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1. Introduction

Riemann showed in 1857 that the local system defined by the multiform solutions
of the hypergeometric equation can be reconstructed, up to isomorphism, from the
knowledge of the local monodromies around its singular points 0, 1 and co. In
modern terminology, a local system on a projective smooth connected curve X
over C minus a nonempty finite subset £ of X is called (physically) rigid, if it is
determined, up to isomorphism, by the local monodromies around each point of
%. N. Katz gave necessary and sufficient conditions for the rigidity of local sys-
tems, when X is the Riemann sphere, based on a cohomological invariant, called
the rigidity index (see [9]). He showed in addition that in characteristic p > 0, this
index is preserved under Fourier transform when the local system is a perverse
sheaf such that neither its support nor the support of its Fourier transform is punc-
tual (cf. [9] Theorem 3.0.2). Moreover, he conjectured that “it should be true that
Fourier transform preserves the index of rigidity in the D-module context” (op. cit.
p. 10). This conjecture was proved some years later by S. Bloch and H. Esnault
in [2]. A different and purely algebraic proof of this result is given in this paper in
the case of irreducible regular holonomic Dy [*{co}]-modules.

The paper is organized as follows. Section 1 reviews some results on rigidity.
Section 2 recalls the notion of minimal extension for holonomic Dp1-modules and
introduces the analogue notion of rigidity in the context of holonomic Dp:-
modules. Section 3 recalls the definition of Fourier transform and then computes
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the rigidity index of the Fourier transform, for irreducible regular holonomic
Dpi[*{oo}]-modules. Section 4 recalls a dictionary between germs of holonomic
D-modules and pairs of vector spaces (quivers). The last section is devoted to
the proof of the main result (Theorem 5.1). The appendix contains a detailed
proof of Theorem A.1, which have been postponed there for ease of readability.
This new result necessary for the proof of Theorem 5.1 relates the monodromy of
regular holonomic Dp:[*co]-modules at 0 and the monodromy of its Fourier
transform at co. General references for this paper are [3], [4], [11], [13], [16], [18],
[19], [23].

2. Rigidity index and minimal extensions

Let M be a holonomic D-module on a Riemann surface X and let X =
{x0,...,x,} = X be a finite set. The following notation will be used throughout
the paper.

o M* = Homp, (wy, Exty, (M, Dy)) denotes the dual of M;

® Hi5)(M) denotes the torsion submodule of M supported on X (see [20], §1).

Definition 2.1. One says that a holonomic D-module N on X is a minimal exten-
sion of M along ¥ and denote it My, if:
i) Ox[*XZ] ®p, M = Ox[*Z] ®p, N,

ii) M has neither nonzero submodules nor nonzero quotients with support on a
subset of X.

Proposition 2.2 ([16], Theorem 2.7.6 and Theorem 2.7.3). 4 minimal extension of
M along X exists and is given by

Munin = ((M/Higy(M))"/Hyg (M/Hm (M) ")) "
Moreover, the minimal extension along X is unique up to isomorphism.

Corollary 2.3. The D-modules M and M[*X]| have the same minimal extension
along X, i.e., Muyin = M[¥Z] . .

Taking into account that for each holonomic D-module M on a Riemann sur-
face X with singularities on X one has supp(M) < Z, iff M = Hgj(M) (cf. [16],
Lemma 2.7.8), the notion of minimal extension can also be defined for germs of
D, = C{x}<{d,> (resp. Dy = C[x]<d,>) -modules in the following way.

Definition 2.4. Let M, N be holonomic D, (resp. Dy) -modules. One says that A/
is a minimal extension of M and denote it My, if:
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i) Mix7']=Nx1],

ii) A/ has neither submodules nor quotients isomorphic to D,/ D, - x* (resp.
D,/ D, - x¥) for some k e N,

Let M be a holonomic D,-module and let M = C[x] ®¢qy M denote its
formalized.

Proposition 2.5 ([16], Theorem 2.7.11). The minimal extension commutes with the
Sformalized, that is, if M is a holonomic Dy-module, then My, ~ (M)

min*

Let us now recall a result of N. Katz [9] leading to the definition of rigidity
index of holonomic D-modules. Set U = P!\X. Set n = rank(£) and set k = #X.
Let j: U — P! be the open inclusion. Given a local system £ on U denote by
p:m(U,x) — Endc(Ly) its monodromy representation. Set Ty, = p(y;), where
y; is a small loop in U around x;. Let Z(Ty,) = {4 € Endc(L,,) |AT,, = T, A}
be the commuting algebra of T,,.

Definition 2.6. L is irreducible, if £ has no non-trivial submodules.

Definition 2.7 (Rigidity index for local systems). The Euler—Poincaré characteris-
tic x((P")*, j. End (L)) equals (2 — k)n> + 3", dim Z(T,) and is called the rigidity
index of L.

Theorem 2.8 ([9], Theorem 1.1.2). If L is irreducible, L is ( physically) rigid if and
only if x((PY™, j. End (L)) = 2.

It is well known that if M is a regular holonomic Dy-module with singularities

on X, the local system £ = Homp, (Oy, M)‘ x\s satisfies the following (cf. [20], §1,
pp. 1265-1266), where DR( ) denotes the de Rham complex,

DR ((Endo, (M[*X])),... ) = j. End(L).
Definition 2.9. M is irreducible, if M has no non-trivial submodules.
These facts motivate the following definition.
Definition 2.10 (Rigidity index for holonomic Dyi-modules). Let M be an irre-

ducible holonomic Dpi-module and let X be the set of its singular points. One
calls rigidity index of M to the invariant,

rig(M) = z(P',DR((éndo,, (M[xX])) ...))-
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3. Rigidity index and Fourier transform

Let A; = C[7]<0;) denote the Weyl algebra in the variable ¢ and consider the
isomorphism of Weyl algebras,

Cld<ory — C[t'Kow),  t+ —0p, 0> 7.

This isomorphism induces on every C[¢]{d,)-module M a structure of C[t']<0, )-
module denoted M and is called the Fourier transform of M.

GAGA provides an equivalence between the categories of holonomic A;-
modules, holonomic algebraic D[;lg[ {o0}]-modules and holonomic analytic
Dpi[#{oo}] = Dgi*[*{c0}]-modules (see [14], chap. I, §4). This is done the
following way. Let M be a holonomic A4;-module with singularities on
S={x1,...,x:} = C, where k >1. Denote by M€ the Ddlg[ *{o0}]-module

dlg[*{oo}] ®cp M, with P! covered by charts with local coordmates t and ¢’
and transition map ¢ = ¢~! on their intersection. (Likewise, let t’ be the coordi-
nate at 0, t the coordinate at co and ¢’ = t~! the transition map.) This way
M ¢(C) =M. For this reason, “M denotes the analytic Dpi[+{o0}]-module
associated to FM.

Proposition 3.1 ([22], Proposition V, 2.2). Let M be an holonomic A,-module. If
M has a regular singularity at infinity, then its Fourier transform ™M has singu-
larities only at T/ = 0 and t/ = co. The former is regular and the later is possibly
irregular.

Lemma 3.2. If M is a regular holonomic A;-module (including at «), the Newton
polygon of the irregular part of "M at oo is either null or has slope 1.

Proof. 1t is a consequence of [14], Proposition V, 1.2. ]
Let M be a regular holonomic Dp:[*X]-module with singularities on X =

{0} US. Set xo = o0. Let (N,V) denote the formalized at co of the meromor-
phic connexion determined by “M([+{0, 0 }] (cf. [18], Theorem 4.3.2). Let

R'a@i)a (1)

IZ

= bt

be the Turrittin decomposition of (./\/ V) with (R, V;) regular meromorphic con-
nexions (cf. Turrittin [24], Levelt [10], and [16], Theorem 1.9.5 and Lemma 1.9.6).
Let T; denote the monodromy of (R,,V) and let n; be the dimension of R;,
i=1,...,k. Letg,denote —x;/x. Let Ty denote the monodromy at 0 of the local
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system Homp , (Op1, FM)|c-.* Let i( ) denote the Malgrange-Komatsu irregular-
ity of a D,-module (see [18], chap. 11, §1.3).

Corollary 3.3. The irregularity of the term €7 ® (R;,V;) of the decomposition of
Turrittin (1) equals 0 if p; = 0 and equals n; otherwise.

Proof. The result follows from Lemma 3.2, because the irregularity can be read
off from the Newton polygon of the meromorphic connexion (N,V) (cf. [18],
fig. 8, pp. 53-54). O

Theorem 3.4. If M is a regular holonomic Dy [x{o0}]-module with singularities on
T c P!, the rigidity index of "M is given by

k
rig(“M) = dim Z(T)) +Z dim (T +Zn - (an) (2)

i=1 i=1 i=1

In order to prove theorem above, let us first prove the following auxiliary
result.

Lemma 3.5. Let (/\7 ,V) be the formalized at o of the meromorphic connexion as-
sociated to the Fourier transform of a regular holonomic Dy [*{c0}]-module with
singularities on X.  Assume moreover that ¢, =0 on the Turrittin decomposition
of (N, V) ((Ry, V1) might be 0). The following holds:

D) %(Nonin, C[E‘L’}]) = dim{e|Tje = e}.
if) 2 (Endg (N ) ins Cll) = S5, dim Z(T).
iii) i(Endo,(N)) = (1 m)* = S .

Proof. 1) For each term of decomposition (1), either i =1 or i > 1. If i > 1, the
holonomic D,-module N; = £ ® (f{,, Vi) has no regular component. Therefore,
N; ~ Ni[t™!] (cf. [18], Theorem 6.3.1) and the multiplication by 7 is bijective.
Hence Hy, (N;) = 0 and Hj (/\/ ) = 0. Thus, by Proposition 2.2, (./\/)min = N[
Thanks to these isomorphisms one has y(Niin, C[z]) = 7((N7)mins Cle]), because
7(Ni[z71],C[e]) = 0, for i > 1. If i = 1, possibly after a change of basis and coor-
dinate system, one has the isomorphism,

(Rh@l)ﬁ <@[IT]]”,Tdi—A1)7 I’lZdile.
T

'The notation ~ is also traditionally used to denote the Fourier transform. Here it is only and exclu-
sively used on T to stress the fact that this is a monodromy on the Fourier transform.
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By Proposition 2.3, both Ni and M[T’l] have the same minimal extension.
Hence, one may compute the minimal extension of N[t ~!] instead of Nj. There
is a meromorphic change of bases, which transforms A; into a constant ma-
trix in the Jordan canonical form, say J=J, ®--- @ J,,,, with n; + --- + n,,, = n.
Thus,

m
A~

R, 90) = Bl o5~ ).

j=1
If o; is the eigenvalue of the Jordan block J;, one has the isomorphism,

m

M = Pl "1<o:>/Clel [t <0 (20, — )"

J=1

If ;¢ Z, the Bernstein polynomial b(z) of ]\A/]‘,- = C[7]<0:>/(td; — &;)" equals
(t —07)". Therefore, for each k € N, b(k) # 0. Hence, the multiplication by 7

CIeIK: >/ (20: — o))" = C[e]<0:>/ (0c — )"

is a bijective map, i.e., N ; is a meromorphic connexion (cf. [18], Lemma 4.2.7).
In particular, one has Hyg (V) = 0 and Hyg)((V};)") = 0. Thus (M), = M.
Since x(MN;[t7!], C[z]) = 0 for each o; ¢ Z,

2 WNwin, CL2D) = 3 2 (W) ins Cle).

o eZ

If o; € Z, one can assume o; = 0. In fact after the change of basis B = 77%1, the
matrix J; is transformed into

BB +10B/0tB™! =1J; — oy1.

In this case, N = C[]<d.>/(z0;)" and therefore (A}),;, = C[c]<d:>/R;, where
R = 6T(767)"f_1. As {1,logt,...,log"" ' 7} is a fundamental system of solutions
the differential equation R;y =0, the kernel of R; in C[z] is {1). Hence,
dimker R =1. Given that (/4+1)"z/*! is a solution of the differential
equation Rjy =1/, dim coker R; = 0. In brief y(Nuin, C[7]) = £{J; 05 € Z}, so
Z(Nain, C[7]) = dim{e | Tje = e}. A

ii) The Turrittin decomposition (1), (A, V) ~ (—D;‘:l £ ® R,, implies that
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Hence by i),

x(End(N)i, Clr]) = dim{M =M, @ - - - @ M| ady @ @ady M =M}

k
= dimZ(T)).
i=1

iii) Each term (R;,V;) of (1) is a regular meromorphic connexion. By Corol-
lary 3.3 the irregularity of £” ® (R;,V,) equals 0, if i=1 and equals n;, =
rank(R;) = rank(T;) otherwise. Applying the same reasoning to the Turrittin
decomposition of the endomorphisms of N , i.e., to the identity (3), one has,

k k k

i(EndOT(./\/')mm) = Z rank(Homa(f{;,f{j)) = (Zn[)z — anz O

ij=1 i=1 i=1
i#j

Proof of Theorem 3.4. This proof relies on triangulated categories. For an
overview on this subject, see [8], chap. 1, §5. Let £ be the Dpi-module
Endp,, ("M[{0,0}]). Let F* be the de Rham complex DR (Enin) on P! and
let j: C* < P! be the open inclusion. Let #: jij ' F* — F* the open inclusion.
By taking the mapping cone of 7, denoted by C(#), the morphism 7 fits in the
distinguished triangle below

JitF L F = Cn) —, (4)

which yields the identity, where y( ) denotes the Euler—Poincaré index (see [8],
Exercise 1.32),

x(F*) = x(jii ' F*) + 2(Cn)). (5)
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By Proposition 3.1 {0, co} are the only singularities of F* and therefore P!\ {0, c0}
is homotopic to S'. Setting £ = 1°(;~! F*), one gets

2 F)=(1=1Drank£L=0 and x(C(n)) = x(C(n)y) +x(C(n)..).

because (1, 1) are the Betti numbers of S'. Thus,

1(F*) = x(Cn)g) +x(Cn).,)- (6)

To compute x(C(n),), take a disk D = C centered at 0, the inclusion
i: D" — Dandset G* = DR(Emin|p). By Proposition 3.1, Emin|p is a regular holo-
nomic Dp-module. Therefore, G* = i. End (L") with L = Homp_, (Op1,"M)|p-.
Since G° is a perverse sheaf on D, it gives rise to the short exact sequence

tge Mo, go . (cokery|p) — 0. (7)

0— di~

Thus,
2(G%) = x(ii ' G*) + x(coker p|p).

Since h°(i71G*) = End (L"), y(ii 'G*) = (1 — 1) rank End(L') = 0, because D* is
homotopic to S'. Therefore x(G*) = x((cokery|p),). The exact sequence (7) im-
plies that G§ = (coker|p),. Moreover, G5 = {M € End(E) | Tg, (M) = M},
where E = 1°(D\R", L"), Tguq(c) = adg, and Ty is the monodromy of £ at 0.
Thus G = {M € End(E) | T¢\M = MT,} = Z(Ty). By Mayer-Vietoris, one shows
that y(cokerz,) = y(cokers|y). On the other hand, the restriction of the distin-
guished triangle (4) to D yields the identity z(G*) = x(C(n),). Hence,

2(C(n)y) = dim Z(Ty). (8)
By the identity (5), one has x(Fy) = x(jij 'F2) + x(C(n).,). Without loss
of generality oo is purely irregular, as the regular part reduces to the previous

case. Since (jij 'F*),, =0, x(F2)=x(C(n),). On the other hand, y(F;) =
%((Emin) ., C{}). Therefore by definition of irregularity

2(F2) = x((Emin) oo» Clz]) = i((Emin) 0 )- 9)
Owing to Lemma 3.5 and Proposition 2.5

—

7((Emin) . Z dim Z(T (10)
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Furthermore, by Lemma 3.5

k

ni)z—Zniz. (11)

k
=1 i=1

i(Emn)) = (3

1

The identity (2) is now an immediate consequence of (6), (8), (9), (10) and (11).
O

4. An equivalence of categories

The previous two sections showed that both the rigidity index of a regular holo-
nomic Dpi[*{oco0}]-module as well as the rigidity index of its Fourier transform
can be expressed in terms of the monodromy at its singular points (cf. Theorems
2.8 and 3.4). With this in mind, the category C of quivers consisting of pairs of
vector spaces linked by morphisms seems the natural choice for a dictionary, be-
cause the monodromy figures there prominently. For details on the category C,
refer to [18], chap. I, 96.2.3, or [3], [23]. Furthermore, not only the category C
is equivalent to the category of regular holonomic D,-modules, but also dually
equivalent to the category of germs of complexes of perverse sheaves. For the
equivalence, refer to [18], chap. I, §6, and Theorem I 6.2.5. For the duality, refer
to [5], §II and Theorem I1.2.3.

Theorem 4.1 ([16], Proposition 2.4.5). For every complex of perverse sheaves F*°
on a disk D centered at O one has the following quivers in the category C, where

2(£L) J+(L) Rj.(L)
0 E/ﬂENE i) E/T__ﬂ;‘F here F < E i) E/T_ﬂ%‘E
, where F <

j: D* — D is the inclusion map, E = ho(]:'(D\R+)) and T is the monodromy of
the local system £ = h°(F*

»)

A distinct proof of Theorem 4.1 with a slightly change of notation can also be
found in [17], Proposition 4.7.

Proposition 4.2. The quiver in statement iii) of theorem above is the representative
in the category C of the germs of localized regular holonomic D;-modules.
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Proof. By [18], Theorem I 6.2.5, each regular holonomic D;-module is represented
by a quiver u : E 2 F : v in the category C. Since left multiplication by ¢ is bijec-
tive for localized holonomic D,-modules, v is an isomorphism (see [22], proof of
Proposition V, 2.2(2)). The result then follows by diagram chasing. ]

The following theorem shows that the notion of minimal extension in the cat-
egory C is meaningful.

Theorem 4.3 ([16], Proposition 2.7.13). Let D be a disk centered at the origin,
j: D* — D the inclusion map and let L be a locally constant sheaf on D*. If F*
is a complex of perverse sheaves on D such that F*|,. = L, then:

1) There exists n : j.L — F° morphism of complexes of perverse sheaves such that
n

il) Jj.L has neither non trivial subobjects nor quotients with support at the origin.

D* — ldﬁ,

An alternative proof can be found in [7]. For i), cf. [7] Proposition 8.2.5(i). For
i), cf. [7] Proposition 8.2.7.

Definition 4.4 (Minimal extension for perverse sheaves). Let D be a disk centered
at the origin and let j : D* < D be the inclusion. Take F* a complex of perverse
sheaves on D and set £ = h°(F*|,.). One calls minimal extension of F* the com-
plex j.L.

Definition 4.5 (Minimal extension for quivers). Let u: E 2 F:v be a quiver.
One defines the minimal extension of this quiver via the equivalence of catego-
ries between germs of holonomic D,-modules and quivers (see [18], Theorem I,
6.2.5).

Proposition 4.6. If the quiver u : E 2 F : v is isomorphic to its minimal extension,
then dim Z(v o u) — dim Z(u o v) = (dim ker(v o u))2

Proof. By diagram chasing u: E 2 F:v is equivalent to E = im(vou) with
the natural arrows. Let oy,...,0; be the distinct eigenvalues of vou and let
E=E| ® - ® Ej be the decomposition of E in terms of the eigenspaces of v o u.
By choosing a convenient Jordan basis v o u is represented by J =J; @ --- @ Ji,
where Ji,...,J; are the Jordan matrices associated to the eigenvalues oy, ..., o
respectively. Furthermore, in such basis each J; is block diagonal, i.e., J; =
Jh @ - ®Jy. By [15], 6.4.7, not only dimZ(J) =dimZ(J;) + - -- + dim Z(Jx),
but also the corresponding blocks C;; of each matrix C commuting with J; has
one of the following shapes:
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Ci G o Crl/, ]
0 - 0 ¢ o o - o 0 ¢ Czu Cr',(—l
.. . .. i ij
0 0 0 ¢ o - cféfl 00 ¢ Cj—2
Cy=|0 0 0 0 ¢ ool Ci= :
: 0 0 0 ¢f
' 0 0 O 0
K 0 0 0 O cf .
0 0 0 0 |
Therefore,
dimZ(J;) = min{dim Ey, dim Ej}. (12)
Jk

Let F=F; ® - @® Fy be the corresponding Jordan decomposition associated
to u o v, (notice that F;; might be 0). As vou is onto, dimE; = dim Fy;, if o; # 0
and dim E; = dim F;; + 1 otherwise. Let iy be the index for which o;, = 0. Thus,

dimZ(vou) —dimZ(uov) = Z min{dim E;;, dim Ej } — min{dim Fj, dim F }
ijk
= > 1
i=io, jk

= (dimker(v o u))z. O

Let us now turn our attention to the final preparatory material for the proof
of the main theorem. So far, one has already seen two distinct notations for the
monodromy. On the one hand, the monodromy of a local system associated to M
at the (regular) singular point x; € X is denoted by T,, (cf. Theorem 2.8). On the
other hand, the germ M,, is represented by a quiver in the category C,

Te, —1 (OB *Fi )Te —1, (13)

Ui

but T,, = Tg,. Likewise for the germ “M, (cf. footnote on p. 4) where Ty = Ty:

T -1 B_2F )Tp-1. (14)

v
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The proof of the main theorem hinges on the irreducibility of the starting D-
module M. The irreducibility of M implies that My, = M (if My, #0). By
Theorem 4.1 ii) and Definition 4.4, for each x; € £ the quiver (13) is equivalent to

Ty, 1

Txi—ﬂCE,-?c)F,-DTF[—ﬂ. (15)

Recall that xo = c0. Since M is localized at oo, one has by Theorem 4.1 iii),
E., = F... The same holds for the germ “M,, because the Fourier transform pre-
serves the irreducibility (cf. [4] Proposition 5 2.1),

To—1
TO—ﬂCESFDTF_ﬂ. (16)

mnc

As M is holonomic, M = 4;/I. 1In particular, if one takes a division basis
(Pp,...,Py) of I, then dimE; = deg, P,. For a proof, see [23] Theorem I.1.1.
Without loss of generality one can assume E; = E. Thus the quivers in (15) can
be rewritten as follows

T, —1
T, ~1(CE_AF_)Te 1. (17)

inc

There is also the information provided by the Turrittin decomposition of the
Fourier transform at infinity. Let (N, V) be the formalized of the meromorphic
connexion (N, V) = M[x{c0}]. Its Turrittin decomposition is

~ A k A A A
N, V)~ PE"® (R, Vi).
i=1

By Proposition 4.2 iii), each meromorphic connexion (R, V;) is equivalent to

Ty 1
T, —1CER__2F )Tg -1, (18)

with T, = Tg, (see Theorem 3.4).

When M is an irreducible regular holonomic Dy [#{co}]-module, the F;’s and
Tg,’s in (17) are “preserved” by Fourier transform in the sense of the following
two lemmas.
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Lemma 4.7. If "Muin = "M, then (F,Tg) is isomorphic to (E,T,.), i.e., "M is
equivalent to

To—1
i 2 F )T,
To-1(CEBF )T, 1.

mnc

Proof. 1t is an easy corollary of Theorem A.1, because the monodromy is defined
up to conjugation. O

Lemma 4.8. If Muyin = M, then for each x; e 2nC (F;,Tg,) is isomorphic to
(E;, T)), i.e., My, is equivalent to

Ty~ 1

T, - 1CE_ K )T 1.

Before proving Lemma 4.8, let us present some notations and then state the
necessary results for its proof. Let £y = C[d;, 0, 1 ®c[o) Dpr denote the sheaf
of micro-differential operators on P!. Given a holonomic 4;-module M one
shall denote by .# = Opi* ®cjy M the corresponding Dyi*-module. Notice that
M|c = M |.. Therefore M, = .., for each x € C.

Lemma 4.9 ([22], Lemma V, 3.3). The microlocalized module #* = Ep1 ®p, M
has support in the set X of singular points of M.
As a corollary of this lemma, I'(C, . #") = P,y ¢ AL

Proposition 4.10 ([22], Proposition V, 3.4). At any singular point ¢ of ., the germ
£ ® M is a (k = C[][ 1], V)-vector bundle with regular singularities.

Proposition 4.11 ([22], Proposition V, 3.6). The composed C[z]-linear mapping
G =k®cp 1 ™™ — T(C.k ®cys, M) — T(C,. ")
is an isomorphism.

Proof of Lemma 4.8. Thanks to Lemma 4.9, for each x; € £ n C the microlocali-
zation morphism u gives rise to the exact sequence of holonomic D,,-modules

0 — keru — M, 5 (M,,)" — coker u — 0. (19)

As kerpu~ D, /Dy .(3y)" (resp. cokeru ~ Dx[/Dx[.(ax[)k/) for a given ke N
(resp. k' € N), ker u (resp. coker u) is equivalent to CK = 0 (resp. C¥' = 0). By
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Proposition 4.10, (M,,)" is a regular meromorphic connexion therefore proposi-
tions 4.2 and 4.11 imply that it is equivalent to the quiver (18). Thus the exact
sequence (19) is equivalent to the exact sequence of quivers

0 ck < E L L F ck 0
[ T\ 0 Ve T
,\2 jLiT‘\i 1 ﬂ\\&AlT, 1 !\\Z

0 0 F; ; F, 0 0.

Since the rows are exact, f§ is an isomorphism. Furthermore the commutativity

of this diagram implies that coj=pf and fo (T, —1) = (T;—1)oa Thus
fo(Ty—1)o0j=(T;~1)ouoj. Hence fo T, =Tiof. 0

Corollary 4.12.  dimZ(T,)) — dimZ(T;) = (dimker(T,, — 1))* = (dimE —
dim F;)?.

Proof. As the quiver T,, —1: E=F,;:j is minimal, it follows from Proposi-
tion 4.6 that dim Z(Ty,) — dim Z(T;) = (dim ker(T,, — 1]))2. On the other hand,
dimker(Ty, — 1) + dimim(T,, — 1) =dimE. Since T,,—1:E — F; is onto,
dimF; = dimim(T,, — 1).  Therefore, (dimker(T,, — ﬂ))2 = (dimE — dim F,)%.

O
Corollary 4.13. dimZ(T,.) — dim Z(Ty) = —(dimker(T, — 1))* = —(dim F —
dimF,,)?.
Proof. Similar to Corollary 4.12. |

Corollary 4.14. dimker(Ty — 1) = dimE — dimE = ¥ | dim F; — dim E.
Proof. Thanks to Lemma 4.7, Ty — 1 : E — F is onto. Therefore dim ker(Ty — 1)
=dimE — dimF. This Lemma also implies that dimF = dim F.,, = dimE, be-
cause M is regular and localized at infinity. It follows from Proposition 4.11
that dimker(Ty — 1) = 3_F | dim F, — dim F. 0
5. Main result

The main result of this paper can now be proved.

Theorem 5.1. The Fourier transform preserves the rigidity index of irreducible
regular holonomic Dy [*{o0}|-modules with nonzero minimal extension.

Proof. Let M be an irreducible regular holonomic Dp:[*{co}]-module and let
Y be the set of its singular points. The irreducibility condition ensures that
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Muin = M, unless Hizj(M) = M (cf. Proposition 2.2). It follows from Theorem
3.4 that,

k k
rig(fM) = dimZ(To) + > dimZ(T;) + > (dimF;)* — (dimE)*.
i=1 i=1
Thanks to corollaries 4.12 and 4.13 the equality above can be rewritten as follows,

rig(“M) = dim Z(T..) + (dim ker(To — ﬂ))2
k k

+3 " [dim Z(T,,) - (dimker(T,, — 1))*] + > (dim F;)* - (dim E)”.

i=1 i=1

By corollaries 4.14 and 4.12, one has

rig("M) = dimZ(T,,) + (dimE — dim E)?

+ i[dimZ(Txi) — (dimE — dimF;)?] + i(dim F,)* — (dimE)?

i=1 i=1

=dimZ(T +ZdlmZ + (dimE — dim E)?
dimE)? — 2dim Edim F; + (dim F;)?]

dim F;)* — (dim E)*

3
_i

=dimZ(T,) + Z dim Z(T,,) + (dim E — dim E)?

— k(dimE)? + 2dimEZ dim F; — (dim E)*

=dimZ(T,) + Z dim Z(T,,) + (dim E)* — 2 dim E dim E
+ (dimE)* — k(dim E)? 4+ 2dim E dim E — (dim E)?
= (2= (k+1))(dimE)? + dim Z(T -I-Zdlmz

= rig(M). O
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A. Appendix
The purpose of this appendix is to give a proof of the following theorem:

Theorem A.l. Let M be a regular holonomic Dy [«{c0}]-module and M its
Fourier transform. If E, 2 F,, (resp. E 2 F) is the quiver equivalent to M,
(resp. "My), then F = F, and T =T

The proof relies on V-filtrations and on [18], Theorem I, 6.2.5.

B. Outline of the proof

The proof is inspired by the methods used by C. Sabbah in [19] §2 to characterize
the Fourier transform in a cohomological way. Let A', A’ and A' be respec-
tively the affine line with affine coordinate 7, /' and 7 respectively and let A;, Aj,
A, be the respective Weyl algebras. Throughout the appendix one uses the follow-
ing notations:

® M denotes the holonomic D;‘;llg—module MYE|

e M’ denotes the holonomic D:fﬁ -module M|,
e p, p denote the canonical projections A' LA x AV L AL

e ¢, § denote the canonical projections A" <L AT x Al 4 Al

Let M[t] = M ®¢ C[t] = p*M be the inverse image of M =T'(A!, M) on
A x A" with its natural structure of Cl[t,7]<é,, 0 y-module. For a detailed ac-
count on inverse and direct images, refer to [1], [4], [6]. Put M’ = T(A", M/).
Analogously let M'[t] = M’ ®¢ C[t] = ¢"™M’ be the inverse image of M’ on
A" x A' endowed with its natural structure of C[¢,¢'~! 7]<d,,0:>-module.
With the these notations one has

C(A' x Al ptM) = M[1],
LA x Al gt M) = M'[1].

Mz] can be identified to the C[t, t]-module M[7] ®¢,, e~ with the following
twisted actions of d,- = d, — v and 0,- = 0, — ¢, for m € M[z]:

om®@e ™) =[0,—t)m®@e ™, o (mRe ) =[(0; —t)m| ® e ".

Similarly, M'[7] can be identified to the C[¢, #'~!, 7]-module M'[t] ®c(y -1 e /"
with the twisted actions of d,- = 0, + tt'~? and 0,- = 9, — !, for m € M'[1]:
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at’(m ® e*T/t’) _ [(at/ + Ttlfz)m] ® ei.[/t/7
d(m@e™ ) = [(3 — 1" ym]@e ",

Thanks to these identifications one has

LA x AL p" M @gus O 41 ¢7") = MI1],

LA x AL "M @ O

ny Al
A Al A" xA

ey = M'[4].

Thus the direct images are respectively the complexes,

A o a —tr G
F(AL b (P"M®gus O 41 ¢7")) = Ml = M[t, (20)
P a it 01+
F(Ala q+(q+M/ ®0"‘lg OAI/ngAI e /! )) = M/[T] - M/[T]a (21)

Al AL

where the right hand term of each complex has degree 0 and have cohomology in
degree 0 only.

Owing to the following two lemmas, the complexes (20), (21) give rise respec-
tively to the following short exact sequences:

0 — M % M[1] %~ FM — 0, (22)

0— M'[d 5 M5 FM[r '] — 0. (23)
Therefore,
A~ “ 1 —IT
FyL = HO(Al,p+(p+M ®0§1fo1 ()glgx/:\l e’ )),

"M =HYAY 4, (g M ®@pa  OXF L e")).

11
algal  ATX

Lemma ([16], Lemma 2.6.18). Let M be an Aj-module with the twisted action

(o))

=0, — 1 : M[t] = M[t], Zri Q m; — Zri®0tmi - Zr’“ ® m;.
i=0 =0 =0

This map satisfies the following conditions.:
1) is a map of C[t]<0;-y-modules,
i) is injective,

iii) coker(d, — t) = "M (and therefore 0, = t in "M).
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Proof. This lemma is essentially a restatement of [19], §§2.1. O

Lemma ([16], Lemma 2.6.20). Let M’ be an A{[t'~'|-module with the twisted
action

dp- = 0p + 1/t : M'[7] — M'[1],
Zri Q mj — Z‘Ei ® 0pm; + Zfi+l ® ' >m;.
i=0 i=0 i=0

This map satisfies the following conditions.
i) it is a map of C[t|{0;- y-modules,

il) it is injective,

iii) coker(d, + t/t”?) = FM[t71].

Proof. The proof is similar to the preceding lemma. O

The key 71dlea behind %hcle proof of Lemma A.l is to first take the compacti-
fication P! <— P! x A' 25 A'. The reason for this lies in the fact that the

map 7y is proper and therefore its direct image preserves the V-filtration for
each degree of cohomology (cf. Theorem C.5). Then one uses the V-filtration to
prove Lemma A.1. For a nice overview on V-filtrations in dimension refer to [18]
§1.6. In higher dimensions, refer to [11] or [13] lecture 7.

Let us therefore take a close look at 7a: (z, (ji M[t7'])), where j : Uy — P!
is the inclusion, Uy = C(= A!) and U, = P'\{0}. j,M[r"] is the sheaf having
the following sections:

L(Uo, jM[t™1]) = M1,
[(Uy, jtM[t7']) =M[¢t7"]  (with the actions of 7' and d,),
T(Up A Uy, i Me']) = M1

n;] (j+M) is the sheaf having the following sections:

(o, s (eM[71) = M[e [l
C(Us,nf (jeMT')) =M '[z] (with the actions of ' and 0,-),
T(Upn Uyl (jr M) = M [l

nar, (7) (j+M)) gives rise to the double complex
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M(r '] @ M le] —— Ml e

al Pl Pl

M [ @ Mt ')[f] —— M[r ][],

where the rows are Cech complexes, the columns are relative de Rham complexes.
J is the onto map (my,my) — my — my and kerd ~ M[¢t~!][z] (with the actions of '
and 0,-). This complex is quasi-isomorphic to

kerd M|t~ 1]
kero M[t~Y[7]

The complex above gives rise to the short exact sequence (23). The preservation of
the V-filtration for each degree of cohomology (cf. Theorem C.5) implies, for each
k € Z, that

' [TVeM'[t])] = Vi("M[).

C. Monodromy at infinity and Fourier transform

This section relates the quiver E,, 2 F, associated to M., and the quiver E=F
associated to “M,. This is done by computing the canonical V-filtration of
M'[z] and then using the preservation of the V-filtration by proper direct images
[Theorem C.5] to compute the V-filtration of “M,. Before computing the ca-
nonical V-filtration of M’[z], let us state and prove the following two auxiliary
lemmas.

Lemma C.1 ([16], Lemma 2.6.19). Let M be an holonomic A-module and
p=> 1ot ®@mie Mz, then p=0iff mi=0fori=0,...,n

Proof. Both {1,...,7"} and {my, ..., m,} span finite dimensional C-vector spaces
whose tensor product is contained in M[z] and so its dimension is also finite. [

Lemma C.2. If M’ is a holonomic A{-module localized at t' =0, then M'[1] is
microlocalized at t = 0, i.e., left multiplication by 0. is bijective.

Proof. By Lemma C.1, left multiplication by J,- is injective. As for each i e N
and me M, ;- (3, (i_”j)!r"‘f ® (—t"'m)) = v @ m, multiplication by 0;- is
onto, so it is bijective. O
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Here [x] denotes the external product. For more details on external products, refer
o [4], chap. 13.

Lemma C.3. Let V/M', k € Z, be the canonical V-filtration of M’ along t' =0
and let b'(s) € Cls| be its Bernstein polynomial. Then the family of vector spaces
*UrM[t]).

T / _ Zz> ( )l(1® Vk+1M) ikaO,
Ud(M'[2) —{ ) e

is the canonical V-filtration of M'[t] along © = 0. Furthermore, for each k € Z,
U(M'[t]) = (2:-) " Up(M'[2).

Proof. Firstly, one shows that “Up(M'[z]) is a left A] X VoA -module. By
construction, "Up(M'[7]) = 3,2(0r-) (1 ® ViM’) is closed under the action
of 0y-. As t'ViM’' < V;_ M/, is also closed under the action of #. More-
over, 7= 0y - —0y and 70, - (1 ® VIM') = (3, - —0,)t'(1 ® V1M'). Recall that
Op- = 0p + 7' and 0,- = 0, — t'~'. Therefore *Uy(M'[1]) is also closed under
the actions of 7 and 70,-.

Secondly, one shows that “Uy(M’[7]) is a A] VoA -module of finite type.
Since VM’ is a good filtration, there exists an A{-module map ¢ : ), 4] — M’
and ki, ..., k, € Z such that p(Vi(D, A]) =D, VierA{) = ViM'. In par-
ticular 1M’ is a ¥} A -module of finite type. Let ey, ..., e, be a finite set of gen-
erators of V1M’ over VOA . Let us now show that 1 ®ej,...,1 ® e; generate
*Uy(M'[1]) under the action of A| & VpA;. Note that for each m € M’ and i € N

[t0: - +0y - ' +i)(00) (1 @ m) = (3,) (1 ® dpf'm).

Hence
Cltd, - +0p - 1" +i](00-) (1 @ m) = (,-) (1 ® C[o,7]m).
Therefore
Clzd: - +0y - £)(8r) (1 @ m) = (6,)'(1 ® C['d]m).
Consequently

i@[far 40y - /IC[0|C[F)(1 @ ¢)) = Z (00 (1 ® Za: [f'0,]C )
= Z (@) (1® VM),
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As the actions of A| & VoA, and C[zd; - 40, - £]C[0,]C[¢'] on 1 ® m generate the
same set, | @ ey, ..., 1 ® e, generate "Uy(M'[z]) under the action of A] VoA,.

Next, one shows that “U(M'[t]) = (8;)**Us(M'[1]) for each k € Z. This is a
consequence of 1K VyM' = V;M’, for each k € Z. The later can be proved using
a partition analogous to the following one (cf. [16], proof of Lemma 2.6.13). As
0. (1@ VM) =1t M),

0> (0) (1@ VM) => (20) (1 ® VM),
i>0 i>0
Therefore “Uyp i1 (M'[t]) = 0; - "Up(M'[7]) + "Ux(M'[1]) = (8:-)*" Ug(M'[1]), for
every k>0. It remains to be shown that “Up(M'[7]) = (&:)* Usy(M'[1]), for

every k < 0. In order to prove it, one takes the partition (W;(M'[]\{0})),_, =
“U;(M'[7])\"U;_1(M’[z]), which satisfies the following conditions:

i) Uz WiM'[Z]\{0}) = M'[z]\{0}.
ii) Foreach i, je Z, if i # j, then W;(M'[z]\{0}) n W;(M'[z]\{0}) = 0

Let m € W;(M'[z]\{0}). By construction, m # 0. Thus (d;-) 'm € M'[7]\{0}, be-
cause M'[7] is a holonomic A;-module microlocalized in 7 = 0 (cf. Lemma C.2).
By i), there exists only one i € Z such that (0,-) 'm e W;(M'[z]\{0}). Therefore,
m e Wi (M'[z]\{0}). Moreover, by ii), i+1=4k. Hence, for each k € Z,
(0:) " "UM'[f] = Uy 1M'[t]. Consequently (d,-) " *UM'[t] = “Us_M'[¢] so
for each k e N, "U_ M'[t] = (0,-) **UM[1].

By construction, ‘U (M'[7]) = (A| & ViA;)*Up(M'[z]). Thus, it is an increas-
ing filtration compatible with the action of A] ViA,. Besides, it is exhaustive
because

U "UM'[t]) = AR ALY (0)(1@ VM)

keZ i>0

=A[C[d Y _(0r) (1®M') > M[1].

i>0

Finally, let us now compute the Bernstein polynomial in order to show that
*U,(M'[z]) is the canonical V-filtration. Notice that for each k > 1, one has the
congruence modulo *U;_{(M'[z]):

70 - "Up(M'[t]) =) (00) (00 - =00) 1" (1 ® (1" ") Vi M)

i>0
= N0 (1@ @t Wier M) + 3 (00) (1@ £ Vi M')
i>0 i>0

= Z 81/ 1 ® taﬂ )Vk+lMl).

i>0
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Therefore, for each a(s) € Cl[s], one has the congruence modulo Uy (M'[z])

a(xd) UM '[t]) = > (0) (1 @ a(t'0r + 1) Vi M').

i=0
In particular, the congruence holds for a(s) = b’(s). Hence,

b'(20: - +k) UeM'[2]) = Y (00)' (1@ b/ (00 + k + 1) ViuM') = 0.

i>0

Consequently,

b'(20; - +k) U (M'[1]) = "Up—1(M[t]).
Thus,

b'(d: - +1)"U1(M'[t]) = "Vo(M'[z]).
As a result of this,
(00) 70" (20, - +1)* UL (M[2]) = (0,) " Up(M[2]).
In other words,
b'(x0:)(0) " U (M'[e]) = (9:) ™ Up(M[e]).

Hence, b'(10,-)*Up(M'[7]) = "U_;(M'[]). By recurrence, for each k € 7™,

b'(z0: - +k) Ur(M'[1]) = “Up—1 (M'[t]).

Let B(s) € C[s] the Bernstein polynomial of *Ui(M’[z]). The inclusion above im-
plies that f(s) divides 5'(s). Put [1 ® V;M'] = “Ux(M'[z])/imd,-. As for each
k=1, fzo, +k)[1® ViaM'] < [1 ® VM),

ﬁ([lat’ +k+ 1)Vk+]M/ (e VkM,.

Therefore, for each [ > 0, t"'f(t'0, + k + 1)V, tM' < ¢''V;iM’. In other words,
foreach k € Z, B(t'0y +k — 1+ 1)V;_1 . 1M’ = Vi, M'. Hence, for each k € Z,

ﬁ([/at/ + k + 1)Vk+1Ml (e VkM/-

Given that b'(s) € Cl[s] is the monic polynomial of smallest degree amongst those
satisfying the inclusion above, B(s) = b'(s). As both V-filtrations V;,M’, Up(M'[1])
have the same Bernstein polynomial and VM’ is the canonical V-filtration of M’,
then Ui (M'[z]) is the canonical V-filtration of M'[z]. O
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Let “Vx(M'[z]) be the canonical V-filtration of M'[z] along = 0. Accord-
ingly, the quotient "V (M'[t])/*Vo(M'[z]) is an Aj-module with the endomor-
phism induced by 70,-. Conversely, F,, = V_1M'/V_,M' is a C-vector space with
an endomorphism induced by the action of /0. As a result, F., x] A]/A[.t' is an
Aj-module with an endomorphism induced by the action of 7', on F.,,.

Lemma C.4. The two A{-modules above, equipped with the respective endomor-
phisms, are isomorphic.

Proof. See point (ii) (6) in the proof of [21], Proposition 4.1. O

Theorem C.5 ([13], Theorem 7.5.5(1)). Let f: X — X' be a holomorphic map
between complex analytic manifolds and let t € C be a new variable. Put F =
fx1c: X xC— X'"xC. Let M be a right Dyyc-module equipped with the
canonical V-filtration V M (relative to the hypersurface Y = X x {0}). Then
V.M defines canonically and functorially a V-filtration U, H'(F, M). Moreover,
if F is proper on the support of M, U, H'(F, M) is a good V-filtration.

Now one has all the required conditions which enable us to prove Theorem A.1.

Proof of Theorem A.l. By taking X’ = {0} in theorem above, {0} x A' can be
identified to A! and F to Tal P! x A' - Al. Since = 41 1s proper, the theorem
above implies that 7' ("V,(M'[1])) = Vi(*M[t™!]), for each k € Z. Hence,

' (ViM'[1))) = [1 ® VMl = V("M 7)),
for each k € N. In particular, one has
M) =1@ M) and  Vo("M[r7!) = [1 ® IM/].
Since F = V1 (*M[¢1])/Vo(FM[¢71]), by Lemma C.4, F = F,, and Tg = To,. [
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