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Abstract. The existence of three distinct weak solutions for a perturbed fourth-order
Kirchhoff-type elliptic problem is investigated. Our approach is based on variational
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1. Introduction

Consider the following perturbed fourth-order Kirchhoff-type elliptic problem

A(|Aul” 2 Au) — [M ([, |Vul” dx))P~ Apu+ plul”u in Q,
= (x,u) + pg(x,u) (1)
u=~Au=90 on 0Q),

N
where p > max{ 1,5}, Aju = div(|Vul?~*Vu) is the p-Laplacian operator, 4 > 0

and u > 0 are real numbers, Q = R" (N > 1) is a bounded smooth domain p > 0,
f,9:Q xR — R are two L'-Carathéodory functions and M : [0, +oo[ — R is a
continuous function.

The problem (1) is related to the stationary problem
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proposed by Kirchhoff [29] as an extension of the classical D’Alembert’s wave
equation for free vibrations of elastic strings. Equation (2) was developed
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to form
2
Uy — M(J |Vul dx)Au = f(x,u).
Q

After that, many authors studied the following nonlocal elliptic boundary value
problem:

—M(JQ |Vu|2dx>Au = f(x,u). (3)

Problems like (3) can be used for modeling several physical and biological sys-
tems where u describes a process which depends on the average of it self, such as
the population density, see [1].

However, to be accurate, the problem (1) is related to the models of extensible
beams and plates by Woinowsky-Krieger [44] and Berger [5]. In addition, the first
stationary study of such fourth order nonlocal boundary value problem was given
by Ma [33]. In [34] was named first time “fourth order problem of Kirchhoff
type”. The problem is also related to the so-called p-Kirchhoff problems. Note
that the part [M (], [Vu|” dx)]”"'A,u of the problem (1) has an exponent p — 1.
This was first introduced by Corréa and Figueiredo [20] to make the problem
variational.

Problems of Kirchhoff-type have been widely investigated. We refer the reader
to the papers [19], [23], [26], [27], [35], [37], [40] and the references therein. For
instance, B. Ricceri in an interesting paper [40] established the existence of at least
three weak solutions to a class of Kirchhoff-type doubly eigenvalue boundary
value problem using Theorem A of [39]. In [27], motivated by [40], based on a
three critical points theorem proved in [6], the existence of two intervals of positive
real parameters A for which the boundary value problem of Kirchhoff-type

{ —K(Lf7 |/ (x) |7 dx)u" = 2f (x,u),
u(a) = u(b) =0,

where K : [0, +o0[ — R is a continuous function, f : [¢,h] x R — R is a Carathéo-
dory function and 4 > 0 admits three weak solutions whose norms are uniformly
bounded with respect to A belonging to one of the two intervals, was established.
The fourth-order equation of nonlinearity furnishes a model to study traveling
waves in suspension bridges, so it is important to physics. Due to this, many re-
searchers have discussed the existence of at least one solution, or multiple solu-
tions, or even infinitely many solutions for fourth-order boundary value problems
by using lower and upper solution methods, Morse theory, the mountain-pass the-
orem, constrained minimization and concentration-compactness principle, fixed-
point theorems and degree theory, and variational methods and critical point
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theory. We refer the reader to [4], [10], [11], [12], [13], [16], [17], [18], [24], [25],
[28], [30], [31], [32] and references therein.

In [42], using the mountain pass theorem, Wang and An established the exis-
tence and multiplicity of solutions for the following fourth-order nonlocal elliptic
problem

{ A%u— M ([, |Vul?> dx)Au = 2f (x,u) in Q,
u=Au=20 on 0Q.

Also, in [43] the authors, by using the mountain pass techniques and the trunca-
tion method, studied the existence of nontrivial solutions for a class of fourth
order elliptic equations of Kirchhoff-type.

In particular, in [36] employing a smooth version of Ricceri’s variational prin-
ciple [38], the authors ensured the existence of infinitely many solutions for the
problem (1) when u = 0. In [22], the existence of two solutions for the problem
(1) when u =0 by combining an algebraic condition on f with the classical
Ambrosetti-Rabinowitz condition was established.

In the present paper, employing two kinds of three critical points theorems
obtained in [7], [14] which we recall in the next section (Theorems 2.1 and 2.2),
we ensure the existence of least three weak solutions for the problem (1). These
theorems have been successfully employed to establish the existence of at least
three solutions for perturbed boundary value problems in the papers [8], [9], [21].

For a through on the subject, we also refer the reader to the papers [2], [3].

2. Preliminaries

Our main tools are three critical point theorems that we recall here in a convenient
form. The first has been obtained in [14], and it is a more precise version of The-
orem 3.2 of [7]. The second has been established in [7].

Theorem 2.1 ([14], Theorem 3.6). Let X be a reflexive real Banach space,
®: X — R be a coercive continuously Gdteaux differentiable and sequentially
weakly lower semicontinuous functional whose Gdteaux derivative admits a continu-
ous inverse on X*, ¥ : X — R be a continuously Gdteaux differentiable functional
whose Gdteaux derivative is compact such that ®(0) = ¥(0) = 0.

Assume that there exist r > 0 and © € X, with r < ®(T) such that

Cll) Supd)(u)ﬁrly(u) < T(?) )

r D(7)

(a2) for each ie A, :=

coercive.

(?) ! the functional ® — AY is
U

()
LP( ) 7 SUP®(y) <r T(”)
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Then, for each A € A, the functional ® — AY has at least three distinct critical points
in X.

Theorem 2.2 (|7], Corollary 3.1). Let X be a reflexive real Banach space,
@D : X — R be a convex, coercive and continuously Gdteaux differentiable functional
whose derivative admits a continuous inverse on X*, ¥ : X — R be a continuously
Gateaux differentiable functional whose derivative is compact, such that

l.infy ® = ®(0) = ¥(0) = 0;

2. for each 4 > 0 and for every uy,uy € X which are local minima for the func-
tional ® — AY and such that ¥(u;) > 0 and ¥ (uy) > 0, one has

ir[%)fl] W (sup + (1 = s)uz) > 0.

b

.. _ . _ I
Assume that there are two positive constants ry, 1, and © € X, with 2r; < ®(9) < 72
such that

(by) SPee0”!Ununl Flu) 2¥(@)
r 3 (D(l_)) ’
R ) P 1@
) 3 (D(E)
Then, for each
5 n
RERC ;

v . r
— , Min 5 s
2 ‘P(U) {SupueCD](]oo,rl[) ‘P(U) Supue(l)’l(]foo,rz[) T(”)} l

the functional ® — A has at least three distinct critical points which lie in
@~ (]—c0, 1),

Here and in the sequel, X will denote the space W?7(Q) N Wol’p (Q) endowed
with the norm

Ju = (jg(mu(x)v’ F VUG + (o)) dx)
Put

max__|u(x
k= sup max, . gu(x)| (4)
ue X\{0} ||Ll||
N . . 0 = .
For p > max 1,3 , since the embedding X — C%(Q) is compact, one has
k < 4o0.
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Let f,9:Q x R — R be two L!'-Carathéodory functions and M : [0, +-o0[ —
R be a continuous function such that there are two positive constants ny and
with mg < M (t) < m; for all t > 0.

Corresponding to f and g we introduce the functions F: Q x R — R and
G :Q x R — R, respectively, as follows

F(x,t) = J;f(x, & dé,  forall (x,1) e QxR

and

t

G(x,t) = J g(x, &) d¢,  forall (x,1) e Q x R.
0

Moreover, set G¢ := |, sup <. G(x, 1) dx for every ¢ >0 and Gy := infoxpq G
for every d > 0. If g is sign-changing, then G¢ > 0 and G, < 0.
Set

M(t) = JO[M(S)]"’1 ds forall 7 >0,

M~ = min{l,mg_1

P}
and
1

M* :=max{l,ml"", p}.

We mean by a (weak) solution of the problem (1), any function u € X such
that

J |Au(x) [P~ Au(x) Av(x) dx
Q

+ {M(JQ Vu(x)|? dx)]pljg IVu(x) |7 2Vau(x)Vo(x) dx

_|_

pJ | (x) |72 u(x)0(x) dx — /IJ 1 (xu(x))o(x) dx
Q

Q

- ,uJ g(x,u(x))v(x)dx =0
Q

for every v € X.
We need the following proposition in the proofs of Theorems 3.1 and 3.2.
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Proposition 2.3. Let T : X — X* be the operator defined by

T(wh = L |Au(x) | Au(x) Ah(x) dx

4 [M(L2 Vu(x)|? dx)r_ljg IVa(x) | Vau(x) V() dx
] WP () d

for every u,h € X. Then T admits a continuous inverse on X *.
Proof. Since
T(u)u> M |ul”,
T is coercive. Taking into account (2.2) of [41] for p > 1 there exists a positive

constant C, such that

- - Cplx—y|" if p>2,
<|x| X—|y| yax_y>2 C Ix—y|?

P L1 <P <2

where (. ,.) denotes the usual inner product in R”, for every x, y € RY. Thus, for
1 < p < 2,itis easy to see that

|Au(x) — Av(x)|
(|Au(x)] + [Av(x)[) >

V) = VoI, Julx) — o(@)f
(IVu(x)| + Vo)) > (Ju(x)] + Jo(x)[) >

(Tw) = T(@)(u—v) = C,M JQ(

)dx>0

for every u, v € X, u # v, which means that 7 is strictly monotone. For, p > 2, we
also observe that

(T() — T(0))(u —v) > M~ JQ(|Au(x) — Av(x)|” dx + [Vu(x) — Vo(x)|?
+ |u(x) — v(x)|”) dx > 0,

which means that 7', in this case, is strictly monotone too. Moreover, we observe
T is the dual mapping on W2>7(Q) N WO1 "(Q) corresponding to the gauge func-
tion ¢,(1) = t"~1. Hence T is demicontinuous. So by [45], Theorem 26.A(d), the
inverse operator 7! of T exists. T~! is continuous. Indeed, let (o,) be a se-
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quence of X* such that a, — o strongly in (W2>7(Q) n W,”(Q))" as n — +oo.
Let u, and u in X such that 7~ !(«,) = u, and T~!(«) = u. Taking in to account
that 7 is coercive, one has that the sequence u, is bounded in the reflexive space
X. For a suitable subsequence, we have u, — # weakly in X as n — 400, which
concludes

lim <T(u,) — T(u),u, — ity = oty — oyt — tiy = 0.

n—+oo

Note that if u, — @ weakly in X as n — +oo0 and T'(u,) — T'(&) strongly in X* as
n — +o0, one has u, — # strongly in X as m — +o00, and since 7' is continuous we
have u, — & weakly in X asn — +oo and T'(u,) — T'(&t) = T'(u) strongly in X * as
n — +oo. Hence, taking into account that 7 is an injection, we have u = . [

3. Main results

Fix x° € Q and pick s > 0 such that B(x’,s) = Q where B(x’,s) denotes the ball
with center at x° and radius of 5. Put

2 N/2 ps 12 . P
0, i nN J (N+1)r_24N+9(N 11 N1,
F(_) s/2 53 52 N r
12/(x ) 24 X9 9(x; — xON2 p/2
A CYCTEE R
B(x° 0.5/2) S s/
27zN/2 OY e, 12, 9 |
03 = =&y 2—+J = =SS =1 PN
rJ) l N 52183 52 s
where I denotes the Gamma function, and / = dist(x, x°) = /=¥ (x; — x*)?, and
L:=0,+0,+ 0. (5)

In order to introduce our first result, fixing two positive constants ¢ and d such
that

d’M*L M~ (£
<
fB(xO,s/2 (X d) _[Q SUP|| < (X, t) dx

and taking
CuL (o)

LeN = ?
oo sy F(x,d) dx” [ supy < F(x, 1) dx
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put
5 M~ ¢l — Jpk? |, supj,j <. F(x, 1) dx
49 pkpGC b
M*LdP — Jp jB(xo,S/Z) F(x,d)dx ©)
p|Q|Gy
and
o min< o ! (7)
g = yNE) » ) N
’ ! max{O,Plfw‘,Ql limsupy,_... W?—,G(’)}
where that for instance o 1,g = 00 when
s v
and G; = G° = 0.
Now, we formulate our main result.
Theorem 3.1. Assume that there exist two positive constants ¢ and d with pL <d
such that VL
(A1) J F(x,&)dx >0 for each ¢ € [0,d);
Q\B(x0,s5/2)
Josupy. Flx,0)dx M~ [ppo 0 Fx,d)dx o
(A2) =2 II\SCP <Lk (0 >dl’ where L is given by (5);

(A3) lim sup P2 F00

Jt]—+o0 e

Then, for each ). € A and for every L'-Carathéodory function g : Q x R — R satis-
fying the condition

sup,.q G(x,1)

lim sup m

|t —c0

< 400,

there exists 6;,, > 0 given by (7) such that, for each p € [0,6; 4], the problem (1)
admits at least three distinct weak solutions in X.

Proof. In order to apply Theorem 2.1 to our problem, we introduce the func-
tionals ®,¥ : X — R for each u € X, as follows

D) = %JQ |Au(x)|? dx + %M UQ Vu(x)|? dx} + %L lu(x)|? dx
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and
¥ (u) = JQ [F(x, u(x)) + % G(x, u(x))} dx.

Let us prove that the functionals ® and ¥ satisfy the required conditions. It is
well known that W is a differentiable functional whose differential at the point
ueXis

W' (u)(v) = JQ [f(x, u(x)) + ';—fg(x, u(x))} v(x) dx

for every v € X as well as is sequentially weakly upper semicontinuous. Further-
more, W' : X — X* is a compact operator. Indeed, it is enough to show that ¥’ is
strongly continuous on X. For this end, for fixed u € X, let ,, — u weakly in X as
n — oo, then u, converges uniformly to u on Q as n — oo; see [45]. Since f, g are
continuous functions, f, g are continuous in R for every x € Q, so

See) + 5 g ) = f (x,) + 5 (. 0)
asn — co. Hence W'(u,) — W'(u) asn — oo. Thus we proved that ¥’ is strongly
continuous on X, which implies that ¥’ is a compact operator by Proposition 26.2
of [45].
Moreover, ®@ is continuously differentiable whose differential at the point
ue Xis

Q' (u)(v) = JQ |Au(x) [P~ Au(x) Av(x) dx
+ [M(JQ Vu(x)|? dx)rljg IVu(x) |7 2Vu(x)Vo(x) dx

+p L} () [P u(x)o(x) dx

for every v € X, while Proposition 2.3 gives that ®" admits a continuous inverse
on X*. Furthermore, @ is sequentially weakly lower semicontinuous.
Clearly, the weak solutions of the problem (1) are exactly the solutions of the

ion ' () — IV (1) — My
equation ®'(u) — AV (u) = 0. Putr:= » (k) and
0 if x e Q\B(x",s)
w(x) = d(%ﬁ —1—%/2 +%/ —1) if x e B(x?,5)\B(x",3) (8)

d ifxeB(xO,%).
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It is easy to see that w € X and,

ow(x) 0 if x e Q\B(x% ) U B(x",3)
o d(IZK(ig_x?) - 24(2??) +2 L) i e B0, )\ B(xY,3)
and
Pwix) O if x € Q\B(x",s5) U B(x’,3)
= —x0)2 402 /2~ (xi—x9)? .
ox; d(i—gw—f—?—i—%/(;i;‘o)) if x e B(x?,5)\B(x’,3),
and so that
i *w(x) 0 if x e Q\B(x,5) U B(x",3)
Tood LA A0 i xe B 5)\B(x3).

It is easy to see that w € X and, in particular, since

. P
V+1), AN N =D 1) ey

2 N/2 ¢s
J |Aw(x)|? dx = d” " J 3 -
o g2l s s s

r@)

JQ |Vw(x)|? dx

/2
121(x; — x%)  24(x; — x° — 30 2]
- Zdz( for =) 24 —x) 9 (i
B(x,5)\B(x°,5/2) N N N /

N 0 0 0 »/2
Z 12/(x —x) C24(xi —x7) 9 (xi — X))\ 2
= P —
dj( \ons/zl ( 52 *y [ ) dx

i=1

and

4 12,9 e
—r -r—1|r
53 20Ty

27 N/2 (s)N s
p dx = d? 2 + J
J, I e = (],

r'(3)

In particular, one has

dP
—M L<

. (01d? + ml " 02d" + pbsd?) < D(w) = % (01d” + M (0:d7) + pOsd”)

< —(01d? + m}~ Bzd” + p03d?) < d—M+L

"=
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. o c .
Taking the condition < d into account, we observe

VL
0<r<dw).

Since s |lul|” < ®(u) for each u € X and bearing (4) in mind, we see that
O (]—o0,r]) = {ue X;0u) <r}

M~
c {u e X;—|lu|)f < r}
p
< {u € X;|u(x)| < c for each x € Q},

and it follows that

sup  W(u)=  sup J {F(x, u(x)) + % G(x, u(x))} dx
ue® ' (]-c0,r) ue® !(]—c0,r) JQ

< J sup F(x,t)dx—i-/iGc.
Q A

[t <c

On the other hand, by using condition (A1), we deduce

(i) > ﬂ%@w+?[q&@ﬂ
B(x0,5/2) 2o

> F(x,d)dx+|Q/f inf G
JB(x9 5/2) A Qx[0,d]

- F(x,d)dx + Q% G,.
B(x0,5/2) A

Therefore, we have

Supued)’l(]*w,r]) T(u) . Supueq)’l(]—g;"r]) J‘Q [F(X7U(x)) +§G(x’u(x))} dx
' - r
< Josupj <. F(x, 1) dx +5 G

o , o)
M=)
and
¥ (w) N L[B<x0,s/2) F(x,d)dx+% [, G(x,w(x)) dx
O(w) — CMTL
. F(x,d)dx+|Q|4G
> IB(_XO,S/Z) ( ) | |ﬂ d' (10)

dr
7M+L
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Since x4 < d;, 4, one has

M~ cP —Jpk? [ supy, <. F(x, 1) dx
- <

g pkPG© '
that is,
Jo SuPlt\SCF(x7 1) dx +5G° l
~(c\P .
@) A
Furthermore,
u< MTLd" - )"p IB(,’CO,S/Z) F(x7 d) dx
p|Q|Gy ’
that is,
LJ"B(XOA,s/Z) F(x7 d) dx + |Q|%Gd l
Iz
Then,
Ja SUPj <c F(x,t)dx+5G° 1 Juno’S/z) F(x,d)dx+ |Q|4 Gy .
M i)p < N < ar A+ L : (11)
r P

Hence from (9)—(11), we observe that the condition (a;) of Theorem 2.1 is ful-
filled.

. . = . S G(x,t
Finally, since p <9, 4, we can fix / > 0 such that limsup, t‘ﬂwup«L(X)

P

</l and ul < Therefore, there exists a function 4 e L'(Q) such

M
that 2
G(x,1) < It? + h(x), (12)

for every x e Q and 7 € R.

/ . .
2 From (A3) there is a function /2, € L'(Q) such

N fix0<e< M —
o ©S pkrQ

that

F(x,1) < et’ + hy(x), (13)

for every x e Q and 7 € R.
Taking (4) into account, it follows that, for each u € X,
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M P x,u(x)) + 2 G (x,ulx)) | dx
o) 29w = 27 4| [Fesu) +46(xan)|

M~
— lull” - ieJ uP (x) dx — Al he| 11 (g
p Q

\%

| ) dx— il

M- i
> (%, = K100 = k0 ) [all” Al 10~ s o

and thus
lim (®(u) — A¥(u)) = +o0,

flull—+o0

which means the functional ® — A is coercive, and the condition (@) of Theorem
2.1 is verified.
Since from relations (9)—(11),

D(w) r

= , ,
¥(w) supg) <, ¥ (u)

Theorem 2.1 (with & = w) assures the desired conclusion. O

Now, a variant of Theorem 2.2 in which no asymptotic condition on g is re-
quested, is pointed out. In such a case f and g are supposed to be nonnegative.

Theorem 3.2. Suppose that f : Q x R — R be an L'-Carathéodory function satis-
fies the condition f(x,t) = 0 for all x € Q and t > 0. Assume that there exist three

2M T INP
) d < ¢ such

IN/p
positive constants ci, ¢; and d with ¢} < k(j) d and k(

that
Jasupyj<e Fx,1)dx 2 [osupy <., F(x,1)dx
max 7 , 7
1 2
2’ M- jB(xo,s/2) F(x,d)dx
3 M+Lkr dr '
Then, for each
3 M*Ld?

lelN =

2 ij(x“,s/Z)F(x’ d)dx’

, P p
—— min 4 , !
pkP Jasupy <o, F(x,0)dx’2 o supy, o, F(x,1)dx
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and for every nonnegative L'-Carathéodory function g: Q x R — R, there exists
d; 4 > 0 given by

in M~ cf — ipk? [osupy <., F(x,t)dx M~c5 —2)pk? [, supy, ., F(x, 1) dx
pkP G ’ 2pkr G '

such that, for each u € 10,0 |, the problem (1) admits at least three distinct weak

959
solutions u; for i = 1,2,3, such that

0<u(x)<c, VxeQ, (i=1,2,3).

Proof. Fix 4, g and p as in the conclusion and take ® and ¥ as in the proof of

Theorem 3.1. We observe that the regularity assumptions of Theorem 2.2 on @

and W are satisfied. Then, our aim is to verify (b;) and (b,). To this end, put w
Cq M~ /e

. . M P r . .
as given in (8), as well as r; := 3 (E) and ry := 3 (E) . Using the condi-

l/p

LN/ 2MTINY
—) pd and k( % ) d < ¢, and bearing in mind that

2

tions ¢; < k(

dar d?
— M L<Ow)< —MT'L,
P P

we get

2r < d(w) < %2

Since 4 < J; , and G, = 0, one has

Supued)’l(]fa@,rl]) ‘{l(u) - Supuetb’l(]foo,rl]) .fQ [F(X, u(x)) + % G(X, u(x))] dx
r - r
Jo Sup|j <., F(x, 1) dx + LG
= M= (@)

p \k
12 Jppoyn Fxm) dx + Q4G4
<-=<Z '
23 TMAL
L 2%00)
3 d(w)

and
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28UP, 1 (oo, P(U)  28UP, g1 o) Jo[F(x,u(x)) + 4 G(x,u(x))] dx
n N n
2 o supyj<., F(x, 1) dx +25G*
M ()P

p \k
< l < % jB(xO(S/z)) F(x,d)dx + |Q|%Gd
) 03 %M+L
< % Y(w)
3 O(w)

Therefore, (b)) and (b,) of Theorem 2.2 are verified.

Finally, we verify that ® — AW satisfies the assumption 2. of Theorem 2.2. Let
u; and uy be two local minima for ® — AW. Then u; and u, are critical points
for ® — AY, and so, they are weak solutions for the problem (1). We claim
that they are nonnegative. As the same way given in [21], Theorem 3.2 let u be
a weak solution of problem (1). Arguing by a contradiction, assume that the
set 4={xe Q:u(x) <0} is non-empty and of positive measure. Put #(x) =
min{0, u(x)} for all x € Q. Clearly, # € X and one has

J |Au(x)|” 2 Au(x)Aii(x) dx
Q

+ {M (JQ [Vu(x)|” dx)]p_ljg [Va(x) |2 Vu(x)Vii(x) dx
+p L) [u(x)|"u(x)ia(x) dx — 4 JQf(x, u(x))a(x) dx
—u JQ g(x,u(x))a(x) dx = 0.

Thus, from our sign assumptions on the data, we have

0< L Au(x)|? dx + [M(L Vu(x)|? dx)rlL Vu(x)|? dx +pJQ u(x)|? dx < 0.

Hence, u = 0 in 4 and this is absurd. Then, we deduce u;(x) > 0 and u(x) >0
for every x € Q, and our claim holds true. Thus, it follows that su; + (1 — s)u
> 0 for all s € [0, 1], and that

(Af + ng) (x,su1 + (1 = )up) > 0,

and consequently, ¥ (su; + (1 — s)up) > 0, for every s € [0, 1].
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From Theorem 2.2, for every

A€

3 @(w) min I r/2
2 ‘P(W) 7 Supue(l)’l(]foc,rl[) ‘P(u) 7Supue(l)’l(]730,1*3[) \P(u) ’

the functional ® — AW has at least three distinct critical points which are the weak
solutions of the problem (1) and the conclusion is achieved. O

A special case of Theorem 3.1 is the following theorem.

Theorem 3.3. Let f:R — R be a continuous function, and denote F(t):
J"éf(f) d& for each t € R. Assume that F(d) > 0 for some d > 0 and F(&) > 0 in
[0,d] and

F F
imipt 25 = msup =0

Then there is .* > 0 such that for each J. > 1" and for every L'-Carathéodory
Sfunction g : Q X R — R satisfying the asymptotical condition

SUPycn J.(; g(xa S) ds <

lim sup m

|t} =0

00,

there exists 6;,4 > 0 such that for each u € 0,9, ,[, the problem

{ A8 00) 1l ) A = 3 6) () n
u=Au=0 on 0Q

admits at least three weak solutions.

d’MTL
Proof. Fix A > 1" := —— B for some d > 0. Since
r() r?u-g) F(d)
lim infif) =0,
=0 é

there is a sequence {c,} = |0, +oo[ such that lim,_,., ¢, = 0 and

SUPj¢ <, F(S)

lim ————"——~=0.
Pt s
Indeed, one has
sup\f\écn F(é) F(éc”) éf

lim 5 = lim 5 =0,

n— 00 ch n— 0 ffn ch
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where F(C,,) = sup <, F(E).
Hence, there exists ¢ > 0 such that

supjs < F (&) ) M~ (S)N N2 F(d) M-
— - < min — :
2 |QIM+Lkr \2) T(1+%) dr ’ pkr|Q|i
and pL < d. From Theorem 3.1 the conclusion follows. |

VL

Here, as an example, we point out a consequence of Theorem 3.2 as follows.

+

M
Theorem 3.4. Suppose that ——

— < e 7eana"
continuous function such that M 58.18309

Let f:R — R be a nonnegative

10

=0+ t2

and

2 2 M- 1
JO f(&dé < 27><58.18309]\1+J0 f(&)dé.

58.18309M * M~
2 [0 f(&)dE 27 [T £ (&) dé

nonnegative function g: QxR — R there exists 7 , >0 such that for each
pe[0,0; [, the problem

Then, for every J € ] l and for every L'-Carathéodory

{MWM@%M%WWﬂWMMWM—MW+me in Q
u=Au=0 on 0Q

where Q = {(x, y); x> + y*> < 9}, admits at least three weak solutions.

Proof. Our aim is to employ Theorem 3.2 by choosing p=1, p =3, x° =0,
4

s=2,c;=2and d = 1. Therefore, since k = {/», L = 58.183097, we see that
T

M*Ld? _ 58.18309M
P I Flx,d)dx 2 |1 (&) dé

3
2
and

M- 3 . M
PP 2 [osupy <., F(x,0)dx 27 (2 £(&)de
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. . t
Moreover, since lim,_ -+ & =0, one has

12
lim 0/ (E)4E_
t—0* 13

58.18309

1/p
5 ) d such that

Then, there exists a positive constant ¢; < k(

o f(©de M- [AGES
c]3 58.18309 M + 54

and

3
cj 4

TAOdET i@ de

Finally, from our hypotheses, a simple computation show that all assumptions of
Theorem 3.2 are fulfilled. The desired conclusion follows. ]

Now, let o > 0 and f > 0 be two real numbers, let M : [, f] = [0, +o0[ — R be
a function defined by M (z) = a + bt for each ¢ € [«, f] where a,b > 0. Put My =
min{1, (a + ba)’"', p}. We consider the following problem

A(|Aul”Au) — (a+b [ |Vul? dx)” " Apu+ plul’u in Q
= A’f(xa u) —|—,ug(x7 u) (14>
u=Au=0 on Q.

The following existence results are immediate consequences of Theorems 3.1 and
3.2, respectively.

Corollary 3.5. Assume that there exist two positive constants ac and d such that
Assumptions (A1) and (A3) in Theorem 2.2 hold, and

1 1 o\ P
Py P\P P _ P 9.
(Ad) 07+ (a+b0xd") + plsd” —a >Mo<k) ,
Jasupy <. Flx,t)dx M, fB<X(,1S]/2) F(x,d)dx
(A5) <—
cP kP 0vdP + 55 (a + b0rdP)" + pOsd? — 5-ar
Then, for each
R L Y s 1 )

p fB(xO,sl/Z) F(x7 d) dx ,; IQ sungcF(X, l) dx[
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and for every L'-Carathéodory function g : Q x R — R satisfying the condition

. G(x,t
lim supisllp’“':Q (x,4) < 400,

|t —+o0 w

there exists &, , > 0 where

_ 1

/ N : !/

01,9 = minq 0; 4, [aRT SUPren Gv.0)
max {0,255 limsupy, ., Ty

with

§' = min Mo — )”pkpfg SupMS(.F(L t) dx
by T pkch )

5 (01d? + 55 (a+ b0-d?)" + pOsd? — 3oa?) — pi a0 F(x,d) dx
QIpG?

such that for each u € [0,6", g the problem (14) admits at least there distinct weak

solutions in X.

Proof. Bearing in mind that my = a + ba, like for Theorem 3.2, since in this case
1 1

O (w) = 6,d” + bp (a+ 0,d?)Pd? + pOzd’ — Ea” where w is given as in (8), owing

to our assumptions, the conclusion follows from Theorem 2.1. |

Corollary 3.6. Let f: Q x R — R satisfy the condition f(x,t) >0 for all (x,t) €

Qx (RTU{0}). Assume that there exist three positive constants ¢y, ¢ and d such
that

N _gary L py? p_ L o Moeayy
(BI) 2Mo<k) <O (0 b0sdP) 4 pOsd” — al < (k)

(B2)

max{ Jasup<q Fx,0)dx 2 [osup, <., F(x,1) a’x}

12 ) P
a )

2 My IB(xO,s/Z) F(x,d)dx
3 kP O1dr + 55 (a+ b0rdr) + pOrdP — gar

Then, for each
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3 0d”+ 5 (@ +b02dP)'dP + pO3d? — 5o aP

e = ,
Zp J’lB(xO.,Sl/Z) F(X, d) dx

=Y min 4 4
pk? Josupj<q F(x,0)dx’2 [osupy <., F(x, 1) dx | |’

and for every nonnegative L'-Carathéodory function g : Q x R — R, there exists
35, > 0 where

(51* — min M()Cf _pkp}L J.Q supMSCl F(x’ l) dx
49 kaGfl ,

Moc§ —2pik? |, SUp| <, F (1) dx
2pkr G

such that for each u € (0,57, [, the problem (14) admits at least three distinct weak

N

solutions u; (i = 1,2,3), such that
0<u(x)<cy, Vxel.

Proof. Bearing in mind that my = a + ba, like for Theorem 3.2, since in this case
1 1 . . .

O(w) = 01d” + bp (a+ 6,d")’ + pO3d? — Ea” where w is given as in (8), owing to

our assumptions, the conclusion follows from Theorem 2.2. O

Acknowledgment. The authors would like to express sincere thanks to anony-
mous referees for reading this paper very carefully and specially for valuable sug-
gestions concerning improvement of the manuscript.

References

[1] C. O. Alves, F. J. S. A. Corréa, and T. F. Ma, Positive solutions for a quasilinear
elliptic equation of Kirchhoff type. Comput. Math. Appl. 49 (2005), 85-93.
Zbl 1130.35045 MR 2123187

[2] D. Averna, S. M. Buccellato, and E. Tornatore, On a mixed boundary value problem
involving the p-Laplacian. Matematiche (Catania) 66 (2011), 93—104. Zbl 1226.34020
MR 2827188

[3] D. Averna, N. Giovannelli, and E. Tornatore, Existence of three solutions for a mixed
boundary value problem with the Sturm-Liouville equation. Bull. Korean Math. Soc.
49 (2012), 1213-1222. Zbl 1269.34031 MR 3002680


http://www.emis.de/MATH-item?1130.35045
http://www.ams.org/mathscinet-getitem?mr=2123187
http://www.emis.de/MATH-item?1226.34020
http://www.ams.org/mathscinet-getitem?mr=2827188
http://www.emis.de/MATH-item?1269.34031
http://www.ams.org/mathscinet-getitem?mr=3002680

Multiple solutions for a fourth-order Kirchhoff type problem 59

[4] Z. Bai and H. Wang, On positive solutions of some nonlinear fourth-order beam equa-
tions. J. Math. Anal. Appl. 270 (2002), 357-368. Zbl 1006.34023 MR 1915704

[5] H. M. Berger, A new approach to the analysis of large deflections of plates. J. Appl.
Mech. 22 (1955), 465-472. Zbl 0066.42006 MR 0073407

[6] G. Bonanno, A critical points theorem and nonlinear differential problems. J. Global
Optim. 28 (2004), 249-258. Zbl 1087.58007 MR 2074785

[7] G. Bonanno and P. Candito, Non-differentiable functionals and applications to el-
liptic problems with discontinuous nonlinearities. J. Differential Equations 244 (2008),
3031-3059. Zbl 1149.49007 MR 2420513

[8] G. Bonanno and A. Chinni, Existence of three solutions for a perturbed two-point
boundary value problem. Appl. Math. Lett. 23 (2010), 807-811. Zbl 1203.34019
MR 2639884

[9] G. Bonanno and G. D’Agui, Multiplicity results for a perturbed elliptic Neumann
problem. Abstr. Appl. Anal. (2010), Art. ID 564363. Zbl 1207.35118 MR 2674389

[10] G. Bonanno and B. Di Bella, A boundary value problem for fourth-order elastic
beam equations. J. Math. Anal. Appl. 343 (2008), 1166-1176. Zbl 1145.34005
MR 2417133

[11] G. Bonanno and B. Di Bella, A fourth-order boundary value problem for a Sturm-
Liouville type equation. Appl. Math. Comput. 217 (2010), 3635-3640. Zbl 1210.34026
MR 2739611

[12] G. Bonanno and B. Di Bella, Infinitely many solutions for a fourth-order elastic beam
equation. NoDEA Nonlinear Differential Equations Appl. 18 (2011), 357-368.
Zbl 1222.34023 MR 2811057

[13] G. Bonanno, B. Di Bella, and D. O’Regan, Non-trivial solutions for nonlinear fourth-
order elastic beam equations. Comput. Math. Appl. 62 (2011), 1862—1869.
Zbl 1231.74259 MR 2834811

[14] G. Bonanno and S. A. Marano, On the structure of the critical set of non-
differentiable functions with a weak compactness condition. Appl. Anal. 89 (2010),
1-10. Zbl 1194.58008 MR 2604276

[15] H. Brezis, Analyse fonctionnelle. Collection Mathématiques Appliquées pour la Mait-
rise. Masson, Paris 1983. Zbl 0511.46001 MR 697382

[16] A. Cabada, J. A. Cid, and L. Sanchez, Positivity and lower and upper solutions for
fourth order boundary value problems. Nonlinear Anal. 67 (2007), 1599-1612.
Zbl 1125.34010 MR 2323306

[17] P. Candito and R. Livrea, Infinitely many solution for a nonlinear Navier boundary
value problem involving the p-biharmonic. Stud. Univ. Babes-Bolyai Math. 55 (2010),
41-51. Zbl 1249.35087 MR 2784993

[18] J. Chabrowski and J. Marcos do O, On some fourth-order semilinear elliptic problems
in RY. Nonlinear Anal. 49 (2002), 861-884. Zbl 1011.35045 MR 1894788

[19] M. Chipot and B. Lovat, Some remarks on nonlocal elliptic and parabolic problems.
Nonlinear Anal. 30 (1997), 4619-4627. Zbl 0894.35119 MR 1603446


http://www.emis.de/MATH-item?1006.34023
http://www.ams.org/mathscinet-getitem?mr=1915704
http://www.emis.de/MATH-item?0066.42006
http://www.ams.org/mathscinet-getitem?mr=0073407
http://www.emis.de/MATH-item?1087.58007
http://www.ams.org/mathscinet-getitem?mr=2074785
http://www.emis.de/MATH-item?1149.49007
http://www.ams.org/mathscinet-getitem?mr=2420513
http://www.emis.de/MATH-item?1203.34019
http://www.ams.org/mathscinet-getitem?mr=2639884
http://www.emis.de/MATH-item?1207.35118
http://www.ams.org/mathscinet-getitem?mr=2674389
http://www.emis.de/MATH-item?1145.34005
http://www.ams.org/mathscinet-getitem?mr=2417133
http://www.emis.de/MATH-item?1210.34026
http://www.ams.org/mathscinet-getitem?mr=2739611
http://www.emis.de/MATH-item?1222.34023
http://www.ams.org/mathscinet-getitem?mr=2811057
http://www.emis.de/MATH-item?1231.74259
http://www.ams.org/mathscinet-getitem?mr=2834811
http://www.emis.de/MATH-item?1194.58008
http://www.ams.org/mathscinet-getitem?mr=2604276
http://www.emis.de/MATH-item?0511.46001
http://www.ams.org/mathscinet-getitem?mr=697382
http://www.emis.de/MATH-item?1125.34010
http://www.ams.org/mathscinet-getitem?mr=2323306
http://www.emis.de/MATH-item?1249.35087
http://www.ams.org/mathscinet-getitem?mr=2784993
http://www.emis.de/MATH-item?1011.35045
http://www.ams.org/mathscinet-getitem?mr=1894788
http://www.emis.de/MATH-item?0894.35119
http://www.ams.org/mathscinet-getitem?mr=1603446

60 S. Heidarkhani, S. Khademloo and A. Solimaninia

[20] F.J. S. A. Corréa and G. M. Figueiredo, On an elliptic equation of p-Kirchhoff type
via variational methods. Bull. Austral. Math. Soc. 74 (2006), 263-277. Zbl 1108.45005
MR 2260494

[21] G. D’Agui, S. Heidarkhani, and G. Molica Bisci, Multiple solutions for a perturbed
mixed boundary value problem involving the one-dimensional p-Laplacian. Electron.
J. Qual. Theory Differ. Equ. 2013 (2013), No. 24 MR 3062531

[22] M. Ferrara, S. Khademloo and S. Heidarkhani, Multiplicity results for perturbed
fourth-order Kirchhoff-type elliptic problems. Appl. Math. Comput. 234 (2014),
316-325.

[23] J. R. Graef, S. Heidarkhani, and L. Kong, A variational approach to a Kirchhoff-type
problem involving two parameters. Results Math. 63 (2013), 877-889. Zbl 1275.35108
MR 3057343

[24] J. R. Graef, S. Heidarkhani, and L. Kong, Multiple solutions for a class of
(p1,--., pn)-biharmonic systems. Commun. Pure Appl. Anal. 12 (2013), 1393-1406.
Zbl 1268.35049 MR 2989695

[25] M. d. R. Grossinho, L. Sanchez, and S. A. Tersian, On the solvability of a boundary
value problem for a fourth-order ordinary differential equation. Appl. Math. Lett. 18
(2005), 439-444. Zbl 1087.34508 MR 2124302

[26] X. He and W. Zou, Infinitely many positive solutions for Kirchhoff-type problems.
Nonlinear Anal. 70 (2009), 1407—1414. Zbl 1157.35382 MR 2474927

[27] S. Heidarkhani, G. A. Afrouzi, and D. O’Regan, Existence of three solutions for
a Kirchhoff-type boundary-value problem. Electron. J. Differential Equations 2011
(2011), No. 91. Zbl 1234.34018 MR 2821536

[28] S. Heidarkhani, Y. Tian, and C.-L. Tang, Existence of three solutions for a class of
(p1,-- ., pn)-biharmonic systems with Navier boundary conditions. Ann. Polon. Math.
104 (2012), 261-277. Zbl 1255.35103 MR 2914535

[29] G. Kirchhoff, Vorlesungen uber mathematische Physik: Mechanik. Teubner, Leipzig
(1883). JFM 08.0542.01

[30] L. Liand C.-L. Tang, Existence of three solutions for (p, ¢)-biharmonic systems. Non-
linear Anal. 73 (2010), 796-805. Zbl 1195.35137 MR 2653750

[31] C. Li and C.-L. Tang, Three solutions for a Navier boundary value problem involving
the p-biharmonic. Nonlinear Anal. 72 (2010), 1339-1347. Zbl 1180.35210
MR 2577535

[32] H. Liu and N. Su, Existence of three solutions for a p-biharmonic problem. Dyn.
Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 15 (2008), 445-452. Zbl 1168.35342
MR 2406758

[33] T. F. Ma, Existence results for a model of nonlinear beam on elastic bearings. App!.
Math. Lett. 13 (2000), 11-15. Zbl 0965.74030 MR 1760256

[34] T. F. Ma, Positive solutions for a nonlocal fourth order equation of Kirchhoff type.
Discrete Contin. Dyn. Syst. (2007), 694-703. Zbl 1163.34329 MR 2409905

[35] A. Mao and Z. Zhang, Sign-changing and multiple solutions of Kirchhoff type prob-
lems without the P.S. condition. Nonlinear Anal. 70 (2009), 1275-1287.
Zbl 1160.35421 MR 2474918


http://www.emis.de/MATH-item?1108.45005
http://www.ams.org/mathscinet-getitem?mr=2260494
http://www.ams.org/mathscinet-getitem?mr=3062531
http://www.emis.de/MATH-item?1275.35108
http://www.ams.org/mathscinet-getitem?mr=3057343
http://www.emis.de/MATH-item?1268.35049
http://www.ams.org/mathscinet-getitem?mr=2989695
http://www.emis.de/MATH-item?1087.34508
http://www.ams.org/mathscinet-getitem?mr=2124302
http://www.emis.de/MATH-item?1157.35382
http://www.ams.org/mathscinet-getitem?mr=2474927
http://www.emis.de/MATH-item?1234.34018
http://www.ams.org/mathscinet-getitem?mr=2821536
http://www.emis.de/MATH-item?1255.35103
http://www.ams.org/mathscinet-getitem?mr=2914535
http://www.emis.de/MATH-item?08.0542.01
http://www.emis.de/MATH-item?1195.35137
http://www.ams.org/mathscinet-getitem?mr=2653750
http://www.emis.de/MATH-item?1180.35210
http://www.ams.org/mathscinet-getitem?mr=2577535
http://www.emis.de/MATH-item?1168.35342
http://www.ams.org/mathscinet-getitem?mr=2406758
http://www.emis.de/MATH-item?0965.74030
http://www.ams.org/mathscinet-getitem?mr=1760256
http://www.emis.de/MATH-item?1163.34329
http://www.ams.org/mathscinet-getitem?mr=2409905
http://www.emis.de/MATH-item?1160.35421
http://www.ams.org/mathscinet-getitem?mr=2474918

Multiple solutions for a fourth-order Kirchhoff type problem 61

[36] M. Massar, E. M. Hssini, N. Tsouli and M. Talbi, Infinitely many solutions for
a fourth-order Kirchhoff type elliptic problem. Journal of mathematics and computer
science 8 (2014), 33-51.

[37] K. Perera and Z. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang
index. J. Differential Equations 221 (2006), 246-255. Zbl 05013580 MR 2193850

[38] B. Ricceri, A general variational principle and some of its applications. J. Comput.
Appl. Math. 113 (2000), 401-410. Zbl 0946.49001 MR 1735837

[39] B. Ricceri, A further three critical points theorem. Nonlinear Anal. 71 (2009),
4151-4157. Zbl 1187.47057 MR 2536320

[40] B. Ricceri, On an elliptic Kirchhoff-type problem depending on two parameters.
J. Global Optim. 46 (2010), 543-549. Zbl 1192.49007 MR 2601787

[41] J. Simon, Régularité de la solution d’une équation non linéaire dans R". In Journées
d’Analyse non linéaire (Proc. Conf., Besancon, 1977), Lecture Notes in Math. 665,
Springer, Berlin 1978, 205-227. Zbl 0402.35017 MR 519432

[42] F. Wang and Y. An, Existence and multiplicity of solutions for a fourth-order elliptic
equation. Bound. Value Probl. 2012 (2012), Article ID 6. Zbl 1278.35066 MR 2891968

[43] F. Wang, M. Avci, and Y. An, Existence of solutions for fourth order elliptic equa-
tions of Kirchhoff type. J. Math. Anal. Appl. 409 (2014), 140—146. MR 3095024

[44] S. Woinowsky-Krieger, The effect of an axial force on the vibration of hinged bars.
J. Appl. Mech. 17 (1950), 35-36. Zbl 0036.13302 MR 0034202

[45] E. Zeidler, Nonlinear functional analysis and its applications. Vol. 111, New York 1985.
Zbl 0583.47051 MR 0768749

Received September 3, 2013; revised February 24, 2014

S. Heidarkhani, Department of Mathematics, Faculty of Sciences, Razi University, 67149
Kermanshah, Iran

E-mail: s.heidarkhani@razi.ac.ir

S. Khademloo, School of Basic Sciences, Department of Mathematics, Babol Noushirvani
University of Technology, 47148-71167 Babol, Iran

E-mail: s.khademloo@nit.ac.ir

A. Solimaninia, Department of Mathematics, Faculty of Sciences, Razi University, 67149
Kermanshah, Iran


http://www.emis.de/MATH-item?05013580
http://www.ams.org/mathscinet-getitem?mr=2193850
http://www.emis.de/MATH-item?0946.49001
http://www.ams.org/mathscinet-getitem?mr=1735837
http://www.emis.de/MATH-item?1187.47057
http://www.ams.org/mathscinet-getitem?mr=2536320
http://www.emis.de/MATH-item?1192.49007
http://www.ams.org/mathscinet-getitem?mr=2601787
http://www.emis.de/MATH-item?0402.35017
http://www.ams.org/mathscinet-getitem?mr=519432
http://www.emis.de/MATH-item?1278.35066
http://www.ams.org/mathscinet-getitem?mr=2891968
http://www.ams.org/mathscinet-getitem?mr=3095024
http://www.emis.de/MATH-item?0036.13302
http://www.ams.org/mathscinet-getitem?mr=0034202
http://www.emis.de/MATH-item?0583.47051
http://www.ams.org/mathscinet-getitem?mr=0768749

