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Relations between minimal usco and minimal cusco maps

L’ubica Holá and Dušan Holý*

Abstract. In our paper we give a characterization of (set-valued) maps which are minimal
usco and minimal cusco simultaneously. Let X be a topological space and Y be a Banach
space. We show that there is a bijection between the space MUðX ;YÞ of minimal usco
maps from X to Y and the space MCðX ;YÞ of minimal cusco maps from X to Y , and
we study this bijection with respect to various topologies on underlying spaces. Let X be
a Baire space and Y be a Banach space. Then

�
MUðX ;YÞ; tU

�
and

�
MCðX ;YÞ; tU

�
are

homeomorphic, where tU is the topology of uniform convergence.
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1. Introduction

The acronym usco (cusco) stands for a (convex) upper semicontinuous non-empty

compact-valued set-valued map. Such set-valued maps are interesting because

they describe common features of maximal monotone operators, of the convex

subdi¤erential and of Clarke generalized gradient. Examination of cuscos and

uscos leads to serious insights into the underlying topological properties of the

convex subdi¤erential and the Clarke generalized gradient. (It is known that the

Clarke subdi¤erential of a locally Lipschitz function and, in particular, the sub-

di¤erential of a convex continuous functions are weak* cuscos.) (see [BZ1])

In our paper we are interested in minimal usco and minimal cusco maps. We

give a characterization of such maps which are minimal usco and minimal cusco

simultaneously. We also show that there is a bijection between the space of min-

imal usco maps and the space of minimal cusco maps and we study this bijection

under the topologies of pointwise convergence, uniform convergence on com-

pacta, uniform convergence and under the Vietoris topology.

*Both authors would like to thank to grant APVV-0269-11 and L’. Holá also to grant Vega 2/0018/13.



Minimal usco and minimal cusco maps are used in many papers (see [BZ1],

[BZ2], [DL], [GM], [HH1], [HH3], [HoM], [Wa]). Historically, minimal usco

maps seem to have appeared first in complex analysis (in the second half of the

19th century), in the form of a bounded holomorphic function and its ‘‘cluster

sets’’, see e.g. [CL]. Minimal usco maps are a very convenient tool in the theory

of games (see [Ch]) or in functional analysis (see [BM]), where a di¤erentiability

property of single-valued functions is characterized by their Clarke subdi¤erentials

being minimal cuscos. Minimal uscos/cuscos also appear in:

(i) optimization, [CK], [CKR], [KR];

(ii) the study of weak Asplund spaces, [Fa], [Ka], [MS2], [PPN], [St];

(iii) selection theorems, [MS1];

(iv) the study of di¤erentiability of Lipschitz functions, [Bo], [Mo], [Za].

2. Minimal usco and minimal cusco maps

In what follows let X , Y be Hausdor¤ topological spaces, R be the space of real

numbers with the usual metric and Zþ be the set of positive integers. Also, for

x a X , UðxÞ is always used to denote a base of open neighborhoods of x in X .

The symbol A and IntA will stand for the closure and interior of the set A in a

topological space.

A set-valued map, or a multifunction, from X to Y is a function that assigns

to each element of X a subset of Y . If F is a set-valued map from X to Y , then

its graph is the set fðx; yÞ a X � Y : y a FðxÞg. Conversely, if F is a subset of

X � Y and x a X , define FðxÞ ¼ fy a Y : ðx; yÞ a Fg. Then we can assign to

each subset F of X � Y a set-valued map which takes the value F ðxÞ at each point

x a X and which graph is F . In this way, we identify set-valued maps with their

graphs. Following [DL] the term map is reserved for a set-valued map.

Notice that if f : X ! Y is a single-valued function, we will use the symbol f

also for the graph of f .

Given two maps F ;G : X ! Y , we write GHF and say that G is contained in

F if GðxÞHF ðxÞ for every x a X .

A map F : X ! Y is upper semicontinuous at a point x a X if for every open

set V containing FðxÞ, there exists U a UðxÞ such that

FðUÞ ¼ 6fFðuÞ : u a UgHV :

F is upper semicontinuous if it is upper semicontinuous at each point of X .

Following Christensen [Ch] we say, that a map F is usco if it is upper semicontin-

uous and takes nonempty compact values. A map F from a topological space X
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to a linear topological space Y is cusco if it is usco and F ðxÞ is convex for every

x a X .

Finally, a map F from a topological space X to a topological (linear topolog-

ical space) Y is said to be minimal usco (minimal cusco) if it is a minimal element

in the family of all usco (cusco) maps (with domain X and range Y ); that is, if it

is usco (cusco) and does not contain properly any other usco (cusco) map from X

into Y . By an easy application of the Kuratowski-Zorn principle we can guar-

antee that every usco (cusco) map from X to Y contains a minimal usco (cusco)

map from X to Y (see [BZ1], [BZ2], [DL]).

Other approach to minimality of set-valued maps can be found in [CM], [Ma]

and [KKM].

In the paper [HH1] we can find an interesting characterization of minimal usco

maps using quasicontinuous and subcontinuous selections, which will be also use-

ful for our analysis.

A function f : X ! Y is quasicontinuous at x a X [Ne] if for every neighbor-

hood V of f ðxÞ and every U a UðxÞ there is a nonempty open set GHU such

that f ðGÞHV . If f is quasicontinuous at every point of X , we say that f is qua-

sicontinuous.

The notion of quasicontinuity was perhaps the first time used by R. Baire in

[Ba] in the study of points of separately continuous functions. As Baire indicated

in his paper [Ba] the condition of quasicontinuity has been suggested by Vito

Volterra. There is a rich literature concerning the study of quasicontinuity, see

for example [Ba], [HP], [Ke], [KKM], [Ne]. A condition under which the point-

wise limit of a sequence of quasicontinuous functions is quasicontinuous was

studied in [HH2].

A function f : X ! Y is subcontinuous at x a X [Fu] if for every net ðxiÞ con-
vergent to x, there is a convergent subnet of

�
f ðxiÞ

�
. If f is subcontinuous at

every x a X , we say that f is subcontinuous.

Let F : X ! Y be a set-valued map. Then a function f : X ! Y is called a

selection of F if f ðxÞ a F ðxÞ for every x a X .

It is well known that every selection of a usco map is subcontinuous ([HH1],

[HN]).

Theorem 2.1 ([HH1], Theorem 2.5). Let X, Y be topological spaces and Y be a T1

regular space. Let F be a map from X to Y. The following are equivalent:

(1) F is a minimal usco map;

(2) There exist a quasicontinuous and subcontinuous selection f of F such that

f ¼ F;

(3) Every selection f of F is quasicontinuous, subcontinuous and f ¼ F.

Let Y be a linear topological space and BHY is a set. By coB we denote the

closed convex hull of the set B (see [AB]).
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The proof of the following Lemma is a folklore result, but a reasonably old

proof of this appears in [Ph], Lemma 7.12.

Lemma 2.1. Let X be a topological space and Y be a Hausdor¤ locally convex

linear topological space. Let G be a usco map from X to Y and coGðxÞ is compact

for every x a X. Then the map F defined by F ðxÞ ¼ coGðxÞ for every x a X is a

cusco map.

Remark 2.1. There are three important cases when the closed convex hull of

a compact set is compact. The first is when the compact set is a finite union of

compact convex sets. The second is when the space is completely metrizable and

locally convex. This includes the case of all Banach spaces with their norm

topologies. The third case is a compact set in the weak topology on a Banach

space (see [AB]).

Let B be a subset of a linear topological space. By EðBÞ we denote the set of

all extreme points of B. Let X be a topological space and Y be a Hausdor¤ lo-

cally convex (linear topological) space. Let F : X ! Y be a map with nonempty

compact values. Then a selection f of F such that f ðxÞ a E
�
FðxÞ

�
for every

x a X is called an extreme function of F .

Notice that all known characterizations of minimal cusco maps are given

in the class of cusco maps (see [GM], [BZ1]). So the following characteriza-

tion of minimal cusco maps in the class of all set-valued maps can be of some

interest:

Theorem 2.2 ([HH3]). Let X be a topological space and Y be a Hausdor¤ locally

convex (linear topological ) space. Let F be a map from X to Y. Then the following

are equivalent:

(1) F is a minimal cusco map;

(2) F has nonempty compact values and there is a quasicontinuous, subcontin-

uous selection f of F such that co f ðxÞ ¼ FðxÞ for every x a X;

(3) F has nonempty compact, convex values, F has a closed graph, every extreme

function of F is quasicontinuous, subcontinuous and any two extreme functions of F

have the same closures of their graphs;

(4) F has nonempty compact values, every extreme function f of F is quasi-

continuous, subcontinuous and F ðxÞ ¼ co f ðxÞ for every x a X.

Let X be a topological space and Y be a Hausdor¤ locally convex (linear

topological) space. Denote by MUðX ;YÞ the set of all minimal usco maps

and by MCðX ;YÞ the set of all minimal cusco maps from X to Y . Of

course MUðX ;YÞBMCðX ;YÞA j. It follows from the next example that

MUðX ;YÞnMCðX ;YÞA j and also MCðX ;YÞnMUðX ;YÞA j.
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Example 2.1. Let X ¼ ½�1; 1� with the usual Euclidean topology. Consider the

maps F and G from X to R defined by

FðxÞ ¼
1; x a ½�1; 0Þ;
f�1; 1g; x ¼ 0;

�1; x a ð0; 1�;

8<
: GðxÞ ¼

1; x a ½�1; 0Þ;
½�1; 1�; x ¼ 0;

�1; x a ð0; 1�:

8<
:

Definition 2.1. Let X be a topological space and Y be a Hausdor¤ locally convex

(linear topological) space. We say that f is *-quasicontinuous at x if for every

y a co f ðxÞ, for every V a UðyÞ and every U a UðxÞ there is a nonempty open

set W HU such that f ðW ÞHV . If f is *-quasicontinuous at every point of X ,

we say that f is *-quasicontinuous.

Example 2.2. Consider the function f from R to R defined by

f ðxÞ ¼ sin 1
x
; xA 0;

0 x ¼ 0:

�

The function f is not continuous at x ¼ 0 but is *-quasicontinuous at 0.

Theorem 2.3. Let X be a topological space and Y be a Hausdor¤ locally

convex (linear topological ) space. Let f be a function from X to Y. Then f is

*-quasicontinuous at x if and only if every selection of f is quasicontinuous at x and

f ðxÞ ¼ co f ðxÞ.

It follows from the previous Theorem that every *-quasicontinuous function is

quasicontinuous.

Theorem 2.4. Let X be a topological space and Y be a Hausdor¤ locally convex

(linear topological ) space. Let F be a map from X to Y. Then the following are

equivalent:

(1) F a MUðX ;YÞBMCðX ;YÞ;
(2) There exist a *-quasicontinuous and subcontinuous function f from X to Y

such that f ¼ F;

(3) Every selection f of F is *-quasicontinuous, subcontinuous and f ¼ F.

Proof. ð1Þ ) ð3Þ: Let f be a selection of F . Since F a MUðX ;YÞ, by Theorem

2.1 f is quasicontinuous, subcontinuous and f ¼ F . Since F a MCðX ;YÞ,
co f ðxÞ ¼ F ðxÞ. So by Theorem 2.3 f is *-quasicontinuous.

ð3Þ ) ð2Þ is trivial.
ð2Þ ) ð1Þ: Let f be a *-quasicontinuous and subcontinuous function from

X to Y such that f ¼ F . Thus f is quasicontinuous and, by Theorem 2.3,
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F ðxÞ ¼ f ðxÞ ¼ co f ðxÞ. By Theorem 2.1 F is minimal usco map and since by

Lemma 2.1 F is cusco, by Proposition 2.7 in [BZ1] F is minimal cusco. r

Denote by FðX ;YÞ the set of all maps with nonempty closed values from a

topological space X to a Hausdor¤ locally convex (linear topological) space Y .

Define the function j : MUðX ;YÞ ! FðX ;YÞ as follows: jðF ÞðxÞ ¼ coFðxÞ.
The following theorem was proved in [HH3]. For the reader’s convenience we

will also provide another proof suggested by the referee.

Theorem 2.5 ([HH3], Theorem 4.1). Let X be a topological space and Y be a

Hausdor¤ locally convex (linear topological ) space. Let F : X ! Y be a minimal

cusco map. There is a unique minimal usco map contained in F.

Proof. Let G, H be two minimal usco maps contained in F . It is su‰cient to

prove that GðxÞBHðxÞA j for every x a X . Then the map L : X ! Y defined

as LðxÞ ¼ GðxÞBHðxÞ for every x a X is usco and LHG, LHH. Thus

G ¼ L ¼ H.

By Lemma 2.1 and the minimality of F , jðGÞ ¼ jðHÞ ¼ F . Now, by the

Krein–Milman and Milman theorems, we have

jAE
�
F ðxÞ

�
HGðxÞBHðxÞ for all x a X : r

Theorem 2.6. Let X be a topological space and Y be a Hausdor¤ locally convex

(linear topological ) space in which the closed convex hull of a compact set is

compact. The map j is bijection from MUðX ;YÞ to MCðX ;YÞ.

Proof. Let F a MUðX ;YÞ. To show that jðFÞ a MCðX ;YÞ note that by Lemma

2.1 the map G defined as GðxÞ ¼ coF ðxÞ for every x a X is a cusco map and by

Proposition 2.7 in [BZ1] G is minimal cusco.

Next we show that j maps MUðX ;YÞ onto MCðX ;YÞ. Let G a MCðX ;YÞ
and let F be a minimal usco map contained in G. By Lemma 2.1 the map

x ! coF ðxÞ is a cusco map such that coF ðxÞHGðxÞ for every x a X . Since G

is minimal cusco, GðxÞ ¼ coFðxÞ for every x a X .

Finally, to show that j is one-to-one, suppose that F ;G a MUðX ;YÞ and

F AG. Suppose, by way of contradiction, that jðFÞ ¼ jðGÞ. So by Theorem

2.5 F ¼ G, a contradiction. r

3. Topological properties of j

Let X be a Hausdor¤ topological space and ðY ; dÞ be a metric space. The open

d-ball with center z0 a Y and radius e > 0 will be denoted by Seðz0Þ and the

e-parallel body 6
a AA SeðaÞ for a subset A of Y will be denoted by SeðAÞ.
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Denote by CLðYÞ the space of all nonempty closed subsets of Y . By KðXÞ
and FðXÞ we mean the family of all nonempty compact and finite subsets of X ,

respectively. If A a CLðYÞ, the distance functional dð�;AÞ : Y 7! ½0;lÞ is de-

scribed by the familiar formula

dðz;AÞ ¼ inffdðz; aÞ : a a Ag:

Let A and B be nonempty subsets of ðY ; dÞ. The excess of A over B with re-

spect to d is defined by the formula

edðA;BÞ ¼ supfdða;BÞ : a a Ag:

The Hausdor¤ (extended-valued) metric Hd on CLðYÞ [Be] is defined by

HdðA;BÞ ¼ maxfedðA;BÞ; edðB;AÞg:

We will often use the following equality on CLðYÞ:

HdðA;BÞ ¼ inffe > 0 : AHSeðBÞ and BHSeðAÞg:

The topology generated by Hd is called the Hausdor¤ metric topology.

Following [HM] we will define the topology tp of pointwise convergence on

F ðX ;YÞ. The topology tp of pointwise convergence on FðX ;YÞ is induced by

the uniformity Up of pointwise convergence which has a base consisting of sets of

the form

W ðA; eÞ ¼
�
ðF;CÞ : Hd

�
FðxÞ;CðxÞ

�
< e for all x a A

�
;

where A a FðXÞ and e > 0. The general tp-basic neighborhood of F a F ðX ;YÞ
will be denoted by W ðF;A; eÞ, i.e., WðF;A; eÞ ¼ W ðA; eÞ½F� ¼

�
C : Hd

�
FðxÞ;

CðxÞ
�
< e for every x a A

�
. If A ¼ fag, we will write WðF; a; eÞ instead of

W ðF; fag; eÞ.
We will define the topology tUC of uniform convergence on compact sets on

F ðX ;YÞ [HM]. This topology is induced by the uniformity UUC which has a

base consisting of sets of the form

W ðK ; eÞ ¼
�
ðF;CÞ : Hd

�
FðxÞ;CðxÞ

�
< e for all x a K

�
;

where K a KðXÞ and e > 0. The general tUC-basic neighborhood of F a F ðX ;YÞ
will be denoted by W ðF;K ; eÞ, i.e., WðF;K ; eÞ ¼ W ðK ; eÞ½F�.

Finally we will define the topology tU of uniform convergence on F ðX ;YÞ
[HM]. Let % be the (extended-valued) metric on F ðX ;YÞ defined by

%ðF;CÞ ¼ sup
�
Hd

�
FðxÞ;CðxÞ

�
: x a X

�
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for each F;C a FðX ;YÞ. Then the topology of uniform convergence for the

space FðX ;YÞ is the topology generated by the metric %.

Lemma 3.1. Let Y be a normed linear space. Let A, B be nonempty closed subsets

of Y. Then HdðcoA; coBÞaHdðA;BÞ.

Proof. At first we show that edðcoA; coBÞa edðA;BÞ. It is known (see [Be] exer-

cise 1.5.3 b), that if C is convex then edðcoA;CÞ ¼ edðA;CÞ. So edðcoA; coBÞ ¼
edðA; coBÞ. Since BH coB we have that

edðcoA; coBÞ ¼ edðA; coBÞa edðA;BÞ:

Similarly we can show that

edðcoB; coAÞ ¼ edðB; coAÞa edðB;AÞ:

Since for every C;D a CLðYÞ

HdðC;DÞ ¼ maxfedðC;DÞ; edðD;CÞg;

we are done. r

Theorem 3.1. Let X be a topological space and Y be a Banach space. The map j

from
�
MUðX ;YÞ; t

�
onto

�
MCðX ;YÞ; t

�
is continuous if t is one of the following

topologies tp, tUC, tU.

Proof. The proof follows from the above lemma. r

The following example shows that the map j�1 from
�
MCð½�1; 1�Þ; tp

�
onto�

MUð½�1; 1�Þ; tp
�
is not continuous.

Example 3.1. Let X ¼ ½�1; 1� with the usual Euclidean topology. Let F and G

are maps from Example 2.1. Then F ¼ j�1ðGÞ. We claim that j�1 is not con-

tinuous at G. For every n a Zþ let Pn be the map from ½�1; 1� to R defined by

PnðxÞ ¼

1; x a ½�1; 0Þ;
½�1; 1�; x ¼ 0;

sin 1
x
; x a

�
0; 2

ð4n�1Þp
�
;

�1; x a
�

2
ð4n�1Þp ; 1

�
:

8>>>><
>>>>:

It is easy to see that for every A a FðXÞ and every e > 0 there exists an n0 a Zþ

such that Pn a W ðG;A; eÞ for every nb n0. For every n a Zþ we have that

Hd

�
Fð0Þ; j�1ðPnÞð0Þ

�
¼ 1. Then for every n a Zþ Pn B W

�
F ; 0; 12

�
and so the

map j�1 is not continuous at G.
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Remark 3.1. If X is a Baire space, Y is a normed linear space and F a
MUðX ;YÞ, then there is a dense Gd-subset E of X such that FðxÞ is single-valued
for each x a E. In fact, let f : X ! Y be a quasicontinuous subcontinuous selec-

tion of F such that f ¼ F (see Theorem 2.1). By Theorem 4.1 in [HP], the set

Cð f Þ of the points of continuity of f is a dense Gd-set in X . It is easy to verify

that F must be single-valued at every point of the set Cð f Þ. The same holds also

for F a MCðX ;YÞ.

Theorem 3.2. Let X be a locally compact space and Y be a Banach space. The

map j from
�
MUðX ;YÞ; tUC

�
onto

�
MCðX ;YÞ; tUC

�
is homeomorphism.

Proof. By Theorem 2.6, j is a bijection. By Theorem 3.1 it is su‰cient to prove

that j�1 is continuous. Let G a MCðX ;YÞ and F ¼ j�1ðGÞ. Let K a KðXÞ
and e > 0. We show that there exist K1 a KðXÞ and e1 > 0 such that

j�1
�
W ðG;K1; e1Þ

�
HW ðF ;K ; eÞ. Let K1 a KðXÞ be such that KH IntK1. Put

e1 ¼ e
3 . Let H a W ðG;K1; e1Þ and x a K . We show that F ðxÞHSe

�
j�1ðHÞðxÞ

�
.

Let y a F ðxÞ. By Remark 3.1 and Theorem 2.1 for e
3 and for every U a UðxÞ

there exist xU a U B IntK1 such that FðxUÞ is single-valued and F ðxU Þ a Se=3ðyÞ.
From the fact that FðxU Þ is single-valued it follows that GðxU Þ is single-valued

too and consequently F ðxU Þ ¼ GðxUÞ. Since HðxU ÞHSe=3

�
GðxUÞ

�
we have that

j�1ðHÞðxUÞHSe=3

�
FðxUÞ

�
and hence there exist yU a j�1ðHÞðxU Þ such that

d
�
yU ;FðxU Þ

�
< e

3 . Hence dðy; yU Þ < 2e
3 . So there exists a subnet of the net

fðxU ; yU Þ : U a UðxÞg which converges to a point ðx; zÞ, where z a j�1ðHÞðxÞ.
So F ðxÞHSe

�
j�1ðHÞðxÞ

�
. The inclusion j�1ðHÞðxÞHSe

�
F ðxÞ

�
can be proved

similarly. r

The following example shows that the condition of local compactness in The-

orem 3.2 is essential.

Example 3.2. Let X ¼ ½�1; 1� with the topology, where the open sets in X are

all subsets of X not containing 0 and all subsets of X containing 0 that have

countable complement. Every compact set in X is finite. Thus the topology

tUC on MUðX ;RÞ and MCðX ;RÞ reduces to the topology tp. So we can use Ex-

ample 3.1.

Theorem 3.3. Let X be a Baire space and Y be a Banach space. The map j from�
MUðX ;YÞ; tU

�
onto

�
MCðX ;YÞ; tU

�
is homeomorphism.

Proof. The proof is similar to the proof of Theorem 3.2. r

In the last part of our paper we will consider the Vietoris topology V on

MUðX ;RÞ and on MCðX ;RÞ. First we will consider the Vietoris topology V on
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the space CLðX � RÞ of nonempty closed subsets of X � R. The basic open sub-

sets of CLðX � RÞ in V are the subsets of the form

WþBW �
1 B � � �BW�

n ;

where W ;W1; . . . ;Wn are open subsets of X � R, W þ ¼ fF a CLðX � RÞ :
F HWg, and each W�

i ¼ fF a CLðX � RÞ : F BWi A jg.
Under the identification of every element of MUðX ;RÞ and MCðX ;RÞ with

its graph, we can consider MUðX ;RÞ and MCðX ;RÞ as subsets of CLðX ;RÞ.
We will consider the induced Vietoris topology V on MUðX ;RÞ and on

MCðX ;RÞ.

Theorem 3.4. Let X be a locally connected space. The map j from�
MUðX ;RÞ;V

�
onto

�
MCðX ;RÞ;V

�
is continuous.

Proof. Let F a MUðX ;RÞ and WþBW �
1 B � � �BW �

n be a basic open set in�
MCðX ;RÞ;V

�
such that jðFÞ a W þBW�

1 B � � �BW �
n .

Let G ¼ jðFÞ. By Lemma 4.1 in [HJM] there is an open set HHX � R such

that GHHHW and HðxÞ is connected for every x a X . Without loss of gener-

ality we can also suppose that for every i ¼ 1; 2; . . . ; n, Wi HH and Wi ¼ Ui � Vi,

Ui open in X , Vi an open interval in R.

For every i a f1; 2; . . . ng we will define an open set Hi as follows. Let i a
f1; 2; . . . ng. Let ðxi; yiÞ a GBWi. If yi ¼ inf F ðxiÞ or yi ¼ supFðxiÞ, we will

put Hi ¼ W �
i . Otherwise, let Ci be a connected set in X such that xi a IntCi H

Ci HUi and � > 0 be such that inf FðxiÞ þ � < yi < supFðxiÞ � �. Put Hi ¼�
IntCi �

�
inf FðxiÞ � �; inf F ðxiÞþ �

���
B
�
IntCi �

�
supFðxiÞ � �; supFðxiÞ þ �

���
.

It is easy to verify that L a MUðX ;RÞBHi implies that jðLÞ a Hi. Since

jðLÞ is upper semicontinuous set-valued map with connected values, jðLÞðIntCiÞ
must be a connected set ([Be], Proposition 6.2.12); i.e., yi a jðLÞðIntCiÞ. Thus

jðLÞ a 7W �
i .

Put G ¼ HþBH1B � � �BHn. Then F a G and jðSÞ a WþBW �
1 B � � �B

W �
n for every S a G. r

The following Example shows that the condition of local connectedness in the

above Theorem is essential.

Example 3.3. Let X ¼ ½�1; 1�n
�
1
n
: n a Zþ� with the usual Euclidean topology.

Consider the maps F and G from X to R defined by

FðxÞ ¼
1; x a X B ½�1; 0Þ;
f�1; 1g; x ¼ 0;

�1; x a X B ð0; 1�;

8<
: GðxÞ ¼

1; x a X B ½�1; 0Þ;
½�1; 1�; x ¼ 0;

�1; x a X B ð0; 1�:

8<
:
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Then G ¼ jðF Þ and we claim that j is not continuous at F . For every n a Zþ

let fn be the function from X to R defined by

fnðxÞ ¼
1; x a X B

�
�1; 1

n

�
;

�1; x a X B
�
1
n
; 1
�
:

(

We have fn ¼ jð fnÞ for every n a Zþ. The sequence f fn : n a Zþg converges

in
�
MUðX ;RÞ;V

�
to F , but f fn : n a Zþg does not converge to G in�

MCðX ;RÞ;V
�
.

The following example shows that the map j�1 from
�
MCð½�1; 1�;RÞ;V

�
onto�

MUð½�1; 1�;RÞ;V
�
is not continuous.

Example 3.4. Let X ¼ ½�1; 1� with the usual Euclidean topology. Let F , G

be maps from Example 2.2. Then F ¼ j�1ðGÞ and we claim that j�1 is not

continuous at G. For every n a Zþ let gn be the function from ½�1; 1� to R de-

fined by

gnðxÞ ¼
1; x a ½�1; 0�;
1� 2nx; x a

�
0; 1

n

�
;

�1; x a
�
1
n
; 1
�
:

8><
>:

Evidently gn ¼ j�1ðgnÞ for every n a Zþ. It is easy to see that the sequence

fgn : n a Zþg converges in
�
MCð½�1; 1�;RÞ;V

�
to G, but fgn : n a Zþg does not

converges to F in
�
MUð½�1; 1�;RÞ;V

�
.
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