
Portugal. Math. (N.S.) Portugaliae Mathematica
Vol. 70, Fasc. 4, 2013, 295–318 6 European Mathematical Society

DOI 10.4171/PM/1936

Bounded theories for polyspace computability
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Abstract. We present theories of bounded arithmetic and weak analysis whose provably
total functions (with appropriate graphs) are the polyspace computable functions. More
precisely, inspired in Ferreira’s systems PTCA, Sb

1-NIA and BTFA in the polytime frame-
work, we propose analogue theories concerning polyspace computability. Since the tech-
niques we employ in the characterization of PSPACE via formal systems (e.g. Herbrand’s
theorem, cut-elimination theorem and the expansion of models) are similar to the ones
involved in the polytime setting, we focus on what is specific of polyspace and explains the
lift from PTIME to PSPACE.
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1. Introduction

Close connections between bounded theories of arithmetic and computational

complexity classes have been established in the mid 1980’s by Samuel Buss. In

[1], Buss introduces the weak formal systems S1
2, U

1
2 and V1

2, whose provably total

functions (with appropriate graphs) are respectively the classes PTIME, PSPACE

and EXPTIME. The idea is that weak (subexponential) theories can be used to

analyze complexity-theoretic questions. For more on bounded arithmetic and

related work see [21], [20], [22], [4], [18].

A few years later [8], [9], Fernando Ferreira presents alternative characteriza-

tions of polytime computability via formal systems. Among the systems proposed

we highlight the theory Sb
1-NIA, which corresponds to Buss’s system S1

2 in a binary
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notation framework (see [17]), and the system PTCA which allows induction for

polynomial time decidable predicates.

Following this line of research (weak theories in binary notation characterizing

polytime computability) and responding to a challenge of Wilfried Sieg (find a

subsystem for analysis whose provably recursive functions consists only of the

computationally feasible ones), Ferreira introduces in [10] the theory BTFA. BTFA

is proposed as a base theory in the reverse mathematics’s style, playing, in the

polytime framework, the role that RCA0 plays in the original reverse mathematic’s

setting (see [26]). While PTCA and Sb
1-NIA are first-order theories, since BTFA is

designed to the formalization of analysis, it is a second-order system, being able

to deal not only with binary words but with sets of words. For the formalization

of analysis in BTFA see [6].

In the present paper we focus in polyspace computability. The goal is to pre-

sent theories of bounded arithmetic and weak analysis whose provably total func-

tions (with appropriate graphs) are the polyspace computable functions. Since the

study in the polyspace framework is strongly inspired and guided by Ferreira’s

work in the polytime setting, we give special emphasis to what is specific of

PSPACE and refer to Ferreira’s work in the common parts.

The paper is organized as follows.

In Section 2, we recall a recursion-theoretic characterization of PSPACE and

introduce the theory PSCA proving, via Herbrand’s theorem, that its provably

total functions are the polyspace computable functions. The idea is that PSCA

follows the informal correspondence

PTCA

PTIME
P

PSCA

PSPACE
:

In the next section, we introduce a second system designed to capture polyspace

computability, S1;b
1 -NIA. The idea is to avoid the need for function symbols for

each polyspace computable function (as in PSCA), reproducing in the new setting

the simplification of language achieved in the polytime framework with the move

from PTCA to Sb
1-NIA. Graphically, we have the correspondence

Sb
1-NIA

PTCA
P

S1;b
1 -NIA

PSCA
:

While Sb
1-NIA is a first-order theory, the theory S1;b

1 -NIA is a second-order bounded

system. As discussed in the section, the latter theory has to be able to deal with

(bounded) sets of words in order to capture functions described by bounded

recursion. Note that the class PSPACE is closed under the bounded recursion

scheme. The strategy to prove that S1;b
1 -NIA corresponds to polyspace comput-
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ability is similar to the one used by Buss to prove an homologous result (in unary

notation) relatively to U1
2: an application of partial cut-elimination.

The enrichment of S1;b
1 -NIA with a bounded collection scheme keeping the

connection with polyspace computability is done in Section 4 also via proof-

theoretic means. The importance of the new scheme becomes visible in the subse-

quent section when joining recursive comprehension to the system: a fundamental

scheme to the development of analysis.

In Section 5, we finally present a theory rich enough to develop analysis keep-

ing the connection with polyspace computability. We named the theory BTPSA

and were inspired in the following relation:

BTFA

Sb
1-NIA

P
BTPSA

S1;b
1 -NIA

:

The principal features of BTPSA (and of other weak theories for analysis) are a

second-order language (with unbounded second-order variables) and a recursive

comprehension scheme, central in expressing, for instance, the existence of par-

ticular real numbers and in the formalization of basic analytic concepts such as

continuous real functions or sequences of real numbers.

In the recent paper [7], a general blueprint for the construction of theories

for analysis connected with computational complexity classes is presented and is

illustrated in the polytime framework. This work can be seen as the implementa-

tion of the general blueprint in the polyspace setting.

The results of this paper are part of the master thesis [15]. The material in

Section 2 was, in addition to [15], also presented (in a slight di¤erent formulation)

in the PhD dissertation [24]. Since both dissertations are written in Portuguese,

we found it useful to make the work visible to the logic community through this

article.

2. A first-order arithmetic theory for polyspace computability

In this section we start by recalling an alternative characterization of PSPACE, the

well-known computational complexity class usually defined by limiting the amount

of space available (polynomial space) in a deterministic Turing Machine. The

inductive characterization of PSPACE we present, is essentially the one introduced

in [23] and will be useful in what follows. Since it is written in binary notation, we

start introducing some operations. Let 2<o (also known as f0; 1g�) be the set of

all finite sequences of 0’s and 1’s. The empty sequence is denoted by �. For x

and y elements in 2<o, x^y represents the concatenation of x by y (we usually

omit the symbol ^ and just write xy); xJ y means that x is an initial subword of

y (string prefix); jxj denotes the length of x, i.e. the number of 0’s and 1’s in the
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word x; xjy is the truncation of x by y defined by xjy :¼
x; if jxja jyj
z; if zJ xbjzj ¼ jyj

�
;

x� y is the product of x by y defined as being the word x concatenated with

itself length of y times; x � y (respectively xC y) abbreviates 1� xJ 1� y

(respectively 1� x ¼ 1� y) meaning that the length of x is less than or equal

(respectively equal) to the length of y; and al is the linear order defined by

xal y :,
�
x � ybsðxC yÞ

�
4
�
xC ybbzJ xðz0J xbz1J yÞ

�
4ðx ¼ yÞ, i.e.

it is defined first according to length and then, within the same length, lexico-

graphically.

Definition 2.1. PSPACE is the smallest class of functions that includes the initial

functions:

(1) C0ðxÞ ¼ x0,

(2) C1ðxÞ ¼ x1,

(3) Pn
i ðx1; . . . ; xnÞ ¼ xi, for 1a ia n,

(4) Qðx; yÞ ¼ 1; if xJ y;

0; otherwise;

�

and is closed under the following schemes:

• composition

f ðxÞ ¼ g
�
h1ðxÞ; . . . ; hkðxÞ

�
,

• bounded recursion on notation

f ðx; �Þ ¼ gðxÞ,
f ðx; y0Þ ¼ h0

�
x; y; f ðx; yÞ

�
jtðx; yÞ

,

f ðx; y1Þ ¼ h1
�
x; y; f ðx; yÞ

�
jtðx; yÞ

,

where t is a bounding function1, i.e., t belongs to the smallest class of func-

tions that includes �; 0; 1; ;̂�;Pn
j and is closed under composition,

• bounded recursion

f ðx; �Þ ¼ gðxÞ,
f
�
x;SðyÞ

�
¼ h

�
x; y; f ðx; yÞ

�
jtðx; yÞ

,

where t is a bounding function and S is the successor function defined by

Sð�Þ ¼ 0, Sðx0Þ ¼ x1, Sðx1Þ ¼ SðxÞ0.

Note that the last scheme is essential to capture polyspace computability.

Removing the scheme of bounded recursion in the definition above we obtain

exactly a characterization of PTIME. See [8].

1The bounding functions ensure that the recursion scheme does not produce functions with exponen-
tial growth.
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Let L be the first-order language which has three constant symbols �, 0 and 1,

two binary function symbols ^ and � (intended to be interpreted respectively as

concatenation and product in the standard model) and two binary relation symbols

¼ and J (for equality and initial subwordness respectively). The domain of the

intended standard model of the language is 2<o. Let LPS be an extension of the

former language by adding a function symbol for each description of a polyspace

computable function according to Definition 2.1.

Definition 2.2. The class of polyspace decidable matrices is the smallest class of

formulas of LPS containing the atomic formulas and closed under the Boolean

operations and quantifications of the form Exðx � t ! � � �Þ or bxðx � tb� � �Þ,
where t is a term of LPS where x does not occur.

Definition 2.3. PSCA (acronym for Polynomial Space Computable Arithmetic)

is the first-order theory, in the language LPS, which has the following

axioms:

• Basic axioms

x� ¼ x, xðy0Þ ¼ ðxyÞ0 and xðy1Þ ¼ ðxyÞ1,
x� � ¼ �, x� y0 ¼ ðx� yÞx and x� y1 ¼ ðx� yÞx,
xJ � $ x ¼ �, xJ y0 $ xJ y4x ¼ y0 and xJ y1 $ xJ y4x ¼ y1,

x0 ¼ y0 ! x ¼ y and x1 ¼ y1 ! x ¼ y,

x0A y1, x0A � and x1A �.

• Defining axioms

a. Initial functions

(1) C0ðxÞ ¼ x0,

(2) C1ðxÞ ¼ x1,

(3) Pn
i ðx1; . . . ; xnÞ ¼ xi, for 1a ia n,

(4) Qðx; yÞ ¼ 1 $ xJ y; Qðx; yÞ ¼ 04Qðx; yÞ ¼ 1.

b. Derived functions

(1) f ðxÞ ¼ g
�
h1ðxÞ; . . . ; hkðxÞ

�
,

if f is the description of the composition from g, h1; . . . ; hk,

(2) f ðx; �Þ ¼ gðxÞ,
f ðx; y0Þ ¼ h0

�
x; y; f ðx; yÞ

�
jtðx; yÞ

,

f ðx; y1Þ ¼ h1
�
x; y; f ðx; yÞ

�
jtðx; yÞ

,

where t is a term of the language L and f is the description of the

bounded recursion on notation defined from g, h0, h1 and t,

(3) f ðx; �Þ ¼ gðxÞ,
f
�
x;SðyÞ

�
¼ h

�
x; y; f ðx; yÞ

�
jtðx; yÞ

,

where t is a term of L, S is the successor function and f is the descrip-

tion of the bounded recursion defined from g, h and t.
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• Scheme of induction on notation

Að�ÞbEx
�
AðxÞ ! Aðx0ÞbAðx1Þ

�
! ExAðxÞ;

where A is a polyspace decidable matrix, possibly with other free variables

besides x.

The theory PSCA described above was inspired in PTCA (Polynomial Time

Computable Arithmetic), a theory introduced by Ferreira in [8] designed to corre-

spond to polytime computability. The novelty in PSCA is that the scope of the

induction on notation scheme extends from polytime decidable matrices to poly-

space decidable matrices and in the derived functions we add an extra scheme for

bounded recursion.

Note that the scheme of slow induction

Að�ÞbEx
�
AðxÞ ! A

�
SðxÞ

��
! ExAðxÞ

(which in unary notation corresponds to the usual þ1-induction) is valid in PSCA

for A a polyspace decidable matrix possibly with other free variables besides x.

The proof is entirely similar to the one presented in [8], p. 53.

Having in view to show that PSCA corresponds to the computational complex-

ity class PSPACE, i.e. to polyspace computability, we start by arguing that PSCA

is a universal theory. Since it is not visible from the above formulation because of

the induction scheme, our strategy is to use a well-known result of Łoś and Tarski

that ensures that if a theory is preserved by substructures then it is a universal

theory.

In order to prove that PSCA is preserved by substructures we need some auxi-

liary results.

Lemma 2.4. Given A1ðxÞ; . . . ;AnðxÞ polyspace decidable matrices and f1ðxÞ; . . . ;
fnþ1ðxÞ function symbols, there is a function symbol f ðxÞ such that

PSCA ‘
�
A1ðxÞb f ðxÞ ¼ f1ðxÞ

�
4
�
sA1ðxÞbA2ðxÞb f ðxÞ ¼ f2ðxÞ

�
4� � �4

�
sA1ðxÞb� � �bsAnðxÞb f ðxÞ ¼ fnþ1ðxÞ

�
:

The result above shows that PSCA allows the definition of functions by cases,

being the cases expressed by polyspace decidable matrices.

Proof. With the extra assumption that for the polyspace decidable matrices

Ai there are function symbols KAi
such that PSCA ‘

�
AiðxÞ ! KAi

ðxÞ ¼ 1
�
b�

sAiðxÞ ! KAi
ðxÞ ¼ 0

�
, Lemma 2.4 can easily be proved by induction on n. For

n ¼ 1 just take f ðxÞ ¼ h
�
f2ðxÞ; f1ðxÞKA1

ðxÞ
�
with hðy; �Þ ¼ y, hðy; x0Þ ¼ y and

hðy; x1Þ ¼ x.

Thus, it just remains to argue that polyspace decidable matrices can be ex-

pressed in PSCA by means of quantifier-free formulas, more precisely for each
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polyspace decidable matrix A there is a function symbol KA in LPS such that

PSCA ‘
�
AðxÞ ! KAðxÞ ¼ 1

�
b

�
sAðxÞ ! KAðxÞ ¼ 0

�
.

The proof can be done by induction on the complexity of A. For A an atomic

formula we take KJ as being Q and K¼ðx; yÞ as being Q
�
11;Qðx; yÞQðy; xÞ

�
. We

define K
sB :CK¼ð0;KBÞ and KBbC :CK¼ð11;KBKCÞ. Let Aðz; xÞ be the formula

Ey
�
y � x ! Bðz; yÞ

�
. Take f ðz; �Þ ¼ KBðz; �Þ and

f
�
z;SðxÞ

�
¼ f ðz; xÞ if KB

�
z;SðxÞ

�
¼ 1

0 if KB

�
z;SðxÞ

�
¼ 0.

�

By slow induction on x, it is easy to prove that Ey
�
yal x ! Bðz; yÞ

�
$

f ðz; xÞ ¼ 1. So, since y � x $ yal 1� x, we have Ey
�
y � x ! Bðz; yÞ

�
$

f ðz; 1� xÞ ¼ 1. The result follows taking KAðz; xÞ as being K¼
�
1; f ðz; 1� xÞ

�
.

r

Lemma 2.5. For each polyspace decidable matrix Aðz; xÞ there is a function symbol

g in LPS such that PSCA ‘
�
by � xAðz; yÞ

�
! gðz; xÞ � xbA

�
z; gðz; xÞ

�
.

Proof. Take

f ðz; �Þ ¼ � if Aðz; �Þ;
1 otherwise;

�

f
�
z;SðyÞ

�
¼

f ðz; yÞ if f ðz; yÞ � y;

SðyÞ if f ðz; yÞ �= y and A
�
z;SðyÞ

�
;

SðyÞ1 if f ðz; yÞ �= y and sA
�
z;SðyÞ

�
:

8<
:

As a bounding function we can take 1� y11. Let gðz; xÞ be (by definition)

f ðz; 1� xÞ. Let us prove that g satisfies the statement in the lemma. It can be

proved, by slow induction on y that f ðz; yÞ � y ! A
�
z; f ðz; yÞ

�
, thus we have

that ðyÞ gðz; yÞ � y ! A
�
z; gðz; yÞ

�
. Also, by slow induction, this time on x, we

can prove that
�
byal xAðz; yÞ

�
! f ðz; xÞ � x. Easily from the above statement

we can prove
�
by � xAðz; yÞ

�
! gðz; xÞ � x. The result follows from the last as-

sertion and ðyÞ. r

Let M be a model of PSCA and N a substructure of M. From Lemma 2.5 we

can easily argue that the polyspace decidable matrices are absolute between N

and M. The argument used in [9], p. 143, in the polytime setting, adapts trivially

to the present context. To conclude that PSCA is preserved by substructures, we

only need to check that induction on notation also holds in N. Since the induc-

tion scheme can be reformulated in the following alternative way:

Að�ÞbExJ a
�
AðxÞ ! Aðx0ÞbAðx1Þ

�
! AðaÞ;
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by absoluteness of the polyspace decidable matrices, the induction on notation

axioms hold in N.

Therefore, since PSCA is a universal theory, applying the Herbrand Theorem

and Lemma 2.4, immediately we conclude that:

Theorem 2.6. If PSCA ‘ ExbyAðx; yÞ with A a polyspace decidable matrix and x

and y its only free variables then, there is a function symbol f in LPS such that

PSCA ‘ ExA
�
x; f ðxÞ

�
.

It is in this precise sense—the provably total functions of PSCA with polyspace

graphs are exactly the functions of PSPACE—that we say that PSCA corresponds

to polyspace computability.

3. A second-order bounded arithmetic theory for polyspace computability

It is known that it is possible to introduce all primitive recursive functions in

S0
1-IND (see the incompleteness paper of Gödel) and it is possible to introduce all

the polytime computable functions in Sb
1-NIA (see [9]). As a consequence, PRA can

be consider a subtheory of S0
1-IND and PTCA a subtheory of Sb

1-NIA.

The goal of this section is to present a theory which plays, in the polyspace

setting, the role played by S0
1-IND and Sb

1-NIA in the primitive recursive and poly-

time settings respectively. More precisely, we are looking for a theory still charac-

terizing polyspace computability but in a more economic language not having all

descriptions of PSPACE functions as primitive.

While Sb
1-NIA corresponds to Buss’s system S1

2, the theory S1;b
1 -NIA we are

going to introduce is inspired in Buss’s system U1
2. Contrarily to what happens

with polytime computability (where a first-order language is enough), to introduce

functions described by bounded recursion we need S1;b
1 -NIA to be a second-order

(bounded) theory. Note that, in a system that does not prove the totality of expo-

nentiation, not every bounded set is given by a binary word. The introduction of

second-order bounded variables is by no means a novelty, Buss in [1] uses second-

order bounded variables in the unary notation context.2

We start introducing the second-order language and some notation.

Let Lb
2 be the second-order language obtained from L by adding second-

order bounded variables and the relation symbol a which infixes between a term

of L and a second-order bounded variable. The standard structure for this

language has domain
�
2<o;Pf ð2<oÞ

�
, i.e., the first-order variables are interpreted

2We thank the anonymous referee for calling our attention to two related works: (i) Skelley [25] gives a
characterization of PSPACE via a third-order (bounded) theory; (ii) Kołodziejczyk, Nguyen and Thapen
[19] use a strategy similar to ours to express PSPACE computability in their framework.
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as finite sequences of zeros and ones, and the second-order (bounded) variables are

subsets X t of 2<o, with t any term of L, satisfying x a X t ! x � t.

The terms in Lb
2 coincide with the terms in L and the class of formulas in Lb

2

can be defined as the smallest class of expressions containing the atomic formulas

t1 J t2, t1 ¼ t2, t1 a X t, and closed under the Boolean operations, the first-order

quantifications Ex, bx, the first-order bounded quantifications Ex � t, bx � t and

the second-order bounded quantifications EX t, bX t. Note that in Lb
2 , Ex � tA

and bx � tA are treated as new formulas and not as mere abbreviations for

Exðx � t ! AÞ and bxðx � tbAÞ respectively. It is a technical detail that contrib-

utes for an e‰cient formulation of sequent calculus.

A S1;b
1 -formula (respectively P1;b

1 -formula) is a formula in the language Lb
2 of

the form: bX t1
1 . . . bX tk

k A (respectively EX t1
1 . . . EX tk

k A), where A is a S1;b
0 -formula

(i.e. with no quantifications of second-order and where all the first-order quantifi-

cations are bounded. It may have first and second-order parameters). In the

standard model, if the second-order parameters are in the Polynomial Hierarchy

(a.k.a. Meyer–Stockmeyer Hierarchy) then the S1;b
0 -formulas define predicates in

this hierarchy. An extended S1;b
1 -formula (respectively extended P1;b

1 -formula) is a

formula that can be built in a finite number of steps, starting with S1;b
0 -formulas

and allowing conjunctions, disjunctions, first-order bounded quantifications and

second-order bounded existential (respectively universal) quantifications.

Definition 3.1. S1;b
1 -NIA is the second-order theory in the language Lb

2 , which has

the following axioms:

• Basic axioms3.

• ExEX tðx a X t ! x � tÞ, with t a term where x does not occur.

• Bounded comprehension: bX tEx � t
�
x a X t $ AðxÞ

�
, where t is a term in

which x does not occur, and A is a S1;b
0 -formula that may have other free

variables other than x and where the variable X t does not occur.

• Induction on notation for S1;b
1 -formulas:

Að�ÞbEx
�
AðxÞ ! Aðx0ÞbAðx1Þ

�
! ExAðxÞ;

with A a S1;b
1 -formula possibly with free variables other than x.

• Replacement for S1;b
0 -formulas: Ex � tbX qAðx;X qÞ ! bY rEx � tAðx;Y rÞ,

with A a S1;b
0 -formula, t a term where x does not occur, and A results from

A by replacing all the occurrences of ‘s a X q’ by ‘3x; s4 a Y r’ (where 3 ; 4 is

a pairing function and r is a certain term depending on t and q). We are

3The 14 basic axioms of Definition 2.3.
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omitting the exact term r in order to facilitate reading (the term depends on

the particular definition of the pairing function—see [15] for a concrete imple-

mentation of these matters). This is a technical axiom that permits a kind

of ‘‘permutation’’ between bounded first-order universal quantifications and

bounded second-order existential quantifications.

Applying the replacement scheme, it is straightforward to see that an extended

S1;b
1 -formula can be expressed via a S1;b

1 -formula. Thus, contrarily to the for-

mulation of Buss’s theory U1
2, where the presence of extended S1;b

1 -formulas in

the induction scheme is essential, with the replacement scheme available we can

disregard extended formulas in the formulation of S1;b
1 -NIA, simplifying subse-

quent arguments by cut-elimination.

Later, in Section 5, we will need a stronger form of comprehension still avail-

able in S1;b
1 -NIA. More precisely, we will use the fact that

Ex
�
AðxÞ $ BðxÞ

�
! EwbX wEx � w

�
x a X w $ AðxÞ

�
;

with A an extended S1;b
1 -formula and B an extended P1;b

1 -formula, is derivable in

S1;b
1 -NIA. We call the previous scheme D1;b

1 -bounded comprehension. The details

of this quite technical result are available in [15], pp. 32–34.

Next we argue that PSCA is a subtheory of S1;b
1 -NIA.

It is possible to present for each f ðxÞ a LPSnL a S1;b
1 -formula Ff ðx; yÞ in the

language Lb
2 and a term bf in L such that S1;b

1 -NIA ‘ Exb1y � bf ðxÞFf ðx; yÞ and
which has the defining properties of f (as given by Definition 2.3)4. The proof

is by induction on the complexity of the description of f . If f is an initial func-

tion or is defined by composition or bounded recursion on notation see the proof

presented in [9], pp. 150–151, in the context of PTIME. What is new, concerning

PSPACE, is the bounded recursion scheme. It remains to prove that if f is the

description of bounded recursion defined from g, h and t, there is a S1;b
1 -formula

Ff ðx; y; zÞ and a term bf ðx; yÞ in the conditions above satisfying, in particular,

S1;b
1 -NIA ‘ Fgðx; zÞ ! Ff ðx; �; zÞ and S1;b

1 -NIA ‘ Ff ðx; y; rÞbFhðx; y; r; uÞbz ¼
ujtðx; yÞ ! Ff

�
x;SðyÞ; z

�
. The details can be found in [15], pp. 35–40. Here we

just give some intuition. In the case of bounded recursion on notation, to express

the value of the function on y, we need the values of the function on the initial

subwords of y (thinking in terms of binary trees we are going through a path till

reaching the initial node). With appropriate coding, it is possible to collect all this

information in a word bounded by a term (depending on y and on the bounding

term t of the function). However, in the case of bounded recursion, the above

strategy is no longer possible since to determine the value of the function on y,

4By b1 we mean ‘‘there is one and only one’’, i.e. S1; b
1 -NIA ‘ Ff ðx; yÞbFf ðx; zÞ ! y ¼ z.
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we need the values of the function in all words xal y (in terms of binary trees we

are going down the words of the same length starting in y till reaching the initial

node). An attempt to code the information as before would result on exponential

size. This is the reason why S1;b
1 -NIA is formulated in a language expressive

enough to denote bounded sets instead of just words. See [15], p. 37, for a possible

way of collecting all the information on a polynomially bounded set (the set allows

the generation of a sequence of blocks, coding exactly the ordered values of the

function, by generating 1 or 0 depending on the fact that a word is or is not in the

set) and for the precise construction of the S1;b
1 -formula Ff and term bf , with f a

function obtained by bounded recursion from g, h and t. Informally, Ff ðx; y; zÞ
will say that there exists a bounded set which generate the blocks as above and

such that if r is the yth block, then z is coded in r.

The proof that Ff and bf satisfy the expected conditions uses the fact

that in S1;b
1 -NIA is valid slow induction for S1;b

0 -formulas. See the details in [15],

pp. 33–40.

We can subsume the above discussion—PSCA as a subtheory of S1;b
1 -NIA—by

the following result:

Proposition 3.2. Every model M of S1;b
1 -NIA can be extended to a model M 0 of

PSCA keeping the first-order domain and the interpretations of symbols of L and

defining the interpretation of each function symbol f a LPSnL via Ff , i.e., inter-

preting f as the function fða; bÞ : M � Ff ða; bÞg.

Proof. From the study above, by the definition of M 0 and of the formulas Ff for

every f a LPSnL, the basic and defining axioms hold in M 0. For the remaining

case, the induction scheme, it is enough to show that for every polyspace decidable

matrix A 0ðxÞ there is an extended S1;b
1 -formula AðxÞ such that M 0 � A 0ðaÞ i¤

M � AðaÞ, for every tuple of parameters a in M 0 (see the consideration con-

cerning extended formulas in the beginning of the section). By induction on the

complexity of the term, the existence of the previous S1;b
1 -formulas of Lb

2 and

terms of L can be extended from function symbols of LPSnL to every term t of

LPS having that M 0 � tðaÞ ¼ b i¤ M � Ftða; bÞ. Think in A 0 (modulo equiva-

lence of formulas) as containing a sequence (possible empty) of quantifications

of the form Ex � tðyÞ and bx � tðyÞ followed by a quantifier-free formula in the

conjunctive normal form. The construction of A from A 0 is done in the expected

way. For example, if in A 0 appears the atomic formula tðxÞJ qðxÞ with t and q

terms ofLPS, in A we will have bz � btðxÞbw � bqðxÞ
�
Ftðx; zÞbFqðx;wÞbzJw

�
.

Negations of atomic formulas, like tðxÞA qðxÞ in A 0 will be expressed in A by

bz � btðxÞbw � bqðxÞ
�
Ftðx; zÞbFqðx;wÞbzAw

�
. And quantifications of the

form Ex � tðyÞ . . . or bx � tðyÞ are replaced by bz � btðyÞ
�
Ftðy; zÞbEx � z . . .

�
or bz � btðyÞ

�
Ftðy; zÞbbx � z . . .

�
respectively. r
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Similarly to the proof in [1] concerning the theory U1
2, it can be proved that

PSPACE is the class of functions provably total in S1;b
1 -NIA with S1;b

1 -graphs. The

proof uses the free cut elimination theorem, after formulating the theory S1;b
1 -NIA

into Gentzen’s sequent calculus. We start by presenting the sequent calculus for-

mulation for S1;b
1 -NIA, denoted by LKPS.

Besides the initial sequents of the form A ) A, with A an atomic formula, and

the sequents for equality, LKPS has also the following axioms:

1) ) AðsÞ, with A a basic axiom of S1;b
1 -NIA and s terms;

2) s a X t ) s � t;

3) ) bX s Ey � s
�
y a X s $ AðyÞ

�
, with A a S1;b

0 -formula where the variable X s

does not occur,

and besides the usual rules for predicate logic has the rules for first-order bounded

quantifications

G;AðtÞ ! D

G; t � s; Ex � sAðxÞ ! D
E� : l;

G; b � t ! D;AðbÞ
G ! D; Ex � tAðxÞ E� : r;

G; b � t;AðbÞ ! D

G; bx � tAðxÞ ! D
b� : l;

G ! D;AðtÞ
G; t � s ! D; bx � sAðxÞ b� : r;

where b is an eigenvariable (i.e., it is not free in either G, D or t), has the rules for

second-order bounded quantifications

G;AðF tÞ ! D

G; EX tAðX tÞ ! D
E2nd : l;

G ! D;AðCtÞ
G ! D; EX tAðX tÞ E2nd : r;

G;AðCtÞ ! D

G; bX tAðX tÞ ! D
b2nd : l;

G ! D;AðF tÞ
G ! D; bX tAðX tÞ b2nd : r;

with F t a second-order variable and Ct a second-order eigenvariable; has the

induction rule

G;AðxÞ ! D;Aðx0Þ G;AðxÞ ! D;Aðx1Þ
G;Að�Þ ! D;AðsÞ

with A a S1;b
1 -formula (possibly with parameters), s a term, and x an eigenvari-

able; and has the replacement rule

G; x � t ! D; bX qAðx;X qÞ
G ! D; bY rEx � tAðx;Y rÞ
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where x is an eigenvariable, A is a S1;b
0 -formula, and r and A are as in the replace-

ment scheme.5

The point of this sequent calculus formulation of S1;b
1 -NIA is that, if

LKPS ‘ G ! D, with G and D formed by S1;b
1 -formulas, then (by an easy applica-

tion of the free cut elimination theorem) there is a LKPS-proof of G ! D in

which every formula appearing in the proof is a S1;b
1 -formula. Note that it is

the replacement scheme that allows us to have a sequent calculus proof just with

S1;b
1 -formulas instead of extended S1;b

1 -formulas.

The fundamental theorem to achieve our goal—characterize the provably total

functions of S1;b
1 -NIA—is the technical result (Theorem 3.4, below), which asserts

that there are extended S1;b
1 -formulas, extended P1;b

1 -formulas and functionals

related with polyspace which witness the second-order existential quantifications

in the consequents of the sequents in the LKPS-proof above.

First some considerations about second-order computations. We denote by

PSPACES1; b
0 the class of functionals computable by a deterministic Turing Machine

in polynomial space with oracle S1;b
0 .6

Proposition 3.3. The functionals in the class PSPACES1; b
0 which are functions, are

exactly the polyspace computable functions.

Proof. If f a PSPACE it is immediate that f a PSPACES1; b
0 . Just notice that we

can consider that the second-order tapes stay empty and the oracle is not called to

intervene in the computation. For the other inclusion, let f be a function in

PSPACES1; b
0 . So, there is M1 a deterministic polyspace Turing machine with a

S1;b
0 oracle, say Qðx;X tÞ, such that when the input is w, the output is f ðwÞ. Let

M2 be a deterministic Turing machine without second-order tapes (and without

oracle), which we initialize with w and that executes the same steps as M1, except

that, when M1 writes symbols in the first-order oracle tape, M2 writes them in a

working tape and when M1 writes symbols in the second-order oracle tape, M2

does nothing. Let us see what to do when M1 asks a question to the oracle for

the first time. If Qðx;X tÞ is a first-order formula, since it is bounded, it is decid-

able in polyspace, thus in M2 we just have to introduce the steps that decide QðxÞ.

5A similar replacement rule appears in [3] in a reformulated version of the sequent calculus for U1
2 .

6The idea is that the machine allows first and second-order inputs, returns first and second-order out-
puts and allows questions to the oracle involving first and second-order parameters. A bounded set is
written in a (input, output or oracle) second-order machine tape in the following way: in the j th cell of
the tape put 1 if the binary word for j belongs to the set, put 0 otherwise. If the first-order input tapes
have length less than or equal to n and the second-order input tapes have length less than or equal to 2pðnÞ,
the computation occurs in polynomial space if the number of tape cells used (in the working tapes) is less
than or equal to nk , with k a N. We say that the machine computes a function if it has no inputs nor
outputs of second-order (having the possibility of having second-order parameters in the S1; b

0 questions
to the oracle). For a full description of this kind of Turing machines see [15], p. 16.
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If X t occurs in Qðx;X tÞ suppose, for a simple example7, that Qðx;X tÞ is of the
form bz1 � q1ðxÞEz2 � q2ðxÞrðx; z1; z2Þ a X t. Let us argue that there is a polytime

alternating Turing machine that with input x decides Qðx;X tÞ. Since it is well-

known that: (1) PSPACE is equivalent to polytime in alternating Turing machines,

(2) in these machines there are existential and universal states and (3) q1 and q2
can be computed in PSPACE; if we manage to decide r a X t in PSPACE there is

an alternating Turing machine that decides Qðx;X tÞ is polytime. From x, z1 and

z2 we can compute r in PSPACE. To decide r a X t, we can think in a machine

initialized with w, which acts like M1 but when M1 writes in the oracle first-order

tape it writes in a working tape and when M1 writes an element in the oracle

second-order tape, the new machine writes in binary notation the number of

elements already written in the oracle second-order tape by M1. As in [15], we

assume that the pointers in the oracle tapes just move right and exactly a cell at

a time. This means that, when the counting number (in the new machine) is r,

the next element to be written in the oracle second-order tape by M1 informs us

if r belongs to X t or nor. Read it. If it is 0 then r B X t, if it is 1 then r a X t.

Note that we are assuming that X t is written in the oracle tape in the fixed way

described in footnote 6. Therefore, the decision of r a X t is done in PSPACE.

Since we saw that Qðx;X tÞ can be decided from x using a polytime alternating

Turing machine, it can be decided in PSPACE. In M2 just introduce the steps

to decide Qðx;X tÞ. We assume that after every oracle query, M1 clears the

oracle tape and M2 saves the state of M1. In the next call to the oracle, when

simulating to see if r a X t, we initialize the machine with this state rather than

with w. Repeating the process everytime M1 consults the oracle, we have that

M2 computes f in polynomial space. Thus, f a PSPACE. r

In order to simplify notation, in the next theorems we omit the bounding term

in the second-order variables and we abbreviate X1; . . . ;Xn, with n a N, by X and

bX1; . . . ; bXn (respectively EX1; . . . ; EXn) by bX (respectively EX ).

Theorem 3.4. Suppose LKPS ‘ G ! D, where G and D are formed by S1;b
1 -formulas.

Consider G :¼ bXj1ðx;F ;XÞ; . . . ; bXjnðx;F ;XÞ and D :¼ bYc1ðx;F ;YÞ; . . . ;
bYcmðx;F ;YÞ where ji and ci are S1;b

0 -formulas, Y ¼ Y1; . . . ;Yk and j1; . . . ; jn,

c1; . . . ;cm have di¤erent components of X, Y respectively.

Consider jðx;F ;XÞ :¼ 5 n
j¼1jj and cðx;F ;YÞ :¼ 4 m

i¼1ci and denote by

yðx;F ;X ;YÞ the formula jðx;F ;XÞ ! cðx;F ;YÞ.
Then, there are terms tiðxÞ, extended S1;b

1 -formulas M S
i ðw; x;F ;XÞ, ex-

tended P1;b
1 -formulas MP

i ðw; x;F ;XÞ and functionals fiðx;F ;XÞ in PSPACES1; b
0

ð1a ia kÞ, such that:

7The example with bounded first-order existential and universal quantifications and X t illustrates
what happens when the S1; b

0 -oracle is call to intervene.
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S1;b
1 -NIA ‘ Ex EF EXy

�
x; F ; X ; fw � t1ðxÞ : M S

1 ðw; x; F ;XÞg; . . . ; fw � tkðxÞ :
M S

k ðw; x;F ;XÞg
�
;

S1;b
1 -NIA ‘ Ex EF EX Ew � tiðxÞ

�
M S

i ðw; x;F ;XÞ $ MP
i ðw; x;F ;XÞ

�
, ð1a ia kÞ

and fiðx;F ;XÞ ¼ fw � tiðxÞ : M S
i ðw; x;F ;XÞg, ð1a ia kÞ.

In the previous result, we denote by yðx;F ;X ; fw � t1ðxÞ : M S
1 ðw; x;F ;XÞg;

. . .Þ the formula yðx;F ;X ;G; . . .Þ where the occurrences of s a G are replaced by

s � t1ðxÞbM S
1 ðs; x;F ;XÞ.

Proof. Let P be a LKPS-proof of G ! D. By the free cut elimination theorem we

can suppose that P has just S1;b
1 -formulas. It is possible to prove, by induction on

the number of lines in P, that for every sequent P ! L in P, there exist the terms,

the formulas and the functionals described in the theorem.

We illustrate the strategy with the cases of comprehension and replacement.

For a detailed proof see [15], pp. 50–55.

Comprehension. If P ! L is an initial sequent of the form !bY sEy �
s
�
y a Y s $ Aðy; x;F Þ

�
, with A a S1;b

0 -formula, just define M S
1 ðw; x;F Þ and

MP
1 ðw; x;FÞ as being Aðw; x;F Þ. Note that a S1;b

0 -formula is, in particular, an

extended S1;b
1 -formula and an extended P1;b

1 -formula. Take t1 :C s and

f1ðx;F Þ :C fw � s : Aðw; x;F Þg.
Replacement. Suppose P ! L is G 0 ! D 0, bGEx � tjðx;GÞ, obtained from

the sequent G 0, z � t ! D 0, bYjðz;YÞ, with j a S1;b
0 -formula (the rule is only

applied to formulas of this complexity). For simplicity of notation we assume

that D 0 has only the single formula bZc1ðx;X ;ZÞ, with c1 a S1;b
0 -formula.

By induction hypothesis for the last sequent there exist ðM 0ÞSi ðw; z; x;XÞ,
ðM 0ÞPi ðw; z; x;XÞ, t 0i ðz; xÞ and f 0

i ðz; x;XÞ, for i a f1; 2g, in the desired conditions.

For the sequent G 0 ! bZc1ðx;X ;ZÞ, bGEx � tjðx;GÞ define M S
1 ðw; x;XÞ as be-

ing bz � t
�
sj

�
z; fw � t 02ðz; xÞ : ðM 0ÞD2 ðw; z; x;XÞg

�
bEz 0 < zj

�
z 0; fw � t 02ðz 0; xÞ :

ðM 0ÞD2 ðw; z 0; x;XÞg
�
bw � t 01ðz; xÞbðM 0ÞS1 ðw; z; x;XÞ

�
8; t1ðxÞ as being t 01

�
tðxÞ; x

�
;

f1ðx;XÞ as being j if Ez � tj
�
z; f 0

2ðz; x;XÞ
�

or f1ðx;XÞ as being f 0
1

�
mz �

tsj
�
z; f 0

2ðz; x;XÞ
�
; x;X

�
if bz � tsj

�
z; f 0

2ðz; x;XÞ
�
9; define M S

2 ðw; x;XÞ as being
bz � tbs � t 02ðz; xÞ

�
ðM 0ÞS2 ðs; z; x;XÞbw ¼ 3z; s4

�
; t2ðxÞ :¼

�
tðxÞ t̂ 02

�
tðxÞ; x

��
1� 11

and f2ðx;XÞ :C f3z; s4 : z � tbs � t 02bs a f 0
2ðz; x;XÞg. And define MP

1 ðw; x;XÞ
and MP

2 ðw; x;XÞ like the above S-versions with the expected changes. r

From the previous result we get the following theorem:

8M D
i is eitherM S

i or MP
i according to our conveniences (e.g. to have the formulas in the right classes).

9By mzA we mean the least z satisfying A. It is possible to prove that the minimization scheme for
formulas that are equivalent to both an extended S1; b

1 -formula and an extended P1; b
1 -formula holds

in S1; b
1 -NIA. See [15], p. 34.
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Theorem 3.5. If S1;b
1 -NIA ‘ ExbyAðx; yÞ, with A a S1;b

1 -formula, then there exists

a function f a PSPACE such that, for all s a 2<o, we have A
�
s; f ðsÞ

�
.

Moreover, there exists y, a formula that is equivalent (in S1;b
1 -NIA) to both an

extended S1;b
1 -formula and an extended P1;b

1 -formula, and a term tðxÞ such that

1) f ðsÞ ¼ t $ yðs; tÞ,
2) S1;b

1 -NIA ‘ ExEy
�
yðx; yÞ ! Aðx; yÞ

�
,

3) S1;b
1 -NIA ‘ Exby � tyðx; yÞ,

4) S1;b
1 -NIA ‘ Exb1yyðx; yÞ.

Proof. Since S1;b
1 -NIA ‘ ExbyAðx; yÞ, with A a S1;b

1 -formula it is possible to

prove that there exists t 0ðxÞ such that S1;b
1 -NIA ‘ Exby � t 0ðxÞAðx; yÞ. Thus LKPS

deduce the sequent !by � t 0ðxÞAðx; yÞ. Being A a S1;b
1 -formula, suppose it is

bU1 . . . bUk
~AA, with ~AA a S1;b

0 -formula. So there exists a LKPS-proof of !bU1 . . .

bUkby � t 0 ~AA. The result follows applying Theorem 3.4 and defining f ðsÞ as being
my� t 0ðsÞ ~AA

�
s; y; f1ðsÞ; . . . ; fkðsÞ

�
, yðx; yÞ :$ ~AA

�
x; y; fw � t1ðxÞ : M D

1 ðw; xÞg; . . . ;
fw � tkðxÞ : M D

k ðw; xÞg
�
bEy 0 <l ys ~AA

�
x; y 0; fw � t1ðxÞ : M D

1 ðw; xÞg; . . . ; fw �
tkðxÞ : M D

k ðw; xÞg
�
and tðxÞ :C t 0ðxÞ, where the fi, ti and M D

i come from Theorem

3.4. To confirm that f is a polyspace function use Proposition 3.3. r

So, the provably total functions in S1;b
1 -NIA, with S1;b

1 -graphs, are exactly the

functions of PSPACE.

4. Adding bounded collection

Having in view setting up a system of weak analysis connected with polyspace

computability, in this (intermediate) section we enrich the theory S1;b
1 -NIA with

a bounded collection scheme. The idea is that the new scheme does not increase

the computational power of the enriched theory and allows (as shown in the next

section) the inclusion of recursive comprehension (an essential scheme to the for-

malization of analysis). The inspiration comes again from the polytime setting

(see [10]) where the principle of bounded collection

BSb
l: Ex � tbyAðx; yÞ ! bzEx � tby � zAðx; yÞ;

where A is a formula of L with all quantifications bounded and z is a new vari-

able, is appended to Sb
1-NIA. See also [2], [11].

In the current context of polyspace computability, we choose a form of

bounded collection slightly strengthened. See the comments in the end of the

paper.

To prove, in this section, that the system S1;b
1 -NIA enriched with (the stron-

ger form of ) bounded collection still characterizes polyspace computability,
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we rely on a conservation result over S1;b
1 -NIA and on the cut-elimination

technique.

The bounded formulas of Lb
2 , also known as the S1;b

l -formulas, consist of

the smallest class of formulas containing the atomic formulas and closed under

Boolean connectives, first-order bounded quantifications and second-order

(bounded) quantifications.

We are going to enrich S1;b
1 -NIA with the following principle of bounded

collection.

B1S1;b
l : EX tbyAðy;X tÞ ! bzEX tby � zAðy;X tÞ;

where A is a bounded formula (possibly with parameters) and z is a new variable.

Note that the principle BSb
l can be derived in the system S1;b

1 -NIAþ B1S1;b
l .

Theorem 4.1. The theory S1;b
1 -NIAþ B1S1;b

l is conservative over the theory

S1;b
1 -NIA with respect to formulas of the form ExbyAðx; yÞ, with A a S1;b

l -formula.

Proof. The theory S1;b
1 -NIAþ B1S1;b

l can be formulated in the sequent calculus

described above, LKPS, together with the following rule for bounded collection

(B1S1;b
l -rule):

G ! D; byAðy;CtÞ
G ! D; bzEX tby � zAðy;X tÞ

where A is a S1;b
l -formula (possibly with other free variables), Ct is a second-order

eigenvariable, and y does not occur in the term t.

Suppose that S1;b
1 -NIAþ B1S1;b

l ‘ ExbyAðx; yÞ, with A a S1;b
l -formula. Thus,

in the sequent calculus above, there is a proof of !ExbyAðx; yÞ and so, a proof of

!byAðx; yÞ. The free cut elimination theorem ensures the existence of a proof P

of !byAðx; yÞ without free cuts. As a consequence, all formulas occurring in the

sequents in P are of the form byBðy; x;X pÞ, with B a S1;b
l -formula (the existential

quantifiers ‘‘by’’ may be absent in which case we have a bounded formula).

Let G ! D be a sequent in P, where G is bx1B1ðx1; x;X
pðxÞÞ; . . . ;

bxnBnðxn; x;X
pðxÞÞ and D is by1C1ðy1; x;X

pðxÞÞ; . . . ; bykCkðyk; x;X
pðxÞÞ, where

B1; . . . ;Bn, C1; . . . ;Ck are S1;b
l -formulas. To ease notation, we have the same

term pðxÞ for every formula (this can be assumed without loss of generality) and

we are also only displaying the variables x in the term pðxÞ.
Let us prove, by induction on the number of lines of P, that from bounds of

the antecedents we can get (in S1;b
1 -NIA) bounds for the consequents in the follow-

ing way:

S1;b
1 -NIA ‘ EubvEx � uEX

pðxÞðG�u ! D�vÞ;
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where G�u abbreviates bx1 � uB1ðx1; x;X
pðxÞÞb� � �bbxn � uBnðxn; x;X

pðxÞÞ and

D�v abbreviates by1 � vC1ðy1; x;X
pðxÞÞ4� � �4byk � vCkðyk; x;X

pðxÞÞ. Note that

applying this result to the last sequent of P, we conclude that S1;b
1 -NIA proves

EubvEx � uby � vAðx; yÞ. Thus S1;b
1 -NIA ‘ ExbyAðx; yÞ.

The proof above (by induction on the number of lines of P) has some trivial

cases. Here we illustrate two situations: when the sequent is obtained from the

cut-rule and when it is obtained from the B1S1;b
l -rule. For a complete proof of

the result, considering all the cases, see [15], pp. 58–60.

Cut-rule.

G ! D;A A;G ! D

G ! D

If A is a S1;b
l -formula the result is immediate taking v :C v1̂ v2, where v1 and

v2 the bounds that exist by induction hypothesis.

Suppose that A is of the form bzDðz; x;X pðxÞÞ with D a S1;b
l -formula. By in-

duction hypothesis we have:

1) S1;b
1 -NIA ‘ EubvEx � uEX

pðxÞ�
G�u ! D�v4bz � vDðz; x;X pðxÞÞ

�
2) S1;b

1 -NIA ‘ EubvEx � uEX
pðxÞ�

bz � uDðz; x;X pðxÞÞbG�u ! D�v
�
.

Our goal is to prove that S1;b
1 -NIA ‘ EubvEx � uEX

pðxÞðG�u ! D�vÞ.
Fix u. By 1) there is v1 such that Ex � uEX

pðxÞ�
G�u ! D�v14bz �

v1Dðz; x;X pðxÞÞ
�
. Assume that u � v1 (if not just replace v1 by v1̂ u that the

assertion above remains valid). By 2), there is v2 such that Ex � v1EX
pðxÞ�

bz �
v1Dðz; x;X pðxÞÞbG�v1 ! D�v2

�
. We get Ex � uEX

pðxÞ�
bz � v1Dðz; x;X pðxÞÞb

G�u ! D�v2
�
, using the fact that if u � u 0 then G�u ! G�u 0

. Let v :C v1^v2. We

conclude that Ex � uEX
pðxÞðG�u ! D�vÞ.

B1S1;b
l -rule.

G ! D; byAðy;CtÞ
G ! D; bzEY tby � zAðy;Y tÞ

By induction hypothesis we know that

S1;b
1 -NIA ‘ EubvEx � uEX

pðxÞ
EY tðxÞ�G�u ! D�v4by � vAðy;Y tðxÞÞ

�
:

To prove, as we want, that

S1;b
1 -NIA ‘ EubvEx � uEX

pðxÞ�
G�u ! D�v4bz � vEY tðxÞby � zAðy;Y tðxÞÞ

�
;

consider an arbitrary u, take v as the element that exists by induction hypothesis,

and let z :C v. r
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From the above result, noticing that S1;b
1 -formulas are, in particupar, S1;b

l -

formulas, immediately we conclude that the provably total functions of

S1;b
1 -NIAþ B1S1;b

l with S1;b
1 -graphs are the polyspace computable functions.

5. A weak analysis theory for polyspace computability

The aim of this section is to propose a weak theory of analysis, BTPSA, still char-

acterizing polyspace computability. In [10], an homologous theory, BTFA, is

presented, not for PSPACE complexity, but in the context of feasible (polytime)

computability. The strategy in the polytime setting will guide us towards our goal.

The theory BTPSA, as we are going to see, includes the previous system

S1;b
1 -NIAþ B1S1;b

l and is stated in a language that permits variables ranging

over infinite sets. Let L2 be a second-order language with equality which di¤ers

from Lb
2 only by the presence of second-order (unbounded) variables, denoted by

X ;Y ;Z; . . . , instead of the previous second-order ‘‘bounded’’ variables X t;Y q; . . .

The class of formulas of L2 is the smallest class of expressions containing the

atomic formulas t1 J t2, t1 ¼ t2, t1 a X , and closed under the Boolean operations,

the first-order quantifications Ex, bx and the second-order quantifications EX , bX .

Since arguments via sequent calculus are not going to be used, in BTPSA we

do not treat Ex � t and bx � t as primitive quantifiers but mere abbreviations

of Exðx � t ! � � �Þ and bxðx � tb� � �Þ respectively. The definitions of S1;b
0 (re-

spectively S1;b
1 , P1;b

1 , S1;b
l )-formulas in L2 (and its extended versions) are given

by obvious modifications of the homologous definitions in Lb
2 , namely replacing

EX t, bX t by the second-order quantifications EX � t, bX � t where X � t abbre-

viates Ezðz a X ! z � tÞ.
A structure for L2 has domain ðM;SÞ, with the first-order variables taking

values in M and the second-order variables varying over S, a given subset of

PðMÞ. The standard model is
�
2<o;Pð2<oÞ

�
. Note that although we work in

a second-order language, our logic is of first-order kind (first-order logic in a

two-sorted language): our semantics only specifies S to be a subset of PðMÞ, not
necessarily all of PðMÞ.

Consider the following axiom, known as the recursive comprehension scheme:

Ex
�
byAðx; yÞ $ EyBðx; yÞ

�
! bXEx

�
x a X $ byAðx; yÞ

�
;

with A a S1;b
1 -formula and B a P1;b

1 -formula, possibly with other free variables.

In the standard model, this scheme ensures that all recursive sets exist. Al-

though it may seem that adding this scheme to our weak (subexponential) theory

will increase its computational power, we will prove that this is not the case. Note

that the existence of a set is guaranteed only in the case the theory has enough

resources to prove the equivalence in the antecedent of the scheme.
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Definition 5.1. BTPSA (acronym for Base Theory for Polynomial Space Analysis)

is the second-order theory, in the language L2, with the following axioms: basic

axioms10, induction on notation for extended S1;b
1 -formulas, the bounded collec-

tion scheme B1S1;b
l and the recursive comprehension scheme mentioned above.

Intuitively Lb
2 JL2, in the sense that every expression in Lb

2 can be formu-

lated in L2. Also, it can be seen that every model of BTPSA satisfies the axioms

of S1;b
1 -NIAþ B1S1;b

l . To achieve our goal (i.e. to prove that BTPSA character-

izes polyspace computability) we will do the inverse, i.e., to get models of

BTPSA from models of S1;b
1 -NIAþ B1S1;b

l . Notice the model-theoretic strategy

instead of the proof-theoretic techniques by cut-elimination in previous conserva-

tion results.

Lemma 5.2. Let M be a model of the theory S1;b
1 -NIAþ B1S1;b

l with domain

ðM;SbÞ. Then there is SJPðMÞ such that M�, with domain ðM;SÞ, is a model

of BTPSA and Sb ¼ fX a : X a Sba a Mg, where X a collects the elements of X

with length less than or equal to a.

Proof. In order to get M� from M the idea is to ‘‘close’’ M for recursive

comprehension. Let S be formed by the subsets X JM for which there is a S1;b
1 -

formula A, a P1;b
1 -formula B and elements a, b in M and Ap, Bu in Sb such that

X ¼ fx a M :M� byAðx; y; a;Apðx;y;aÞÞg ¼ fx a M :M� EyBðx; y; b;Buðx;y;bÞÞg.
The proof that Sb J fX a : X a Sba a Mg follows immediately because when-

ever Cc a Sb, we have Cc a S. For the other inclusion consider C a S and

c a M. We want to prove that Cc a Sb. By definition of S there are

formulas A, B and elements a, b, A, B (to simplify notation we omit the

bounded term in the second-order parameters)—the ones defining C—such that

M � Ex
�
byAðx; y; a;AÞ $ EyBðx; y; b;BÞ

�
. We claim that there is d a M such

that Ex � c
�
by � dAðx; y; a;AÞ $ Ey � dBðx; y; b;BÞ

�
. The existence of this

d uses the fact that from Ex � cbyyðx; yÞ, with y a S1;b
l -formula, we have

bdEx � cby � dyðx; yÞ, which is a consequence of M being a model of B1S1;b
l .

Therefore, since D1;b
1 -bounded comprehension is available in S1;b

1 -NIA (see the

comments below Definition 3.1) and M is a model of S1;b
1 -NIA, we have that

F c ¼ fx � c : by � dAðx; y; a;AÞg is an element in Sb. Since F c ¼ Cc, we have

Cc a Sb.

It remains to prove that M� is a model of BTPSA. The case of the basic

axioms is trivial, because the interpretation of the constants, the function and

relation symbols is the same in M and M� and both models have the same

first-order domain. The study of the other axioms follows more or less in a

straightforward manner from the following technical fact (which can be proved

10The 14 basic axioms of Definition 2.3.
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by induction on the complexity of A): Given Aðu;UÞ a S1;b
l -formula, there is a

term qðuÞ with the following property: given c elements in M and C subsets in S

then M� � Aðc;CÞ , M � Aðc;CbÞ whenever qðcÞ � b. We illustrate the appli-

cation of the fact studying the recursive comprehension scheme. Suppose that

M� � Ex
�
byAðx; y; a;AÞ $ EyBðx; y; b;BÞ

�
with A a S1;b

1 -formula and B a P1;b
1 -

formula. We want to prove that M� � bXEx
�
x a X $ byAðx; y; a;AÞ

�
. Note

that the formulas Aðx; y; u;UÞ and Bðx; y; u;UÞ are, in particular, S1;b
l -formulas.

Applying the fact above to the formula A, there exists a term qðx; y; uÞ such that

given s; r; a a M and A a S we have (y) M� � Aðs; r; a;AÞ , M � Aðs; r; a;AbÞ
whenever qðs; r; aÞ � b. Applying the same fact to B, there exists a term

pðx; y; uÞ such that given s; r; b a M and B a S we have M� � Bðs; r; b;BÞ ,
M � Bðs; r; b;Bb 0 Þ whenever pðs; r; bÞ � b 0. Since M� � Ex

�
byAðx; y; a;AÞ $

EyBðx; y; b;BÞ
�

we know that M � Ex
�
byAðx; y; a;Aqðx;y;aÞÞ $ EyBðx; y; b;

Bpðx;y;bÞÞ
�
. Take X ¼ fx a M : M � byAðx; y; a;Aqðx;y;aÞÞg ¼ fx a M : M �

EyBðx; y; b;Bpðx;y;bÞÞg. By the definition of S, X a S. From ðyÞ we know

that M� � byAðs; y; a;AÞ , M � byAðs; y; a;Aqðs;y;aÞÞ, so X ¼ fx a M : M� �
byAðx; y; a;AÞg. Thus M� � bXEx

�
x a X $ byAðx; y; a;AÞ

�
. r

Theorem 5.3. If BTPSA ‘ ExbyAðx; yÞ, with A a S1;b
l -formula, then S1;b

1 -NIA ‘
ExbyAðx; yÞ.

Proof. Suppose that S1;b
1 -NIA 6‘ ExbyAðx; yÞ, with A a S1;b

l -formula. Therefore,

by Theorem 4.1, we also have S1;b
1 -NIAþ B1S1;b

l 6‘ ExbyAðx; yÞ. By the com-

pleteness theorem, there is a model M of S1;b
1 -NIAþ B1S1;b

l , with domain

ðM;SbÞ, and a a M such that M � EysAða; yÞ. Using the previous lemma,

take SJPðMÞ such that M� with domain ðM;SÞ is a model of BTPSA and

Sb ¼ fX a : X a Sba a Mg. Clearly, S1;b
l -formulas are absolute between M

and M�. Therefore, we also have M� � EysAða; yÞ. Since M� is a model of

BTPSA, by soundness we conclude that BTPSA 6‘ ExbyAðx; yÞ. r

As a consequence, the provably total functions of BTPSA, with S1;b
1 -graphs,

are still the polyspace computable functions. For more on BTPSA, including its

interpretability in Robinson’s theory Q, see [14].

Although the formalization of analysis in weak systems is out of the scope of

the present paper, we just want to point to the reader that the system BTPSA is

strong enough to formalize the Riemann integral, up to the fundamental theorem

of calculus, for functions with a modulus of uniform continuity. See [16], [13].

Such formalization does not seem to be possible in the polytime computability

setting (BTFA), unless some classes of computational complexity collapse. See

[12]. Nevertheless, a non trivial amount of analysis ([6]) is already available

in BTFA.
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The reason we opted to equip BTPSA with a bounded collection scheme

stronger than the one available in BTFA is twofold. First, as we saw, (although

stronger) it is still conservative over S1;b
1 -NIA. Secondly, it is known that to prove

that the following strict P1
1 -reflection principle (a strong form of weak König’s

lemma):

EXbxAðX ; xÞ ! bzEXbxa zAðX ; xÞ;

where A is a S1;b
l -formula, is first-order conservative over BTPSA, we need the

stronger bounded collection scheme B1S1;b
l . See [5], [16]. And in BTPSA en-

riched with the previous reflection principle, the Riemann integral is avail-

able for continuous functions (no need for the modulus of uniform continuity

assumption).
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