-Roch). Since

h0
�
IDðw� 1Þ

�
¼ h1

�
IDðw� 1Þ

�
¼ 0, we have h0

�
D;ODðw� 1Þ

�
¼ mþw�1

m

� �
.

Hence 1� paðDÞ ¼ mþw�1
m

� �
� ðw� 1Þ mþw�2

m�1

� �
. Hence h0

�
D;ODðdÞ

�
¼

ðd � wþ 1Þ mþw�2
m�1

� �
þ mþw�1

m

� �
. Since h1

�
IDðdÞ

�
¼ 0, we get dim

�
3ndðDÞ4

�
¼

�1þ ðd � wþ 1Þ mþw�2
m�1

� �
þ mþw�1

m

� �
. r

Lemma 2.3. Fix O a Pm and an integer w > 0. Let DHPm be a reduced union of

finitely many lines, each of them containing O. Fix a hyperplane HHPm such that

O B H and set E :¼ HBD. We have h0
�
H;IE;Hðw� 1Þ

�
¼ 0 if and only if

wOHD.

Proof. The algebraic set D is the scheme-theoretic intersection of cones with

vertex containing O. For any such cone T we have HUT and T contains D if

and only if EJT BH. Hence h0
�
H;IE;Hðw� 1Þ

�
¼ 0 if and only if every cone

with vertex O containing D has multiplicity at least w at O, i.e. if and only if

wOHD. r

Lemma 2.4. Fix O a P2 and an integer w > 0. Let HHP2 be a line such that

O B H. Let DHP2 be a union of finitely many lines through O. Set t :¼ degðDÞ
and assume ta d. Then sr2;dðPÞa dþ2

2

� �
� d�tþ2

2

� �
� 1 for any P a 3ndðDÞ4.

Proof. Since h1
�
OP2ðd � tÞ

�
¼ 0, we have dim

�
3ndðDÞ4

�
¼ dþ2

2

� �
� d�tþ2

2

� �
� 1.

Since D is connected, it is su‰cient to apply Lemma 2.1. r

Proof of Theorem 1.2. First assume s ¼ x. Write Z ¼ Z1 t � � � t Zs with each Zi

connected. Set fPig :¼ ðZiÞred , Wi :¼ wiPi and W :¼
Fs

i¼1 Wi. Since ZJW ,
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we have P a 3ndðW Þ4. Hence there is Oi a 3Wi4 such that P a 3fO1; . . . ;Osg4.
Hence it is su‰cient to prove that srðOiÞa ðd � wi þ 1Þ mþwi�2

m�1

� �
þ mþwi�1

m

� �
� 1

for all i. Apply Lemma 2.2 to the integer w :¼ wi to get a union, Di, of lines

through Pi. Lemma 2.4 gives wiPi HDi. Then apply Lemma 2.1 to the connected

curve Di. Notice that this construction works even if Di BDj contains a line for

some iA j, because we apply Lemmas 2.1 and 2.2 separately to each Pi.

Now assume s > x. Hence Zi ¼ fPig for all i > x. Set A :¼ fPxþ1; . . . ;Psg
and Z 0 :¼ Z1 t � � � t Zx. Since Z ¼ Z 0 t A and P a 3ndðZÞ4, there is O a
3ndðZ 0Þ4 such that P a 3ndðAÞA fOg4. The case s ¼ x just proved gives the exis-

tence of a set BHPm such that aðBÞa�xþ
Px

i¼1ðd � wi þ 1Þ mþwi�2
m�1

� �
þPx

i¼1
mþwi�1

m

� �
and O a 3ndðAÞ4. Since aðAÞ ¼ s� x and P a 3ndðAABÞ4, we

have srm;dðPÞa s� 2xþ
Px

i¼1ðd � wi þ 1Þ mþwi�2
m�1

� �
þ
Px

i¼1
mþwi�1

m

� �
. r

Proof of Corollary 1.4. Take D as in Lemma 2.2. Since D is a reduced and con-

nected curve, we have h0
�
D;ODðdÞ

�
a 1þ deg

�
ODðdÞ

�
¼ 1þ d mþw�2

m�1

� �
. Apply

this weaker inequality instead of Lemma 2.2 to the curves Di constructed in the

proof of Theorem 1.2. r

Proof of Theorem 1.4. As in the second part of the proof of Theorem 1.2 we re-

duce to the case x ¼ s, i.e. to the case in which wi b 2 for all i. Hence from now

on we assume wi b 2 for all i. Set fP1; . . . ;Psg :¼ Zred . In the case s ¼ 1 we take

a union of w1 distinct lines through P1. Then we apply Lemmas 2.2 and 2.1.

Hence we may assume sb 2. Write Z ¼ Z1 t � � � t Zs with Zi connected

and wðZiÞ ¼ w1. Set fPig :¼ ðZiÞred , Wi :¼ wiPi and W :¼ W1 t � � � tWs. Since

ZJW , we have P a 3ndðW Þ4. Let D1 HP2 be any union of w1 lines through

P1 with the only restriction that D1I 3fP1;P2g4 and either each line of D1 con-

tains at least one point of fP2; . . . ;Psg or fP2; . . . ;PsgHD1. Fix an integer i a
f2; . . . ; sg and suppose to have defined the reduced union Dj , 1a ja i � 1, of fi-

nitely many lines through Pj (we allow the case Dj ¼ j for some j) so that Dj BDh

contains no line if jA h. For each h a fi; . . . ; sg let ehb 0 be the number of lines

of D1A � � �ADi�1 containing Pi. If ei bwi, then we set Di ¼ j. Now assume

0a ei < wi. We will take as Di a union of wi � ei distinct lines though Pi

with the following further restrictions. Set E :¼ fPj a fPiþ1; . . . ;Psg : wjPj U
D1A � � �ADi�1 and 3fPi;Pjg4UD1A � � �ADi�1g. If E ¼ j (this is always

the case if i ¼ s), then we take as Di any wi � ei lines through Pi, but di¤erent

from the lines in D1A � � �ADi�1. Now assume EA j. We take 3fPi;Pjg4 as

the first line of Di. If wi � ei ¼ 1, then we set Di :¼ 3fPi;Pjg4. Notice that the

line 3fPi;Pjg4 may contain some Ph with j < ha s. Now assume wi � ei b 2.

Set E1 :¼ fPh a fPjþ1; . . . ;Psg : eh < wh and 3fPi;Phg4 B D1A � � �ADi�1A
3fPi;Pjg4g. If E1 ¼ j, then take as Di the union of 3fPi;Pjg4 and any

wi � ei � 1 lines through Pi di¤erent from the lines of D1A � � �ADi�1A
3fPi;Pjg4. Now assume E1A j and let k be the minimal integer such that
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Pk a E1. We take 3fPi;Pjg4A3fPi;Pkg4JDi, with equality if wi � ei ¼ 2.

Now assume wi � ei b 3. Set E2 :¼ fPh a fPkþ1; . . . ;Psg : eh < wh and

3fPi;Phg4 B D1A � � �ADi�1A3fPi;Pjg4A3fPi;Pkg4g. If E2 ¼ j, then we take

as Di the union of 3fPi;Pjg4A3fPi;Pkg4 and wi � ei � 2 lines though Pi and dif-

ferent from the lines of D1A � � �ADi�1A 3fPi;Pjg4A3fPi;Pkg4. If E2A j, then
we work as above. And so on (defining if necessary E3; . . .). We point out that at

each step i � 1 ) i we make this construction, so that for all j a f2; . . . ; sg the

curve Dj satisfies all the properties obtained in the construction of Di starting

with any given D1A � � �ADi�1.

Claim. For each i a f1; . . . ; sg we have degðD1A � � �ADiÞaw1 þ � � � þ wi �
i þ 1.

Proof of the Claim. We have degðD1Þ ¼ w1. It is easy to check that degðD2Þ ¼
w2 � 1. Hence we may assume that ib 3, that degðD1A � � �ADi�2Þaw1 þ � � � þ
wi�2 � i þ 3 and that degðD1A � � �ADi�1Þaw1 þ � � � þ wi�1 � i þ 2. The last

inequality shows that the Claim is true for the integer i if degðDiÞawi � 1. If

Di�1A j, then degðDiÞawi � 1, because by construction either D1A � � �ADi�2

contains a line through Pi or Di�1 contains the line 3fPi�1;Pig4. Now assume

Di�1 ¼ j. Since degðDiÞawi, we have degðD1A � � �ADiÞaw1 þ � � � þ wi�2 þ
wi � i þ 3. Since wi�1b 2, the Claim is proved even in this case.

By the Claim there is a union D of taw1 þ � � � þ ws � sþ 1 ¼ y lines such that

W HD. Since ZJD we have P a 3ndðDÞ4. Lemma 2.4 gives dim
�
3ndðDÞ4

�
¼

dþ2
2

� �
� d�tþ2

2

� �
� 1a dþ2

2

� �
� d�yþ2

2

� �
� 1. Apply Lemma 2.1 to the reduced and

connected curve D. r

Example 2.5. Fix integers sb 2, wi b 2, 1a ia s, and s collinear points Pi a P2,

1a ia s. Let L :¼ 3fP1;P2g4 be the line containing each Pi. Let t be the mini-

mal degree of a finite union DHP2 of distinct lines such that wiPi HD for all i. It

is easy to check that t ¼ w1 þ � � � þ ws � sþ 1 and that any D with that degree is

the union of L and, for each i a f1; . . . ; sg, wi � 1 lines through Pi andAL.

3. A mild generalization

For any connected zero-dimensional scheme ZHPm set eðZÞ :¼ dimð3Z4Þ, i.e.
let eðZÞ be the dimension of the minimal linear subspace of Pm spanned by Z. If

Z has s connected components and we fix an ordering Z1; . . . ;Zs of them, set

eðZÞ :¼
�
eðZ1Þ; . . . ; eðZsÞ

�
(the e-vector of Z). When eðZÞA ðm; . . . ;mÞ we may

improve Theorem 1.2 and prove the following result.

Theorem 3.1. Fix P a Pr, r :¼ dþm
m

� �
� 1, and any zero-dimensional scheme

ZHPm, say with width-vector wðZÞ ¼ ðw1; . . . ;wsÞ and e-vector eðZÞ ¼ ðe1; . . . ;
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esÞ, such that P a 3ndðZÞ4 with, say, ei b 2 if and only if 1a ia y and ei ¼ 1 if and

only if yþ 1a iax. Then

srðPÞa s� x� yþ dðx� yÞ þ
Xy

i¼1

ðd �wi þ 1Þ ei þ wi � 2

ei � 1

� �
þ
Xy

i¼1

ei þwi � 1

ei

� �
:

Proof. Use the proof of Theorem 1.2 with the following modifications. First as-

sume ei b 2. The union of lines Di through Pi is contained in an ei-dimensional

linear subspace Mi of P
m. Apply Lemma 2.2 to Mi instead of Pm. In the case

ei ¼ 1 just use that rDi
ðOiÞa d by Lemma 2.1. r
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