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Global L,-solvability of a problem governing two-phase
fluid motion without surface tension
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Abstract. The paper deals with an interface problem for the Navier—Stokes system govern-
ing the motion of two incompressible fluids in a container, one liquid being inside another
one. We prove unique solvability of the problem in an infinite time interval provided that
the data are small enough, surface tension effect being neglected on the interface between
the fluids. The norms of the solution are shown to decay exponentially at infinity with re-
spect to time. The proof is based on an exponential estimate of a generalized energy and on
a local existence theorem of the problem in anisotropic Sobolev—Slobodetskii spaces.

We give also the main steps of the proof of the local theorem for the problem with and
without including surface tension.
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1. Statement of the problem and the main result

We are concerned here with unsteady motion of a viscous incompressible drop
inside another fluid. The both liquids are located in a container with a solid
boundary S. The flow is governed by the Navier—Stokes equations with non-slip
condition on the outer boundary and with continuity conditions for the velocity
and the normal stresses on the interface I',. This problem is classified as a free
boundary problem because the interface between the liquids is unknown and to
be defined by the solving process.

In the case of the whole space, existence and uniqueness theorem for the sys-
tem was proved in a finite time interval whose magnitude is determined by the
norms of the data: initial velocity and external forces. This result was stated in
[3], [6]. It was obtained in several steps by considering modal linear problems
[5], [8], [4]- In these papers, it was also studied a system where surface tension
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forces were taken into account. In this case, the length of solvability interval de-
pends, in addition, on the curvature of the initial interface I'y. Local existence the-
orem for bounded domains is proved in a similar way.

We mention also some other results of 1990s on this subject. They are of
Y. Giga and Sh. Takahashi [10], [20], and also of A. Nouri, F. Poupaud, and Y.
Demay [13], [12]. These papers dealt with the existence of global weak solutions
for the Stokes and Navier-Stokes equations governing the motion of two (or
several) immiscible fluids without including surface tension.

We note that recently the interest to two-phase fluids is increasing. New re-
searchers are studying the problem on two liquid flow by new mathematical
methods in different functional spaces. As this problem is enough complicated,
it has many aspects for discussion. In particular, H. Abels found conditions
when there exist weak solutions to the non-linear problem without surface tension
but he was not able to describe the interface in this case. On the contrary, in the
case with the presence of surface tension, he only estimated the Hausdorff measure
of the interface leaving open the existence of generalized solutions [1]. Next, Yo.
Shibata and S. Shimizu investigated the problems with surface tension by operator
methods in the anisotropic Sobolev spaces qu,}:l’ 2<n<qg< o0, 2<p<oo,
Q* = R”". But they proved only the solvability of model diffraction problems for
the Stokes system [15]. Ja. Priiss with the co-authors studied behaviour of solu-
tions for the two-phase Navier—Stokes equations also taking surface tension into
account but in absence of external forces. They proved that the problem was lo-
cally uniquely solvable in L,-setting, p > n + 3, when the interface was close to
a flat configuration for the whole space [14], and for bounded domains [11], the
solution becoming instantaneously real analytic. Global (in time) classical solv-
ability of the problems with and without including surface tension forces was ana-
lyzed by the author alone [7] and together with V. A. Solonnikov [9], respectively.
There it was applied the method of an exponential estimate of a solution in terms
of the data.

Here, we prove global solvability in the Sobolev—Slobodetskii functional
classes WZI" "2 in a similar way by assuming an exponential decrease of the mass
forces and ignoring surface tension. We give also main steps of the proof for local
solvability for the problem with non-negative surface tension coefficient which
was not published earlier in detail. We remark that in the case without surface
tension we don’t need require additional smoothness for the initial interface I'y.
It is enough to suppose only natural regularity for it, the same as for the sur-
face S.

Note that in the Sobolev spaces, the existence of a global solution for a prob-
lem governing the motion of a drop of single fluid in vacuum was obtained by
V. A. Solonnikov in [17], local existence theorem for the problem being proven
by him in [19].
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Now we give a mathematical setting of the two-phase problem.

Let, at the initial moment 7= 0, a fluid with viscosity v* > 0 and density
p* >0 fill a bounded domain Qf = R*. Let a fluid with viscosity v~ > 0 and
density p~ > 0 be situated in a domain Q; surrounding Q. We denote 0Q; by
[y. The boundary S = d(Qg Uy U Q) is a given closed surface, ST = 0.

For every ¢ > 0, it is necessary to find the interface I', between the domains
Q. and Q. , as well as the velocity vector field v(x, 7) = (v, v2, v3) and the pressure
function p which satisfy the following initial-boundary value problem for the
Navier—Stokes system:

1
v+ (v-V)vy —vEVZy -I-p—in =f,

V.v=0 inQ uQf, >0,

Vio=v inQyuQy, g =0 (Sr=5x(0,T)), (L.1)
M, = limr v(x) — limr v(x) =0, [Tn]|p, =0.
»\x;ﬂ;;} ' xx’e\lfze; !

Here 9, = 0/0t, V = (0/0xy,0/0x2,0/0x3), v, pE are step functions of viscosity
and density, respectively, vy is the initial distribution of the velocity, the stress
tensor is T(v, p) = —pl + u*S(v), where S(v) is twice the strain tensor with the
elements

S = 0v;/0xy + Ovi/0x;, i,k=1,2,3;

ut =vEpE [ is the unit matrix, n is the outward normal to Q;". We suppose that
a Cartesian coordinate system {x} is introduced in R®. The centered dot denotes
the Cartesian scalar product.

Summation is implied over the repeated indices from 1 to 3 if they are denoted
by Latin letters and from 1 to 2 if they are done by Greek letters. We mark the
vectors and the vector spaces by boldface letters.

Moreover, to exclude the mass transportation through I';, we assume that the
liquid particles do not leave I',. This means that I'; consists of points x(&, 7) such
that the corresponding vector x(&, ) solves the Cauchy problem

Zx =v(x(&, 1), X[,_o=¢& EeTy, t>0. (1.2)

Hence I'; = {x(&, 1) | € e T}, QF = {x(&,1) [ & € QF ).

We prove unique solvability for problem (1.1), (1.2) in Sobolev—Slobodetskii
spaces for all # > 0, provided that the initial data are smooth and small enough.
Our proof is based on a local existence theorem for the problem in Lagrangian
coordinates.
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We pass from Eulerian to Lagrangian coordinates by the formula

xzé—l—J;u(é,r)drEXu(é, 1). (1.3)

(Here u(¢&, ¢) is the velocity vector field in the Lagrangian coordinates.)

As a result of transformation (1.3) and of projecting the last boundary condi-
tion in (1.1) onto the tangent planes first to I';, then to 'y, we arrive at the prob-
lem for u, ¢ = p(X,, ) with the given interface I' = T,. If the angle between n
and the exterior normal ng to I' is acute, this system is equivalent to the following
one:

1
@,u—viVﬁu—i—Equ:f, Vo-u=0 inQf =Qf x(0,7),

u_o=v inQ;uQy, ;=0 (Sr=5x(0,T)) (1.4)
Wlg, =0, [« THISy(un]|g, =0 (Gr =T x (0,7)),
o - Tu(u, g)n]|g, = 0.

Here we have used the notation: V, = AV, A is the matrix of co-factors 4;; to the
elements

a;(&1) :5;‘+J’au,.(57ﬂ) W

o0&

of the Jacobian matrix of transformation (1.3), (5]’ is the Kronecker symbol,
i,j=1,2,3, the vector n is connected with ny by the relation

Ano
n=——;
|All0|
Mo = o —n(n- o), o = o —ny(ng - ®) are projections of a vector @ onto the
tangent planes to I'; and T, respectively; Ty(W,q) = —¢l + u*Sy(w), where the
tensor Sy(w) contains the elements

(SH(W))IJ = A,-kﬁwj/ééjk =+ Ajkaw,'/afk.

Let Q be a domain in R", ne N, and let a = («,...,%,) be the multi-
index of order |a| =o;+---+a, with integer non-negative components o;,
i=1,...,n. We denote the generalized derivative of a function u by Ziu =

2y

op *
n
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We define the Sobolev—Slobodetskii space W,"(Q) for m > 0 as the space of
functions « with finite norm

1/2
2 2
el = (3 N2uly + lulip))

|a|<m

where || - ||, is the norm of L,(€), and

S (1205 for m e N,
2 -
u WmQ =
S ) IQJ"Q‘”“W OF dxdy form ¢ N,

|a|= [x—y]
[m] being the integal part of m.

The anisotropic space W,""/*(Qr) consists of functions defined in the cylinder
Or =Qx(0,T),0< T < o0, and having finite norm

T 5 1/2
[ — Ml Ao |l dx)

We say that a vector field belongs to a certain space if each of its components
belongs to this space and we define its norm as the sum of the norms of its
components. The same is valid for a tensor-valued function. The numeration of
constants is individual for each section. Different constants may be denoted by ¢
without any index.

We will also need the following norms. Let u € Wl l/z(QT), e (0,1). We
define

12 12

Il = (il 1m g, + Tl )2,
2 (QT)

(0,1/2) 2 - 2
(Il = [ gy =+ Tl

241, IH/Z(QT)

The equivalent normalization of W) is as follows

(241,1+1/2) 2 -1 2 2
(g™ )2 = Nl eason o,y + TS 20l + 7 250l
lo|=2

2
+ sup [Ju(-, 1)|| Wit (@)
t<T

For o, f € (0,1), we will consider the following Holder norms of « in Q7:
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(0,0) | (.X, l) B H(X, T)|
u = sup |u| + sup su ,
| |QT p‘ | yeng<pT |I7T|
u(x,t) —u(y,t u(x,t) —u(x,t
|”|<er sup|u|+ sup  sup —| (x.9) ( )|+sup sup —‘ (x. 1) /g )|.
0<t<T x,yeQ |x—y| xeQ t,t<T |l—T|

For a bounded domain Q and T < oo, it is evident that
(1,1)2 _ 1,
lullg, ™ < e+ TPl Bell/2,).
Let be T € (0, ], t,7 > 0. We introduce the notation:

Q=000 0r=Qx (0 T), Dr=0;u0f 07 =0QFx(0,T),
Q(i;,t+r) = Qti X(6,t47), D) U Q 1147)’ Giiory = Lo x (4,1 + 7).

For a function u defined in the domain | J_, Q, we set
||“|’W2m(u,.:igé) = llullwpar) + Nl
and for a function u defined in D7, we put
||u||W2m,m/2(DT) = HuHWzm.m/Z(Q;) + ||u||W2m.m/2(Q;).
Now we state a local existence theorem for a bounded domain.

Theorem 1.1 (Local existence theorem). Assume that for some [ € (1/2,1),
we have T e W™ £ e WL (0r), 0 < T < o0, £(-,1), VE(-,1) € Lip(Q) for
Vi e [0, T], (¢, ) VI, ) e Cﬁ(O T) for V¢ e Q with some € [1/2,1). In addi-
tion, let the initial velocity vector field vy € Wl” (U, _, ) satisfy the compatibility
conditions

Vovg=0 inQyuQf, vlg=0,

1.5
Vollr =0, [« TTpS(vo)mo]|- = 0. )

Under these assumptions, there exists a constant Ty € (0, T| such that prob-
lem (1.4) is uniquely solvable on the interval (0,Ty), and its solution (u,q) has

the properties: u € W§+l’1+l/2(D V), q € W] l/z(DTO), Vq € Wé‘l/z(DTo), [q]lr €

W21+1/2,1/2+1/4(GT0) and

(2+1,1+1/2) (1,1/2) (1,1/2)
a5 7 Vgl + lallpy, ™+ gl e g,

1-0)/2 (L,p) 0,8)
Scl(cz-l'T( /||vo\|w DIEG,” + 1VE1G7 + [vollwper o} (1:6)

The value Ty depends on the norms of f and vy.
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The following theorem gives us the existence of a global solution of system
(1.1), (1.2). This is the main result of the paper.

Theorem 1.2 (Global existence theorem). Let for some [ € (1/2,1) the interface
I'e W3/2+1, the vector field feW] I/z(ng) f(-,1), VI(-,1) € Lip(Q) for Vte
[0, o], £(&,-), VE(E,-) e CF(0, T) for ‘v’f € Q with some f € [1/2,1). We also sup-
pose that the initial velocity vector field vy € WZIH(UI.: N Q) satisfies conditions
(1.5) and together with the mass forces is small enough, i.e.,

o0
h L,
Vollwrerq, i) + Ifllwioz g, ) + j e |[flqdi + "], "
+1e"VAGP <o« 1. (1.7)

(Here b = min{v*™ v~ }/(2¢), where ¢ is the constant from inequality (3.3).)
Then problem (1.1), (1.2) is uniquely solvable for all positive moments of time t,

and solution (v, p) possesses the properties: v € WZH /2 ,DE WZZ 2, Vp e Wé’l/ 2,

[Pllr, € WZIH/ RESLRANS P W; 2 the pressure being defined up to a bounded
function of time. This means that for any ty € (0, c0), the solution (u,q) in the
Lagrangian coordinates and its derivatives belong to the corresponding Sobolev
spaces over D, 1z for a sufficiently small time interval (to,ty +t). Moreover,

there holds the estimate

(241, 1+l 2) (1,1/2) (1,1/2)
lullp, o+ 19al, 2+ Nl + el mieang,
< C3e_bt°a, (1.8)

where c3 is independent of t.

One can conclude from this theorem that the trivial solution is unique when
initial velocity and mass forces are absent. The stability of this solution takes
place in the sense that the solution differs a little from zero under a small deviation
of the data from zero.

At the end of the paper, we give a necessary upper bound of the initial distance
between the outer boundary and the fluid interface.

2. Local existence theorem for the case of non-negative surface tension

The aim of this section is to consider the main steps of the proof of Theorem 1.1
which was not published earlier in detail. It was obtained in the Ph.D. thesis of
the author [4] while its statement was published in [3], [6]. More precisely, in [4]
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it was studied an interface problem, more general than (1.4), which was governing
the motion of two incompressible liquids with including capillary effect. The sys-
tem was

1
@,u—v+V2u+p Vag=f, Vy-u=0 inQfFf =Qf x(0,7),

u_o=v inQ;uQy, ulg, =0, (Sr=5x(0,7)), (2.1)
WG, =0, [WIIS(un]l;, =0 (Gr=T x (0,7)),
g - Tu(u, ¢)n]|g, = ocHn - ny,

where o > 0 is the surface tension coefficient, H(x, ¢) is twice the mean curvature
of I'; (H < 0 at the points where I'; is convex toward Q, ).

Theorem 2.1 (Local existence theorem for the problem with surface tension).
Suppose that T € W25 /24 for some [ € (1/2,1). Let, in addition, the assumptions
of Theorem 1.1 be satisfied. Then there exists a constant Ty € (0, T] such that
problem (2.1) is uniquely solvable on the interval (0,Ty), its solution (u,q) has
the properties: u e W?HH/Z(D ), g€ Wl I/Z(DT(,), Vg e Wé‘l/z(DTo), [q]lr €

W21+1 /2,//2+1/4(GT0), and the inequality

(2+1,1+1/2) @ 1/2 (1, 1/2

lull5 +11Vallp, ™ + lallp,™ + llall WA G

(- 1/2

<ci(e2+ T vollw:a)

(L,p) 0,)
X {|f| / + |Vf| / + HVOHWZM(U,‘Q(';) +0'||H0||W2/+1/2<1_)} (2.2)

holds; here Hy denotes the doubled mean curvature of T. The value Ty depends on
the norms of £, vy and the curvature of T.

The base for proving Theorem 2.1 is the unique solvability of a linearized
problem that was also obtained in [4] for an arbitrary finite time interval. The
surface S was absent there, the domain Q; U € coinciding with the whole
space R®. But this result is also valid in the case with S bounding a finite fluid
volume.

We apply the well-known relation

Hn = A(0)x = A()Xa, (2.3)

where A(¢) denotes the Beltrami-Laplace operator on I';.
Thus, let us consider problem (2.1) linearized on a given vector field u:
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1 .
@,W—viVﬁw—l—EVus:L Ve-w=r 1n Dy,

— O~ +
W,_o=w InQ;uQ,

Wllg, =0,  wls, =0,  [*TIIISy(W)n]| = Ioa,

t t
g - Ty(W,s)n]| —ong - A(I)J wirdt=5b+ O'J Bdr  on Gr.
0 0

The functions in the right-hand sides of all of the equations, initial and boundary
conditions are given.

The first step is the consideration of problem (2.4) with u = 0. Unique solv-
ability of this system was obtained in [8], where Q; UQ; = R*. In order to
prove this result for a bounded domain, we need a priori estimates of a solu-
tion near outer boundary. To this end, we can apply existence theorem for
the Dirichlet problem for the Stokes system in a half-space [16]. Now we can
state the theorem of the existence and uniqueness for the bounded domain
Qy uQ.

Theorem 2.2 (Existence theorem for the linear problem). Suppose that for some

3/2+41 1,1/2 14+1,1/2+1/2 B
le(1/2,1), T < oo, T'e W, "7, £ e W)"" (D), re W, (Dr), r=V-R,
ReWy'"(Dr), [Rom)lg, =0, woe Wi(U__, Qf), ae W, /2P,
be W21+1/2’1/2+1/4(GT) and B € W;71/2’1/271/4(G7). Moreover, assume also that
the compatibility conditions

Wollr =0, [#*TlpS(Wo)no]|r = Moal,_y,  Wols =0,
Vewo=rl_y inQyuQ

are satisfied.

Then problem (2.4) with w =0 is uniquely solvable and its solution (w,s) has
the properties: W e W§+l’l+1/2(DT), s € Wzl’l/z(DT), Vs e Wé’l/z(DT), [s]lG, €
W21+1/2,1/2+1/4(GT) and

2+, 141/2

I 1,1/2
Nrlw,s] = |[w]|5 /

1/2
P Vsl Wi, sl 2008,
1,1/2
< ei(T){IEllp, " + Wollwserg, ag) + Il o,y + R g2,
+ T—1/2||§Z,R||DT + ||a||wzz-1/z.1/z+1/4(GT) -+ ||bHW21+1/z‘1/2+1/4(GT)
+ T*I/ZHbH w20 (Gr) +a||B|| W2/71/2,1/271/4(GT)}
= Cl(T)F, (25)

c1(T) being a non-decreasing function of T.
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The second step is to prove the solvability of problem (2.4) in the general case.
We give the statement of existence theorem for it.

Theorem 2.3 (Existence theorem for the linearized problem). Let the hypotheses
of Theorem 2.2 be satisfied and let, in addition, a vector field u € W;HJH/ 2 (D7)
be continuous across the boundary T and satisfy the inequality

TV ||| 5 ) <5, (2.6)

with a small number J for some T < 0.

Then there exists a unique solution (w,s) of (2.4) such that w € WZH l+I/Z(DT),
s € W2/ llécz( r), Vs € Wl I/Z(DT), sllg, € WIH/2 1/2+1/4( Gr) and inequality (2.5)
holds for it with ¢;(T) = ¢ + 3 T1)/2||u(-, 0)||W71 (@) €2 €3 being a non-decreasing
functions of T.

We solve problem (2.4) by successive approximations taking w(® = 0, s =0
and defining (w1 ("D m > 0, as solutions to the problems

@tw(n1+l +V2 (m+1) +L+Vs(m+l) :f+11(W(m),S(m)),

Po
VoWl < b(w) = V- (R+ Z(w) in D,

W (m+1) |t 0 = Wo, w(m+1)|ST — (),
WO g, =0, (¥ ToS(w ng] - = ky(w™)) + Ipa, 27)
t
[ng - '[I'(w<m+1>,s(’"+1))no]|r —ang - A(0) J w(m“)|rdf
0
t
Ly (w0 +b+aj (Is(w™) + B)dr, 1€ (0,T).
Here we use the notation:
Li(w,s) = vE(Va = V)W + (V= Vy)s
h(w) = (V )W—V L(w), Lw)=(10-A"w,
I3(w) = [/‘H( — HuSu(W) )”r’
Li(w,s) = [ng - (T(w,s)ng — Tu(w,s)n)]|, (2.8)

Is(w) =mng - @,{ (A(r) — A(0)) JOZ w|p dr}
=ny- { (A1) — A(0))w|r + A(1) J;wl-dr},
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where A(0) is the Beltrami—Laplace operator on I, A(¢) is the derivative of A(7)
with respect to time.

The operators 1y, ..., /s and & were considered in [19]. The estimates obtained
there imply the lemma as follows:

Lemma 2.1. If'u and v’ satisfy inequality (2.6) and [u)|- = [0']| = 0, then

I (w,5) — 1w, )| L1124 (w) — lz’(w)||W21+/A<1+/)/z(DT)
W) = W) s g, + 15(w) = B5(w)ll g, 227
< c”\/’fHu u H (2+41,1+1/2) {H ” (2+1,1+1/2) + ||VS|| (1,1/2) }’
17.(Lw) - 2/ (W)
< C1g{ﬁ\|u H (2+1,1+1/2) (2.9)
+ T2 (-, 0) = u'(-,0)flw o HIWIS, 72,
(AT B AT P
< clgﬁHu || (2+1,1+1/2)

< AW, Vsl lsllpy ™+ lsll 2z, -

Here the operators 1y, ..., Ik and L' are calculated according to formulas (2.8),
where vector u is replaced by w'. If w|,_, = 0, then inequality (2.9) is valid without
7072 ||u(-,0) —u'(-, 0)llw: (e on the right-hand side.

From Lemma 2.1 it follows the lemma.

Lemma 2.2. If u satisfies inequality (2.6) and [u]| = 0, then

(1,1/2)
11 (w, S)H /D + || a(w )”WH’ 072y + |15 (w )”WI/H/‘I/M/Z(GT)

+memmmWWh+M<m“”W”4

(2+1,1+1/2) (1,1/2) (1,1/2)
< caod{ Wl 1985, + Dsllp, ™ 4 sl revmimeass g,

1L W) 50" < eanfo + T2 (-, 0) g Hiwlp, 7. (2.10)

If w(-,0) =0 in Q, the term with |ju(-,0)lw:q) may be dropped in the last in-
equality. i
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For the difference

3 ‘
f( Xy, 1) — (X, 1) = Xu,, 1)/ 0xr ds | (ux — uy) dr,
k

k=1 0

where u; = u’ + su is continuous transformation from u’ into u with a =u —u’,
the following lemma was proven in [19].

Lemma 2.3. Let f satisfy the assumptions of Theorem 1.1, and let vectors u,
u' e Wé’l/z(DT), ul|p = [W']| = 0, satisfy inequality (2.6). Then

T
6060 ) = £ D1 < e(T) | 1w =y

Here ¢(T) is a power function of T.

Proof of Theorem 2.3. Let us return to problem (2.7). Observe that the
vector L(w) = (1 - AT)w is continuous across I':  [L(w™) - ng|. =
o - (1 — AT)ywm]. = [Ang]|- - w™ = 0. This follows from the formula for the
co-factors A;; to a;; = 0x;/0&; due to the continuity of x and its tangent derivatives
Vrx = Iy Vx: for example, for 4;; we have

[Aynoilr = [mo - (Vxa X Vix3)]r = [mg - (Vrxa x Vrxs)|p = 0.

Hence, we can apply Theorem 2.2 to (2.7) and conclude by Lemma 2.2 that
(wm D) s+ " e N, are uniquely defined, (w(!), s(! ) being a solution of (2.4)
with u = 0 and satisfying inequality (2.5); w(® ) = =0,s5s9 =0.

Let us consider the differences z("+!) = w<”’+1) w(’"), gt = glm+1) _ gm)
m e Nu{0}. We have the problem for m € N as follows:

b

@tz(n1+1) - Viv2z(m+l) +ng(m+l) _ ll(z(m)’g(m))7
P

0
V-2 = bz =v.2z"™) in Dr,
Z(m+l)|[:0 — O, Z(m+l)|S _ 0
[Z(m-»-l)HGT =0, [ +H0§( (m+1) )n0]|GT _ 13(z(’"))’

t
o - T(z0+) g<'"“>>no1|r—ano-A<0>j 207D de
0

t
= Lz, g"™) + UJ Is(z™)de, 1€ (0,T).
0
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If m > 1, then z"|,_; = 0, and we deduce from (2.5) and Lemma 2.2 that
NT[Z(erl)7g(m+l)} < széNT[Z(m),g(m)}. (211)

If m = 1 then in virtue of (2.10) we obtain

Nz[z?, g?] < (220 + ¢2101)Np[w | 5] (2.12)
with 6; = TU=D72||u(-, )||W21(Q) because z1|,_, = wV)| _, = wo # 0 in the general
case.

Next, for X, = 377, N r[z\7), g\)] the following inequality

Yot < 20%, + Nr[z®), g?]
holds due to (2.11). Let’s choose ¢ such that ¢»d < 1. It is obvious that
Tyt < (1—c00) ' Nr[2?, ).
In view of (2.5), (2.12) we have:
Npwm D sty <3 Npw® 5]

1 €21 (1-1)/2
= (1 00 1 — o [[u(-, )HWZI(Q) ar,

where F is the sum of the right-hand side norms in (2.5) which is independent of
m. Hence, the sequence {w("*1) s+ is convergent in the norm N7, -] and its
limit (w, s) is a solution of (2.4) satisfying inequality (2.5) with

C1
1— 622(5

c(T)=co(T) = (1+ 021T(‘—l)/zﬂu(-,0)||W21(Q)).

In a similar way, we can conclude that the difference (z=w —w',g =5 — ')
of two solutions of (2.4) satisfies the estimate

Nrlz,g] < ¢220N7(z, 9]

whence it follows z =0, g =0. Thus, the uniqueness of the solution is also
proved. Ll

In order to demonstrate Theorem 2.1, we apply again successive approxi-
mations, now for solving system (2.1), where we make use of the formula (2.3)
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continued as follows:

t t t

A(r)édT + A(r) J udr,

0

A(0)Xy = A(1)E + A1) J

0

udr = A(0)¢+ j

0

here A(7) = %A( ).
We put u® =0, ¢ = 0 and define the first approximation u"), g(") as a solu-
tion to the problem

1
gV — vtV 4 —vg =f  v.u) =0 inDr,
p_

ul|_o=v inQyuel, uly=0,

(2.13)
Mg, =0, [#FToSuM)ng]|g, =0,

t
[ng - 'I]'(u(l), q(l))no]h- — ong -A(O)J ulV dt| = gH,, te(0,7),
0

here Hy(&) =ng - A(0)& is twice the mean curvature of I'. As Ho € W”l/z(l"),
problem (2.13) is solvable by Theorem 2.2 on the interval (0, 77), 71 = T, and

(1,1/2)
N1V, g0 < (TS + Nollwso oy + 01 Holl e b (214)

Let the functions u”+V, ¢+ e N, solve the problem

1
Qu (m+1) +V2 (m+1) _i_Equ(mH) = (X, 1),

Vo -u™ ) =0 in Dy,
+1) - + +1)
u” |t0—v0 inQ; uQ, u” >|S—O,

[u(m+l)]|GT =0, [ﬂiHOHn1§m(u(m+l))nm]|G,~ =0, (2.15)
t

[no . -|]—m(u(m+l)7 q(m+l))nm]|r — ony - Am(t)J u(m+1) d‘L’|1-
0

= a(Ho(é) + 1 - J; Am(r)gdr) I, te(0,7).

Here we have used the notation: V,, = V,w, etc.; n,, is the outward normal to
the surface T,(¢) = {x = X,,(&, 1) | & € T}, where X, is calculated by (1.3) with
u=u); II,, is the projector onto the tangential plane to (1), Aw(?) is the
Beltrami-Laplace operator on T',(z).

Since the vector f satisfies the inequality

£, D15 < e(T){IElG" + [VEIg P},
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where ¢(T) is a power function of T, and since ng - A,, (7)€ € Wl V21/2= 1/4(GTW)
if u e W;H l+//2( ) [19], Hy € WZIH/2 1/2“/4( Gr,), by Theorem 2.3, there
exists a solution ( (’”“) ,q"*+1) of (2.15) on an interval (0, T},,;) on which the
approximation (", ¢™) is defined and condition (2.6) holds for u with a suf-
ficiently small 6 > O.

It is necessary to show that there exists 7 such that 7,,, > Ty > 0 for Vm € N,
Nrz,[ug™] are uniformly bounded and that the sequence {u, ¢™1}*_ con-
verges to a solution of problem (2.1). The proof of these facts is based on Lemmas
2.1 and 2.3 applied to the right-hand sides of the systems

. . 1 .
9wt — v¢v}2w(/+l) +/Evj§(j+l)

_ 15.1')(“(/'), g — 15./*1)(11(/')7 g + f(X;,0) — £(X;_1,10),
Vv, Wit = [2<f)(u(.i>) _ ]2(/‘—1)(,](.1)) in D7 .,
wUtD(E0) =0, ¢EeQy uQy,

[W(Hl)” =0, W(.f+1)| =0,

N s (2.16)
[ TS, (W |- = 157 () — 1§ ),

t
[ng - T; ( (j+1) S(./‘Jrl))njHr —ong - Aj([)J with dT|r
0

_ li])(u“),q(f)) _ 15.1*1)(11(/)’ q(/)) + GJO (15(‘0(“(/)) _ 15(-’71)(u(/))) dr

4 aJ no - (A7) — Ay (0)Edely, 1€ (0, Tyn),

where w1, §U+D) mean the differences ut/*!) —ul), gU+h — 4 respectively,
Jj < m; the operators Ii<k) are calculated by (2.8) with u = u®, k < m; u® = 0.

The norms on the right-hand sides of (2.16) are estimated either by lower
norms of w/) and 5/, or by the leading part of their norms but with small coef-
ficients including 0 from inequality (2.6). In particular,

Hn()' (A/(T) )(:Hl 1/2,1/2—1/4) C”V( )”/ 1/2,1/2—1/4)

Tt Tpt1

() (112412
SCHW(/)HD: ]/+/)'

In addition, by Lemma 2.3 we have

Tnt
(1,1/2) ~ (7
10X, 1) — £(X; )”QT/I < ¢ m+l)J 19l g d,
m+ 0



16 1. V. Denisova

where ¢(T) is nondecreasing function of 7' depending on the norms |f |(1"ﬁ ) and
|Vf|(0’ﬂ) in Q7. One can deduce from this the boundedness of X  (7') =
Z{’Sl Ny wi), 50):

2;’1+1(T/) <ec (CQ(T/,é) + T/(lil)/ZHVOHWzl(Q))NT/[u(l)7q(l)], T/ c (0’ ]wm+1]7

which implies the convergence of {u”, g™ }™ | in itself and the estimate

NT/[u(m+1)7q(17z+1)] < Y (T/) +NT’ [u(l),q(l)]

m+1
1, 0,
< en(T, vollwio){Iflg;” + Vil

+Vollwyy, 01 + allHollyr ) ) (2.17)

due to (2.14). Since the right-hand side is independent of m, and ¢y; is non-
decreasing function of 7", we can find such Ty € (0, 7),,11] that

T)Np,uY, ¢V <6,  VjeN.

Hence, as follows from (2.17), Nz,[u/), ¢/)] are uniformly bounded and the se-
quence {u'/), g\/) }/21 convergent. Passing to the limit in system (2.15), we make
sure that the approximations (u'/), q(j>), j € N, converge to a solution of problem
(2.1) for which the inequality (2.2) holds.

A similar consideration for the case of a single fluid was presented in detail

in [19].

Remark 2.1. If ¢ = 0, Theorem 2.1 holds with the initial interface I" € W; 124
Indeed, in this case, we have the homogeneous boundary conditions in (2.15)
and we do not need to calculate Hy and Am(f)é on I'. It is the estimates
of these functions that make us suppose I" to belong to W25 21 in the case of
o> 0.

Moreover, we observe that the magnitude of 7y does not depend on the curva-
ture of I" if surface tension is not included into consideration.

Theorem 2.1 with Remark 2.1 implies Theorem 1.1.

3. Global solvability of the problem (1.1), (1.2)

In this section we don’t take surface tension into account.

In order to prove the existence of a global solution to the nonlinear problem,
we apply an exponential L,—estimate for it with respect to time which was proven
in [7].
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Proposition 3.1. Assume that a solution of problem (1.1), (1.2) is defined on
[0, T] and that vy satisfies the compatibility conditions (1.5). Let f(-,7) € Ly(Q),
t€(0,T), and [, e"|f(-,7)|lqdr < o0.

Then

||v<-,r>||gse’"{nvong+j0ebf||f<~7r>||gdr}7 (.7, (1)

where b = min{v*, v=}/(2¢co) with ¢y from inequality (3.3).

Proof: We multiply the Ist equation in (I1.1) by v and integrate by parts over
Qv

2

1d *
M + [ s ) :J £vdr. (3.2)
2 dr 2 ) o
Q,;uQf
First, we take into account the Korn inequality
Vw0 vary < cllSMla; oy (33)

which is valid due to v|g =0 [18]. It really holds in Q =Q; UQ; because
Hv||W21 (@-uo) coincides with ||v||W21 () in view of [v][r = 0. Thus, ¢ is indepen-
dent of ¢.

Next, we apply Holder inequality to (3.2) and divide it by ||v||. We arrive
at

d
dr IVl + blvila < lIfllq
with b = min{v*,v~}/(2¢). By the Gronwall lemma,

t
VG, Dl < e [Ivollg + L e I (-, 7)llq de,

which coincides with (3.1). O
Below we use the following lemma.

Lemma 3.1. Lerv e W22+1’1+[/2(QT), T>0,l€(0,1),0>0. Then the function v
is subject to the inequality

(1,1/2) (21,1412 1 1
Il < e{ oIl §™ 1+ + (o + 7)ol - (3.4
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Proof. We use the known estimate (see, for example, [2]) for v € W}"(Q) with any
e>0:

Iolliyiey < clelleligay + 67/ ollg),  0<j<m—1,m=1.
Inequality (3.4) follows from the estimates

—1/2
1ol 100,y < €(O1llzenogg,, + 07 ltllg,),

-1
HUHWZO'I/Z(QT) < C(QHU”WZO'M/Z(QT) +0 /2||DHQT)' ]

Proposition 3.2. Let the solution of problem (1.1), (1.2) be defined on the interval
(0, T'] and let the estimate

0” (2+1,1+1/2) (1,1/2) (1,1/2)

No.7)[v, p] = [lu +1IVa'llp,"? + llg°l15," + llg° lyamimim g,y <

hold, where the pair (u°,¢°) is a solution of problem (1.1), (1.2) written in the
Lagrangian coordinates.
Then for ¥ty € (0, T| and

N(t07270+7 to) [V p]

= lu O|| (2+1,1+1/2) ///2 1//2

+ Ve l1p; "™ + 119115, + g° Il vmazess g

(19—279+7, 10)> ’
we have
(1,8)
Nty—0,0) [V P} < (9, fo){lfl /+|Vf| +||V||Q’} (3:5)

where Q.; =Q x (ty — 219 + p, t0), D = D(1,-20047.1)> ¥ =0, 70 € (0,20/2), 70 de-
pends on u and on the constant d in (3 8), ¢(J,70) is a nondecreasing function.

Proof. We fix an arbitrary #y € (0, T]. Let ty € (0,%/2), and let #,(¢) be a smooth
monotone function of ¢ such that

0 ifr<ty—2t0+41/2,
(1) = .
1 if t >ty — 2719 + 4,

2 € (0,70], and for #,(¢) = d”/ the inequalities

7,(1)] < A7t M <)l

hold.
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We consider the couple w = vz;, s = py;. It satisfies the system

1
@,er(V~V)w—viV2w+p—+Vs:fm+wh,
V-w=0 ith_UQj_7 t >ty — 27,
=0 iHUQ/Eth UQ;

W, =0, [T(w,s)nllr, =0,  wlg=0, > —27.

w|[:l‘0—21’0 —219 —21¢7

We introduce the Lagrangian coordinates according to the formula
t

X:é"—i—J ué ) dr=X(E ), &elJQ 1> 10— 21, (3.6)

1o—21¢

where u(¢’, 1) = v(X (&', 1),¢). The functions w and s written in the Lagrangian
coordinates will be denoted by the same symbols. They solve the problem

1 .
@tw—viVﬁw—l—EVus:f(X,t)iyi—kuﬁﬂ, Vu-w=0 in Dy,

w|f:l()*2T(l =0 in U Q/’ (37)
Wi =0, [ TSy (Wn][ =0, wlg =0,
g - Tu(w, 0] =0, 1> 1 — 21.
Here, I'' = I';,_2y,, 0 is the outward normal to I'’, IT) and IT are projectors onto
the tangent planes to I’ and to I',, respectively. The other notation, for instance
V., also corresponds to transformation (3.6).
In order to apply Theorem 2.3 to problem (3.7), we should verify its assump-

tions. To this end, we choose 7( so small that inequality (2.6) holds. It is sufficient
to take 7( such that

(220)2u < 6. (3.8)

The right-hand side of the first equation in (3.7) belongs to Wé’ 2 (D). Hence,
by (2.5)

N(t07210+/1, lo) [V7 p] < N(Zo*21’0, to) [W, S]

1,12 . 1,1/2
< er o) IFCX, Ol g + w157 )

We can estimate the Sobolev norm of the composite function f (X (&1, t) as
follows:

1,1/2 1,1/2 1-1/2 0,
18Xl < IflG" + e(1+ 220) '~ lullyso ) VELG "
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By Lemma 3.1, we conclude for 4 <1

(1,1/2)
Nit—2e+2,10) [V, P <Cz{||f(X Dllg"? ,/z\lf(X Dllg;

(1,1/2) 1
un " ﬂwﬁw%}

(1,1
sQ<+®{UJw ?

” ” (2+1, 1+1/2

+ (}v(}l/z + )V(ZTO)I/Z + A«1+1/2) ||“||D;/2} (3.9)

We take now 0 = ¢4 in estimate (3.9). Then we have

(1,1/2) 0,
NWMHMNMSQ@%MmMWMwm+,MM 2 v g

[
o (72 + 1)||V|Q£/z}~ (3.10)

Let us introduce the function ®(1) = il 2N<,0,2m+ s,1)[V, p]. Then we can re-
write (3.10) in the form:

D(A) < cse®@(1/2) + K, (3.11)

where cs = ¢4(0)2!1/2,
= c@)IIflg" + 1Velg" + eVl g}

We set ¢ = i in (3.11). By iterations with /2, ..., /2%, we deduce from inequal-
ity (3.11) in the limit as k — oo that

®(1) < 2K.
This inequality with A = 7y implies (3.5). O]
Now we can prove Theorem 1.2.

Proof of the global existence theorem. By Theorem 1.1, we have a solution (v, p)
on an interval (0, 7y]. We can take ¢ so small that 7)) will be greater than unit, for



Global L,-solvability of two-phase problem 21

example. Moreover, according to (1.6), solution norm satisfies the inequality

No, 1)V, p] < (3.12)

with some x> 0. Then, due to Proposition 3.2, there exists 79 < 7/2 such that
(3.8) is satisfied and estimate (3.5) holds:

1, 0,
Ny, %> 2] < €53, 70){[flg" + [VEIG " + [¥llg;

for Vty € (Ty/2, To]. Next, inequalities (3.1), (1.7) imply that

I t 2 1/2
||V||Q63{J e-2bf(||v0||Q+Lebf|f||er) dt} < e b T (3.13)

to—270
Thus,
NIV, P) < €500, 70)e (16”1157 + [Vl g + €270/ 2206}

< cs(0,t0)e e for Y1y € (To/2, Ty, (3.14)

here ¢s(J,79), ¢6(d,70) are nondecreasing functions of 7.

From embedding theorem for sz A Z(D(iTO—zO To))’ it follows that

”u('a TO)HWZHI(UIQ(I’) < 66(5,'[0)67177“”8_

In addition, because of (3.1)

Ty
[uC, To)llo = lIv(, To)llq < em{”vom + Jo ||ebff('7f)||szdf} <& (315

We apply Theorem 1.1 again and obtain a solution on an interval (Ty, Ty + T7]
with 0 < 7} < Ty corresponding to the initial data v(-, 7p). Due to (1.6), we
get

Nz, 11 [V, Pl < ¢(T1) (e + ¢6(6,m0)e " T0e) < p,

where x is the same as in (3.12) for a sufficiently small &. Then by Proposition 3.2
and in view of (3.13), (3.15), we have similar to (3.14), in particular,

Netye1a,ryemy Vs p) < €58, 70)e T L]0 4"V ) + 2627 \/2716)

< 2¢4(0, 79)e P T0t g, (3.16)
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here we have put Qy = Q x (To + T1 — 211, Ty + T1) and chosen 7, € (0,77/2),
71 < 179/4. Hence, (3.16) gives us

=b(To+Th)

[lu(-, Ty + Tl)HWzHI(UiQS) < ¢s(0,70)e g,

and in virtue of (3.1), (3.15),

To+T,
Ju(-, To+ Tl < e”‘{nvc, Tl + | ||ebff<-,r>|gdr}
0
Ty
<o {e”onvong e [ Vet ol dr
0
To+T,
+J ||ebff(',f)||er} <e.
Ty

Since data norms have not increased, (v, p) exists on (7o + T4, Tp + 27;] and

N(To-‘rTl,To+2T])[V, pl <.
Hence, inequality
N(to*fl-,fo)[vap] < 06(5, To)efbt('s (3.17)

is valid for Yty € (T, /2, Ty + 2T)] and so on. Thus, the solution of problem (1.1),
(1.2) can be extended as far as one likes, estimate (1.8) holding for all positive #.
The uniqueness of a global solution follows from the uniqueness of local ones.
In conclusion, we estimate the expansion of the interface I';. To this end, we
need to evaluate the speed of interface displacement. As/ > 1/2, Wi (Q/) is em-
bedded in the space of the continuous functions. Consequently, by the embedding
theorem, we can deduce from inequality (3.17) the estimate

max [u(-, 7)| < c7e .

o

We integrate this inequality by 7 from 7y/2 until infinity:

o0
J max |u(-, )| df < cs.
To/2 Qy

Thus, if the distance between the interface I" and the solid boundary S at the initial

moment is greater than ¢y = % Supg; |u| + ¢s, we can guarantee that these sur-
Ty/2

faces never intersect. O
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