
Portugal. Math. (N.S.) Portugaliae Mathematica
Vol. 71, Fasc. 1, 2014, 1–24 6 European Mathematical Society

DOI 10.4171/PM/1938

Global L2-solvability of a problem governing two-phase
fluid motion without surface tension
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Abstract. The paper deals with an interface problem for the Navier–Stokes system govern-
ing the motion of two incompressible fluids in a container, one liquid being inside another
one. We prove unique solvability of the problem in an infinite time interval provided that
the data are small enough, surface tension e¤ect being neglected on the interface between
the fluids. The norms of the solution are shown to decay exponentially at infinity with re-
spect to time. The proof is based on an exponential estimate of a generalized energy and on
a local existence theorem of the problem in anisotropic Sobolev–Slobodetskiı̌ spaces.

We give also the main steps of the proof of the local theorem for the problem with and
without including surface tension.

Mathematics Subject Classification (2010). Primary 35Q30, 35R35; Secondary 76D05,
76D03.

Keywords. Incompressible fluids, Navier–Stokes system, two-phase problem with unknown
interface, Lagrangian coordinates, Sobolev–Slobodetskiı̌ spaces.

1. Statement of the problem and the main result

We are concerned here with unsteady motion of a viscous incompressible drop

inside another fluid. The both liquids are located in a container with a solid

boundary S. The flow is governed by the Navier–Stokes equations with non-slip

condition on the outer boundary and with continuity conditions for the velocity

and the normal stresses on the interface Gt. This problem is classified as a free

boundary problem because the interface between the liquids is unknown and to

be defined by the solving process.

In the case of the whole space, existence and uniqueness theorem for the sys-

tem was proved in a finite time interval whose magnitude is determined by the

norms of the data: initial velocity and external forces. This result was stated in

[3], [6]. It was obtained in several steps by considering modal linear problems

[5], [8], [4]. In these papers, it was also studied a system where surface tension



forces were taken into account. In this case, the length of solvability interval de-

pends, in addition, on the curvature of the initial interface G0. Local existence the-

orem for bounded domains is proved in a similar way.

We mention also some other results of 1990s on this subject. They are of

Y. Giga and Sh. Takahashi [10], [20], and also of A. Nouri, F. Poupaud, and Y.

Demay [13], [12]. These papers dealt with the existence of global weak solutions

for the Stokes and Navier-Stokes equations governing the motion of two (or

several) immiscible fluids without including surface tension.

We note that recently the interest to two-phase fluids is increasing. New re-

searchers are studying the problem on two liquid flow by new mathematical

methods in di¤erent functional spaces. As this problem is enough complicated,

it has many aspects for discussion. In particular, H. Abels found conditions

when there exist weak solutions to the non-linear problem without surface tension

but he was not able to describe the interface in this case. On the contrary, in the

case with the presence of surface tension, he only estimated the Hausdor¤ measure

of the interface leaving open the existence of generalized solutions [1]. Next, Yo.

Shibata and S. Shimizu investigated the problems with surface tension by operator

methods in the anisotropic Sobolev spaces W 2;1
q;p , 2a n < q < l, 2 < p < l,

WeHRn. But they proved only the solvability of model di¤raction problems for

the Stokes system [15]. Ja. Prüss with the co-authors studied behaviour of solu-

tions for the two-phase Navier–Stokes equations also taking surface tension into

account but in absence of external forces. They proved that the problem was lo-

cally uniquely solvable in Lp-setting, p > nþ 3, when the interface was close to

a flat configuration for the whole space [14], and for bounded domains [11], the

solution becoming instantaneously real analytic. Global (in time) classical solv-

ability of the problems with and without including surface tension forces was ana-

lyzed by the author alone [7] and together with V. A. Solonnikov [9], respectively.

There it was applied the method of an exponential estimate of a solution in terms

of the data.

Here, we prove global solvability in the Sobolev–Slobodetskiı̌ functional

classes W
l; l=2
2 in a similar way by assuming an exponential decrease of the mass

forces and ignoring surface tension. We give also main steps of the proof for local

solvability for the problem with non-negative surface tension coe‰cient which

was not published earlier in detail. We remark that in the case without surface

tension we don’t need require additional smoothness for the initial interface G0.

It is enough to suppose only natural regularity for it, the same as for the sur-

face S.

Note that in the Sobolev spaces, the existence of a global solution for a prob-

lem governing the motion of a drop of single fluid in vacuum was obtained by

V. A. Solonnikov in [17], local existence theorem for the problem being proven

by him in [19].
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Now we give a mathematical setting of the two-phase problem.

Let, at the initial moment t ¼ 0, a fluid with viscosity nþ > 0 and density

rþ > 0 fill a bounded domain Wþ
0 HR3. Let a fluid with viscosity n� > 0 and

density r� > 0 be situated in a domain W�
0 surrounding Wþ

0 . We denote qWþ
0 by

G0. The boundary SC qðWþ
0 AG0AW�

0 Þ is a given closed surface, SBG0 ¼ j.
For every t > 0, it is necessary to find the interface Gt between the domains

Wþ
t and W�

t , as well as the velocity vector field vðx; tÞ ¼ ðv1; v2; v3Þ and the pressure

function p which satisfy the following initial-boundary value problem for the

Navier–Stokes system:

Dtvþ ðv � ‘Þv� ne‘2vþ 1

re
‘p ¼ f;

‘ � v ¼ 0 in W�
t AWþ

t ; t > 0;

vjt¼0 ¼ v0 in W�
0 AWþ

0 ; vjST
¼ 0 ðST ¼ S � ð0;TÞÞ;

½v�jGt
C lim

x!x0 aGt

x aWþ
t

vðxÞ � lim
x!x0 aGt

x aW�
t

vðxÞ ¼ 0; ½Tn�jGt
¼ 0:

ð1:1Þ

Here Dt ¼ q=qt, ‘ ¼ ðq=qx1; q=qx2; q=qx3Þ, ne, re are step functions of viscosity

and density, respectively, v0 is the initial distribution of the velocity, the stress

tensor is Tðv; pÞC�pIþ meSðvÞ, where SðvÞ is twice the strain tensor with the

elements

Sik ¼ qvi=qxk þ qvk=qxi; i; k ¼ 1; 2; 3;

me ¼ nere, I is the unit matrix, n is the outward normal to Wþ
t . We suppose that

a Cartesian coordinate system fxg is introduced in R3. The centered dot denotes

the Cartesian scalar product.

Summation is implied over the repeated indices from 1 to 3 if they are denoted

by Latin letters and from 1 to 2 if they are done by Greek letters. We mark the

vectors and the vector spaces by boldface letters.

Moreover, to exclude the mass transportation through Gt, we assume that the

liquid particles do not leave Gt. This means that Gt consists of points xðx; tÞ such
that the corresponding vector xðx; tÞ solves the Cauchy problem

Dtx ¼ v
�
xðx; tÞ

�
; xjt¼0 ¼ x; x a G0; t > 0: ð1:2Þ

Hence Gt ¼ fxðx; tÞ j x a G0g, We
t ¼ fxðx; tÞ j x a We

0 g.
We prove unique solvability for problem (1.1), (1.2) in Sobolev–Slobodetskiı̌

spaces for all t > 0, provided that the initial data are smooth and small enough.

Our proof is based on a local existence theorem for the problem in Lagrangian

coordinates.
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We pass from Eulerian to Lagrangian coordinates by the formula

x ¼ xþ
ð t

0

uðx; tÞ dtCXuðx; tÞ: ð1:3Þ

(Here uðx; tÞ is the velocity vector field in the Lagrangian coordinates.)

As a result of transformation (1.3) and of projecting the last boundary condi-

tion in (1.1) onto the tangent planes first to Gt, then to G0, we arrive at the prob-

lem for u, q ¼ pðXu; tÞ with the given interface GCG0. If the angle between n

and the exterior normal n0 to G is acute, this system is equivalent to the following

one:

Dtu� ne‘2
uuþ

1

re
‘uq ¼ f; ‘u � u ¼ 0 in Qe

T ¼ We
0 � ð0;TÞ;

ujt¼0 ¼ v0 in W�
0 AWþ

0 ; ujST
¼ 0; ðST CS � ð0;TÞÞ

½u�jGT
¼ 0; ½meP0PSuðuÞn�jGT

¼ 0 ðGT CG� ð0;TÞÞ;

½n0 � Tuðu; qÞn�jGT
¼ 0:

ð1:4Þ

Here we have used the notation: ‘u ¼ A‘, A is the matrix of co-factors Aij to the

elements

aijðx; tÞ ¼ d ij þ
ð t

0

quiðx; t 0Þ
qxj

dt 0

of the Jacobian matrix of transformation (1.3), d ij is the Kronecker symbol,

i; j ¼ 1; 2; 3, the vector n is connected with n0 by the relation

n ¼ An0

jAn0j
;

Po ¼ o� nðn � oÞ, P0o ¼ o� n0ðn0 � oÞ are projections of a vector o onto the

tangent planes to Gt and G, respectively; Tuðw; qÞ ¼ �qIþ meSuðwÞ, where the

tensor SuðwÞ contains the elements

�
SuðwÞ

�
ij
¼ Aikqwj=qxk þ Ajkqwi=qxk:

Let W be a domain in Rn, n a N, and let a ¼ ða1; . . . ; anÞ be the multi-

index of order jaj ¼ a1 þ � � � þ an with integer non-negative components ai,

i ¼ 1; . . . ; n. We denote the generalized derivative of a function u by Da
xu ¼

q jaju
qx

a1
1
...qx an

n

.

4 I. V. Denisova



We define the Sobolev–Slobodetskiı̌ space Wm
2 ðWÞ for m > 0 as the space of

functions u with finite norm

kukW m
2
ðWÞ ¼

�X
jaj<m

kDa
xuk

2
W þ kuk2_WW m

2 ðWÞ

�1=2
;

where k � kW is the norm of L2ðWÞ, and

kuk2_WW m
2 ðWÞ ¼

P
jaj¼m

kDa
xuk

2
W for m a N;

P
jaj¼½m�

Ð
W

Ð
W

jDa
x uðxÞ�Da

y uðyÞj
2

jx�yjnþ2ðm�½m�Þ dx dy for m B N;

8>><
>>:

½m� being the integal part of m.

The anisotropic space W
m;m=2
2 ðQT Þ consists of functions defined in the cylinder

QT ¼ W� ð0;TÞ, 0 < Tal, and having finite norm

kuk
W

m;m=2

2
ðQT Þ ¼

�ðT

0

kuk2W m
2
ðWÞ dtþ

ð
W

kuk2
W

m=2

2
ð0;TÞ dx

�1=2
:

We say that a vector field belongs to a certain space if each of its components

belongs to this space and we define its norm as the sum of the norms of its

components. The same is valid for a tensor-valued function. The numeration of

constants is individual for each section. Di¤erent constants may be denoted by c

without any index.

We will also need the following norms. Let u a W
l; l=2
2 ðQTÞ, l a ð0; 1Þ. We

define

kukðl; l=2ÞQT
¼ ðkuk2

W
l; l=2

2
ðQT Þ

þ T�lkuk2QT
Þ1=2;

ðkukð0; l=2ÞQT
Þ2 ¼

ð
W

kuk2
W

l=2

2
ð0;TÞ dxþ T�lkuk2QT

:

The equivalent normalization of W
2þl;1þl=2
2 ðQT Þ is as follows

ðkukð2þl;1þl=2Þ
QT

Þ2 ¼ kuk2
W

2þl; 1þl=2

2
ðQT Þ

þ T�l kDtuk2QT
þ

X
jaj¼2

kDa
xuk

2
QT

8<
:

9=
;

þ sup
taT

kuð�; tÞk2W 1þl
2

ðWÞ:

For a; b a ð0; 1Þ, we will consider the following Hölder norms of u in QT :
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jujð0;aÞQT
¼ sup

QT

juj þ sup
x AW

sup
t; taT

juðx; tÞ � uðx; tÞj
jt� tja ;

jujð1;bÞQT
¼ sup

QT

juj þ sup
0ataT

sup
x;y aW

juðx; tÞ � uðy; tÞj
jx� yj þ sup

x AW
sup
t; taT

juðx; tÞ � uðx; tÞj
jt� tjb

:

For a bounded domain W and T < l, it is evident that

kukðl; l=2ÞQT
a cð1þ T 1=2�l=2Þjujð1;bÞQT

; b a ½l=2; 1Þ:

Let be T a ð0;l�, t; t > 0. We introduce the notation:

WCW�
t AWþ

t ; QT ¼ W� ð0;TÞ; DT ¼ Q�
T AQþ

T ; Qe
T ¼ We

0 � ð0;TÞ;
Qe

ðt; tþtÞ ¼ We
t � ðt; tþ tÞ; Dðt; tþtÞ ¼ 6Qe

ðt; tþtÞ; Gðt; tþtÞ ¼ Gt � ðt; tþ tÞ:

For a function u defined in the domain 6
i¼eW i

0, we set

kukW m
2
ð6i¼eW i

0Þ ¼ kukW m
2
ðW�

0 Þ þ kukW m
2
ðWþ

0
Þ;

and for a function u defined in DT , we put

kuk
W

m;m=2

2
ðDT Þ ¼ kuk

W
m;m=2

2
ðQ�

T
Þ þ kuk

W
m;m=2

2
ðQþ

T
Þ:

Now we state a local existence theorem for a bounded domain.

Theorem 1.1 (Local existence theorem). Assume that for some l a ð1=2; 1Þ,
we have G a W

3=2þl
2 , f a W

l; l=2
2 ðQTÞ, 0 < T < l, fð�; tÞ, ‘fð�; tÞ a LipðWÞ for

Et a ½0;T �, fðx; �Þ, ‘fðx; �Þ a Cbð0;TÞ for Ex a W with some b a ½1=2; 1Þ. In addi-

tion, let the initial velocity vector field v0 a W1þl
2 ð6

i¼eW i
0Þ satisfy the compatibility

conditions

‘ � v0 ¼ 0 in W�
0 AWþ

0 ; v0jS ¼ 0;

½v0�jG ¼ 0; ½meP0Sðv0Þn0�jG ¼ 0:
ð1:5Þ

Under these assumptions, there exists a constant T0 a ð0;T � such that prob-

lem (1.4) is uniquely solvable on the interval ð0;T0�, and its solution ðu; qÞ has

the properties: u a W
2þl;1þl=2
2 ðDT0

Þ, q a W
l; l=2
2 ðDT0

Þ, ‘q a W
l; l=2
2 ðDT0

Þ, ½q�jG a

W
lþ1=2; l=2þ1=4
2 ðGT0

Þ and

kukð2þl;1þl=2Þ
DT0

þ k‘qkðl; l=2ÞDT0
þ kqkðl; l=2ÞDT0

þ k½q�jGkW lþ1=2; l=2þ1=4

2
ðGT0

Þ

a c1ðc2 þ T
ð1�lÞ=2
0 kv0kW1

2 ðWÞÞfjfj
ð1;bÞ
QT0

þ j‘fjð0;bÞQT0
þ kv0kW1þl

2
ð6i W

i
0Þ
g: ð1:6Þ

The value T0 depends on the norms of f and v0.
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The following theorem gives us the existence of a global solution of system

(1.1), (1.2). This is the main result of the paper.

Theorem 1.2 (Global existence theorem). Let for some l a ð1=2; 1Þ the interface

G a W
3=2þl
2 , the vector field f a W

l; l=2
2 ðQlÞ, fð�; tÞ, ‘fð�; tÞ a LipðWÞ for Et a

½0;l�, fðx; �Þ, ‘fðx; �Þ a Cbð0;TÞ for Ex a W with some b a ½1=2; 1Þ. We also sup-

pose that the initial velocity vector field v0 a W1þl
2 ð6

i¼eW i
0Þ satisfies conditions

(1.5) and together with the mass forces is small enough, i.e.,

kv0kW1þl
2

ð6i W
i
0Þ
þ kfk

W
l; l=2

2
ðQlÞ þ

ðl
0

ebtkfkW dtþ jebtfjð1;bÞQl

þ jebt‘fjð0;bÞQl
a ef 1: ð1:7Þ

(Here b ¼ minfnþ; n�g=ð2c0Þ, where c0 is the constant from inequality (3.3).)

Then problem (1.1), (1.2) is uniquely solvable for all positive moments of time t,

and solution ðv; pÞ possesses the properties: v a W
2þl;1þl=2
2 , p a W

l; l=2
2 , ‘p a W

l; l=2
2 ,

½ p�jGt
a W

lþ1=2; l=2þ1=4
2 , Gt a W

3=2þl
2 , the pressure being defined up to a bounded

function of time. This means that for any t0 a ð0;lÞ, the solution ðu; qÞ in the

Lagrangian coordinates and its derivatives belong to the corresponding Sobolev

spaces over Dðt0; t0þtÞ for a su‰ciently small time interval ðt0; t0 þ tÞ. Moreover,

there holds the estimate

kukð2þl;1þl=2Þ
Dðt0 ; t0þtÞ

þ k‘qkðl; l=2ÞDðt0 ; t0þtÞ
þ kqkðl; l=2ÞDðt0 ; t0þtÞ

þ k½q�jGkW lþ1=2; l=2þ1=4

2
ðGðt0 ; t0þtÞÞ

a c3e
�bt0e; ð1:8Þ

where c3 is independent of t0.

One can conclude from this theorem that the trivial solution is unique when

initial velocity and mass forces are absent. The stability of this solution takes

place in the sense that the solution di¤ers a little from zero under a small deviation

of the data from zero.

At the end of the paper, we give a necessary upper bound of the initial distance

between the outer boundary and the fluid interface.

2. Local existence theorem for the case of non-negative surface tension

The aim of this section is to consider the main steps of the proof of Theorem 1.1

which was not published earlier in detail. It was obtained in the Ph.D. thesis of

the author [4] while its statement was published in [3], [6]. More precisely, in [4]
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it was studied an interface problem, more general than (1.4), which was governing

the motion of two incompressible liquids with including capillary e¤ect. The sys-

tem was

Dtu� ne‘2
uuþ

1

re
‘uq ¼ f; ‘u � u ¼ 0 in Qe

T ¼ We
0 � ð0;TÞ;

ujt¼0 ¼ v0 in W�
0 AWþ

0 ; ujST
¼ 0; ðST CS � ð0;TÞÞ;

½u�jGT
¼ 0; ½meP0PSuðuÞn�jGT

¼ 0 ðGT CG� ð0;TÞÞ;

½n0 � Tuðu; qÞn�jGT
¼ sHn � n0;

ð2:1Þ

where sb 0 is the surface tension coe‰cient, Hðx; tÞ is twice the mean curvature

of Gt (H < 0 at the points where Gt is convex toward W�
t ).

Theorem 2.1 (Local existence theorem for the problem with surface tension).

Suppose that G a W
5=2þl
2 for some l a ð1=2; 1Þ. Let, in addition, the assumptions

of Theorem 1.1 be satisfied. Then there exists a constant T0 a ð0;T � such that

problem (2.1) is uniquely solvable on the interval ð0;T0�, its solution ðu; qÞ has

the properties: u a W
2þl;1þl=2
2 ðDT0

Þ, q a W
l; l=2
2 ðDT0

Þ, ‘q a W
l; l=2
2 ðDT0

Þ, ½q�jG a

W
lþ1=2; l=2þ1=4
2 ðGT0

Þ, and the inequality

kukð2þl;1þl=2Þ
DT0

þ k‘qkðl; l=2ÞDT0
þ kqkðl; l=2ÞDT0

þ k½q�jGkW lþ1=2; l=2þ1=4

2
ðGT0

Þ

a c1ðc2 þ T
ð1�lÞ=2
0 kv0kW1

2 ðWÞÞ

� fjfjð1;bÞQT0
þ j‘fjð0;bÞQT0

þ kv0kW1þl
2

ð6i W
i
0Þ
þ skH0kW lþ1=2

2
ðGÞg ð2:2Þ

holds; here H0 denotes the doubled mean curvature of G. The value T0 depends on

the norms of f , v0 and the curvature of G.

The base for proving Theorem 2.1 is the unique solvability of a linearized

problem that was also obtained in [4] for an arbitrary finite time interval. The

surface S was absent there, the domain W�
0 AWþ

0 coinciding with the whole

space R3. But this result is also valid in the case with S bounding a finite fluid

volume.

We apply the well-known relation

Hn ¼ DðtÞxCDðtÞXu; ð2:3Þ

where DðtÞ denotes the Beltrami-Laplace operator on Gt.

Thus, let us consider problem (2.1) linearized on a given vector field u:
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Dtw� ne‘2
uwþ 1

re
‘us ¼ f; ‘u � w ¼ r in DT ;

wjt¼0 ¼ w0 in W�
0 AWþ

0 ;

½w�jGT
¼ 0; wjST

¼ 0; ½meP0PSuðwÞn�jG ¼ P0a;

½n0 � Tuðw; sÞn�jG � sn0 � DðtÞ
ð t

0

wjG dt ¼ bþ s

ð t

0

B dt on GT :

ð2:4Þ

The functions in the right-hand sides of all of the equations, initial and boundary

conditions are given.

The first step is the consideration of problem (2.4) with u ¼ 0. Unique solv-

ability of this system was obtained in [8], where W�
0 AWþ

0 CR3. In order to

prove this result for a bounded domain, we need a priori estimates of a solu-

tion near outer boundary. To this end, we can apply existence theorem for

the Dirichlet problem for the Stokes system in a half-space [16]. Now we can

state the theorem of the existence and uniqueness for the bounded domain

W�
0 AWþ

0 .

Theorem 2.2 (Existence theorem for the linear problem). Suppose that for some

l a ð1=2; 1Þ, T < l, G a W
3=2þl
2 , f a W

l; l=2
2 ðDT Þ, r a W

1þl;1=2þl=2
2 ðDTÞ, r ¼ ‘ � R,

R a W
0;1þl=2
2 ðDT Þ, ½R � n�jGT

¼ 0, w0 a W1þl
2 ð6i¼�;þ W i

0Þ, a a W
lþ1=2; l=2þ1=4
2 ðGT Þ,

b a W
lþ1=2; l=2þ1=4
2 ðGTÞ and B a W

l�1=2; l=2�1=4
2 ðGTÞ. Moreover, assume also that

the compatibility conditions

½w0�jG ¼ 0; ½meP0Sðw0Þn0�jG ¼ P0ajt¼0; w0jS ¼ 0;

‘ � w0 ¼ rjt¼0 in W�
0 AWþ

0

are satisfied.

Then problem (2.4) with u ¼ 0 is uniquely solvable and its solution ðw; sÞ has

the properties: w a W
2þl;1þl=2
2 ðDTÞ, s a W

l; l=2
2 ðDT Þ, ‘s a W

l; l=2
2 ðDTÞ, ½s�jGT

a

W
lþ1=2; l=2þ1=4
2 ðGT Þ and

NT ½w; s�C kwkð2þl;1þl=2Þ
DT

þ k‘skðl; l=2ÞDT
þ kwkðl; l=2ÞDT

þ k½s�jGkW lþ1=2; l=2þ1=4

2
ðGT Þ

a c1ðTÞfkfkðl; l=2ÞDT
þ kw0kW1þl

2
ð6i W

i
0Þ
þ krk

W
1þl;0
2

ðDT Þ þ kRk
W

0; 1þl=2

2
ðDT Þ

þ T�l=2kDtRkDT
þ kak

W
lþ1=2; l=2þ1=4

2
ðGT Þ þ kbk

W
lþ1=2; l=2þ1=4

2
ðGT Þ

þ T�l=2kbk
W

1=2; 0

2
ðGT Þ þ skBk

W
l�1=2; l=2�1=4

2
ðGT Þg

C c1ðTÞF ; ð2:5Þ

c1ðTÞ being a non-decreasing function of T.
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The second step is to prove the solvability of problem (2.4) in the general case.

We give the statement of existence theorem for it.

Theorem 2.3 (Existence theorem for the linearized problem). Let the hypotheses

of Theorem 2.2 be satisfied and let, in addition, a vector field u a W
2þl;1þl=2
2 ðDT Þ

be continuous across the boundary G and satisfy the inequality

T 1=2kukð2þl;1þl=2Þ
DT

a d; ð2:6Þ

with a small number d for some T < l.

Then there exists a unique solution ðw; sÞ of (2.4) such that w a W
2þl;1þl=2
2 ðDT Þ,

s a W
l; l=2
2; loc ðDT Þ, ‘s a W

l; l=2
2 ðDT Þ, ½s�jGT

a W
lþ1=2; l=2þ1=4
2 ðGTÞ and inequality (2.5)

holds for it with c1ðTÞ ¼ c2 þ c3T
ð1�lÞ=2kuð�; 0ÞkW1

2 ðWÞ, c2, c3 being a non-decreasing

functions of T.

We solve problem (2.4) by successive approximations taking wð0Þ ¼ 0, sð0Þ ¼ 0

and defining ðwðmþ1Þ, sðmþ1ÞÞ, mb 0, as solutions to the problems

Dtw
ðmþ1Þ � ne‘2wðmþ1Þ þ 1

re0
‘sðmþ1Þ ¼ f þ l1ðwðmÞ; sðmÞÞ;

‘ � wðmþ1Þ ¼ rþ l2ðwðmÞÞ ¼ ‘ �
�
RþLðwðmÞÞ

�
in DT ;

wðmþ1Þjt¼0 ¼ w0; wðmþ1ÞjST
¼ 0;

½wðmþ1Þ�jGT
¼ 0; ½meP0Sðwðmþ1ÞÞn0�jG ¼ l3ðwðmÞÞ þP0a;

½n0 � Tðwðmþ1Þ; sðmþ1ÞÞn0�jG � sn0 � Dð0Þ
ð t

0

wðmþ1ÞjG dt

¼ l4ðwðmÞ; sðmÞÞ þ bþ s

ð t

0

�
l5ðwðmÞÞ þ B

�
dt; t a ð0;TÞ:

ð2:7Þ

Here we use the notation:

l1ðw; sÞ ¼ neð‘2
u � ‘2Þwþ ð‘� ‘uÞs

l2ðwÞ ¼ ð‘� ‘uÞw ¼ ‘ �LðwÞ; LðwÞ ¼ ðI�AT Þw;
l3ðwÞ ¼

�
meP0

�
SðwÞn0 �PuSuðwÞn

����
G
;

l4ðw; sÞ ¼
�
n0 �

�
Tðw; sÞn0 � Tuðw; sÞn

����
G
;

l5ðwÞ ¼ n0 �Dt

�
DðtÞ � Dð0Þ

� ð t

0

wjG dt
� 	

¼ n0 �
�
DðtÞ � Dð0Þ

�
wjG þ _DDðtÞ

ð t

0

wjG dt
� 	

;

ð2:8Þ
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where Dð0Þ is the Beltrami–Laplace operator on G, _DDðtÞ is the derivative of DðtÞ
with respect to time.

The operators l1; . . . ; l5 and L were considered in [19]. The estimates obtained

there imply the lemma as follows:

Lemma 2.1. If u and u 0 satisfy inequality (2.6) and ½u�jG ¼ ½u 0�jG ¼ 0, then

kl1ðw; sÞ � l 01ðw; sÞk
ðl; l=2Þ
DT

þ kl2ðwÞ � l 02ðwÞkW 1þl; ð1þlÞ=2
2

ðDT Þ

þ kl3ðwÞ � l 03ðwÞkW 1=2þl;1=4þl=2

2
ðGT Þ þ kl5ðwÞ � l 05ðwÞk

ðl�1=2;l=2�1=4Þ
GT

a c17
ffiffiffiffi
T

p
ku� u 0kð2þl;1þl=2Þ

DT
fkwkð2þl;1þl=2Þ

DT
þ k‘skðl; l=2ÞDT

g;��Dt

�
LðwÞ �L 0ðwÞ

���ð0; l=2Þ
DT

a c18f
ffiffiffiffi
T

p
ku� u 0kð2þl;1þl=2Þ

DT

þ T ð1�lÞ=2kuð�; 0Þ � u 0ð�; 0ÞkW1
2 ðWÞgkwk

ð2þl;1þl=2Þ
DT

;

kl4ðw; sÞ � l 04ðw; sÞkW 1=2þl; 1=4þl=2ðGT Þ

a c19
ffiffiffiffi
T

p
ku� u 0kð2þl;1þl=2Þ

DT

� fkwkð2þl;1þl=2Þ
DT

þ k‘skðl; l=2ÞDT
þ kskðl; l=2ÞDT

þ ksk
W

lþ1=2; l=2þ1=4

2
ðGT Þg:

ð2:9Þ

Here the operators l 01; . . . ; l
0
5 and L 0 are calculated according to formulas (2.8),

where vector u is replaced by u 0. If wjt¼0 ¼ 0, then inequality (2.9) is valid without

T ð1�lÞ=2kuð�; 0Þ � u 0ð�; 0ÞkW1
2 ðWÞ on the right-hand side.

From Lemma 2.1 it follows the lemma.

Lemma 2.2. If u satisfies inequality (2.6) and ½u�jG ¼ 0, then

kl1ðw; sÞkðl; l=2ÞDT
þ kl2ðwÞkW 1þl; ð1þlÞ=2

2
ðDT Þ þ kl3ðwÞkW 1=2þl; 1=4þl=2

2
ðGT Þ

þ kl4ðw; sÞkW 1=2þl; 1=4þl=2ðGT Þ þ kl5ðwÞkðl�1=2; l=2�1=4Þ
GT

a c20dfkwkð2þl;1þl=2Þ
DT

þ k‘skðl; l=2ÞDT
þ kskðl; l=2ÞDT

þ ksk
W

lþ1=2; l=2þ1=4

2
ðGT Þg;

kDtLðwÞkð0; l=2ÞDT
a c21fdþ T ð1�lÞ=2kuð�; 0ÞkW1

2 ðWÞgkwk
ð2þl;1þl=2Þ
DT

: ð2:10Þ

If wð�; 0Þ ¼ 0 in W, the term with kuð�; 0ÞkW1
2 ðWÞ may be dropped in the last in-

equality.
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For the di¤erence

fðXu; tÞ � fðXu 0 ; tÞ ¼
X3

k¼1

ð1

0

qfðXus ; tÞ=qxk ds
ð t

0

ðuk � u 0
kÞ dt;

where us ¼ u 0 þ s~uu is continuous transformation from u 0 into u with ~uuC u� u 0,
the following lemma was proven in [19].

Lemma 2.3. Let f satisfy the assumptions of Theorem 1.1, and let vectors u,

u 0 a W
l; l=2
2 ðDTÞ, ½u�jG ¼ ½u 0�jG ¼ 0, satisfy inequality (2.6). Then

kfðXu; tÞ � fðXu 0 ; tÞkðl; l=2ÞQT
a cðTÞ

ðT

0

ku� u 0kW l
2ðWÞ dt:

Here cðTÞ is a power function of T.

Proof of Theorem 2.3. Let us return to problem (2.7). Observe that the

vector LðwðmÞÞ ¼ ðI�ATÞwðmÞ is continuous across G: ½LðwðmÞÞ � n0�jG ¼
½n0 � ðI�AT ÞwðmÞ�G ¼ ½An0�jG � wðmÞ ¼ 0. This follows from the formula for the

co-factors Aij to aij ¼ qxi=qxj due to the continuity of x and its tangent derivatives

‘Gx ¼ P0‘x: for example, for A1j we have

½A1jn0j�G ¼ ½n0 � ð‘x2 � ‘x3Þ�G ¼ ½n0 � ð‘Gx2 � ‘Gx3Þ�G ¼ 0:

Hence, we can apply Theorem 2.2 to (2.7) and conclude by Lemma 2.2 that

ðwðmþ1Þ; sðmþ1ÞÞ, m a N, are uniquely defined, ðwð1Þ; sð1ÞÞ being a solution of (2.4)

with u ¼ 0 and satisfying inequality (2.5); wð0Þ ¼ 0, sð0Þ ¼ 0.

Let us consider the di¤erences zðmþ1Þ ¼ wðmþ1Þ � wðmÞ, gðmþ1Þ ¼ sðmþ1Þ � sðmÞ,
m a NA f0g. We have the problem for m a N as follows:

Dtz
ðmþ1Þ � ne‘2zðmþ1Þ þ 1

r�0
‘gðmþ1Þ ¼ l1ðzðmÞ; gðmÞÞ;

‘ � zðmþ1Þ ¼ l2ðzðmÞÞ ¼ ‘ �LðzðmÞÞ in DT ;

zðmþ1Þjt¼0 ¼ 0; zðmþ1ÞjST
¼ 0;

½zðmþ1Þ�jGT
¼ 0; ½meP0Sðzðmþ1ÞÞn0�jGT

¼ l3ðzðmÞÞ;

½n0 � Tðzðmþ1Þ; gðmþ1ÞÞn0�jG � sn0 � Dð0Þ
ð t

0

zðmþ1ÞjG dt

¼ l4ðzðmÞ; gðmÞÞ þ s

ð t

0

l5ðzðmÞÞ dt; t a ð0;TÞ:
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If m > 1, then zðmÞjt¼0 ¼ 0; and we deduce from (2.5) and Lemma 2.2 that

NT ½zðmþ1Þ; gðmþ1Þ�a c22dNT ½zðmÞ; gðmÞ�: ð2:11Þ

If m ¼ 1 then in virtue of (2.10) we obtain

NT ½zð2Þ; gð2Þ�a ðc22dþ c21d1ÞNT ½wð1Þ; sð1Þ� ð2:12Þ

with d1 ¼ T ð1�lÞ=2kuð�; 0ÞkW1
2 ðWÞ because z

ð1Þjt¼0Cwð1Þjt¼0 ¼ w0A 0 in the general

case.

Next, for Sm ¼
Pm

j¼2 NT ½zð jÞ; gð jÞ� the following inequality

Smþ1a c22dSm þNT ½zð2Þ; gð2Þ�

holds due to (2.11). Let’s choose d such that c22d < 1. It is obvious that

Smþ1a ð1� c22dÞ�1
NT ½zð2Þ; gð2Þ�:

In view of (2.5), (2.12) we have:

NT ½wðmþ1Þ; sðmþ1Þ�aSmþ1 þNT ½wð1Þ; sð1Þ�

a

� 1

1� c22d
þ c21

1� c22d
T ð1�lÞ=2kuð�; 0ÞkW1

2 ðWÞ

�
c1F ;

where F is the sum of the right-hand side norms in (2.5) which is independent of

m. Hence, the sequence fwðmþ1Þ; sðmþ1Þg is convergent in the norm NT ½� ; �� and its

limit ðw; sÞ is a solution of (2.4) satisfying inequality (2.5) with

c1ðTÞC c0ðTÞ ¼ c1

1� c22d

�
1þ c21T

ð1�lÞ=2kuð�; 0ÞkW1
2 ðWÞ

�
:

In a similar way, we can conclude that the di¤erence ðz ¼ w� w 0; g ¼ s� s 0Þ
of two solutions of (2.4) satisfies the estimate

NT ½z; g�a c22dNT ½z; g�

whence it follows z ¼ 0, g ¼ 0. Thus, the uniqueness of the solution is also

proved. r

In order to demonstrate Theorem 2.1, we apply again successive approxi-

mations, now for solving system (2.1), where we make use of the formula (2.3)
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continued as follows:

DðtÞXu ¼ DðtÞxþ DðtÞ
ð t

0

u dt ¼ Dð0Þxþ
ð t

0

_DDðtÞx dtþ DðtÞ
ð t

0

u dt;

here _DDðtÞ ¼ DtDðtÞ.
We put uð0Þ ¼ 0, qð0Þ ¼ 0 and define the first approximation uð1Þ, qð1Þ as a solu-

tion to the problem

Dtu
ð1Þ � ne‘2uð1Þ þ 1

re
‘qð1Þ ¼ f; ‘ � uð1Þ ¼ 0 in DT ;

uð1Þjt¼0 ¼ v0 in W�
0 AWþ

0 ; uð1ÞjS ¼ 0;

½uð1Þ�jGT
¼ 0; ½meP0Sðuð1ÞÞn0�jGT

¼ 0;

½n0 � Tðuð1Þ; qð1ÞÞn0�jG � sn0 � Dð0Þ
ð t

0

uð1Þ dtjG ¼ sH0; t a ð0;TÞ;

ð2:13Þ

here H0ðxÞ ¼ n0 � Dð0Þx is twice the mean curvature of G. As H0 a W
lþ1=2
2 ðGÞ,

problem (2.13) is solvable by Theorem 2.2 on the interval ð0;T1Þ, T1 ¼ T , and

NT1
½uð1Þ; qð1Þ�a cðT1Þfkfkðl; l=2ÞQT

þ kv0kW1þl
2

ð6i¼eW iÞ þ skH0kW lþ1=2

2
ðGÞg: ð2:14Þ

Let the functions uðmþ1Þ, qðmþ1Þ, m a N; solve the problem

Dtu
ðmþ1Þ � ne‘2

mu
ðmþ1Þ þ 1

re
‘mq

ðmþ1Þ ¼ fðXm; tÞ;

‘m � uðmþ1Þ ¼ 0 in DT ;

uðmþ1Þjt¼0 ¼ v0 in W�
0 AWþ

0 ; uðmþ1ÞjS ¼ 0;

½uðmþ1Þ�jGT
¼ 0; ½meP0PmSmðuðmþ1ÞÞnm�jGT

¼ 0;

½n0 � Tmðuðmþ1Þ; qðmþ1ÞÞnm�jG � sn0 � DmðtÞ
ð t

0

uðmþ1Þ dtjG

¼ s
�
H0ðxÞ þ n0 �

ð t

0

_DDmðtÞx dt
�
jG; t a ð0;TÞ:

ð2:15Þ

Here we have used the notation: ‘m ¼ ‘uðmÞ , etc.; nm is the outward normal to

the surface GmðtÞ ¼ fx ¼ Xmðx; tÞ j x a Gg, where Xm is calculated by (1.3) with

u ¼ uðmÞ; Pm is the projector onto the tangential plane to GmðtÞ, DmðtÞ is the

Beltrami–Laplace operator on GmðtÞ.
Since the vector f satisfies the inequality

kfðXm; tÞkðl; l=2ÞQTm
a cðTmÞfjfjð1;bÞQTm

þ j‘fjð0;bÞQTm
g;
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where cðTÞ is a power function of T , and since n0 � _DDmðtÞx a W
l�1=2; l=2�1=4
2 ðGTm

Þ
if uðmÞ a W

2þl;1þl=2
2 ðDTm

Þ [19], H0 a W
lþ1=2; l=2þ1=4
2 ðGTm

Þ, by Theorem 2.3, there

exists a solution ðuðmþ1Þ; qðmþ1ÞÞ of (2.15) on an interval ð0;Tmþ1Þ on which the

approximation ðuðmÞ; qðmÞÞ is defined and condition (2.6) holds for uðmÞ with a suf-

ficiently small d > 0.

It is necessary to show that there exists T0 such that TmbT0 > 0 for Em a N,

NT0
½uðmÞqðmÞ� are uniformly bounded and that the sequence fuðmÞ; qðmÞglm¼1 con-

verges to a solution of problem (2.1). The proof of these facts is based on Lemmas

2.1 and 2.3 applied to the right-hand sides of the systems

Dt~ww
ð jþ1Þ � ne‘2

j ~ww
ð jþ1Þ þ 1

re
‘j~ss

ð jþ1Þ

¼ l
ð jÞ
1 ðuð jÞ; qð jÞÞ � l

ð j�1Þ
1 ðuð jÞ; qð jÞÞ þ fðXj ; tÞ � fðXj�1; tÞ;

‘j � ~wwð jþ1Þ ¼ l
ð jÞ
2 ðuð jÞÞ � l

ð j�1Þ
2 ðuð jÞÞ in DTmþ1

;

~wwð jþ1Þðx; 0Þ ¼ 0; x a W�
0 AWþ

0 ;

½~wwð jþ1Þ�jG ¼ 0; ~wwð jþ1ÞjS ¼ 0;

½meP0PjSjð~wwð jþ1ÞÞnj�jG ¼ l
ð jÞ
3 ðuð jÞÞ � l

ð j�1Þ
3 ðuð jÞÞ;

½n0 � Tjð~wwð jþ1Þ; ~ssð jþ1ÞÞnj�jG � sn0 � DjðtÞ
ð t

0

~wwð jþ1Þ dtjG

¼ l
ð jÞ
4 ðuð jÞ; qð jÞÞ � l

ð j�1Þ
4 ðuð jÞ; qð jÞÞ þ s

ð t

0

�
l
ð jÞ
5 ðuð jÞÞ � l

ð j�1Þ
5 ðuð jÞÞ

�
dt

þ s

ð t

0

n0 �
�
_DDjðtÞ � _DDj�1ðtÞ

�
x dtjG; t a ð0;Tmþ1Þ;

ð2:16Þ

where ~wwð jþ1Þ, ~ssð jþ1Þ mean the di¤erences uð jþ1Þ � uð jÞ, qð jþ1Þ � qð jÞ, respectively,
jam; the operators l

ðkÞ
i are calculated by (2.8) with u ¼ uðkÞ, kam; uð0Þ ¼ 0.

The norms on the right-hand sides of (2.16) are estimated either by lower

norms of ~wwð jÞ and ~ssð jÞ, or by the leading part of their norms but with small coef-

ficients including d from inequality (2.6). In particular,

��n0 � � _DDjðtÞ � _DDj�1ðtÞ
�
x
��ðl�1=2; l=2�1=4Þ
GTmþ1

a ck‘ð~wwð jÞÞkðl�1=2; l=2�1=4Þ
GTmþ1

a ck~wwð jÞkð1þl;1=2þl=2Þ
DTmþ1

:

In addition, by Lemma 2.3 we have

kfðXj; tÞ � fðXj�1; tÞkðl; l=2ÞQTmþ1
a cðTmþ1Þ

ðTmþ1

0

k~wwð jÞkW l
2ðWÞ dt;
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where cðTÞ is nondecreasing function of T depending on the norms jfjð1;bÞ and

j‘fjð0;bÞ in QT . One can deduce from this the boundedness of S 0
mþ1ðT 0ÞCPmþ1

j¼2 NT 0 ½~wwð jÞ; ~ssð jÞ�:

S 0
mþ1ðT 0Þa c1

�
c2ðT 0; dÞ þ T 0ð1�lÞ=2kv0kW1

2 ðWÞ
�
NT 0 ½uð1Þ; qð1Þ�; T 0 a ð0;Tmþ1�;

which implies the convergence of fuðmÞ; qðmÞglm¼1 in itself and the estimate

NT 0 ½uðmþ1Þ; qðmþ1Þ�aS 0
mþ1ðT 0Þ þNT 0 ½uð1Þ; qð1Þ�

a c23ðT 0; kv0kW1
2 ðWÞÞfjfj

ð1;bÞ
QT 0 þ j‘fjð0;bÞQT 0

þ kv0kW1þl
2

ð6i W
i
0Þ
þ skH0kW lþ1=2

2
ðGÞg ð2:17Þ

due to (2.14). Since the right-hand side is independent of m, and c23 is non-

decreasing function of T 0, we can find such T0 a ð0;Tmþ1� that

T
1=2
0 NT0

½uð jÞ; qð jÞ�a d; Ej a N:

Hence, as follows from (2.17), NT0
½uð jÞ; qð jÞ� are uniformly bounded and the se-

quence fuð jÞ; qð jÞglj¼1 convergent. Passing to the limit in system (2.15), we make

sure that the approximations ðuð jÞ; qð jÞÞ, j a N, converge to a solution of problem

(2.1) for which the inequality (2.2) holds.

A similar consideration for the case of a single fluid was presented in detail

in [19].

Remark 2.1. If s ¼ 0, Theorem 2.1 holds with the initial interface G a W
3=2þl
2 .

Indeed, in this case, we have the homogeneous boundary conditions in (2.15)

and we do not need to calculate H0 and _DDmðtÞx on G. It is the estimates

of these functions that make us suppose G to belong to W
5=2þl
2 in the case of

s > 0.

Moreover, we observe that the magnitude of T0 does not depend on the curva-

ture of G if surface tension is not included into consideration.

Theorem 2.1 with Remark 2.1 implies Theorem 1.1.

3. Global solvability of the problem (1.1), (1.2)

In this section we don’t take surface tension into account.

In order to prove the existence of a global solution to the nonlinear problem,

we apply an exponential L2–estimate for it with respect to time which was proven

in [7].
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Proposition 3.1. Assume that a solution of problem (1.1), (1.2) is defined on

½0;T � and that v0 satisfies the compatibility conditions (1.5). Let fð�; tÞ a L2ðWÞ,
t a ð0;T �, and

Ð T

0 ebtkfð�; tÞkW dt < l.

Then

kvð�; tÞkWa e�bt kv0kW þ
ð t

0

ebtkfð�; tÞkW dt

� 	
; t a ð0;T �; ð3:1Þ

where b ¼ minfnþ; n�g=ð2c0Þ with c0 from inequality (3.3).

Proof. We multiply the 1st equation in (1.1) by v and integrate by parts over

W�
t AWþ

t .

1

2

d

dt
kvk2W þ

ffiffiffiffiffiffi
ne

2

r
SðvÞ

�����
�����
2

W�
t AWþ

t

¼
ð
W

f � v dx: ð3:2Þ

First, we take into account the Korn inequality

kvkW 1
2
ðW�

t AWþ
t Þa c0kSðvÞkW�

t AWþ
t

ð3:3Þ

which is valid due to vjS ¼ 0 [18]. It really holds in WCW�
t AWþ

t because

kvkW 1
2
ðW�

t AWþ
t Þ coincides with kvkW 1

2
ðWÞ in view of ½v�jGt

¼ 0. Thus, c0 is indepen-

dent of t.

Next, we apply Hölder inequality to (3.2) and divide it by kvkW. We arrive

at

d

dt
kvkW þ bkvkWa kfkW

with b ¼ minfnþ; n�g=ð2c0Þ. By the Gronwall lemma,

kvð�; tÞkWa e�btkv0kW þ
ð t

0

e�bðt�tÞkfð�; tÞkW dt;

which coincides with (3.1). r

Below we use the following lemma.

Lemma 3.1. Let v a W
2þl;1þl=2
2 ðQT Þ, T > 0, l a ð0; 1Þ, y > 0. Then the function v

is subject to the inequality

kvkðl; l=2ÞQT
a c ykvkð2þl;1þl=2Þ

QT
þ
� 1

y l=2
þ 1

T l=2

�
kvkQT

� 	
: ð3:4Þ
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Proof. We use the known estimate (see, for example, [2]) for v a Wm
2 ðWÞ with any

e > 0:

kvk _WW j

2
ðWÞa cðekvk _WW m

2 ðWÞ þ e�j=ðm�jÞkvkWÞ; 0a jam� 1; mb 1:

Inequality (3.4) follows from the estimates

kvk _WW l; 0
2

ðQT Þa cðykvk _WW 2þl; 0
2

ðQT Þ þ y�l=2kvkQT
Þ;

kvk _WW
0; l=2

2
ðQT Þa cðykvk _WW

0; 1þl=2

2
ðQT Þ þ y�l=2kvkQT

Þ: r

Proposition 3.2. Let the solution of problem (1.1), (1.2) be defined on the interval

ð0;T � and let the estimate

Nð0;TÞ½v; p�C ku0kð2þl;1þl=2Þ
DT

þ k‘q0kðl; l=2ÞDT
þ kq0kðl; l=2ÞDT

þ kq0k
W

lþ1=2; l=2þ1=4

2
ðGT Þam

hold, where the pair ðu0; q0Þ is a solution of problem (1.1), (1.2) written in the

Lagrangian coordinates.

Then for Et0 a ð0;T � and

Nðt0�2t0þg;t0Þ½v; p�

C ku0kð2þl;1þl=2Þ
D 0

g
þ k‘q0kðl; l=2ÞD 0

g
þ kq0kðl; l=2ÞD 0

g
þ kq0k

W
lþ1=2; l=2þ1=4

2
ðGðt0�2t0þg; t0ÞÞ

;

we have

Nðt0�t0; t0Þ½v; p�a cðd; t0Þfjfjð1;bÞQ 0
0

þ j‘fjð0;bÞ
Q 0

0
þ kvkQ 0

0
g; ð3:5Þ

where Q 0
g ¼ W� ðt0 � 2t0 þ g; t0Þ, D 0

g ¼ Dðt0�2t0þg; t0Þ, gb 0, t0 a ð0; t0=2Þ, t0 de-

pends on m and on the constant d in (3.8), cðd; t0Þ is a nondecreasing function.

Proof. We fix an arbitrary t0 a ð0;T �. Let t0 a ð0; t0=2Þ, and let hlðtÞ be a smooth

monotone function of t such that

hlðtÞ ¼
0 if ta t0 � 2t0 þ l=2,

1 if tb t0 � 2t0 þ l;

�

l a ð0; t0�, and for _hhlðtÞC
dhlðtÞ
dt the inequalities

sup
R

j _hhlðtÞja cl�1; sup
t; t aR

j _hhlðtÞ � _hhlðtÞj
jt� tj l=2

a cl�1�l=2

hold.
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We consider the couple w ¼ vhl, s ¼ phl. It satisfies the system

Dtwþ ðv � ‘Þw� ne‘2wþ 1

re
‘s ¼ fhl þ v _hhl;

‘ � w ¼ 0 in W�
t AWþ

t ; t > t0 � 2t0;

wjt¼t0�2t0
¼ 0 in 6W 0CW�

t0�2t0
AWþ

t0�2t0
;

½w�jGt
¼ 0; ½Tðw; sÞn�jGt

¼ 0; wjS ¼ 0; t > t0 � 2t0:

We introduce the Lagrangian coordinates according to the formula

x ¼ x 0 þ
ð t

t0�2t0

uðx 0; tÞ dtCXðx 0; tÞ; x 0 a 6W 0; t > t0 � 2t0; ð3:6Þ

where uðx 0; tÞ ¼ v
�
Xðx 0; tÞ; t

�
. The functions w and s written in the Lagrangian

coordinates will be denoted by the same symbols. They solve the problem

Dtw� ne‘2
uwþ 1

re
‘us ¼ fðX ; tÞhl þ u _hhl; ‘u � w ¼ 0 in D 0

0;

wjt¼t0�2t0
¼ 0 in 6W 0;

½w�jG 0 ¼ 0; ½meP 0
0PSuðwÞn�jG 0 ¼ 0; wjS ¼ 0;

½n 0
0 � Tuðw; sÞn�jG 0 ¼ 0; t > t0 � 2t0:

ð3:7Þ

Here, G 0 ¼ Gt0�2t0 , n
0
0 is the outward normal to G 0, P 0

0 and P are projectors onto

the tangent planes to G 0 and to Gt, respectively. The other notation, for instance

‘u, also corresponds to transformation (3.6).

In order to apply Theorem 2.3 to problem (3.7), we should verify its assump-

tions. To this end, we choose t0 so small that inequality (2.6) holds. It is su‰cient

to take t0 such that

ð2t0Þ1=2ma d: ð3:8Þ

The right-hand side of the first equation in (3.7) belongs to W
l; l=2
2 ðD 0

0Þ. Hence,

by (2.5)

Nðt0�2t0þl; t0Þ½v; p�aNðt0�2t0; t0Þ½w; s�

a c1ð2t0ÞfkfðX ; tÞhlk
ðl; l=2Þ
Q 0

0
þ ku _hhlk

ðl; l=2Þ
D 0

0
g:

We can estimate the Sobolev norm of the composite function f
�
Xðx; tÞ; t

�
as

follows:

kfðX ; tÞkðl; l=2Þ
Q 0

0
a kfkðl; l=2Þ

Q 0
0

þ c
�
1þ ð2t0Þ1�l=2kuk

W l; 0
2

ðD 0
0
Þ
�
j‘fjð0;bÞ

Q 0
0

:
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By Lemma 3.1, we conclude for la 1

Nðt0�2t0þl; t0Þ½v; p�a c2

(
kfðX ; tÞkðl; l=2ÞQ 0

0
þ 1

l l=2
kfðX ; tÞkQ 0

0

þ 1

l
kukðl; l=2Þ

D 0
l=2

þ 1

l1þl=2
kukD 0

l=2

)

a c3ð1þ dÞ
(

1

l l=2
kfkðl; l=2Þ

Q 0
0

þ j‘fjð0;bÞ
Q 0

0
þ y

l
kukð2þl;1þl=2Þ

D 0
l=2

þ
� 1

ly l=2
þ 1

lð2t0Þ l=2
þ 1

l1þl=2

�
kukD 0

l=2

)
ð3:9Þ

We take now y ¼ el in estimate (3.9). Then we have

Nðt0�2t0þl; t0Þ½v; p�a c4ðdÞ
(
eNðt0�2t0þl=2; t0Þ½v; p� þ

1

l l=2
kfkðl; l=2Þ

Q 0
0

þ j‘fjð0;bÞ
Q 0

0

þ 1

l1þl=2
ðe�l=2 þ 1ÞkvkQ 0

l=2

)
: ð3:10Þ

Let us introduce the function FðlÞ ¼ l1þl=2Nðt0�2t0þl; t0Þ½v; p�. Then we can re-

write (3.10) in the form:

FðlÞa c5eFðl=2Þ þ K ; ð3:11Þ

where c5 ¼ c4ðdÞ21þl=2,

K ¼ c4ðdÞfkfkðl; l=2ÞQ 0
0

þ j‘fjð0;bÞ
Q 0

0
þ cðeÞkvkQ 0

0
g:

We set e ¼ 1
2c5

in (3.11). By iterations with l=2; . . . ; l=2k, we deduce from inequal-

ity (3.11) in the limit as k ! l that

FðlÞa 2K :

This inequality with l ¼ t0 implies (3.5). r

Now we can prove Theorem 1.2.

Proof of the global existence theorem. By Theorem 1.1, we have a solution ðv; pÞ
on an interval ð0;T0�. We can take e so small that T0 will be greater than unit, for
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example. Moreover, according to (1.6), solution norm satisfies the inequality

Nð0;T0Þ½v; p�am ð3:12Þ

with some m > 0. Then, due to Proposition 3.2, there exists t0 < T0=2 such that

(3.8) is satisfied and estimate (3.5) holds:

Nðt0�t0; t0Þ½v; p�a c5ðd; t0Þfjfjð1;bÞQ 0
0

þ j‘fjð0;bÞQ 0
0

þ kvkQ 0
0
g

for Et0 a ðT0=2;T0�. Next, inequalities (3.1), (1.7) imply that

kvkQ 0
0
a

ð t0

t0�2t0

e�2bt
�
kv0kW þ

ð t

0

ebtkfkW dt
�2

dt

� 	1=2

a e�bðt0�2t0Þ
ffiffiffiffiffiffiffi
2t0

p
e: ð3:13Þ

Thus,

Nðt0�t0; t0Þ½v; p�a c5ðd; t0Þe�bt0fjebtfjð1;bÞ
Q 0

0
þ jebt‘fjð0;bÞ

Q 0
0

þ e2bt0
ffiffiffiffiffiffiffi
2t0

p
eg

a c6ðd; t0Þe�bt0e for Et0 a ðT0=2;T0�; ð3:14Þ

here c5ðd; t0Þ, c6ðd; t0Þ are nondecreasing functions of t0.

From embedding theorem for W
2þl;1þl=2
2 ðDe

ðT0�t0;T0ÞÞ, it follows that

kuð�;T0ÞkW1þl
2

ð6i W
i
0Þ
a c6ðd; t0Þe�bT0e:

In addition, because of (3.1)

kuð�;T0ÞkW ¼ kvð�;T0ÞkWa e�bT0 kv0kW þ
ðT0

0

kebtfð�; tÞkW dt

� 	
a e: ð3:15Þ

We apply Theorem 1.1 again and obtain a solution on an interval ðT0;T0 þ T1�
with 0 < T1aT0 corresponding to the initial data vð�;T0Þ. Due to (1.6), we

get

NðT0;T0þT1Þ½v; p�a cðT1Þ
�
eþ c6ðd; t0Þe�bT0e

�
am;

where m is the same as in (3.12) for a su‰ciently small e. Then by Proposition 3.2

and in view of (3.13), (3.15), we have similar to (3.14), in particular,

NðT0þT1�t1;T0þT1Þ½v; p�a c5ðd; t1Þe�bðT0þT1Þfjebtfjð1;bÞ
Q 0

0
þ jebt‘fjð0;bÞ

Q 0
0

þ 2e2bt1
ffiffiffiffiffiffiffi
2t1

p
eg

a 2c6ðd; t0Þe�bðT0þT1Þe; ð3:16Þ
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here we have put Q 0
0 ¼ W� ðT0 þ T1 � 2t1;T0 þ T1Þ and chosen t1 a ð0;T1=2Þ,

t1a t0=4. Hence, (3.16) gives us

kuð�;T0 þ T1ÞkW1þl
2

ð6i W
i
0Þ
a c6ðd; t0Þe�bðT0þT1Þe;

and in virtue of (3.1), (3.15),

kuð�;T0 þ T1ÞkWa e�bT1 kvð�;T0ÞkW þ
ðT0þT1

T0

kebtfð�; tÞkW dt

� 	

a e�bT1

�
e�bT0kv0kW þ e�bT0

ðT0

0

kebtfð�; tÞkW dt

þ
ðT0þT1

T0

kebtfð�; tÞkW dt

	
a e:

Since data norms have not increased, ðv; pÞ exists on ðT0 þ T1;T0 þ 2T1� and

NðT0þT1;T0þ2T1Þ½v; p�am:

Hence, inequality

Nðt0�t1; t0Þ½v; p�a c6ðd; t0Þe�bt0e ð3:17Þ

is valid for Et0 a ðT0=2;T0 þ 2T1� and so on. Thus, the solution of problem (1.1),

(1.2) can be extended as far as one likes, estimate (1.8) holding for all positive t0.

The uniqueness of a global solution follows from the uniqueness of local ones.

In conclusion, we estimate the expansion of the interface Gt. To this end, we

need to evaluate the speed of interface displacement. As l > 1=2, W1þl
2 ðWþ

0 Þ is em-

bedded in the space of the continuous functions. Consequently, by the embedding

theorem, we can deduce from inequality (3.17) the estimate

max
Wþ

0

juð�; tÞja c7e
�bt:

We integrate this inequality by t from T0=2 until infinity:

ðl
T0=2

max
Wþ

0

juð�; tÞj dta c8:

Thus, if the distance between the interface G and the solid boundary S at the initial

moment is greater than c9 ¼ T0

2 supQþ
T0=2

juj þ c8, we can guarantee that these sur-

faces never intersect. r

22 I. V. Denisova



References

[1] H. Abels, On generalized solutions of two-phase flows for viscous incompressible
fluids. Interfaces Free Bound. 9 (2007), 31–65. Zbl 1124.35060 MR 2317298

[2] R. A. Adams, Sobolev spaces. Academic Press, New York 1975. Zbl 0314.46030
MR 0450957

[3] I. V. Denisova, Motion of a drop in the flow of a fluid. Dinamika Sploshn. Sredy 93/94

(1989), 32–37. MR 1089263

[4] I. V. Denisova, Problem on unsteady motion of a drop in viscous incompressible flow
(in Russian). Ph.D. thesis, Leningrad Branch of Steklov Math. Institute, Academy of
Sciences of USSR, Leningrad, 1990.

[5] I. V. Denisova, A priori estimates for the solution of the linear nonstationary problem
connected with the motion of a drop in a liquid medium. Trudy Mat. Inst. Steklov. 188

(1990), 3–21; English transl. Proc. Steklov Inst. Math. 188 (1991), 1–24. Zbl 00010927
MR 1100535

[6] I. V. Denisova, Problem of the motion of two viscous incompressible fluids separated
by a closed free interface. Acta Appl. Math. 37 (1994), 31–40. Zbl 0814.35093
MR 1308743

[7] I. V. Denisova, Global solvability of a problem on two fluid motion without surface
tension. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI ) 348

(2007), 19–39; English transl. J. Math. Sci. 152 (2008), 625–637. MR 2743013

[8] I. V. Denisova and V. A. Solonnikov, Solvability of a linearized problem on the mo-
tion of a drop in a fluid flow. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov.

(LOMI ) 171 (1989), 53–65. English transl. J. Soviet Math. 56 (1991), 2309–2316.
Zbl 0796.76025 MR 1031984

[9] I. V. Denisova and V. A. Solonnikov, Global solvability of the problem of the motion
of two incompressible capillary fluids in a container. Zap. Nauchn. Sem. S.-Peterburg.

Otdel. Mat. Inst. Steklov. (POMI ) 397 (2011), 20–52; English transl. J. Math. Sci. 185

(2012), 668–686. Zbl 1278.35175 MR 2870107

[10] Y. Giga and S. Takahashi, On global weak solutions of the nonstationary two-
phase Stokes flow. SIAM J. Math. Anal. 25 (1994), 876–893. Zbl 0806.35137
MR 1271315
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