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1. Introduction

Consider the following perturbed fourth-order Kirchho¤-type elliptic problem

DðjDujp�2DuÞ � ½Mð
Ð
W j‘ujp dxÞ�p�1Dpuþ rjujp�2

u in W;

¼ lf ðx; uÞ þ mgðx; uÞ
u ¼ Du ¼ 0 on qW;

8><
>: ð1Þ

where p > max 1;
N

2

� �
, Dpu ¼ divðj‘ujp�2‘uÞ is the p-Laplacian operator, l > 0

and mb 0 are real numbers, WHRN ðNb 1Þ is a bounded smooth domain r > 0,

f ; g : W� R ! R are two L1-Carathéodory functions and M : ½0;þl½ ! R is a

continuous function.

The problem (1) is related to the stationary problem

r
q2u

qt2
�
�r0
h
þ E

2L

ðL

0

qu

qx

����
����
2

dx
� q2u

qx2
¼ 0; ð2Þ

proposed by Kirchho¤ [29] as an extension of the classical D’Alembert’s wave

equation for free vibrations of elastic strings. Equation (2) was developed



to form

utt �M
�ð

W

j‘uj2 dx
�
Du ¼ f ðx; uÞ:

After that, many authors studied the following nonlocal elliptic boundary value

problem:

�M
�ð

W

j‘uj2 dx
�
Du ¼ f ðx; uÞ: ð3Þ

Problems like (3) can be used for modeling several physical and biological sys-

tems where u describes a process which depends on the average of it self, such as

the population density, see [1].

However, to be accurate, the problem (1) is related to the models of extensible

beams and plates by Woinowsky-Krieger [44] and Berger [5]. In addition, the first

stationary study of such fourth order nonlocal boundary value problem was given

by Ma [33]. In [34] was named first time ‘‘fourth order problem of Kirchho¤

type’’. The problem is also related to the so-called p-Kirchho¤ problems. Note

that the part ½Mð
Ð
W j‘ujp dxÞ�p�1Dpu of the problem (1) has an exponent p� 1.

This was first introduced by Corrêa and Figueiredo [20] to make the problem

variational.

Problems of Kirchho¤-type have been widely investigated. We refer the reader

to the papers [19], [23], [26], [27], [35], [37], [40] and the references therein. For

instance, B. Ricceri in an interesting paper [40] established the existence of at least

three weak solutions to a class of Kirchho¤-type doubly eigenvalue boundary

value problem using Theorem A of [39]. In [27], motivated by [40], based on a

three critical points theorem proved in [6], the existence of two intervals of positive

real parameters l for which the boundary value problem of Kirchho¤-type

�K
�Ð b

a
ju 0ðxÞj2 dx

�
u 00 ¼ lf ðx; uÞ;

uðaÞ ¼ uðbÞ ¼ 0;

(

where K : ½0;þl½ ! R is a continuous function, f : ½a; b� � R ! R is a Carathéo-

dory function and l > 0 admits three weak solutions whose norms are uniformly

bounded with respect to l belonging to one of the two intervals, was established.

The fourth-order equation of nonlinearity furnishes a model to study traveling

waves in suspension bridges, so it is important to physics. Due to this, many re-

searchers have discussed the existence of at least one solution, or multiple solu-

tions, or even infinitely many solutions for fourth-order boundary value problems

by using lower and upper solution methods, Morse theory, the mountain-pass the-

orem, constrained minimization and concentration-compactness principle, fixed-

point theorems and degree theory, and variational methods and critical point
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theory. We refer the reader to [4], [10], [11], [12], [13], [16], [17], [18], [24], [25],

[28], [30], [31], [32] and references therein.

In [42], using the mountain pass theorem, Wang and An established the exis-

tence and multiplicity of solutions for the following fourth-order nonlocal elliptic

problem

D2u�Mð
Ð
W j‘uj2 dxÞDu ¼ lf ðx; uÞ in W;

u ¼ Du ¼ 0 on qW:

�

Also, in [43] the authors, by using the mountain pass techniques and the trunca-

tion method, studied the existence of nontrivial solutions for a class of fourth

order elliptic equations of Kirchho¤-type.

In particular, in [36] employing a smooth version of Ricceri’s variational prin-

ciple [38], the authors ensured the existence of infinitely many solutions for the

problem (1) when m ¼ 0. In [22], the existence of two solutions for the problem

(1) when m ¼ 0 by combining an algebraic condition on f with the classical

Ambrosetti–Rabinowitz condition was established.

In the present paper, employing two kinds of three critical points theorems

obtained in [7], [14] which we recall in the next section (Theorems 2.1 and 2.2),

we ensure the existence of least three weak solutions for the problem (1). These

theorems have been successfully employed to establish the existence of at least

three solutions for perturbed boundary value problems in the papers [8], [9], [21].

For a through on the subject, we also refer the reader to the papers [2], [3].

2. Preliminaries

Our main tools are three critical point theorems that we recall here in a convenient

form. The first has been obtained in [14], and it is a more precise version of The-

orem 3.2 of [7]. The second has been established in [7].

Theorem 2.1 ([14], Theorem 3.6). Let X be a reflexive real Banach space,

F : X ! R be a coercive continuously Gâteaux di¤erentiable and sequentially

weakly lower semicontinuous functional whose Gâteaux derivative admits a continu-

ous inverse on X �, C : X ! R be a continuously Gâteaux di¤erentiable functional

whose Gâteaux derivative is compact such that Fð0Þ ¼ Cð0Þ ¼ 0.

Assume that there exist r > 0 and v a X, with r < FðvÞ such that

ða1Þ
supFðuÞar CðuÞ

r
<

CðvÞ
FðvÞ ,

ða2Þ for each l a Lr :¼
FðvÞ
CðvÞ ;

r

supFðuÞar CðuÞ

# "
the functional F� lC is

coercive.
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Then, for each l a Lr the functional F� lC has at least three distinct critical points

in X.

Theorem 2.2 ([7], Corollary 3.1). Let X be a reflexive real Banach space,

F : X ! R be a convex, coercive and continuously Gâteaux di¤erentiable functional

whose derivative admits a continuous inverse on X �, C : X ! R be a continuously

Gâteaux di¤erentiable functional whose derivative is compact, such that

1. infX F ¼ Fð0Þ ¼ Cð0Þ ¼ 0;

2. for each l > 0 and for every u1; u2 a X which are local minima for the func-

tional F� lC and such that Cðu1Þb 0 and Cðu2Þb 0, one has

inf
s A ½0;1�

C
�
su1 þ ð1� sÞu2

�
b 0:

Assume that there are two positive constants r1, r2 and v a X, with 2r1 < FðvÞ < r2

2
,

such that

ðb1Þ
supu AF�1ð��l; r1½Þ CðuÞ

r1
<

2

3

CðvÞ
FðvÞ ;

ðb2Þ
supu AF�1ð��l; r2½Þ CðuÞ

r2
<

1

3

CðvÞ
FðvÞ :

Then, for each

l a
3

2

FðvÞ
CðvÞ ;min

r1

supu AF�1ð��l; r1½Þ CðuÞ ;
r2
2

supu AF�1ð��l; r2½Þ CðuÞ

( )# "
;

the functional F� lC has at least three distinct critical points which lie in

F�1ð��l; r2½Þ.

Here and in the sequel, X will denote the space W 2;pðWÞBW
1;p
0 ðWÞ endowed

with the norm

kuk :¼
�ð

W

�
jDuðxÞjp þ j‘uðxÞjp þ juðxÞjp

�
dx

�1=p
:

Put

k ¼ sup
u AXnf0g

max
x AWjuðxÞj
kuk : ð4Þ

For p > max 1;
N

2

� �
, since the embedding X ,! C0ðWÞ is compact, one has

k < þl.
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Let f ; g : W� R ! R be two L1-Carathéodory functions and M : ½0;þl½ !
R be a continuous function such that there are two positive constants m0 and m1

with m0aMðtÞam1 for all tb 0:

Corresponding to f and g we introduce the functions F : W� R ! R and

G : W� R ! R, respectively, as follows

F ðx; tÞ ¼
ð t

0

f ðx; xÞ dx; for all ðx; tÞ a W� R

and

Gðx; tÞ ¼
ð t

0

gðx; xÞ dx; for all ðx; tÞ a W� R:

Moreover, set Gc :¼
Ð
W supjtjac Gðx; tÞ dx for every c > 0 and Gd :¼ infW�½0;d � G

for every d > 0. If g is sign-changing, then Gcb 0 and Gd a 0.

Set

~MMðtÞ ¼
ð t

0

½MðsÞ�p�1
ds for all tb 0;

M� :¼ minf1;mp�1
0 ; rg

and

Mþ :¼ maxf1;mp�1
1 ; rg:

We mean by a (weak) solution of the problem (1), any function u a X such

that ð
W

jDuðxÞjp�2DuðxÞDvðxÞ dx

þ M
�ð

W

j‘uðxÞjp dx
�� 	p�1ð

W

j‘uðxÞjp�2‘uðxÞ‘vðxÞ dx

þ r

ð
W

juðxÞjp�2
uðxÞvðxÞ dx� l

ð
W

f
�
x; uðxÞ

�
vðxÞ dx

� m

ð
W

g
�
x; uðxÞ

�
vðxÞ dx ¼ 0

for every v a X .

We need the following proposition in the proofs of Theorems 3.1 and 3.2.
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Proposition 2.3. Let T : X ! X � be the operator defined by

TðuÞh ¼
ð
W

jDuðxÞjp�2DuðxÞDhðxÞ dx

þ M
�ð

W

j‘uðxÞjp dx
�� 	p�1ð

W

j‘uðxÞjp�2‘uðxÞ‘hðxÞ dx

þ r

ð
W

juðxÞjp�2
uðxÞhðxÞ dx

for every u; h a X. Then T admits a continuous inverse on X �.

Proof. Since

TðuÞubM�kukp;

T is coercive. Taking into account (2.2) of [41] for p > 1 there exists a positive

constant Cp such that

3jxjp�2
x� jyjp�2

y; x� y4b
Cpjx� yjp if pb 2;

Cp
jx�yj2

ðjxjþjyjÞ2�p if 1 < p < 2

(

where 3: ; :4 denotes the usual inner product in RN , for every x; y a RN . Thus, for

1 < p < 2, it is easy to see that

�
TðuÞ � TðvÞ

�
ðu� vÞbCpM

�
ð
W

� jDuðxÞ � DvðxÞj2�
jDuðxÞj þ jDvðxÞj

�2�p

þ j‘uðxÞ � ‘vðxÞj2�
j‘uðxÞj þ j‘vðxÞj

�2�p
þ juðxÞ � vðxÞj2�

juðxÞj þ jvðxÞj
�2�p

�
dx > 0

for every u; v a X , uA v, which means that T is strictly monotone. For, pb 2, we

also observe that

�
TðuÞ � TðvÞ

�
ðu� vÞbCpM

�
ð
W

�
jDuðxÞ � DvðxÞjp dxþ j‘uðxÞ � ‘vðxÞjp

þ juðxÞ � vðxÞjp
�
dx > 0;

which means that T , in this case, is strictly monotone too. Moreover, we observe

T is the dual mapping on W 2;pðWÞBW
1;p
0 ðWÞ corresponding to the gauge func-

tion fpðtÞ ¼ tp�1. Hence T is demicontinuous. So by [45], Theorem 26.A(d), the

inverse operator T�1 of T exists. T�1 is continuous. Indeed, let ðanÞ be a se-
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quence of X � such that an ! a strongly in
�
W 2;pðWÞBW

1;p
0 ðWÞ

��
as n ! þl.

Let un and u in X such that T�1ðanÞ ¼ un and T�1ðaÞ ¼ u. Taking in to account

that T is coercive, one has that the sequence un is bounded in the reflexive space

X . For a suitable subsequence, we have un ! ûu weakly in X as n ! þl, which

concludes

lim
n!þl

3TðunÞ � TðuÞ; un � ûu4 ¼ 3an � a; un � ûu4 ¼ 0:

Note that if un ! ûu weakly in X as n ! þl and TðunÞ ! TðûuÞ strongly in X � as
n ! þl, one has un ! ûu strongly in X as m ! þl, and since T is continuous we

have un ! ûu weakly in X as n ! þl and TðunÞ ! TðûuÞ ¼ TðuÞ strongly in X � as
n ! þl. Hence, taking into account that T is an injection, we have u ¼ ûu. r

3. Main results

Fix x0 a W and pick s > 0 such that Bðx0; sÞHW where Bðx0; sÞ denotes the ball

with center at x0 and radius of s. Put

y1 :¼
2pN=2

G
�
N
2

� ð s

s=2

12ðN þ 1Þ
s3

r� 24N

s2
þ 9ðN � 1Þ

s

1

r

����
����
p

rN�1 dr;

y2 :¼
ð
Bðx0; sÞnBðx0; s=2Þ

SN
i¼1

�12lðxi � x0
i Þ

s3
� 24ðxi � x0

i Þ
s2

þ 9ðxi � x0
i Þ

sl

�2� 	p=2
dx;

y3 :¼
2pN=2

G
�
N
2

� �
s
2

�N
N

þ
ð s

s=2

4

s3
r3 � 12

s2
r2 þ 9

s
r� 1

����
����
p

rN�1 dr

" #

where G denotes the Gamma function, and l ¼ distðx; x0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SN
i¼1ðxi � x0

i Þ
2

q
, and

L :¼ y1 þ y2 þ y3: ð5Þ

In order to introduce our first result, fixing two positive constants c and d such

that

d pMþLÐ
Bðx0; s=2Þ F ðx; dÞ dx

<
M��c

k

�pÐ
W supjtjac F ðx; tÞ dx

and taking

l a L :¼
d p

p
MþLÐ

Bðx0; s=2Þ Fðx; dÞ dx
;

M�

p

�
c
k

�pÐ
W supjtjac Fðx; tÞ dx

# "
;
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put

dl;g :¼ min

(
M�cp � lpkp

Ð
W supjtjac F ðx; tÞ dx

pkpGc
;

MþLd p � lp
Ð
Bðx0; s=2Þ F ðx; dÞ dx

pjWjGd

)
ð6Þ

and

dl;g :¼ min dl;g;
1

max 0;
pk pjWj
M� lim supjtj!l

supx AW Gðx; tÞ
t p

n o
8<
:

9=
; ð7Þ

where that for instance dl;g ¼ þl when

lim sup
jtj!l

supx AW Gðx; tÞ
tp

a 0;

and Gd ¼ Gc ¼ 0:

Now, we formulate our main result.

Theorem 3.1. Assume that there exist two positive constants c and d with
cffiffiffiffi
L

p
p < d

such that

(A1)

ð
WnBðx0; s=2Þ

F ðx; xÞ dxb 0 for each x a ½0; d �;

(A2)

Ð
W supjtjac F ðx; tÞ dx

cp
<

M�

MþLkp

Ð
Bðx0; s=2Þ Fðx; dÞ dx

d p
where L is given by (5);

(A3) lim sup
jtj!þl

supx AW Fðx; tÞ
tp

a 0:

Then, for each l a L and for every L1-Carathéodory function g : W� R ! R satis-

fying the condition

lim sup
jtj!l

supx AW Gðx; tÞ
tp

< þl;

there exists dl;g > 0 given by (7) such that, for each m a ½0; dl;g½, the problem (1)

admits at least three distinct weak solutions in X.

Proof. In order to apply Theorem 2.1 to our problem, we introduce the func-

tionals F;C : X ! R for each u a X , as follows

FðuÞ ¼ 1

p

ð
W

jDuðxÞjp dxþ 1

p
~MM

ð
W

j‘uðxÞjp dx
� 	

þ r

p

ð
W

juðxÞjp dx

46 S. Heidarkhani, S. Khademloo and A. Solimaninia



and

CðuÞ ¼
ð
W

F
�
x; uðxÞ

�
þ m

l
G
�
x; uðxÞ

�� 	
dx:

Let us prove that the functionals F and C satisfy the required conditions. It is

well known that C is a di¤erentiable functional whose di¤erential at the point

u a X is

C 0ðuÞðvÞ ¼
ð
W

f
�
x; uðxÞ

�
þ m

l
g
�
x; uðxÞ

�� 	
vðxÞ dx

for every v a X as well as is sequentially weakly upper semicontinuous. Further-

more, C 0 : X ! X � is a compact operator. Indeed, it is enough to show that C 0 is
strongly continuous on X . For this end, for fixed u a X , let un ! u weakly in X as

n ! l, then un converges uniformly to u on W as n ! l; see [45]. Since f , g are

continuous functions, f , g are continuous in R for every x a W, so

f ðx; unÞ þ
m

l
gðx; unÞ ! f ðx; uÞ þ m

l
gðx; uÞ

as n ! l. Hence C 0ðunÞ ! C 0ðuÞ as n ! l. Thus we proved that C 0 is strongly
continuous on X , which implies that C 0 is a compact operator by Proposition 26.2

of [45].

Moreover, F is continuously di¤erentiable whose di¤erential at the point

u a X is

F 0ðuÞðvÞ ¼
ð
W

jDuðxÞjp�2DuðxÞDvðxÞ dx

þ M
�ð

W

j‘uðxÞjp dx
�� 	p�1ð

W

j‘uðxÞjp�2‘uðxÞ‘vðxÞ dx

þ r

ð
W

juðxÞjp�2
uðxÞvðxÞ dx

for every v a X , while Proposition 2.3 gives that F 0 admits a continuous inverse

on X �. Furthermore, F is sequentially weakly lower semicontinuous.

Clearly, the weak solutions of the problem (1) are exactly the solutions of the

equation F 0ðuÞ � lC 0ðuÞ ¼ 0: Put r :¼ M�

p

� c

k

�p

and

wðxÞ :¼
0 if x a WnBðx0; sÞ
d
�
4
s3
l3 � 12

s2
l2 þ 9

s
l� 1

�
if x a Bðx0; sÞnB

�
x0; s2

�
d if x a B

�
x0; s2

�
:

8><
>: ð8Þ
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It is easy to see that w a X and,

qwðxÞ
qxi

¼
0 if x a WnBðx0; sÞAB

�
x0; s2

�
d
�12lðxi�x0

i
Þ

s3
� 24ðxi�x0

i
Þ

s2
þ 9

s

ðxi�x0
i
Þ

l

�
if x a Bðx0; sÞnB

�
x0; s2

�
(

and

q2wðxÞ
qx2

i

¼
0 if x a WnBðx0; sÞAB

�
x0; s2

�
d
�
12
s3

ðxi�x0
i
Þ2þl2

l � 24
s2
þ 9

s

l2�ðxi�x0
i
Þ2

l3

�
if x a Bðx0; sÞnB

�
x0; s2

�
;

8<
:

and so that

XN
i¼1

q2wðxÞ
qx2

i

¼
0 if x a WnBðx0; sÞAB

�
x0; s2

�
d
�12lðNþ1Þ

s3
� 24N

s2
þ 9

s
N�1
l

�
if x a Bðx0; sÞnB

�
x0; s2

�
:

(

It is easy to see that w a X and, in particular, since

ð
W

jDwðxÞjp dx ¼ d p 2p
N=2

G
�
N
2

� ð s

s=2

12ðN þ 1Þ
s3

r� 24N

s2
þ 9ðN � 1Þ

s

1

r

����
����
p

rN�1 dr;

ð
W

j‘wðxÞjp dx

¼
ð
Bðx0; sÞnBðx0; s=2Þ

XN
i¼1

d 2
�12lðxi � x0

i Þ
s3

� 24ðxi � x0
i Þ

s2
þ 9

s

ðxi � x0
i Þ

l

�2
" #p=2

dx

¼ d p

ð
Bðx0; sÞnBðx0; s=2Þ

XN
i¼1

�12lðxi � x0
i Þ

s3
� 24ðxi � x0

i Þ
s2

þ 9

s

ðxi � x0
i Þ

l

�2
" #p=2

dx

and

ð
W

jwðxÞjp dx ¼ d p 2p
N=2

G
�
N
2

� ��s
2

�N
N

þ
ð s

s=2

4

s3
r3 � 12

s2
r2 þ 9

s
r� 1

����
����
p

rN�1 dr
�
;

In particular, one has

d p

p
M�La

1

p
ðy1d p þm

p�1
0 y2d

p þ ry3d
pÞaFðwÞ ¼ 1

p

�
y1d

p þ ~MMðy2d pÞ þ ry3d
p
�

a
1

p
ðy1d p þm

p�1
1 y2d

p þ ry3d
pÞa d p

p
MþL:
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Taking the condition
cffiffiffiffi
L

p
p < d into account, we observe

0 < r < FðwÞ:

Since
M�

p
kukp

aFðuÞ for each u a X and bearing (4) in mind, we see that

F�1ð��l; r�Þ ¼ fu a X ;FðuÞa rg

J u a X ;
M�

p
kukp

a r

� �

J fu a X ; juðxÞja c for each x a Wg;

and it follows that

sup
u AF�1ð��l; r�Þ

CðuÞ ¼ sup
u AF�1ð��l; r�Þ

ð
W

F
�
x; uðxÞ

�
þ m

l
G
�
x; uðxÞ

�� 	
dx

a

ð
W

sup
jtjac

Fðx; tÞ dxþ m

l
Gc:

On the other hand, by using condition (A1), we deduce

CðwÞb
ð
Bðx0; s=2Þ

F ðx; dÞ dxþ m

l

ð
W

Gðx; dÞ dx

b

ð
Bðx0; s=2Þ

F ðx; dÞ dxþ jWj m
l

inf
W�½0;d �

G

¼
ð
Bðx0; s=2Þ

Fðx; dÞ dxþ jWj m
l
Gd :

Therefore, we have

supu AF�1ð��l; r�Þ CðuÞ
r

¼
supu AF�1ð��l; r�Þ

Ð
W

�
F
�
x; uðxÞ

�
þ m

l
G
�
x; uðxÞ

��
dx

r

a

Ð
W supjtjac F ðx; tÞ dxþ m

l
Gc

M�

p

�
c
k

�p ; ð9Þ

and

CðwÞ
FðwÞb

Ð
Bðx0; s=2Þ Fðx; dÞ dxþ m

l

Ð
W G

�
x;wðxÞ

�
dx

d p

p
MþL

b

Ð
Bðx0; s=2Þ Fðx; dÞ dxþ jWj m

l
Gd

d p

p
MþL

: ð10Þ
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Since m < dl;g, one has

m <
M�cp � lpkp

Ð
W supjtjac Fðx; tÞ dx

pkpGc
;

that is, Ð
W supjtjac Fðx; tÞ dxþ m

l
Gc

M�

p

�
c
k

�p <
1

l
:

Furthermore,

m <
MþLd p � lp

Ð
Bðx0; s=2Þ F ðx; dÞ dx

pjWjGd

;

that is, Ð
Bðx0; s=2Þ Fðx; dÞ dxþ jWj m

l
Gd

d p

p
MþL

>
1

l
:

Then, Ð
W supjtjac F ðx; tÞ dxþ m

l
Gc

M�

p

�
c
k

�p <
1

l
<

Ð
Bðx0; s=2Þ F ðx; dÞ dxþ jWj m

l
Gd

d p

p
MþL

: ð11Þ

Hence from (9)–(11), we observe that the condition ða1Þ of Theorem 2.1 is ful-

filled.

Finally, since m < dl;g, we can fix l > 0 such that lim supjtj!l

supx AW Gðx; tÞ
tp

< l and ml <
M�

pkpjWj . Therefore, there exists a function h a L1ðWÞ such

that

Gðx; tÞa ltp þ hðxÞ; ð12Þ

for every x a W and t a R.

Now, fix 0 < e <
M�

pkpjWjl�
ml

l
. From (A3) there is a function he a L1ðWÞ such

that

Fðx; tÞa etp þ heðxÞ; ð13Þ

for every x a W and t a R.

Taking (4) into account, it follows that, for each u a X ,
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FðuÞ � lCðuÞb M�

p
kukp � l

ð
W

F
�
x; uðxÞ

�
þ m

l
G
�
x; uðxÞ

�� 	
dx

b
M�

p
kukp � le

ð
W

upðxÞ dx� lkhekL1ðWÞ

� ml

ð
W

upðxÞ dx� mkhkL1ðWÞ

b

�M�

p
� lkpjWje� mkpjWjl

�
kukp � lkhekL1ðWÞ � mkhkL1ðWÞ;

and thus

lim
kuk!þl

�
FðuÞ � lCðuÞ

�
¼ þl;

which means the functional F� lC is coercive, and the condition ða2Þ of Theorem
2.1 is verified.

Since from relations (9)–(11),

l a
FðwÞ
CðwÞ ;

r

supFðuÞar CðuÞ

# "
;

Theorem 2.1 (with v ¼ w) assures the desired conclusion. r

Now, a variant of Theorem 2.2 in which no asymptotic condition on g is re-

quested, is pointed out. In such a case f and g are supposed to be nonnegative.

Theorem 3.2. Suppose that f : W� R ! R be an L1-Carathéodory function satis-

fies the condition f ðx; tÞb 0 for all x a W and tb 0. Assume that there exist three

positive constants c1, c2 and d with c1 < k
�L
2

�1=p
d and k

�2MþL

M�

�1=p
d < c2 such

that

max

Ð
W supjtjac1

Fðx; tÞ dx
c
p
1

;
2
Ð
W supjtjac2

F ðx; tÞ dx
c
p
2

( )

<
2

3

M�

MþLkp

Ð
Bðx0; s=2Þ Fðx; dÞ dx

d p
:

Then, for each

l a L 0 :¼
#
3

2

MþLd p

p
Ð
Bðx0; s=2Þ Fðx; dÞ dx

;

M�

pkp
min

c
p
1Ð

W supjtjac1
Fðx; tÞ dx ;

c
p
2

2
Ð
W supjtjac2

Fðx; tÞ dx

( )"
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and for every nonnegative L1-Carathéodory function g : W� R ! R, there exists

d�l;g > 0 given by

min
M�cp1 � lpkp

Ð
W supjtjac1

Fðx; tÞ dx
pkpGc1

;
M�cp2 � 2lpkp

Ð
W supjtjac2

F ðx; tÞ dx
2pkpGc2

( )
:

such that, for each m a ½0; d�l;g½, the problem (1) admits at least three distinct weak

solutions ui for i ¼ 1; 2; 3, such that

0a uiðxÞ < c2; Ex a W; ði ¼ 1; 2; 3Þ:

Proof. Fix l, g and m as in the conclusion and take F and C as in the proof of

Theorem 3.1. We observe that the regularity assumptions of Theorem 2.2 on F

and C are satisfied. Then, our aim is to verify ðb1Þ and ðb2Þ. To this end, put w

as given in (8), as well as r1 :¼
M�

p

�c1
k

�p

and r2 :¼
M�

p

�c2
k

�p

: Using the condi-

tions c1 < k
�L
2

�1=p
d and k

�2MþL

M�

�1=p
d < c2 and bearing in mind that

d p

p
M�LaFðwÞa d p

p
MþL;

we get

2r1 < FðwÞ < r2

2
:

Since m < d�l;g and Gd ¼ 0, one has

supu AF�1ð��l; r1�Þ CðuÞ
r1

¼
supu AF�1ð��l; r1�Þ

Ð
W

�
F
�
x; uðxÞ

�
þ m

l
G
�
x; uðxÞ

��
dx

r1

a

Ð
W supjtjac1

F ðx; tÞ dxþ m
l
Gc1

M�

p

�
c1
k

�p
<

1

l
<

2

3

Ð
Bðx0; s=2Þ F ðx; hÞ dxþ jWj m

l
Gd

d p

p
MþL

a
2

3

CðwÞ
FðwÞ ;

and
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2 supu AF�1ð��l; r2�Þ CðuÞ
r2

¼
2 supu AF�1ð��l; r2�Þ

Ð
W

�
F
�
x; uðxÞ

�
þ m

l
G
�
x; uðxÞ

��
dx

r2

a
2
Ð
W supjtjac2

F ðx; tÞ dxþ 2 m
l
Gc2

M�

p

�
c2
k

�p
<

1

l
<

2

3

Ð
Bðx0ðs=2ÞÞ Fðx; dÞ dxþ jWj m

l
Gd

d p

p
MþL

a
2

3

CðwÞ
FðwÞ :

Therefore, ðb1Þ and ðb2Þ of Theorem 2.2 are verified.

Finally, we verify that F� lC satisfies the assumption 2. of Theorem 2.2. Let

u1 and u2 be two local minima for F� lC. Then u1 and u2 are critical points

for F� lC, and so, they are weak solutions for the problem (1). We claim

that they are nonnegative. As the same way given in [21], Theorem 3.2 let u be

a weak solution of problem (1). Arguing by a contradiction, assume that the

set A ¼ fx a W : uðxÞ < 0g is non-empty and of positive measure. Put uðxÞ ¼
minf0; uðxÞg for all x a W. Clearly, u a X and one has

ð
W

jDuðxÞjp�2DuðxÞDuðxÞ dx

þ M
�ð

W

j‘uðxÞjp dx
�� 	p�1ð

W

j‘uðxÞjp�2‘uðxÞ‘uðxÞ dx

þ r

ð
W

juðxÞjpuðxÞuðxÞ dx� l

ð
W

f
�
x; uðxÞ

�
uðxÞ dx

� m

ð
W

g
�
x; uðxÞ

�
uðxÞ dx ¼ 0:

Thus, from our sign assumptions on the data, we have

0a

ð
A

jDuðxÞjp dxþ M
�ð

A

j‘uðxÞjp dx
�� 	p�1ð

A

j‘uðxÞjp dxþ r

ð
W

juðxÞjp dxa 0:

Hence, u ¼ 0 in A and this is absurd. Then, we deduce u1ðxÞb 0 and u2ðxÞb 0

for every x a W, and our claim holds true. Thus, it follows that su1 þ ð1� sÞu2
b 0 for all s a ½0; 1�, and that

ðlf þ mgÞ
�
x; su1 þ ð1� sÞu2

�
b 0;

and consequently, C
�
su1 þ ð1� sÞu2

�
b 0, for every s a ½0; 1�.
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From Theorem 2.2, for every

l a
3

2

FðwÞ
CðwÞ ;min

r1

supu AF�1ð��l; r1½Þ CðuÞ ;
r2=2

supu AF�1ð��l; r2½Þ CðuÞ

( )# "
;

the functional F� lC has at least three distinct critical points which are the weak

solutions of the problem (1) and the conclusion is achieved. r

A special case of Theorem 3.1 is the following theorem.

Theorem 3.3. Let f : R ! R be a continuous function, and denote FðtÞ :¼Ð t

0 f ðxÞ dx for each t a R. Assume that FðdÞ > 0 for some d > 0 and F ðxÞb 0 in

½0; d � and

lim inf
x!0

F ðxÞ
xp ¼ lim sup

x!þl

FðxÞ
xp ¼ 0:

Then there is l� > 0 such that for each l > l� and for every L1-Carathéodory

function g : W� R ! R satisfying the asymptotical condition

lim sup
jtj!l

supx AW
Ð t

0 gðx; sÞ ds
tp

< þl;

there exists dl;g > 0 such that for each m a ½0; dl;g½, the problem

DðjDujp�2DuÞ � ½Mð
Ð
W j5ujp dxÞ�p�1Dpuþ rjujp�2

u ¼ lf ðuÞ þ mgðx; uÞ in W

u ¼ Du ¼ 0 on qW

�

admits at least three weak solutions.

Proof. Fix l > l� :¼ d pMþL

p
�
s
2

�N pN=2

Gð1þN
2 Þ
FðdÞ

for some d > 0. Since

lim inf
x!0

FðxÞ
x2

¼ 0;

there is a sequence fcngH �0;þl½ such that limn!l cn ¼ 0 and

lim
n!l

supjxjacn
F ðxÞ

c
p
n

¼ 0:

Indeed, one has

lim
n!l

supjxjacn
F ðxÞ

c
p
n

¼ lim
n!l

F ðxcnÞ
xp
cn

xp
cn

c
p
n
¼ 0;
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where F ðxcnÞ ¼ supjxjacn
F ðxÞ:

Hence, there exists c > 0 such that

supjxjac FðxÞ
cp

< min
M�

jWjMþLkp

�s
2

�N pN=2

G
�
1þ N

2

� FðdÞ
d p

;
M�

pkpjWjl

( )

and
cffiffiffiffi
L

p
p < d: From Theorem 3.1 the conclusion follows. r

Here, as an example, we point out a consequence of Theorem 3.2 as follows.

Theorem 3.4. Suppose that
Mþ

M� <
1

58:18309
. Let f : R ! R be a nonnegative

continuous function such that

lim
t!0þ

f ðtÞ
t2

¼ 0

and ð2

0

f ðxÞ dx <
2

27� 58:18309

M�

Mþ

ð1

0

f ðxÞ dx:

Then, for every l a
58:18309Mþ

2
Ð 1
0 f ðxÞ dx

;
M�

27
Ð 2
0 f ðxÞ dx

# "
and for every L1-Carathéodory

nonnegative function g : W� R ! R there exists d�l;g > 0 such that for each

m a ½0; d�l;g½, the problem

DðjDujDuÞ � ½Mð
Ð
W j‘uj3 dxÞ�2D3uþ juju ¼ lf ðuÞ þ mgðx; uÞ in W

u ¼ Du ¼ 0 on qW

�

where W ¼ fðx; yÞ; x2 þ y2 < 9g, admits at least three weak solutions.

Proof. Our aim is to employ Theorem 3.2 by choosing r ¼ 1, p ¼ 3, x0 ¼ 0,

s ¼ 2, c2 ¼ 2 and d ¼ 1. Therefore, since k ¼
ffiffiffi
4

p

3

r
, L ¼ 58:18309p, we see that

3

2

MþLd p

p
Ð
Bðx0; s=2Þ F ðx; dÞ dx

¼ 58:18309Mþ

2
Ð 1
0 f ðxÞ dx

and

M�

pkp

c
p
2

2
Ð
W supjtjac2

Fðx; tÞ dx ¼ M�

27
Ð 2
0 f ðxÞ dx

:
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Moreover, since limt!0þ
f ðtÞ
t2

¼ 0, one has

lim
t!0þ

Ð t

0 f ðxÞ dx
t3

¼ 0:

Then, there exists a positive constant c1 < k
�58:18309

2

�1=p
d such that

Ð c1
0 f ðxÞ dx

c31
<

M�

58:18309Mþ

Ð 1
0 f ðxÞ dx

54

and

c31Ð c1
0 f ðxÞ dx

>
4Ð 2

0 f ðxÞ dx
:

Finally, from our hypotheses, a simple computation show that all assumptions of

Theorem 3.2 are fulfilled. The desired conclusion follows. r

Now, let ab 0 and b > 0 be two real numbers, let M : ½a; b�J ½0;þl½ ! R be

a function defined by MðtÞ ¼ aþ bt for each t a ½a; b� where a; b > 0. Put M0 ¼
minf1; ðaþ baÞp�1; rg. We consider the following problem

DðjDujp�2DuÞ � ðaþ b
Ð
W j‘ujp dxÞp�1Dpuþ rjujp�2

u in W

¼ lf ðx; uÞ þ mgðx; uÞ
u ¼ Du ¼ 0 on W:

8><
>: ð14Þ

The following existence results are immediate consequences of Theorems 3.1 and

3.2, respectively.

Corollary 3.5. Assume that there exist two positive constants ac and d such that

Assumptions (A1) and (A3) in Theorem 2.2 hold, and

(A4) y1d
p þ 1

ap
ðaþ by2d

pÞp þ ry3d
p � 1

ap
ap > M0

�c
k

�p

;

(A5)

Ð
W supjtjac F ðx; tÞ dx

cp
<

M0

kp

Ð
Bðx0; s1=2Þ F ðx; dÞ dx

y1d p þ 1
bp
ðaþ by2d pÞp þ ry3d p � 1

bp
ap

:

Then, for each

l a �LL :¼ 1

p

y1d
p þ 1

bp
ðaþ y2d

pÞp þ ry3d
p � 1

bp
apÐ

Bðx0; s1=2Þ F ðx; dÞ dx
;
1

p

M0

�
c
k

�pÐ
W supjtjac F ðx; tÞ dx

# "
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and for every L1-Carathéodory function g : W� R ! R satisfying the condition

lim sup
jtj!þl

supx AW Gðx; tÞ
tp

< þl;

there exists d 0l;g > 0 where

d 0l;g :¼ min d 0l;g;
1

max

0;

pk pjWj
M� lim supjtj!l

supx AW Gðx; tÞ
t p

�
( )

with

d 0l;g :¼ min

(
M0c

p � lpkp
Ð
W supjtjac Fðx; tÞ dx
pkpGc

;

1
p

�
y1d

p þ 1
bp
ðaþ by2d

pÞp þ ry3d
p � 1

bp
ap
�
� pl

Ð
Bðx0; s1=2Þ F ðx; dÞ dx

jWjpGd

)

such that for each m a ½0; d 0l;g½, the problem (14) admits at least there distinct weak

solutions in X.

Proof. Bearing in mind that m0 ¼ aþ ba, like for Theorem 3.2, since in this case

FðwÞ ¼ y1d
p þ 1

bp
ðaþ y2d

pÞpd p þ ry3d
p � 1

bp
ap where w is given as in (8), owing

to our assumptions, the conclusion follows from Theorem 2.1. r

Corollary 3.6. Let f : W� R ! R satisfy the condition f ðx; tÞb 0 for all ðx; tÞ a
W� ðRþA f0gÞ. Assume that there exist three positive constants c1, c2 and d such

that

(B1) 2M0

�c1
k

�p

< y1d
p þ 1

bp
ðaþ by2d

pÞp þ ry3d
p � 1

bp
ap <

M0

2

�c2
k

�p

(B2)

max

Ð
W supjtjac1

Fðx; tÞ dx
c
p
1

;
2
Ð
W supjtjac2

Fðx; tÞ dx
c
p
2

( )

<
2

3

M0

kp

Ð
Bðx0; s=2Þ F ðx; dÞ dx

y1d p þ 1
bp
ðaþ by2d pÞp þ ry3d p � 1

bp
ap

:

Then, for each
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l a �LL 0 :¼
#
3

2p

y1d
p þ 1

bp
ðaþ by2d

pÞpd p þ ry3d
p � 1

bp
apÐ

Bðx0; s1=2Þ Fðx; dÞ dx
;

M0

pkp
min

c
p
1Ð

W supjtjac1
F ðx; tÞ dx ;

c
p
2

2
Ð
W supjtjac2

F ðx; tÞ dx

( )"
;

and for every nonnegative L1-Carathéodory function g : W� R ! R, there exists

d 0�l;g > 0 where

d 0�l;g :¼ min

(
M0c

p
1 � pkpl

Ð
W supjtjac1

Fðx; tÞ dx
pkpGc1

;

M0c
p
2 � 2plkp

Ð
W supjtjac2

Fðx; tÞ dx
2pkpGc2

)

such that for each m a ½0; d 0�l;g½, the problem (14) admits at least three distinct weak

solutions ui ði ¼ 1; 2; 3Þ, such that

0a uiðxÞ < c2; Ex a W:

Proof. Bearing in mind that m0 ¼ aþ ba, like for Theorem 3.2, since in this case

FðwÞ ¼ y1d
p þ 1

bp
ðaþ y2d

pÞp þ ry3d
p � 1

bp
ap where w is given as in (8), owing to

our assumptions, the conclusion follows from Theorem 2.2. r
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