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1. Introduction

Three important problems related to the properties of convex functions of real

variables are the following:

(I) Local minima: A local minimum of a convex function f : Rn ! R is

global.

(II) Marginal functions: The marginal function HðxÞ ¼ infy ARm Fðx; yÞ of a

convex function F : Rn � Rm ! R is convex.

(III) Separating hyperplanes: there exists a separating hyperplane between two

disjoint convex set.

A natural way to define discrete convexity of a function defined on the integer

points is to call it convex if it admits a convex extension. This definition leads to

di‰culties when we try to prove the three properties mentioned. Some examples

are given in [3], [4], [5] and [9]. Therefore it would be of interest to define a dis-

crete analogue of convex functions which can serve in this context.

To improve the notion of convexity in Zn and to get discrete analogues of these

theorems, especially that on local minima, several types of discrete convexity have

been studied. Miller [6] investigated discrete-convex functions. These functions

guarantee that a local minimum is global; however they are not in general convex

extensible (Murota and Shioura [11]).

Favati and Tardella [1] introduced the concept of integrally convex functions.

This class was defined by using concepts from real convex analysis. The definition



of integral convexity depends on the convex extension of a function on each unit

hypercube and also the convexity of these extensions on the whole domain (defini-

tions will be given in section 3). As an obvious conclusion from its definition,

an integrally convex function is convex extensible. These functions are of interest

because they preserve the property of local minimum. The two other properties

mentioned were not studied in this paper. A study on the three properties for the

two-dimensional case was done by Kiselman [3], [4], and Kiselman and Samieinia

[5]. Adding submodularity to this class, Favati and Tardella [1] went on to show

that the problem of minimizing a submodular integrally convex function over a

bounded discrete rectangle can be solved in polynomial time.

The concept of M-convexity was introduced by Murota [7]. Then Murota and

Shioura [10] introduced M\-convexity. Due to some relations between these two

classes, all theorems stated for M-convexity are true for M\-convexity and vice

versa. An M\-convex function is supermodular, but the converse does not hold

(see Murota [9]:145–146). More information about the problem of local mini-

mum for these two types of functions can be found in [9]. Integral convexity of

M\-convex functions were studied by Murota and Shioura [11]:170.

Murota [8] introduced another form of well-behaved discrete convex functions,

namely L-convex functions, as a collection of submodular functions with an extra

condition. L\-convex functions were introduced by Fujishige and Murota [2] as a

variant of L-convexity. More information about local minima and other proper-

ties of this class can be found in Murota [9].

Murota and Shioura [11] compared the class of M-convex (L-convex) func-

tions with other kinds of discrete convexity. They also studied the behavior of

theses classes under some operations.

Kiselman [3], and Kiselman and Samieinia [5] showed by some examples the

importance of these three problems in the discrete case. Kiselman [3], [4] limited

his work to Z2 and introduced a new definition for two-dimensional integrally

convex functions, and as a result of this definition, it is evident that the class of

two-dimensional integrally convex functions is closed under addition. Example

4.4 in [11] shows that the closedness under addition is not true in general. His def-

inition is based on the di¤erences of functions on the integer points and then he

compared it with the old definition of integrally convex functions on Z2. He

went on to show the equivalent relations between these two definitions. We shall

look at the notion of convexity which was defined in [3], [4]. We generalize the

class to the n-dimensional case by choosing a special set of points. Then we shall

show that for functions with finite values, we can check the properties for a smaller

number of points.

We compare this new class with the class of integrally convex functions, and

see that the result of equivalence in the two-dimensional case is not true for higher

dimensions. To be able to compare these two types of convexity we use a state-
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ment which is similar to that of Favati and Tardella [1], but with a smaller number

of points. In subsection 3 we shall show that this new class of functions is inte-

grally convex. An example shows that the converse does not hold. It is also clear

that we have the property of local minimum for this new class of functions.

2. Lateral convexity

Kiselman [3], [4] defined a notion of convexity which is based on di¤erences of

values of the functions at certain points. He showed that this class is equivalent

to the class of integrally convex functions in the two-dimensional case. Using his

definition of di¤erence operators, we shall generalize the class of functions intro-

duced by him to higher dimensions. First we define this class of functions when

they have R! ¼ RA f�l;þlg as their codomain. Then we shall show that for

codomain R we need only a smaller number of points to check.

2.1. Background. For a given a a Zn, a di¤erence operator Da on functions

f : Zn ! R is defined by

ðDa f ÞðxÞ ¼ f ðxþ aÞ � f ðxÞ; x a Zn:

It is an operator from RZ n

to RZn

. This operator can be defined also for functions

F : Rn ! R, a a Rn, and it operates also on functions f : Zn ! Z, a a Zn, keep-

ing the integers as values.

In this paper, we shall also use the second-order operator DbDa which is given

by

ðDbDa f ÞðxÞ ¼ f ðxþ aþ bÞ � f ðxþ aÞ � f ðxþ bÞ þ f ðxÞ:

We also shall work with functions with codomain R!. In order to calculate with

infinities we need to use an extension of the operation of addition R� R ! R to

the extended real numbers R! ¼ ½�l;þl� ¼ RA f�l;þlg by defining upper

addition. It is defined as commutative and associative operation R! � R! ! R!

which satisfy

ðþlÞ _þþ x ¼ þl for all x a R!;

ð�lÞ _þþ x ¼ �l for all x a ½�l;þl½:

Using the upper addition, Da for functions f : Zn ! R!, can be extended to

ðDaÞ! : ðR!ÞZ
n

! ðR!ÞZ
n

by

ðDaÞ! f ðxÞ ¼ f ðxþ aÞ _þþ
�
�f ðxÞ

�
x; a a Zn:
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The extension of DbDa to functions with infinite value is as follows:

ðDbDaÞ! f ðxÞ ¼ f ðxþ aþ bÞ _þþ
�
�f ðxþ aÞ

�
_þþ
�
�f ðxþ bÞ

�
_þþ f ðxÞ:

The notion of A-lateral convexity was introduced in [5] as follows.

Definition 2.1. Given any subset A of Zn � Zn we shall say that a function

f : Zn ! R is A-laterally convex if DbDa f b 0 for all ða; bÞ a A. For a function

f with infinite values, f : Zn ! R!, we shall say that it is A-laterally convex if

ðDbDaÞ! f b 0 for all ða; bÞ a A.

We define the notion of A-laterally convex set by using the indicator function

IndS : Zn ! f0;þlg,

IndSðxÞ ¼
0; x a S;

þl; x B S:

�

Thus a set SJZn is said to be A-laterally convex if its indicator function IndS is

an A-laterally convex function.

Let us consider the set B defined by

�X
j AV

ej;
X
j AV

ej þ
X
i BV

aiei

���� jAV J ½1; n�Z and ai a ½�1; 1�Z

( )
:

The set B consists of pairs ða; bÞ a Zn � Zn such that for an arbitrary and non-

empty set V J f1; . . . ; ng, a has 1 in its i-th coordinate, i a V , and 0 on the other

coordinates. On the other hand the point b has the same coordinate i as a for

i a V , and the other coordinates have values aj ¼ �1; 0; 1, j B V . For aj ¼ 0 the

positivity of DbDa f implies the convex extensibility of the function along the axis

of the variable xi, i a V . In the two-dimensional case the aj ¼ �1; 1 needs to

prove the convexity of canonical extension which is an equivalent condition to

integral convexity. Assuming the set B smaller than this case, yields di‰culty in

the convexity of canonical extension. The set B in the n-dimensional case plays

the same role as we had for the dimension 2. Choosing a smaller number of points

in the set B for functions with infinite values does not imply the convexity of

canonical extension. However, for real-valued functions, B-lateral convexity can

be checked using a smaller number of points. We shall show this in Theorem 2.2.

Choosing a smaller number of points for the set C in the finite valued functions

will be also impossible in order to have the integral convexity.

Theorem 2.2. Let B be the set

�X
j AV

ej;
X
j AV

ej þ
X
i BV

aiei

���� jAV J ½1; n�Z and ai a ½�1; 1�Z

( )
;
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and

C ¼
�
ej; ej þ

X
iA j

aiei

���� j a ½1; n�Z and ai a ½�1; 1�Z

( )
: ð1Þ

A function f : Zn ! R is B-laterally convex if and only if it is C-laterally convex.

Proof. Since we have CHB, a B-laterally convex function is indeed C-laterally

convex. To prove the converse, let us consider a C-laterally convex function

f : Zn ! R. We may assume that V ¼ fv1; . . . ; vmg, 1ama n, and that vi a
f1; . . . ; ng. Suppose now that

ða; bÞ ¼
�X
j AV

ej;
X
j AV

ej þ
X
i BV

aiei

�
a B; ai a ½�1; 1�Z:

We shall show that DbDa f b 0. It is easy to verify the following calculation:

DbDa f ðxÞ ¼ DbDev1
f
�
xþ

X
i AVnfv1g

ei

�

þDbDev2
f
�
xþ

X
i AVnfv1; v2g

ei

�
þ � � � þDbDevm

f ðxÞ: ð2Þ

This means that we have used the partial addition ða; bÞ þ1 ðc; bÞ ¼ ðaþ c; bÞ as

defined in [5]. We may write b ¼ ev1 þ
P

i AVnfv1g ei þ
P

i BV aiei which is equal to

b ¼ ev1 þ
P

iAv1
a 0
i ei, for some a 0

i a ½�1; 1�Z. Using the property of C-lateral con-

vexity, we have

DbDev1
f
�
xþ

X
i AVnfv1g

ei

�
b 0:

The same calculation for each summand of (2) implies that DbDa f b 0. Thus f is

B-laterally convex. r

We shall now introduce an equivalent property for lateral convexity. Let us

first define a metric dk; l for k ¼ 1; . . . ; n and l a R, l > 0, by

dk; lðx; yÞ ¼ max
�1
l
jxk � ykj; max

iAk;1aian
jxi � yij

�
; x; y a Zn:

Theorem 2.3. A function f : Zn ! R is C-laterally convex, where C is defined by

(1), if and only if we have the following property for all 1a ka n:

f ðxÞ þ f ðyÞb f ðxþ ekÞ þ f ðy� ekÞ; ð3Þ

for each two points x and y in Zn where yk � xk ¼ 2 and dk;2ðx; yÞ ¼ 1.
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Proof. Suppose that the equation (3) holds for the specific points mentioned in

the statement. We shall show that a function f : Zn ! R is C-laterally convex.

Let us consider a point x a Zn. For 1a ka n, consider ðek; ek þ aÞ a C where

a ¼
P

iAk ai and ai a ½�1; 1�Z. We have

DekDekþa f ðxÞ ¼ f ðxþ 2ek þ aÞ � f ðxþ ek þ aÞ � f ðxþ ekÞ þ f ðxÞ:

Choose y ¼ xþ 2ek þ a. It is easy to see that yk � xk ¼ 2 and dk;2ðx; yÞ ¼ 1.

Thus we are done.

We shall now prove the other direction. Let f : Zn ! R be C-laterally convex.

Consider two points x and y in Zn with yk � xk ¼ 2 and dk;2ðx; yÞ ¼ 1. Let

ai ¼ yi � xi for 1a iA ka n. Since dk;2ðx; yÞ ¼ 1, ai a ½�1; 1�Z. We can write

equation (3) as

f ðxÞ þ f ðyÞ � f ðxþ ekÞ � f ðy� ekÞb 0;

which is equal to DekDekþT
iAk

aiei f ðxÞ. This, using the property of C-lateral con-

vexity, will give the result. r

3. A characterization of integral convexity

In this section, we investigate relations between lateral and integral convexity.

We first mention the definition of integral convexity as well as its characterization

by using certain points. We then try to use a smaller number of points in order

to make the investigation of the relation between lateral and integral convexity

easier.

We state below the definition of integrally convex functions introduced by

Favati and Tardella [1]. To define this class, they start with the canonical exten-

sion of f which comes as follows:

Definition 3.1. Given a function f : Zn ! R, we define its canonical extension by

canð f Þ : Rn ! R as the convex envelope of f on each unit hypercube aþ ½0; 1�n,
a a Zn.

Then they went on to introduce integral convexity:

Definition 3.2. A function f : Zn ! R is called integrally convex if its canonical

extension canð f Þ is convex.

They also characterize integral convexity by considering a special property for

certain points.
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Proposition 3.3 (Favati and Tardella [1]). For a given function f : Zn ! R the fol-

lowing properties are equivalent:

(i) f is integrally convex.

(ii) For every x and y in Zn with kx� ykl ¼ 2 we have

�
canð f Þ

��1
2
xþ 1

2
y
�
a

1

2
f ðxÞ þ 1

2
f ðyÞ:

In the next proposition we improve [1] by considering the same property for a

smaller number of points.

Proposition 3.4. A function f : Zn ! R is integrally convex if and only if, for all k

with 1a ka n, f satisfies

�
canð f Þ

��1
2
xþ 1

2
y
�
a

1

2
f ðxÞ þ 1

2
f ðyÞ: ð4Þ

for each two points x and y in Zn with yk � xk ¼ 2 and dk;2ðx; yÞ ¼ 1.

Proof. Let Iða; pÞ ¼
Qn

j¼1½aj; aj þ pj� and IZ nða; pÞ ¼
Qn

j¼1½aj ; aj þ pj�Zn where

a a Zn and p a Nn. By definition, canð f Þ is convex in every Iða; pÞ where for all

j, pj ¼ 1. We now assume that the inequality (4) is true for all points x and y in

Zn, where yk � xk ¼ 2 and dk;2ðx; yÞ ¼ 1 for all 1a ka n and this means that the

inequality is valid for all points in IZnða; pþ ekÞ where pj ¼ 1 for all 1a ja n,

and ek has 1 in its k-coordinate, and 0 on the other coordinates. We shall prove

that canð f Þ is convex in every Iða; pÞ, a a Zn, p a Nn. To do this, we show the

convexity of canð f Þ in the following steps:

(i) The convexity of canð f Þ in every Iða; pþ ekÞ where pj ¼ 1 for 1a ja n.

We shall prove this in the following two parts:

(i.a) First we show that the canonical extension canð f Þ is convex along the line

segment ½x; y� for two points x; y a IZnða; pþ ekÞ where pj ¼ 1, 1a ja n.

(i.b) Then we prove the same result for two points x, y where x a
IZnða; pþ ekÞ, y a Iða; pþ ekÞnIZnða; pþ ekÞ.

(ii) Using induction on pk, we show the convexity of canð f Þ in every Iða; pÞ,
pk b 2 for one k, and pj ¼ 1 for all jA k.

(iii) Then using induction on pj, 1a ja n and jA k, we shall see the convex-

ity of canð f Þ in Iða; pÞ for all p a Nn.

Lets us start with the proof of all steps:

(i.a) Let x; y a IZnða; pþ ekÞ. We shall show that, for 0a aa 1,�
canð f Þ

��
axþ ð1� aÞy

�
a a

�
canð f Þ

�
ðxÞ þ ð1� aÞ

�
canð f Þ

�
ðyÞ: ð5Þ

Because of the structure of the canonical extension, we need just to check the con-

vexity for a ¼ 1
2 . The inequality (4) implies the convexity in this case.
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(i.b) Without loss of generality, we shall prove the convexity of canð f Þ along
the line segment ½0; y� where y a Iða; pþ ekÞnIZnða; pþ ekÞ and yk ¼ 2. Since the

canonical extension is convex in each unit hypercube, it is required only to show

that inequality (5) holds for a ¼ 1
2 .

The definition of canð f Þ leads us to find the points zi a IZnða; pþ ekÞ and

scalars bi a ½0; 1�, for i ¼ 1; . . . ;m, ma 2n�1, such that

y ¼
Xm
i¼1

biz
i;

�
canð f Þ

�
ðyÞ ¼

Xm
i¼1

bi f ðziÞ;
Xm
i¼1

bi ¼ 1:

We have

1

2
0þ 1

2
y ¼ 1

2
0þ 1

2

Xm
i¼1

biz
i ¼

Xm
i¼1

bi

�1
2
0þ 1

2
zi
�
¼

Xm
i¼1

bit
i;

where ti, for i ¼ 1; . . . ;m, is the intersection of segment ½0; zi� with the hyperplane

x1 ¼ 1. The points ti, i ¼ 1; . . . ;m, belong to the hypercube f0; 1gn. The convex-

ity of canonical extension in each unit hypercube implies that

�
canð f Þ

��1
2
0þ 1

2
y
�
¼

�
canð f Þ

��Xm
i¼1

bit
i
�
a

Xm
i¼1

bi
�
canð f Þ

�
ðtiÞ: ð6Þ

We know that

Xm
i¼1

bi
�
canð f Þ

�
ðt iÞ ¼

Xm
i¼1

bi
�
canð f Þ

��1
2
0þ 1

2
zi
�
: ð7Þ

By the convexity of canonical extension which stated in the case (i.a), we get that

Xm
i¼1

bi
�
canð f Þ

��1
2
0þ 1

2
zi
�
a

Xm
i¼1

bi

�1
2
f ð0Þ þ 1

2
f ðziÞ

�
: ð8Þ

Hence (6), (7) and (8) after simple calculations imply that

�
canð f Þ

��1
2
0þ 1

2
y
�
¼

�
canð f Þ

��Xm
i¼1

biti

�

a
Xm
i¼1

bi
�
canð f Þ

�
ðtiÞ ¼

Xm
i¼1

bi
�
canð f Þ

��1
2
0þ 1

2
zi
�
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a
Xm
i¼1

bi

�1
2
f ð0Þ þ 1

2
f ðziÞ

�
¼ 1

2
f ð0Þ þ 1

2

Xm
i¼1

bi f ðziÞ

¼ 1

2

�
canð f Þ

�
ð0Þ þ 1

2

�
canð f Þ

�
ðyÞ:

Thus canð f Þ is convex in every Iða; pþ ekÞ where pj ¼ 1, 1a ja n.

(ii) Using induction on pk, we shall show that canð f Þ is convex in every Iða; pÞ,
pk b 2, where pj ¼ 1 for all jA k. To do this, let us consider pj ¼ 1 for all

1a ja n. By the previous part we have that canð f Þ is convex in Iða; pþ ekÞ as
well as in Iðaþ ek; pÞ. Since Iða; pþ ekÞB Iðaþ ek; pÞ has a nonempty interior,

canð f Þ is convex in their union which is Iða; pþ 2ekÞ. Thus we can conclude

that canð f Þ is convex in every Iða; pÞ, pk b 2.

(iii) Assume now that canð f Þ is convex in every Iða; pÞ, pk b 2 for one k, and

pj ¼ 1 for all jA k. We shall show that canð f Þ is convex in Iða; pþ ejÞ. Let us

consider a line segment ½x; y�. If x; y a Iða; pÞ or x; y a Iðaþ ej; pÞ, we already

have the convexity. Suppose now that x is chosen in the interior of Iða; pÞ and y

in the interior of Iðaþ ej; pÞ. Then there is a unique point z on the segment such

that zj ¼ aj þ 1. We assume that all other zi B Z, iA j. Then we have the block

Iðb; qÞ where qj ¼ 2, bj ¼ aj, bi ¼ bzic and qi ¼ 1 for iA j. We know by hypoth-

esis that canð f Þ is convex there, and so on the segment near z. Thus canð f Þ is

convex on the whole segment. This segment is one of the segments which forms

a dense set in Iða; pþ ejÞ. By continuity, canð f Þ is convex on any segment in

Iða; pþ ejÞ. We can now consider the convexity of canð f Þ in Iða; pÞ, pk b 2,

pj b 2, and pm ¼ 1 for all mA k; j, and do the same to show the convexity

of canð f Þ in Iða; pþ emÞ. This implies that canð f Þ is convex in Iða; pÞ for all

p a Nn.

Conversely, if f is integrally convex, the inequality (4) holds by the convexity

of canð f Þ. r

4. The relation between lateral convexity and integral convexity

Murota and Shioura [11] went on to show relations among various types of dis-

crete convexity. By two examples they show that there is no inclusion relation

between the class of discretely-convex functions and that of convex extensible

function. An integrally convex function is discretely convex (see Favati and

Tardella [1], p. 10). By the definition of integral convexity, it is clear that the ele-

ments of this class are convex extensible too. The converse does not hold in gen-

eral (Example 3.4 in [11]). Fujishige and Murota [2] presented the relation be-

tween L\ convex function and integral convexity. They showed that a function

f : Zn ! RA fþlg is L\-convex if and only if it is submodular and integrally
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convex. Murota and Shioura [11] also studied some operations for classes of

discrete convex functions. They clarified whether each class is closed under such

operations. The class of discretely convex function, M\-convex functions, as well

as integrally convex functions, are not closed under addition. But in two dimen-

sions, as already mentioned, integral convexity is equivalent to C-lateral convex-

ity, and thus the class is closed under addition. However, the class of convex ex-

tensible and L\-convex functions are closed under addition. Moreover, the sum of

two integrally convex functions is again integrally convex for those functions

which have a linear canonical extension (see Favati and Tardella [1], p. 9). Kisel-

man [3] showed that in the two-dimensional case, canð f þ gÞ ¼ canð f Þ þ canðgÞ
in the square aþ ½0; 1�2 if and only if ½D1D2 f ðaÞ�½D1D2gðaÞ�b 0. Hence for the

two-dimensional case, the canonical extension is additive for the class of sub-

modular integrally convex functions, as well as for supermodular integrally convex

functions.

The following theorem and proposition show some relations between integrally

and C-laterally convex functions.

Theorem 4.1. A C-laterally convex function f : Zn ! R is integrally convex.

Proof. Let I ¼ f1; . . . ; ng and k a I . Consider two points x; y a Zn such that

yk � xk ¼ 2, and dk;2ðx; yÞ ¼ 1. Since f is C-laterally convex, Theorem 2.3 im-

plies that

f ðxÞ þ f ðyÞb f ðxþ ekÞ þ f ðy� ekÞ: ð9Þ

We shall show that

f ðxÞ þ f ðyÞb 2
�
canð f Þ

��1
2
xþ 1

2
y
�
: ð10Þ

We use induction on the dimension to prove it. For the dimension two we have

that the C-lateral convexity is equivalent with integral convexity. Therefore the

result is obvious in this dimension. Suppose now that equation (10) holds for

dimensions up to n� 1. We shall prove it for the n-dimensional case. The two

points xþ ek and y� ek belong to the unit hypercube in Zn�1 which are indeed

in the intersection of two unit hypercubes in Zn. Therefore the restriction of

canð f Þ into this unit hypercube in Zn�1 is convex, and we have

f ðxþ ekÞ þ f ðy� ekÞb 2
�
canð f Þ

��1
2
ðxþ ekÞ þ

1

2
ðy� ekÞ

�
b 2

�
canð f Þ

��1
2
xþ 1

2
y
�
:
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Inserting this equation into (9) gives us inequality (10). Now, using Proposition

3.4, we have the desired result. r

The following example presents an integrally convex function which is not

B-laterally convex.

Example 4.2. For the set

S ¼ fð0; 0; 0Þ; ð1; 1; 0Þ; ð0; 1; 1Þ; ð1; 2; 1Þg;

consider the function

f ðxÞ ¼ 0; x a S;

þl; otherwise.

�

This function is integrally convex but not B-laterally convex. The reason that f

is an integrally convex function is that the set S is the Minkowski sum of two

L\-convex sets, fð0; 0; 0Þ; ð1; 1; 0Þg and fð0; 0; 0Þ; ð0; 1; 1Þg, therefore it is an inte-

grally convex set. However, we have

ðDfe2gÞ! f ð1; 1; 1ÞF ðDfe2gÞ! f ð0; 0; 0Þ;

thus f is not laterally convex. We would like to mention that the set S was also

used by Murota and Shioura [11] in order to present an example of a sum of two

L\-convex functions which is not itself L\.

We mention here the definition of submodular [supermodular] [modular] func-

tions f : Zn ! R.

Given a function f : Zn ! R and two points x; y a Zn. Let x4y ¼ z,

where zi ¼ maxfxi; yig for 1a ia n, and xby ¼ z, where zi ¼ minfxi; yig for

1a ia n.

The function f is said to be supermodular if f ðxÞ þ f ðyÞa f ðx4yÞ þ
f ðxbyÞ, submodular if f ðxÞ þ f ðyÞb f ðx4yÞ þ f ðxbyÞ, and modular if

f ðxÞ þ f ðyÞ ¼ f ðx4yÞ þ f ðxbyÞ.
We now define these properties locally, as follows:

We say that a function f : Zn ! R is locally submodular (resp. locally super-

modular, locally modular) if f is submodular (resp. supermodular, modular) for

the points in the hypercubes aþ f0; 1gn, for all of a a Zn.

Theorem 4.3. Consider a unit hypercube aþ f0; 1gn
, a a Zn. The faces of this hy-

percube is a set

aþ
X
i A J

ei;
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where I ¼ f1; . . . ; ng and J is a subset of I of cardinality m, 1ama n� 1. If an

integrally convex function f : Zn ! R is modular on the faces of each unit hyper-

cube aþ f0; 1gn
, a a Zn, then it is C-laterally convex.

Proof. Consider an integrally convex function f : Zn ! R. By Proposition 3.3,

2
�
canð f Þ

��1
2
xþ 1

2
y
�
a f ðxÞ þ f ðyÞ

for x; y a Zn, yk � xk ¼ 2 and dk;2ðx; yÞ ¼ 1. The three points xþ ek, y� ek, and
xþy

2 have same k-th coordinate, and the distance between other coordinates can be

0 or 1. Hence they belong to a face of a unit hypercube. Since f is locally mod-

ular on the faces of each unit hypercube,

2
�
canð f Þ

��1
2
xþ 1

2
y
�
¼ f ðxþ ekÞ þ f ðy� ekÞ:

Theorem 2.3 now gives the result. r

Conclusion. In this work we studied a class of discrete convex functions that was

introduced by using di¤erences of values of the functions at certain points. For

real-valued two-dimensional functions this class is equal to the class of integrally

convex functions. We showed that in higher dimensions a C-laterally convex

function is integrally convex. Since a C-laterally convex function is integrally con-

vex, a local minimum is indeed a global one.
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