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Multiple points, scheme rank and symmetric tensor rank

Edoardo Ballico*

Abstract. In this paper we prove some upper bounds for the symmetric tensor rank of a
symmetric tensor (or a homogeneous polynomial) in terms of integers associated to any
zero-dimensional scheme evincing the scheme rank of the homogeneous polynomial.
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1. Introduction

Fix an algebraically closed base field KK such that char(lK) = 0. For all positive
integers m, d let [K[xo, . .., x,,], denote the [-vector space of all homogenous poly-
nomials with degree d in the variables xo, ..., x,. We have dim(K[xo,...,x,],)
= (™4). For each f € K[Xo, ..., Xu],\{0} its symmetric tensor rank sr(f) is the
minimal integer s > 0 such that f = >7 /¢ for some ¢ € K[xo, ..., xu]; (8],
[3], [5], [11], [12], [7]). The definition of symmetric tensor rank of a homogeneous
polynomial may be translated into the following language.

Set r:= (’"*‘1) — 1. Letvg: P"™ — P" denote the Veronese embedding of P™

m

induced by K[xo,...,x,],. For any P € P’ the symmetric tensor rank sty 4(P)
of P is the minimal cardinality of some 4 < P™ such that P € {vs(A)), where
{ > denote the linear span. Each f € K[xo, ..., xu],\{0} corresponds to a unique

P € P" and we have sr(f) = st,, 4(P). For a fixed f (or, equivalently, a fixed P)
it is important to give upper bounds for its symmetric tensor rank in terms of m, d
and invariants associated to P ([12], Corollary 5.2, [1]). A very interesting and
useful invariant is the scheme rank (called scheme length in [10], p. 135), i.e. the
minimal degree z, 4(P) of a zero-dimensional scheme Z — P™ such that P e
va(Z)) ([4], [2], [1]). The case m =1 is completely known by a theorem of Syl-
vester ([6], [11], [12], Theorem 4.1, [3]). Hence from now on we assume m > 2.
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For each P € P™ and any integer k > 0 let kP be the zero-dimensional sub-
scheme of P" with (.p)" as its ideal sheaf. We have dim(kP) = 0, (kP),q =
{P} and deg(kP) = (’"*)ﬁ‘l). Every zero-dimensional scheme evincing the scheme
rank z,, 4(P) of some P € P" is Gorenstein ([4], Lemma 2.4). If m > 2 and k # 1,
then kP is not Gorenstein. However, a connected Gorenstein scheme Z; may
be contained in some w;P; and if Z=Z,U---UZ; with Z; = w;P;, then Z <
wiPiU---UwgP,. Let Z < P" be a connected zero-dimensional scheme. The
width w(Z) of Z is the minimal integer k£ >0 such that Z < kP, where
{P} := Z,oy. Let Z = P™ any zero-dimensional scheme. Call Zj,..., Z; the con-
nected components of Z. The width w(Z) of Z is the integer max{w(Z,),...,
w(Zy)}; this integer is not a good estimate of the complexity of Z, unless we also
prescribe the integer s := #(Z,.y). Now we fix an order Z),...,Z, of the con-
nected components of Z.

Definition 1.1. The width-vector w(Z) of Z is the s-ple (w(Z),...,w(Zy)).

If s > 1 the width-vector of Z is well-defined only if we fix an ordering of the
connected components of Z. We may alway find an ordering, say Z;,,...,Z;, of
the connected components of Z such that w(Z;) > w(Z;,) for all i <h. For this
ordering the width-vector of Z, say (wy,...,V ) has non-decreasing entries, and
the s-ple (wy, ..., ws) is uniquely determined by Z.

Write {P;} := (Z)),,4 and set W := (). w;P;, where w; :== w(Z;). W is the
minimal fat-point scheme containing Z. If P € {v;(Z)), then P € {vy(W)). In
this paper we prove the following upper bound for sr,, 4(P) in terms of m, d and
the width-vector of Z.

Theorem 1.2. Fix PeP’", r:= (d:;’”) — 1, and any zero-dimensional scheme
Z < P" such that P € {vy(Z)). Let w(Z)= (wi,...,ws) be the width-vector of
Z with, say, wy > --- > ws. Let x be the maximal integer < s such that wy > 2.
Assume wy <d + 1. Then

Sty a(P) <s—2x+z w,—i—l(m+W' ) Z(nﬂ—w,—l)
T

As an easy corollary we state the following result.

Corollary 1.3. Fix Pe P, r:= (")~ 1, and any zero-dimensional scheme
Z <= P, say with width-vector w(Z) = (wi,...,ws), such that P € {vq(Z)>. Then
r(P) < 30, d (")),

If m > 2 and w is not too small, then the integer deg(wP) is huge with respect
to the degree of many Gorenstein subschemes of wP. Hence, when Theorem 1.2
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may be applied it often gives upper bounds far better that the one, sr,, 4(P) <
(zmd(P) - l)d + 2 — z,, 4(P), conjectured in [1], Conjecture 2.
In the case m = 2 we may prove the following stronger result.

Theorem 1.4. Take m =2 and fix Pe P’ r:= (d'{z) — 1, and any zero-
dimensional scheme Z < P? such that P € {vy(Z)>. Let w(Z) = (wy,...,ws) be
the width-vector of Z with, say, wi > --- > w,. Let x be the maximal integer < s
such that w, > 2. Set 0 :=wi +---+wy —x+ 1 and assume 0 < d. Then

sty 4(P) < <d;—2> - (d_§+2> —14+s5s—x

2. The proofs

Recall that r:= ("!¢) — 1. For any reduced projective set ¥ = P" and any
P e {Y) let ry(P) be the minimal cardinality of a finite set S = ¥ such that
PeS). If Y = W < P”, then ry(P) < ry(P). The definition of symmetric ten-
sor rank gives st,, 4(P) = r,,pm)(P) for all P € P". For all schemes E = W < P"
let #z i be the ideal sheaf of E in W. For any t € Z let H' (W, 9g w(r)) be the
i-th cohomology group of the sheaf Jgw(f). Set h'(W,J¢ w(t)) :=
dimy H'(W, I w(1t)). If W =P" we often write #g, H'(J£()) and h'(IE(1))
instead of S w, H' (W, I, w(t)) and hi(W, Jg w(t)).

We recall that the one-dimensional case of [12], Proposition 5.1, holds for any
connected curve, not just for integral ones (see [5], Lemma 8.1). Hence we will use
it in the following form.

Lemma 2.1. Let Y = P" be a reduced and connected curve spanning P". Then
ry(P) < n forall P e P".

Lemma 2.2. Fix integers d >w—1>0 and m>2. Let H < P"™ be a hyper-
plane.  Fix OeP"\H and a set E < H such that #(E)= ("1"7?) and
h° (H,JE,H(W — 1)) =0 (e.g., take as E a general subset of H with cardinality
(’";f;z)). Let D = P be the union of all lines spanned by P and a point of E.

Then d1m(<vd(D)>) =—1+ (d —w+ 1)(m+w—2) + (m-&-w—l).

m—1 m

Proof. The cone D is the one considered in [9], Proposition 4. The cone D is re-
duced and connected. Let p,(D) be the arithmetic genus of D, ie. p,(D) =
h'(D, Up). We have deg(vy(D)) = d - #(E) =d(""?). Since dim(D) = 1, the
exact sequence

0— Ip(t) — Opn(t) — Op(t) — 0
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gives h'(D,Op(1)) = h*(Ip(t)) for all t>0. Since #(E)=("!",?) and
W (H,Jg(w—1)) =0, we have h'(H, I (w—1))=0. Castelnuovo-
Mumford’s lemma gives h'(H,.7g y(t)) =0 for all t>w. Since E is zero-
dimensional, we have h?(H, 7¢ (1)) =0 for all £>0. Since H D = E, for

each integer 7 we have an exact sequence
O—pr(lfl) pr(t) HfEJ-[(l) — 0 (1)

Since D is a cone with E as a basis, the cone with vertex O of any hypersurface
of H containing E is a hypersurface of P containing D. Hence for every t € Z
the restriction map H(7p(1)) — H(H, Jg u(t)) is surjective. From (1) we
get that h' (Sp(t— 1)) < h'(Ip(r)) for all te Z. Since h'(Ip(t)) =0 if 1> 0,
we get h'(Ip(1)) =0 for all 1€ Z. From (1) we get h?(Ip(t — 1)) < h*(Ip(1))
for all t>w—1. Since h*(Ip(t)) =0 if 10, we get h*(Ip(w—2)) =0.
Since h'(D,Op(w —2)) =0, we have h'(D,0p(w—1)) =0. Since d >w -2,
we get h'(D,0p(d)) =0. Hence h°(D,0p(d)) =d(" ") +1— p,D) and

m—1

(D, p(w—1)) = (w—1)(""?) +1—p,(D) (Riemann-Roch). Since
O (Ip(w—1)) =h'(Fp(w—1)) =0, we have h°(D,0p(w—1))=("""r1.
Hence 1 — p,(D)= (""" —(w—1)("2). Hence h°(D,Up(d)) =
d—w+ 1" + ("), Since h'(Ip(d)) =0, we get dim((vg(D))) =
—(d=w+ D7) + (") O

Lemma 2.3. Fix O € P" and an integer w > 0. Let D = P™ be a reduced union of
finitely many lines, each of them containing O. Fix a hyperplane H — P™ such that
O¢H and set E:=HnD. We have h®(H, Jg y(w—1)) =0 if and only if
wO < D.

Proof. The algebraic set D is the scheme-theoretic intersection of cones with
vertex containing O. For any such cone 7" we have H £ T and T contains D if
and only if E < T n H. Hence h°(H, %g y(w — 1)) = 0 if and only if every cone
with vertex O containing D has multiplicity at least w at O, i.e. if and only if
wO < D. O

Lemma 2.4. Fix O € P? and an integer w > 0. Let H < P? be a line such that
O ¢ H. Let D < P? be a union of finitely many lines through O. Set t := deg(D)
and assume t <d. Then sty 4(P) < (13%) — (“7572) — 1 for any P € {vy(D)).

Proof. Since h'(Cp>(d — 1)) =0, we have dim({vs(D)>) = (%) — (*1%) - 1.
Since D is connected, it is sufficient to apply Lemma 2.1. O

Proof of Theorem 1.2. First assume s = x. Write Z = Z; Ll --- U Z, with each Z;
connected. Set {P;} := (Z;) W;:=wP; and W:=||_, W;. Since Z < W,

red>
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we have P € {v;(W))». Hence there is O; € {(W;) such that P € {{Oy,..., Os}>.
Hence it is sufficient to prove that sr(0;) < (d —w; + 1) ("™ 2) + (") — 1
for all i. Apply Lemma 2.2 to the integer w := w; to get a union, D;, of lines
through P;. Lemma 2.4 gives w;P; = D;. Then apply Lemma 2.1 to the connected
curve D;. Notice that this construction works even if D; n D; contains a line for
some i # j, because we apply Lemmas 2.1 and 2.2 separately to each P;.

Now assume s > x. Hence Z; = {P;} for all i > x. Set 4 :={Py,1,...,Ps}
and Z':=ZU---UZ,. Since Z=Z'UA and P e {yv(Z)), there is O €
va(Z')) such that P € {vy(A4) v {O0}>. The case s = x just proved gives the exis-
tence of a set B< P” such that #(B) < —x+ > (d—w;i+ 1)("" ) +
P (””;‘;"71) and O € {vy(A4)). Since #(A) =s—x and P € {vy(A U B)), we
have st ¢(P) < s —2x + S0 (d —w; + 1) ("2 4 3000, (e, O

m—1 m

Proof of Corollary 1.4. Take D as in Lemma 2.2. Since D is a reduced and con-
nected curve, we have h°(D, Op(d)) < 1+ deg(Op(d)) =1+d(""?). Apply
this weaker inequality instead of Lemma 2.2 to the curves D; constructed in the

proof of Theorem 1.2. O

Proof of Theorem 1.4. As in the second part of the proof of Theorem 1.2 we re-
duce to the case x = s, 1.e. to the case in which w; > 2 for all i. Hence from now
on we assume w; > 2 for all i. Set {Py,..., P} := Z,.q. In the case s = 1 we take
a union of wy distinct lines through P;. Then we apply Lemmas 2.2 and 2.1.
Hence we may assume s > 2. Write Z = Z; U---UZ, with Z; connected
and w(Z;) = wy. Set {P;} :=(Z;),py» Wi:=w;P;iand W := W, U--- U W,. Since
Z = W, we have P e (vy(W)>. Let D; = P? be any union of w; lines through
Py with the only restriction that D; > {{P;, P»}) and either each line of D, con-
tains at least one point of {P,,..., P} or {Ps,...,P;} = D. Fix an integer i €
{2,...,s} and suppose to have defined the reduced union D;, 1 < j <i—1, of fi-
nitely many lines through P; (we allow the case D; = () for some j) so that D; n Dy,
contains no line if j # h. Foreach h e {i,...,s} let ¢, > 0 be the number of lines
of Dy u---uUD;_| containing P;. If e; > w;, then we set D; = . Now assume
0<e <w. We will take as D; a union of w; —¢; distinct lines though P;
with the following further restrictions. Set E :={P; € {Pii1,...,Ps} :wiP; &
Dyv---uD;y and {Pi,P;}> £ Divu---uD;}. If E=0 (this is always
the case if i =), then we take as D; any w; — ¢; lines through P;, but different
from the lines in Dy u--- U D;_;. Now assume E # 0. We take ({P;, P;}) as
the first line of D;. If w; —e; = 1, then we set D; := {{P;, P;} ). Notice that the
line {{P;, P;}) may contain some P, with j <h <s. Now assume w; —¢; > 2.
Set Ey:={P,e{Pj1,....,P}:es <wy, and <{P,Pp}y¢Diu---UD;_juU
APy, Pi}y}y. If Ey =0, then take as D; the union of {{P; P;}) and any
w; —e; — 1 lines through P; different from the lines of Dyu---UD; U
{Pi,P;}>. Now assume E; # 0 and let k be the minimal integer such that
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Py e E\. We take {{P;, P;}> U {{P;, Pr}) < D;, with equality if w; —e; = 2.
Now assume w; —¢; > 3. Set E,:={P,e€{Piy1,...,Ps}:ep<w, and
<{P,’,Ph}> ¢ Diu---uD; U <{P,,Pj}> U <{P,,Pk}>} If E, = @, then we take
as D; the union of {{P;, P;}> U {{P;, Pr}) and w; — e; — 2 lines though P; and dif-
ferent from the lines of Dy U --- U D;y U {P;, P;}> O {{P;, Pc}). If E; # 0, then
we work as above. And so on (defining if necessary E3,...). We point out that at
each step 7/ — 1 = i we make this construction, so that for all j e {2,...,s} the
curve D; satisfies all the properties obtained in the construction of D; starting
with any given Dy U --- U D;_.

Claim. For each ie{l,...,s} we have deg(Dyu---uUD;) <wj+---+w —
i+ 1.

Proof of the Claim. We have deg(D;) = wy. It is easy to check that deg(D,) =
wy — 1. Hence we may assume that i > 3, that deg(Dy - - UD;5) <wj +---+
wi_y —i+3 and that deg(Dyu---uD;_ ) <w; +---+w;_—i+2. The last
inequality shows that the Claim is true for the integer i if deg(D;) <w; — 1. If
D;_| # 0, then deg(D;) <w; — 1, because by construction either Dy U--- U D;
contains a line through P; or D; | contains the line {{P;_;, P;}>. Now assume
D;y =0. Since deg(D;) <w;, we have deg(DyuU---UD;) <wj+- - +wio+
w; — i+ 3. Since w;_; > 2, the Claim is proved even in this case.

By the Claim there is a union D of t < w; + - -+ + wy — s+ 1 = 0 lines such that
W = D. Since Z = D we have P € {v;(D)>. Lemma 2.4 gives dim({v4(D))) =
(43 = (5 =1 < (5% — (“9™%) — 1. Apply Lemma 2.1 to the reduced and

2 2 2 2
connected curve D. O

Example 2.5. Fix integers s > 2, w; > 2,1 <i <, and s collinear points P; € P2,
Il <i<s. Let L:=<{{Py,Py}) be the line containing each P;. Let 7 be the mini-
mal degree of a finite union D = P? of distinct lines such that w;P; = D for all i. It
is easy to check that t = w; 4+ --- 4+ wy — s+ 1 and that any D with that degree is
the union of L and, for each i € {1,...,s}, w; — 1 lines through P; and # L.

3. A mild generalization

For any connected zero-dimensional scheme Z = P set ¢(Z) := dim({Z)), i.e.
let ¢(Z) be the dimension of the minimal linear subspace of P spanned by Z. If
Z has s connected components and we fix an ordering Zi,...,Z; of them, set
&(Z) == (e(Zy),...,e(Z,)) (the e-vector of Z). When &(Z) # (m,...,m) we may
improve Theorem 1.2 and prove the following result.

Theorem 3.1. Fix Pe P/, r:= (djn’”) — 1, and any zero-dimensional scheme
Z < P™, say with width-vector w(Z) = (wy,...,ws) and e-vector ¢(Z) = (ey, ...,
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es), such that P € {vy(Z)) with, say, e; > 2 if and only if | <i < y ande; =1 if and
onlyif y+1<i<x. Then

y . L 4 . -
Sr(P)Ss—x—y+d(x—y)+2(d—wl—|—1)<el—:ﬁll 2)—}—2(6[—’—“}1 1)

pa -1 €

Proof. Use the proof of Theorem 1.2 with the following modifications. First as-
sume ¢; > 2. The union of lines D; through P; is contained in an e;-dimensional
linear subspace M; of P™. Apply Lemma 2.2 to M; instead of P™. In the case
e; = 1 just use that rp,(0;) < d by Lemma 2.1. OJ
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