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A low-order approximation for viscous-capillary
phase transition dynamics

Patrick Engel, Adrian Viorel and Christian Rohde*

Abstract. The dynamics of an elastic bar that appears in two phases can be described
by viscosity-capillarity models. They contain numerically complicated third-order or fully
nonlocal terms to account for surface energies. Based on work of Solci&Vitali [20] we
analyze an alternative modelling approach that does not involve third-order di¤erential
operators. It is proven that solutions of the new model tend to solutions of the classical
viscosity-capillarity model provided a so-called coupling parameter tends to infinity.

Numerical experiments illustrate our findings. In fact it is shown that the new model
provides a reliable and e‰cient approach to compute approximate solutions for the
classical viscosity-capillarity model.
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1. Introduction

We consider the longitudinal dynamics of an elastic bar that can appear in two

phases, i.e. a high-strain and a low strain phase. The reference configuration is

supposed to be the interval W ¼ ½0; l�, l > 0. Let us denote by w : W� ð0;lÞ ! R

the strain and by v : W� ð0;lÞ ! R the velocity. Let W a C2ðRÞ be a double-

well function. Without (too much) loss of generality we simply choose for some

b > 0 the form

W ðwÞ ¼ 1

4
ðw2 � b2Þ2; ð1:1Þ
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such that W has two minima in eb. The strain values in the intervals

ð�l;�b=
ffiffiffi
3

p
� and ½b=

ffiffiffi
3

p
;lÞ correspond to convex branches of W , and are

called the low strain phase and high strain phase, respectively. The interval

ð�b=
ffiffiffi
3

p
; b=

ffiffiffi
3

p
Þ where W is concave, is called elliptic.

For an isothermal setting the classical Ericksen model describing two-phase

materials is given through

wt � vx ¼ 0;

vt � sðwÞx ¼ 0:
ð1:2Þ

Here s ¼ W 0 is the stress-strain relation. Note that (1.2) is a mixed type

hyperbolic-elliptic system of conservation laws. The eigenvalues of the Jacobian�
�v;�sðwÞ

�T
of the flux are

l1ðw; vÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
s 0ðwÞ

p
; l2ðw; vÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
s 0ðwÞ

p
; ð1:3Þ

which are real numbers if and and only if w B ð�b=
ffiffiffi
3

p
; b=

ffiffiffi
3

p
Þ.

Dynamic phase boundaries can be interpreted as shock waves. However, it is

well-known that standard entropy criteria cannot ensure the uniqueness of weak

solutions for initial-boundary value problems for (1.2) if subsonic phase bounda-

ries are involved. We refer to [1], [7], [13], [21] and references therein for details

and the solution concept of kinetic relations. This approach will not be followed

here further.

Rather we detect unique solutions of (1.2) as limits of regularizations for

(1.2). A classical approach in this framework is the classical viscosity-capillarity

regularization [12], [18] given through

wt � vx ¼ 0;

vt � sðwÞx ¼ mvxx � lwxxx:
ð1:4Þ

By m and l > 0 we denote the given positive viscosity parameter and the capillar-

ity parameter, respectively. The model has been analyzed in [2]. In particular

Slemrod shows in [19] that (1.4) allows for moving travelling wave solutions that

connect states in di¤erent phases. If we scale m ¼ e and l ¼ e2l for some l > 0

solutions of (1.4) are expected to converge for e ! 0 to weak solutions of (1.2)

(see [12] for a rigorous result). The limit weak solution depends crucially on l

and contains subsonic phase boundaries.

Smooth solutions of appropriate initial-boundary value problems for (1.4) dis-

sipate the energy

El½wð:; tÞ; vð:; tÞ� ¼
ð
W

�
vðx; tÞ

�2
2

þW
�
wðx; tÞ

�
þ l

2

�
wxðx; tÞ

�2
dx: ð1:5Þ
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In the static case El reduces to the Van-der-Waals like functional

Fl½w� ¼
ð
W

W
�
wðxÞ

�
þ l

2

�
wxðxÞ

�2
dx: ð1:6Þ

The associated minimization problem under the constant volume constraint has

been studied in [4] where in particular the existence of two-phase minimizers is

verified for appropriate choice of total mass.

The Van-der-Waals functional has been criticized as it introduces a non-

physical derivative on the strain. To avoid derivatives the following static min-

imization problem for the functional

F a½wa; pa� ¼
ð
W

W
�
waðxÞ

�
þ a

2

�
waðxÞ � paðxÞ

�2 þ l

2

�
pa
xðxÞ

�2
dx ð1:7Þ

has been analyzed in [3], [20]. Here a > 0 is a positive coupling parameter and an

additional unknown pa has been introduced. Note that in (1.7) no strain deriva-

tive appears.

In this paper we study a dynamical model that is associated with the static

energy F a in (1.7) as the viscosity-capillarity model is connected to the Van-der-

Waals functional Fl. Precisely, we introduce the system

wa
t � vax ¼ 0;

vat � sðwaÞx ¼ mvaxx � aðpa � waÞx;
lpa

xx ¼ aðpa � waÞ:
ð1:8Þ

The system (1.8) contains in addition to the strain wa and the velocity va the un-

known function pa : W� ð0;lÞ ! R, which satisfies an elliptic equation.

As will be proven below in Section 3 smooth solutions of appropriate initial-

boundary value problems for (1.8) lead to the dissipation of the energy functional

E a½wað:; tÞ; vað:; tÞ; pað:; tÞ� ¼
ð
W

�
vaðx; tÞ

�2
2

þW
�
waðx; tÞ

�
þ a

2

�
waðx; tÞ � paðx; tÞ

�2 þ l

2

�
pa
xðx; tÞ

�2
dx: ð1:9Þ

We point out that (a variant of ) the model (1.8) has been suggested in [15] in the

framework of modelling the evolution of microstructure. It can also be seen as a

nonlocal viscosity-capillarity model with specific kernel (cf. [16]).

Let us give an outline of this paper’s contributions. In Section 2 we derive

the model (1.8) using the theory of internal variables [6], [22]. In passing let us
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note that the derivation shows that the inverse of the coupling parameter a can

be understood also as a measure for the amount of long-range interaction in

the bar.

In the next step we will show in Section 3 by semigroup theory that appropri-

ate initial-boundary value problems for (1.8) have unique strong solutions on the

time interval ½0;T � for any T > 0. The result is proven in Theorem 3.2 and relies

crucially on the energy inequality for E a in (1.9).

Then we study as the main analytical contribution for a sequence of solutions

for the low order approximation (1.8) the capillarity limit a ! l. It is found out

that the limit exists and corresponds to a weak solution of the viscosity-capillarity

problem (1.4) (see Theorem 4). A similar capillarity limit has been analyzed in [8]

for a scalar model problem. Moreover, we note that our study of the limit regime

a ! l is motivated by the analysis of Solci&Vitali [20] for a sequence of minimiz-

ers of (1.7). Solci&Vitali have shown that this sequence converges in the sense

of G-limits to a minimizer of the Van-der-Waals functional in (1.6) if a tends to

infinity.

While the model (1.8) might have its own physical meaning, we see it also as a

tool in numerics. The numerical solution of (1.4) and even more its multidimen-

sional generalizations are quite intricate and computationally expensive. Realistic

parameters m and l are extremely small such that the hyperbolic-elliptic operator

as in (1.2) dominates. As a consequence fully explicit schemes are used, which

give severe restrictions on the time step in view of the third-order term wxxx. A

second problem of (1.4) is the fact that the mixed hyperbolic-elliptic nature of

(1.4) excludes any modern flux discretization as e.g. approximate Riemann

solvers. The latter ones require hyperbolicity in the complete state space. Based

on our convergence result for a ! l it makes sense to view solutions of (1.8)

as approximations of solutions for (1.4). We will present in Section 5 that the

solution of (1.7) for large a can be a more e‰cient way to solve (1.4) numerically

as discretizing (1.4) directly. Finally, we show by one numerical example that

the low-order approximation (1.8) can be easily generalised to multiple space

dimensions.

2. Thermodynamical derivation and an internal length scale

Our motivation to consider the system (1.4) is mainly a numerical one: numerical

methods based on (1.8) can lead to a more e‰cient computation of approximate

solutions of (1.4). Nevertheless it is possible to derive (1.8) in the framework of

rational thermodynamics such that the use of p can be interpreted as introducing

a new length scale into viscosity-capillarity models.

As a guideline for our derivation we use the work of Tzavaras in [22] and that

of Polizzotto [14] for nonlocal evolution.
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We skip the index a in this section, e.g. w ¼ wa, v ¼ va, and p ¼ pa.

Let r0 be the mass density of our bar in the reference domain ½0; l� with l ¼ 1,

for the sake of simplicity. If we ignore external body forces and radiative heat

production the dynamics of an elastic bar are described through the evolution

laws

wt � vx ¼ 0;

r0vt � tx ¼ 0:
ð2:1Þ

It remains to determine the total stress t as a function of the unknowns.

Following Tzavaras in [22] let us assume that the free energy c is given as a

function

c ¼ cðw; p; px; yÞ;

where y ¼ yðx; tÞ > 0 is the temperature, and p ¼ pðx; tÞ a R is an additional in-

ternal variable. It is connected to the strain through the following boundary value

problem

lpxx ¼ aðp� wÞ;
pxð0Þ ¼ pxðlÞ ¼ 0;

ð2:2Þ

a, l being a positive constants.

We remark that under su‰cient regularity assumptions for w, there is a unique

solution of (2.2) which admits the integral representation

pðxÞ ¼
ð
W

Gaðx; yÞwðyÞ dy; ð2:3aÞ

Gaðx; yÞ ¼
ffiffiffi
a

p

ðe
ffiffi
a

p
� e�

ffiffi
a

p
Þ

 
cosh

xþ y� 1

1=
ffiffiffi
a

p
� �

þ cosh
jx� yj � 1

1=
ffiffiffi
a

p
� �!

: ð2:3bÞ

This choice leads to a nonlocal dependence of the free energy (and later the stress)

on the strain w. The representation (2.3) shows that the parameter a controls the

strength of the attenuation function G a. In this way a second length scale for

long-range interaction is introduced into the model. Note that we could have

used other attenuation functions but use of a Green’s function implies that p is

governed by the simple di¤erential equation (2.2) (see also [15]).

The thermodynamic consistency of (2.1) together with (2.2) will be assessed

in the remainder of this section via an approach similar to that used in classical

constitutive theories, but accounting for the nonlocal character of the model.
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Due to the nonlocal character of the model, conservation of energy, the first

principle of thermodynamics, cannot hold pointwise, but only for the whole body

(cf. [14]) ð
W

et dx ¼
ð
W

ðtwt � qxÞ dx: ð2:4Þ

Here e is the specific internal energy and q denotes the heat flux.

Following the seminal idea of Edelen and Lawes [9], the pointwise version of

(2.4)

et ¼ twt þ qx þ R;

must contain an additional term R; called localization residual, which satisfies the

constraint ð
W

R dx ¼ 0:

The second principle of thermodynamics, expressed by the Clausius-Duhem

inequality

r0htb
q

y

� �
x

ð2:5Þ

with h representing the specific entropy, has to be satisfied pointwise, see [14].

After introducing the Helmholtz relation

c ¼ e� hy;

(2.5) can be rewritten in the equivalent form

ct � twt þ hyt þ
qyx

y
� Ra 0: ð2:6Þ

As the free energy is prescribed we derive the remaining constitutive functions

such that they are consistent with the second law of thermodynamics. An alterna-

tive that we don’t pursue here would be to postulate the stress t and ask wether

there is a compatible free-energy function c.

So, let c be given now for some functions W ¼ WðwÞ and Y ¼ YðyÞ by the

special choice

c ¼ cðw; p; px; yÞ

¼ W ðwÞ þ a

2
ðw� pÞ2 þ l

2
p2x þYðyÞ:
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Then, developing the time derivative of c we have

sðwÞwt þ aðw� pÞðw� pÞt þ lpx pxt � twt þ ðcy þ hÞyt �
qyx

y
� Ra 0;

where sðwÞ ¼ W 0ðwÞ.
The above inequality must be satisfied by all thermo-mechanical processes. If

we now employ Fourier’s law for the heat flux we get

sðwÞwt þ aðw� pÞðw� pÞt þ lpx pxt � twt þ ðcy þ hÞyt � Ra 0: ð2:7Þ

We integrate (2.7) over the whole domain and use
Ð
W R dx ¼ 0 together with the

fact that

ð
W

aðw� pÞpt dxþ
ð
W

lpx pxt dx ¼
ð
W

�
aðw� pÞ � lpxx

�
pt dx ¼ 0;

to obtain

ð
W

�
sðwÞ þ aðw� pÞ � t

�
wt dxþ

ð
W

ðcy þ hÞyt dxa 0:

This inequality must hold for arbitrary choices of wt and yt, i.e., for arbitrary

thermo-elastic processes, so one has

t ¼ sðwÞ þ aðw� pÞ;
h ¼ �cy;

ð2:8Þ

as necessary and su‰cient conditions. With this result and assuming isothermality

the equations (2.1) become the reversible part of the desired state equations (1.8).

3. Global existence of solutions

In this section we discuss the existence, uniqueness, and regularity of solutions to

an initial boundary value problem associated to

ut � v ¼ 0;

vt � sðuxÞx ¼ vxx � aðp� uxÞx; in ð0;TÞ �W:

1

a
pxx ¼ p� ux

ð3:1Þ
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The above system is a reformulation of (1.8) in terms of displacement-velocity

state variables (w ¼ ux). Note that we have again dropped the index a, which is

a positive fixed number for this section. For the sake of simplicity we have set

m ¼ 1; l ¼ 1; l ¼ 1;

and we will take b ¼ 1, i.e.

sðwÞ ¼ w3 � w: ð3:2Þ

To (3.1) we add Dirichlet boundary conditions for u and v, respectively Neumann

conditions for p

uðt; 0Þ ¼ uðt; 1Þ ¼ 0;

vðt; 0Þ ¼ vðt; 1Þ ¼ 0;

pxðt; 0Þ ¼ pxðt; 1Þ ¼ 0;

ð3:3Þ

for t a ð0;TÞ and the initial conditions

uð0; xÞ ¼ u0ðxÞ;
utð0; xÞ ¼ v0ðxÞ

ð3:4Þ

for x a W.

In the sequel the following notations will be used: L2, H 2, etc. for L2ðWÞ,
H 2ðWÞ, and other Sobolev or Lp spaces on W. The standard norm and inner prod-

uct of L2 will be denoted simply by k � k and 3� ; �4, while, by contrast, all other

norms will be specified explicitly.

The third equation in (3.1) gives the coupling between the internal variable p

and the strain ux. Rewritten in a more familiar form, one can see that, it is a

resolvent equation for the Laplacian with Neumann boundary conditions. Some

characteristic properties of this equation are recalled below.

Remark 3.1. For any fixed w a L2 and a > 0 the elliptic boundary value problem

� 1

a
pxx þ p ¼ w;

pxð0Þ ¼ pxð1Þ ¼ 0

ð3:5Þ

has a unique solution p a H 2. Moreover, if w a H 1 then p a H 3. Thus we can

derive (3.5) once with respect to x, and obtain from testing with px and wx the

inequalities

kpxk2a3px;wx4a kwxk2: ð3:6Þ
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We can also represent p in terms of w using Green’s function for the elliptic

problem (3.5) given in (2.3).

The main result of this section is the following existence theorem.

Theorem 3.2 (Global existence). Let a > 0 be fixed and suppose that

u0 a H 2BH 1
0 and v0 a H 2BH 1

0 :

Then, given any T > 0, there is a unique weak solution ðu; v; pÞ of the initial bound-
ary value problem (3.1), (3.3), (3.4) in the sense that

v ¼ ut a H 1ð0;T ;L2ÞBLlð0;T ;H 1
0 ÞBL2ð0;T ;H 2Þ;

u a C1ð½0;T �;L2ÞBCð½0;T �;H 2BH 1
0 Þ;

p a C1ð½0;T �;H 1ÞBCð½0;T �;H 3Þ:

ð3:7Þ

We will start by deriving standard energy estimates for the nonlocal model

(3.1). For this, we need the following lemma which can be found in e.g. [11].

Lemma 3.3. Let X be a Hilbert space and A : DðAÞJX ! X a densely de-

fined, self-adjoint operator that generates a C0-semigroup of contractions. Let

u a H 1ð0;T ;XÞ with uðtÞ a DðAÞ a.e. t a ½0;T �, and Au a L2ð0;T ;XÞ: Then the

function t 7! 3AuðtÞ; uðtÞ4X is absolutely continuous on ½0;T � and

1

2

d

dt
3AuðtÞ; uðtÞ4X ¼ AuðtÞ; d

dt
uðtÞ

� �
X

:

Lemma 3.4 (Energy estimates). Let ðu; v; pÞT be a weak solution of (3.1) in the

sense of (3.7) then for all t a ½0;T �

E a½u; v; p�aE a½u0; v0; p0�; ð3:8Þð t
0

kvxðtÞk2 dtaE a½u0; v0; p0�; ð3:9Þ

where

E a½u; v; p� ¼ 1

2
kvk2 þ 1

2
3px; uxx4þ

ð
W

WðuxÞ dx: ð3:10Þ

Furthermore, p0 a H 3 is the unique solution of (3.5) for wð0Þ ¼ u0;x and W ðwÞ ¼
1
4 ðw2 � 1Þ2.

Moreover, there exists a positive constant C ¼ CðTÞ (independent of a) such that

kuxxðtÞk2aC for all t < T : ð3:11Þ
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Remark 3.5. Note that (3.5) implies

1

2
3px; uxx4 ¼ 1

2
3px;wx4 ¼ a

2
3p� w; p� w4þ 1

2
3px; px4b 0:

Thus, the energy E a in (3.10) is a nonnegative quantity and corresponds to the

formulation in (1.9), which is given in terms of w.

Proof of Lemma 3.4.

d

dt

� 1
2
kvðtÞk2 þ 1

2
3pxðtÞ; uxxðtÞ4þ

ð
W

W
�
uxðtÞ

�
dx
	
¼ �kvxðtÞk2:

This means that the total energy

E a½u; v; p� ¼ 1

2
kvk2 þ 1

2
3px; uxx4þ

ð
W

W ðuxÞ dx

is decreasing along solutions and bounded by the energy of the initial state

E a½uðtÞ; vðtÞ; pðtÞ�aE a½u0; v0; p0�:

Also, the energy dissipated in the time interval ½0;T � cannot exceed the initial

energy ðT
0

kvxðtÞk2 dtaE a½u0; v0; p0�:

To prove the estimate (3.11) we take the inner product of the second equation

in (3.1) with uxxðtÞ, use Lemma 3.3, and get

d

dt
3vðtÞ; uxxðtÞ4� kvxðtÞk2

¼ a3uxxðtÞ � pxðtÞ; uxxðtÞ4þ 1

2

d

dt
kuxxðtÞk2 þ



s
�
uxðtÞ

�
x
; uxxðtÞ

�
:

Integration with respect to time yields

3vðtÞ; uxxðtÞ4�
ð t
0

kvxðsÞk2 dsþ c0

¼ a

ð t
0

3uxxðsÞ � pxðsÞ; uxxðsÞ4 dsþ
1

2
kuxxðtÞk2 þ

ð t
0



s
�
uxðsÞ

�
x
; uxxðsÞ

�
ds;

where c0 :¼ 1
2 ku0xxk

2 � 3v0; u0xx4:
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Due to (3.6)

3uxxðtÞ � pxðtÞ; uxxðtÞ4b 0

holds for any t a ½0;T �. This and Young’s inequality applied to 3vðtÞ; uxxðtÞ4
gives

2kvðtÞk2 þ 1

8
kuxxðtÞk2 þ

ð t
0

kvxðsÞk2 dsþ c0

b
1

2
kuxxðtÞk2 þ

ð t
0



s
�
uxðsÞ

�
x
; uxxðsÞ

�
ds:

By taking into account the explicit form of the stress sðuxÞx ¼ 3u2xuxx � uxx we

finally obtain

2kvðtÞk2 þ
ð t
0

kvxðsÞk2 dsþ c0 þ
ð t
0

kuxxðsÞk2 dsb
3

8
kuxxðtÞk2:

The first two terms on the left hand side of this inequality are either bounded by

the initial energy, as we have seen in the first part of the proof, or constant, such

that by Gronwall’s Inequality

kuxxðtÞk2a
40

3
E a½u0; v0; p0� þ c0

� �
eð8=3Þt

and (3.11) has been proved. r

Proof of Theorem 3.2. Our proof relies on semigroup theory and will be carried

out in four successive steps. We start with the linear part of the problem (Step 1

and 2), and show that the linear operator defined by the right hand side of (3.1)

generates a semigroup. In Step 3 and 4 we study local and global existence for

the full semilinear problem.

Step 1. If we consider only the uxx and vxx terms on the right hand side of (3.1)

what we are left with is the linear viscoelastic system

ut ¼ v;

vt ¼ auxx þ vxx:

For this model existence results obtained by semigroup methods are known (see for

example [10] and references therein). The system can be written in abstract form

d

dt
zðtÞ ¼ AzðtÞ; ð3:12Þ
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where zðtÞ :¼
�
uðtÞ; vðtÞ

�T
and the operator matrix

A ¼ 0 I

aqxx qxx

� �
;

with domain

DðAÞ ¼ ðH 2BH 1
0 Þ � ðH 2BH 1

0 Þ

generate a strongly continuous semigroup SðtÞ on the Hilbert space

X ¼ ðH 2BH 1
0 Þ � L2:

Step 2. In this step we also take into account the p-term of (3.1). We deal with

ut ¼ v;

vt ¼ auxx þ vxx � apx:

The additional p-term can be treated as a perturbation and (3.12) becomes

d

dt
zðtÞ ¼ AzðtÞ þ BzðtÞ;

with A as before and

B ¼
0 0

�aqx
�
� 1

a
qxx � I

��1
qx 0

� �
:

As a consequence of the regularity of p, which is defined via an integral operator

(2.3), B is a bounded operator on X . This means that the Bounded Perturbation

Theorem (Theorem III.1.3 in [10]) applies and the operator C ¼ Aþ B with

domain DðCÞ ¼ DðAÞ generates a strongly continuous semigroup fSðtÞgtb0 on X :

Step 3. We proceed to prove the existence of a unique local solution for the

full semilinear problem

d

dt
zðtÞ ¼ ðAþ BÞzðtÞ þ F

�
zðtÞ
�
;

where

F
�
zðtÞ
�
¼

0

s
�
uxðtÞ

�
x

� �
:

This is the abstract form of (3.1).
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Notice that F : X ! X is locally Lipschitz continuous (cf. [2]), and hence, by

Banach’s fixed point principle, there is a unique local solution z a Cð½0;T0�;XÞ of
the integral equation

zðtÞ ¼ SðtÞz0 þ
ð t
0

Sðt� tÞF
�
zðtÞ

�
dt;

for T0 small enough. Furthermore, since z0 ¼ ðu0; v0ÞT a DðAÞ, by [23] Theorem

2.4.5, zðtÞ is a classical solution.

Step 4. Our aim is to extend the local solution of Step 3 to arbitrary time

intervals. We can achieve this by using the energy estimates.

Obviously, the local classical solution obtained in Step 3 is also a solution in

the sense of (3.7). We show that this solution cannot explode, or in other words,

that regularity is not lost in finite time.

The estimates (3.8) and (3.11) assure that the velocity v and the strain gradient

uxx remain bounded independently of t. Furthermore, the second equation in (3.1)

can be viewed as a heat equation

vt � vxx ¼ gðtÞ; ð3:13Þ

with a source term

gðtÞ ¼ s
�
uxðtÞ

�
x
� a
�
pðtÞ � uxðtÞ

�
x
;

which is controlled by the strain gradient (its highest order term)

kgðtÞkaCkuxxðtÞk:

Standard parabolic estimates applied to (3.13) yield

ðT
0

kvtðtÞk2 dtþ ess sup
t A ½0;T �

kvxðtÞk2 þ
ðT
0

kvxxðtÞka kv0xk2 þ Ckuxxk2L2ð0;T ;L2Þ:

Finally, due to the fact that uxxðtÞ is bounded (3.11), we have

ðT
0

kvtðtÞk2 dtþ ess sup
t A ½0;T �

kvxðtÞk2 þ
ðT
0

kvxxðtÞk2 dtaCðT ;E a½u0; v0�Þ: ð3:14Þ

This shows that v has the regularity stated in (3.7). r

Remark 3.6. Starting from the solution of (3.1) one obtains a solution of (1.8) by

taking w ¼ ux.
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4. The capillarity limit

As mentioned in the introduction, energy arguments suggest that the appropriate

limit problem for (3.1) as a ! l is the classical viscosity-capillarity model (1.4)

ut � v ¼ 0;

vt � sðuxÞx ¼ vxx � uxxxx;
ð4:1Þ

written here in displacement-velocity state variables (with m ¼ l ¼ 1).

This model has been studied by Andrews and Ball [2] who prove that for any

initial state

u0 a H 2BH 1
0 and v0 a L2

there exists a unique solution

u a C1
�
ð0;T �;H 2BH 1

0

�
;

v a C1
�
ð0;T �;L2

�
;

defined on any time interval with T > 0 and with regularity given by

uðtÞ a H 4BH 1
0 ; vðtÞ a H 2BH 1

0 for t > 0:

The corresponding energy equation for (4.1) is

d

dt
El½uðtÞ; vðtÞ� ¼ �kvxðtÞk2

where

El½u; v� ¼ 1

2
kvk2 þ 1

2
kuxxk2 þ

ð
W

WðuxÞ dx: ð4:2Þ

In order to prove a convergence result for the family of solutions to (3.1)

with a > 0, a-independent estimates, especially for the strain, are needed. A key

observation which leads to such estimates is that the initial energy for any of the

problems (3.1) with a > 0 is bounded by the initial energy

El
0 :¼ El½u0; v0� ¼

1

2
kv0k2 þ

1

2
ku0xxk2 þ

ð
W

W ðu0xÞ dx:

The precise statement is given in the next lemma.
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Note that for the rest of this section we use the a-index for solutions of (3.1).

The energy El in (4.2) equals obviously El in (1.5) with u ¼ wx and we use the

same notation.

Lemma 4.1 (a-independent estimates). Let ðua; va; paÞTa>0 be the family of solu-

tions, in the sense of (3.7), to the initial boundary value problem (3.1)–(3.4) with

the same initial conditions

u0 a H 2BH 1
0 and v0 a H 2BH 1

0 :

Then there exists a a-independent constant El
0 (defined above) such that for all

t a ½0;T �

E a½uaðtÞ; vaðtÞ; paðtÞ�aEl
0 ; ð4:3Þð t

0

kvaxðtÞk
2 dtaEl

0 : ð4:4Þ

Furthermore, for any a > 0 and any t a ½0;T �

kua
xxðtÞkaCðT ;El

0 Þ ð4:5Þ

and due to the embedding of H 1 in Ll

kua
xðtÞkLl aCðT ;El

0 Þ; ð4:6Þ

and ðT
0

kvat ðtÞk
2 dtaCðT ;El

0 Þ: ð4:7Þ

Proof. From the energy estimates (3.8) and (3.9) we know that for each a > 0

E a½uaðtÞ; vaðtÞ; paðtÞ�aE a½u0; v0; pa
0 �;ð t

0

kvaxðtÞk
2 dtaE a½u0; v0; pa

0 �;

where

E a½u0; v0; pa
0 � ¼

1

2
kv0k2 þ

1

2
3pa

0x; u0xx4þ
ð
W

Wðu0xÞ dx: ð4:8Þ

One can see that in (4.8) the only a-dependent term, and the only di¤erence to

El
0 is 3pa

0x; u0xx4, but from the inequality (3.6) we know that

3pa
0x; u0xx4a ku0xxk2;
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and hence

E a½u0; v0; pa
0 �aEl

0 :

By combining the a-independent energy estimate (4.3) with (3.11) one obtains

a uniform estimate for the strain gradient (4.5), which obviously implies the Ll

estimate (4.6) for the strain.

Furthermore, (4.5) together with (3.14), which is an estimate for vt, yield (4.7).

r

The proof of the main result in this section relies on the well-known Lemma of

Aubin (see [17]).

Lemma 4.2 (Aubin). Let V, H, V 0 be reflexive Banach spaces such that the follow-

ing embeddings hold V ,! ðcompactlyÞH ,! ðcontinuouslyÞV 0. If the sequence ð fnÞ
is bounded in L2ð0;T ;VÞ and the sequence of time derivatives ðqt fnÞ is bounded in

L2ð0;T ;V 0Þ then ð fnÞ has a subsequence ð fnaÞ which converges in L2ð0;T ;HÞ.

Theorem 4.3. There exists a subsequence ðuak ; vak ; pakÞTk AN of the family of classi-

cal solutions of (3.1), (and a pair ðw; vÞT a L2ð0;T ;L2 �H 1
0 Þ such that

(i) we have

uak
x ; pak ! w in L2ð0;T ;L2Þ;

vak ! v in L2ð0;T ;L2Þ;

sðuak
x Þ ! sðwÞ in L2ð0;T ;L2Þ

as k ! l, and

w a Ll
�
W� ð0;TÞ

�
: ð4:9Þ

(ii) ðw; vÞT is a weak solution of the problem (4.1) in conservation form, i.e.,

ðT
0

ð
W

wct � vcx dx dt ¼ 0; ð4:10Þ
ðT
0

ð
W

vct � vcxx � wcxxx þ sðwÞcx dx dt ¼ 0; ð4:11Þ

for all c a Cl
0

�
W� ð0;TÞ

�
.

Proof. We begin by showing that for a subsequence

pak ! w in L2ð0;T ;L2Þ: ð4:12Þ
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To this end we use Aubin’s Lemma. First, ðpaÞa>0 is uniformly bounded in

L2ð0;T ;H 1Þ due to the inequality (3.6) and the first energy inequality (4.3)

kpa
xðtÞk

2
a3pa

xðtÞ; ua
xxðtÞ4aEl

0 ð4:13Þ

a.e. t a ½0;T � and any a.

To show that the sequence of time derivatives ðpa
t Þa>0 is also uniformly

bounded, we di¤erentiate the equation

� 1

a
pa
xxðtÞ þ paðtÞ ¼ ua

xðtÞ

with respect to time. Since va a Llð0;T ;H 1
0 Þ, the resulting equation

� 1

a
ðpa

t ÞxxðtÞ þ pa
t ðtÞ ¼ vaxðtÞ

holds in L2 for a.e. t a ½0;T � and the following inequality is analogous to (3.6)

kpa
t ðtÞka kvaxðtÞk:

Based on the last inequality and on (4.4)ðT
0

kpa
t ðtÞk

2 dta

ðT
0

kvaxðtÞk
2 dtaEl

0 :

Hence, according to the Lemma of Aubin, there exists w a L2ð0;T ;L2Þ such that

(4.12) holds some subsequence denoted by ðpakÞk AN.
Next, we prove that the corresponding subsequence ðuak

x Þk AN also converges

to w. Indeed, turning once again to the elliptic equation

� 1

a
pa
xxðtÞ þ paðtÞ ¼ ua

xðtÞ;

as ua
x a Cð½0;T �;H 2Þ; using (4.3) one has that for any t a ½0;T �

kua
xðtÞ � paðtÞk2 ¼ � 1

a
3pa

xxðtÞ; ua
xðtÞ � paðtÞ4

¼ 1

a
3pa

xðtÞ; ua
xxðtÞ4� 1

a
kpa

xðtÞk
2

a
1

a
3pa

xðtÞ; ua
xxðtÞ4

a
1

a
El
0 :
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This leads to

kuak
x ðtÞ � pakðtÞk ! 0 ð4:14Þ

for any t a ½0;T � and, finally when k ! l, to

uak
x ! w in L2ð0;T ;L2Þ: ð4:15Þ

Since the sequence ðuak
x Þk AN is uniformly bounded in the Ll-norm (see (4.6)),

from (4.15) we conclude from (4.15) that

w a Ll
�
W� ð0;TÞ

�
;

and w satisfies the same bound as all ua
x ,

kwðtÞkLl aCðT ;E0Þ:

Consequently sðwÞ is well-defined.
Considering the specific form of s we have that

sðwÞ � sðwÞ ¼ ðw� wÞðw2 þ wwþ w2 � 1Þ: ð4:16Þ

If we take w ¼ uak
x , then w2 þ wwþ w2 � 1 is bounded by a (a-independent)

constant Mb 0, due to the Ll-estimates for both uak
x and w. Thus the relation

(4.16) gives

ksðuak
x Þ � sðwÞk2L2ð0;T ;L2Þ a

ðT
0

ð
W

�
uak
x ðt; xÞ � wðt; xÞ

�2
M 2 dx dt

¼ M 2kuak
x � wk2L2ð0;T ;L2Þ:

And by the convergence of uak
x to w

sðuak
x Þ ! sðwÞ in L2ð0;T ;L2Þ

for k ! l.

The strong convergence of a subsequence ðvak Þak AN is achieved by using

Aubin’s lemma once again. The required uniform estimates are given in (4.4)

and (4.7).

Finally, we can pass to the limit in the following weak formulation of (3.1)ðT
0

ð
W

wakct � vakcx dx dt ¼ 0;

ðT
0

ð
W

vakct � vakcxx � pakcxxx þ sðwakÞcx dx dt ¼ 0
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which is satisfied by the solutions ðuak ; vakÞT for any c a Cl
0

�
W� ð0;TÞ

�
. Since

all the sequences involved converge, we can pass to the limit to obtain exactly

(4.10) and (4.11). r

5. Numerical experiments

In this section we numerically compare model (1.8) with (1.4). We study the cap-

illarity limit a ! l and one sharp-interface limit given by the scaling m ¼ �,

l ¼ �2, and � ! 0. Furthermore, we compare the computational time for the

di¤erent approaches.

All computations are done using an explicit discontinuous Galerkin (DG)

scheme of order 1 on an uniform grid with N a N cells. The space discretisation

is done using the local DG method introduced in [5] and the explicit Euler scheme

is used as time discretisation. As a numerical flux for the first-order part we use

the Lax-Friedrichs flux. The elliptic equation for pa is solved by a finite di¤erence

scheme.

5.1. Numerical Tests for the Capillarity and the Sharp Interface Limit. In the

following experiments we present numerical experiments for (1.8) and (1.4). In all

cases we choose the parameters as

W ¼ ½0; 1�; m ¼ �; l ¼ �2;

with � > 0 given below. We take the free energy from (1.1) with b ¼ 1. The initial

conditions are given by

�
v0ðxÞ;w0ðxÞ

�
¼

ðvL;wLÞ : x a
�
0; 14
�
A
�
1
2 ;

5
8

�
A
�
3
4 ; 1
�

ðvR;wRÞ : x a
�
1
4 ;

1
2

�
A
�
5
8 ;

3
4

�
(

with

vL ¼ 0:5; wL ¼ �0:8; vR ¼ 0:0 and wR ¼ 1:1;

and we choose periodic boundary conditions.

5.1.1. The Capillarity Limit a ! T. In this section we numerically investigate

the convergence shown in Theorem 4.3. In Figure 1 we plot numerical solutions

at di¤erent time levels t ¼ 0:2; 0:4; 0:8. All the experiments are done with � ¼ 0:03

and N ¼ 480 cells.

We observe that all discrete solutions tend to eliminate the isolated small strain

phase which is initially associated with the interval ð1=2; 5=8Þ�. With increasing
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Figure 1. Convergence of the strain w for a ! l, results for a ¼ 1; 3; 5; 10 are displayed.
The graph denoted with the label ‘‘limit’’ corresponds to the numerical solution of (1.4).
At any time we observe convergence for increasing a.
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values of a we see convergence towards the solution of the viscosity capillarity

model (1.4) as predicted by Theorem 4.3.

5.1.2. The Sharp-Interface Limit �� ! 0. Now we fix a ¼ 1, but vary � ¼
0:1; 0:01; 0:001. In Figure 2 we plot the solutions at the time levels t ¼ 0:2; 0:4; 0:8

on a grid with N ¼ 480 cells.

We observe for � ! 0 a good approximation of (1.8) by (1.4). For � ¼ 0:1 we

have still a strong smoothing of the solution: two phase transitions combine here

much faster than in the solution for � ! 0. This is the reason, why the solutions

for di¤erent � di¤er so much.

5.1.3. Runtime Comparison. In this section we compare the runtime of the DG

method for the models (1.8) and (1.4) for di¤erent numbers of grid cells N. The

runtimes are listed in Table 1.

We observe, that solving (1.8) is much faster than solving (1.4). This comes

from the fact, that the time step restriction is weaker for (1.8). The computa-

tional complexity of an explicit numerical solution to (1.4) scales (formally) with

OðDx�3Þ time steps, Dx > 0 denoting the spatial mesh width. For the new model

(1.8) we require only OðDx�2Þ time steps.

5.2. An Experiment in 2D. We study the behavior of a generalization of (1.4)

to two dimensions given by

wt � ‘v ¼ 0;

vt � div sðwÞ ¼ mDv� l divDw:
ð5:1Þ

The unknowns are w : W� ð0;TÞ ! R2�2 and v : W� ð0;TÞ ! R2. In the calcu-

lation we will use W ¼ ½0; 1�2. The stress-strain relation s : R2�2 ! R2�2 is defined

as the derivative of the free energy function C : R2�2 ! R given by

CðwÞ ¼ CðC ¼ wTwÞ

¼ ðC11 � 1� dÞ2ðC22 � 1þ dÞ2 þ ðC11 � 1þ dÞ2ðC22 � 1� dÞ2 þ C2
12:

The free energy function C has two minima at

w1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� d

p
0

0
ffiffiffiffiffiffiffiffiffiffiffi
1þ d

p
� �

and w2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ d

p
0

0
ffiffiffiffiffiffiffiffiffiffiffi
1� d

p
� �

; d > 0:

The convex regions of C around the minima are interpreted as the two phases

of the described material. For the calculation we use the initial conditions

wð�; 0Þ ¼ w1 and vð�; 0Þ ¼ 0:
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Figure 2. Convergence of the strain w for � ! 0, results for � ¼ 0:1; 0:01; 0:001 are dis-
played. The graph denoted with the label ‘‘limit’’ corresponds to the numerical solution
of (1.4).
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The boundary conditions are

left: v �~nn ¼ 0:

right: v �~nn ¼ 0:1:

top: sðwÞ �~nn ¼ 0:

bottom: sðwÞ �~nn ¼ 0:

In other words the plate is fixed at the left and pulled with constant velocity at the

right. At the top and the bottom no forces act.

It is straight forward to extend the equation (1.8) to multiple space dimensions.

We approximate (5.1) by

wa
t � ‘va ¼ 0;

vat � div sðwaÞ ¼ mDva � a divðpa � waÞ;
lDpa ¼ aðpa � waÞ:

ð5:2Þ

For the calculation in Figure 3 the parameters

m ¼ �; l ¼ �2; � ¼ 0:02 and d ¼ 0:3

are chosen. Only the position of the phase transition is plotted: a material point

with stress w belongs to phase 1, if and only if kw� w1k < kw� w2k. In other

words we draw the line given by kw� w1k ¼ kw� w2k. The figures are plotted

in physical space and not in the reference domain W.

Table 1. This table lists the runtime (in seconds) for solving (1.4) and (1.8) with di¤erent
a on di¤erent grids. The runtime is always given in milliseconds. By error we denote the
L2-di¤erence to the numerical solution of (1.4) on the same grid.

(1.4) (1.8) with a ¼ 1 (1.8) with a ¼ 3 (1.8) with a ¼ 10

N � runtime runtime error runtime error runtime error

40 1/4 1469 190 0.379 190 0.205 189 0.101
80 1/8 3099 424 0.227 424 0.094 424 0.057

120 1/12 4862 706 0.230 704 0.079 703 0.043
160 1/16 6991 1049 0.248 1049 0.088 1049 0.041
200 1/20 9172 1426 0.250 1435 0.090 1435 0.036
240 1/24 11470 1863 0.233 1854 0.086 1864 0.036
280 1/28 14013 2340 0.207 2342 0.079 2345 0.040
320 1/32 16670 2849 0.182 2851 0.073 2856 0.044
360 1/36 19447 3436 0.163 3441 0.067 3443 0.047
400 1/40 22428 4091 0.153 4076 0.064 4079 0.047
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As in the one-dimensional case, we observe that model (5.1) is well approxi-

mated by model (5.2) for a ! l.
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