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A recursive construction of the regular exceptional
graphs with least eigenvalue C2
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Abstract. In spectral graph theory a graph with least eigenvalue �2 is exceptional if it is
connected, has least eigenvalue greater than or equal to �2, and it is not a generalized
line graph. A ðk; tÞ-regular set S of a graph is a vertex subset, inducing a k-regular sub-
graph such that every vertex not in S has t neighbors in S. We present a recursive construc-
tion of all regular exceptional graphs as successive extensions by regular sets.
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1. Introduction

Let G ¼
�
VðGÞ;EðGÞ

�
be a simple graph, where VðGÞ denotes the nonempty set

of vertices and EðGÞ the set of edges. It is assumed that G is of order n, i.e.

jVðGÞj ¼ n. An edge of EðGÞ, which has the vertices i and j as end-vertices is

denoted by ij. When there is an edge between the vertices i and j we say that these

vertices are adjacent. The neighborhood of a vertex u a VðGÞ, NGðuÞ, is the set

of vertices adjacent to u, that is, NGðuÞ ¼ fv a VðGÞ : uv a EðGÞg. The degree of

vertex u is the cardinality of its neighborhood. A graph G is r-regular (or regular

of degree r) if each vertex of G has the same degree r.

Throughout the paper, AG denotes the adjacency matrix of G, that is AG ¼
ðaijÞn�n, where aij ¼ 1 if ij a EðGÞ and aij ¼ 0 otherwise. The eigenvalues of
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the graph G are the eigenvalues of its adjacency matrix, here ordered such that

l1b l2b � � �b ln. A detailed treatment of graph eigenvalues can be found in [6].

A pair ðX ;BÞ is a 1� ðv; l; lÞ design, if X is a set with cardinality v and B is

a family of b subsets of X with cardinality l, called blocks, and each element

x a X lies in exactly l blocks. The incidence matrix B of a 1� ðv; l; lÞ design is

the v� b matrix with ij-entry equal to 1 if xi a Bj and 0 otherwise. Alternatively,

a 1� ðv; l; lÞ design ðX ;BÞ can be represented by a semi-regular bipartite graph

with parameters ðv; b; l; lÞ, i.e. by a bipartite graph with v vertices of degree l in

one colour class, and b vertices of degree l in another colour class.

A connected graph with least eigenvalue greater than or equal to �2 is either

a generalized line graph (with line graphs included), or an exceptional graph

(see, e.g., [9]). According to [9], Proposition 1.1.9, a regular connected generalized

line graph (see definition, e.g., in [9], Section 1.1) is either a line graph or a cocktail

party graph (a regular graph on 2k vertices of degree 2k � 2). A graph is said to

be exceptional if it is connected, has least eigenvalue greater than or equal to �2,

and it is not a generalized line graph. It is known [7] that an exceptional graph has

at most 36 vertices, with vertex degrees at most 28. There are exactly 187 regular

exceptional graphs. They are divided into three subsets (to be defined later) called

layers. These graphs can be constructed [1], [8], [9] using di¤erent techniques.

A comprehensive survey of problems on graphs with least eigenvalue at least �2,

including exceptional graphs, can be found in [9].

A vertex subset SJVðGÞ of the graph G is a stable (or independent) set if

no pair of vertices in S is connected by an edge. A stable set with maximum

cardinality is a maximum stable set.

Given a graph G, a partition p ¼ ðV1; . . . ;VrÞ of the vertex set of G is an

equitable partition, if for any pair i; j a f1; . . . ; rg there exists dij a N0 such that

for all v a Vi dij ¼ jNGðvÞBVjj, that is, the number of neighbors that a vertex of

Vi has in Vj is independent of the choice of the vertex in Vi.

A ðk; tÞ-regular set S of a graph G is a vertex subset which induces a k-regular

subgraph such that every vertex not in S has t neighbors in S. If G is a regular

graph, then a ðk; tÞ-regular set S defines an equitable bipartition in G.

The ðk; tÞ-regular sets appeared first in [13], under the designation of eigen-

graphs, and also in [12], in both cases in the context of strongly regular graphs

and designs. Later on, the ðk; tÞ-regular sets were investigated in the general

context of arbitrary graphs [3], [4], [5].

The aim of this paper is to present a recursive construction of all regular

exceptional graphs based on the new ðk; tÞ-extension technique suggested in [2].

It recursively generates the families of regular exceptional graphs along with a

partial order relation among them, and this is represented by its Hasse diagram.

In Section 2 we describe the ðk; tÞ-extension technique of a regular graph G by

a regular graph H, and also the partial order relation that arises. The process of
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extending a graph is reduced to the construction of the incidence matrices of a

1-design (or an appropriate bipartite semi-regular graph).

In Section 3 we propose a technique to construct the regular exceptional

graphs, by ð0; 2Þ-extensions in the case of 1st and 2nd layer, and by ð1; 3Þ-
extensions in the case of 3rd layer and using the fact that all these graphs admit

an equitable partition. In each case we describe how to construct the incidence

matrices of the 1-design desired, stating some proprieties. In addition, we also

propose an algorithm to construct the regular exceptional graphs in each layer.

In Section 4 we describe, in more details, the computational results that were

obtained by the algorithm for the three layers.

The Appendix contains for each regular exceptional graph the list of other

regular exceptional graphs with a minimal number of vertices in which it is con-

tained as a proper induced subgraph.

2. Construction of regular graphs by (k, t)-extensions

Let G be a ðp� tÞ-regular graph of order n1 (with t > 0) and H a k-regular graph

(with k < p) of order n2. Our aim is to obtain a p-regular graph HaG, of order

n2 þ n1, such that each vertex in G has t neighbors in H, and each vertex in H has

exactly p� k neighbors in G (hence VðHÞ is a ðk; tÞ-regular set in HaG). The

procedure that generates the graph HaG from G is called a ðk; tÞ-extension of G

of size n2. This construction is possible if we can define a family, S, of n1 subsets

in VðHÞ, called blocks, each of them with cardinality t, so that each v a VðHÞ
is in exactly p� k blocks of S, that is,

�
VðHÞ;S

�
is a 1� ðn2; t; p� kÞ design.

Note that there is a 1� ðn2; t; p� kÞ design if and only if
n1
n2
¼ p�k

t
. Hence the

adjacency matrix of HaG is given by

AH B

BT AG

� �
;

where AH and AG are the adjacency matrices of H and G, respectively, and B

is the incidence matrix of a 1� ðn2; t; p� kÞ design, that is, each column of B is

the characteristic vector of a block. Further on, we shall use graph theoretical

terminology and consider the corresponding semi-regular bipartite graphs.

The ðk; tÞ-extension of a regular graph G by a regular graph H to obtain

another regular graph HaG, can be applied recursively to generate a sequence

of regular graphs. Considering the ðp� tÞ-regular graph G and the k-regular

graph H described above, starting with G0 ¼ G, we can generate a set F of�
ðp� tÞ þmt

�
-regular graphs, Gm, of order n1 þmn2, where each Gm is obtained

by a ðk; tÞ-extension of Gm�1 (mb 1). Consequently, we can define the following

partial order relation � on F, or on any set of graphs.
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Definition 2.1. Given k, t, s, if G, G 0 are regular graphs, then G � G 0 if and only

if G 0 can be obtained from G by a sequence of zero or more ðk; tÞ-extensions of
size s.

3. Construction of regular exceptional graphs

The set of regular exceptional graphs is partitioned into three layers according to

degree r and order n [9], Theorem 4.1.5. Any such graph is in the 1st, 2nd or 3rd

layer, if the following holds, respectively:

(i) n ¼ 2ðrþ 2Þa 28,

(ii) n ¼ 3
2 ðrþ 2Þa 27 and G is an induced subgraph of the Schläfli graph,

(iii) n ¼ 4
3 ðrþ 2Þa 16 and G is an induced subgraph of the Clebsch graph.

There are 163 graphs in the 1st layer, 21 in the 2nd layer and 3 in the 3rd layer,

i.e. 187 in total.

The regular exceptional graphs are completely described in Table A3 in

[9], pp. 213–227. As in [9], regular exceptional graphs are denoted by numbers

1–187.

Let L be the set of regular graphs whose least eigenvalue is greater than or

equal to �2. Hence L includes all regular exceptional graphs. We shall consider

subsets L1, L2, L3 of L in which the ratio n
rþ2 (n the number of vertices, r the

degree) is the same as in layers 1, 2, 3, respectively. Hence, each layer is a subset

of the corresponding set L1, L2 or L3.

Let G be a regular graph of degree r and order n. Let aðGÞ be the size of a

maximum stable (or independent) set of G and ln its least eigenvalue. Then

aðGÞa �nln

r� ln
:

This inequality is known as the Ho¤man inequality although A. J. Ho¤man never

published it. For some bibliographical details related to this bound see [2].

In [2] it is noted that in the case of regular exceptional graphs of the 1st and

2nd layers, the Ho¤man upper bound is attained and is equal to the cardinality

of a maximum stable set, which is 4 and 3, respectively. This observation has an

empirical character and is based on an inspection of the regular exceptional

graphs.

In fact, the Ho¤man bound is attained for a regular graph G if and only if G

has a ð0; tÞ-regular set such that t ¼ �ln. The necessary condition was proved

in [1] (see also [11]) and the su‰cient condition was proved in [2]. The following

theorem stems from [10].
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Theorem 3.1. Let G be an r-regular graph and ln ¼ �t its least eigenvalue. For

any stable set S of size s and characteristic vector z, we have:

sa
nt

rþ t
:

Furthermore, the following are equivalent:

(i) Equality holds.

(ii) z is a linear combination of a r-eigenvector and a ln-eigenvector.

(iii) The bipartite subgraph induced by the partition fS;VðGÞnSg is semi-regular.

(iv) The partition fS;VðGÞnSg is equitable.

It is easy to prove that the stability number of regular exceptional graphs from

the first layer is 3 or 4, in the 2nd layer is 2 or 3, and in the 3rd layer is 2. In fact, if

S is a maximum stable set of an r-regular graph G, then

n� aðGÞ ¼
��� 6
i AS

NGðiÞ
���a X

i AS

jNGðiÞj ¼ aðGÞr ¼) aðGÞb n

rþ 1
:

Therefore, taking in account the relation between the order n of the regular excep-

tional graphs and their regularities in each layer, combining the Ho¤man upper

bound with the above lower bound, the result follows.

However, in spite of some e¤orts, we were not able to prove theoretically that

the Ho¤man upper bound is attained in regular exceptional graphs in the 1st and

2nd layer.

We shall construct all regular exceptional graphs from the first and second

layer by ð0; 2Þ-extensions. For the first layer the ð0; 2Þ-extension will have size 4

and for the second layer the size is 3. Applications of ð0; 2Þ-extensions will create
a stable set of the corresponding size in the resulting graph. This stable set will be

a maximum stable set by the Ho¤man bound and, from this construction, we may

conclude that the Ho¤man upper bound is attained for all regular exceptional

graphs in the 1st and 2nd layer.

The graphs from the 3rd layer will be considered separately and they will be

built by ð1; 3Þ-extensions.
With each type of ðk; tÞ-extension we consider the corresponding partial order

relation �.

As observed in [2], we may state the following result.

Theorem 3.2. Regular exceptional graphs are not minimal elements of the posets

ðL1;�Þ and ðL2;�Þ.

83Regular exceptional graphs with least eigenvalue �2



As we shall see the same holds for ðL3;�Þ.
Together with L1, L2, L3 one can study the posets E1, E2, E3 of exceptional

graphs from the three layers with corresponding relations �. It would be interest-

ing to study the structure of all these posets. The sets L1, L2, L3 are infinite while

the sets E1, E2, E3 contains 163, 21, 3 elements respectively.

Throughout the recursive construction, starting from a regular exceptional

graph G1, with least eigenvalue �2, every regular graph Gi, with ib 2, obtained

by ðk; tÞ-extensions and with least eigenvalue �2, remains an exceptional graph.

This conclusion is a consequence of the fact that the graph property of being

a line graph is a hereditary property. This means that any induced subgraph of a

line graph is also a line graph. Hence we have the following proposition.

Proposition 3.3. Let G be a regular graph with least eigenvalue �2. Let H be a

regular induced subgraph of G. We have

(i) if G is a line graph then H is also a line graph,

(ii) if H is an exceptional graph then G is also an exceptional graph.

3.1. Construction of regular exceptional graphs in the 1st layer by (0, 2)-
extensions of size 4. The smallest regular exceptional graphs in the first layer

are the five graphs Z1, Z2, Z3, Z4 and Z5 of order 10 and degree 3, given in

Figure 1 (taken from [9], Appendix A.3).

These graphs are obtained by ð0; 2Þ-extensions of the graph 3K2 of order 6 and

regularity 1, which is a line graph.

The 8 exceptional graphs of order 12 and regularity 4, are obtained by ð0; 2Þ-
extensions of graphs of order 8 and regularity 2, that is, one of the three graphs

Figure 1. The smallest regular exceptional graphs in the 1st layer.
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2C4, C3 _AAC5 (disjoint union of graphs C3 and C5) or C8, which are also line

graphs.

Since for regular exceptional graphs of the first layer r ¼ n
2 � 2, with

10a na 28, in order to build the Hasse diagram of the first layer partially or-

dered by the relation �, this set of exceptional graphs is divided into two partially

ordered subsets: the graphs with even regularity, obtained by ð0; 2Þ-extensions
from a graph with even regularity, and the graphs with odd regularity, obtained

by ð0; 2Þ-extensions from a graph with odd regularity.

If G is a graph of even order n and regularity r ¼ n
2 � 2 and H is the 0-regular

graph of order 4, the adjacency matrix of the graph G 0 of order n 0 ¼ 4þ n and

regularity r 0 ¼ 4þn
2 � 2 ¼ n

2 obtained from a graph G by a ð0; 2Þ-extension is given

by

AG 0 ¼ O4 B

BT AG

� �
;

where O4 is the adjacency matrix of the graph H, that is, the null square matrix

of order 4, AG is the adjacency matrix of G and B is a matrix with 4 rows and n

columns.

Assuming as a known fact that in the case of regular exceptional graphs of the

1st and 2nd layers, the Ho¤man upper bound is attained all these graphs can be

constructed by extending graphs with additional 4 or 3 vertices in the way implied

by the above considerations.

Let us describe ð0; 2Þ-extensions of size 4 in some detail.

The graph G is extended by 4 vertices which form a set S ¼ VðHÞ. Let 1, 2, 3,

4 be the vertices of S. Each vertex of G should become adjacent to exactly two

vertices of S. Let us define an r-regular multigraph MðSÞ having the set S as the

vertex set. If a vertex v of G becomes adjacent to vertices x; y of S, then there is

an edge labelled v between x and y in MðSÞ. In this way, the vertices of G subdi-

vide the edges of MðSÞ. There are six 2-element subsets of S. Constructing G 0

from G by an ð0; 2Þ-extension means, in fact, to partition the vertex set of G into

six subsets which, in turn, should be assigned to 2-element subsets of S in such a

way that MðSÞ is regular of degree r. However, the resulting graph G 0 need not to

be an L-graph, and this should be checked in the actual constructions.

A multigraph MðSÞ can be associated with a weighted complete graph on the

four vertices of S (see Fig. 2). The weight xi on the i-th edge of the multigraph

MðSÞ represents the number of vertices of G adjacent to corresponding vertices

in S.

We have x1 þ x2 þ x3 ¼ n=2 since this is the degree of 1 in MðSÞ. Hence,

x4 þ x5 þ x6 ¼ n=2. We can conclude that the sum of weights of the edges of any

star K1;3 and of any triangle K3 is equal to n=2. In addition, we have x1 ¼ x6,

x2 ¼ x5 and x3 ¼ x4.
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Because of automorphisms it is su‰cient to consider partitions of the vertex set

of G determined by the weights x1, x2, x3 with 0ax1ax2ax3a n=2.

Now we shall propose an algorithm to construct the 163 graphs of the first

layer by ð0; 2Þ-extensions which produce equitable partitions.

For a given n construct all feasible triplets ðx1; x2; x3Þ. For each triplet

ðx1; x2; x3Þ we find in turn all ordered partitions of the vertex set of G into parts

of cardinalities x1; x2; . . . ; x6. For each such partition we consider all graphs G

and extend them to a graph G 0 according to this partition. Then, for every graph

G 0 we calculate the least eigenvalue and if it is equal to �2 we have generated a

regular exceptional graph on nþ 4 vertices. Finally, we should eliminate isomor-

phic duplicates but record all graph pairs which are in relation �.

A suitable computer program based on the above procedure has generated all

163 regular exceptional graph in the first layer. The results are given in the Appen-

dix where for each graph the list of its immediate successors in the posetL is given.

3.2. Construction of regular exceptional graphs in the 2nd layer by (0, 2)-
extensions of size 3. Using the procedure of construction by ðk; tÞ-extensions
described in Section 2, our aim is now to build a set of regular graphs obtained

by a ð0; 2Þ-extension, HaG, such that G is a r-regular graph of order n, with

r ¼ 2n
3 � 2, and H is the 0-regular graph of order jVðHÞj ¼ 3. Therefore, this set

includes the regular exceptional graphs of the 2nd layer.

The regular exceptional graphs of the 2nd layer of the lowest order are the

graphs of order 9 and regularity 4 in Fig. 3. These graphs are obtained by a

ð0; 2Þ-extension of the 2-regular graph C6 and the disconnected graph 2K3, which

are line graphs. To construct the Hasse diagram that represents the partially

ordered set E2 with relation � of the regular exceptional graphs in the second

layer, we consider the r-regular graphs of order n, with r ¼ 2n
3 � 2 and 6a na 27.

Figure 2. A weighted complete graph with vertex set f1; 2; 3; 4g.
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In fact, in order to construct each adjacency matrix of the graph G 0, obtained
from G by a ð0; 2Þ-extension, G 0 ¼ HaG, it is necessary to determine the inci-

dence matrix with 3 rows and n columns.

Thus, in order to construct the graphs of the second layer we developed an

algorithm similar to the algorithm described in the case of graphs from the first

layer. The results are given in Appendix. The Hasse diagram of graphs from

the second layer is given in Fig. 4.

3.3. Construction of regular exceptional graphs in the 3rd layer by (1, 3)-
extensions of size 4. The exceptional graphs from the 3rd layer are only three.

The Ho¤man bound is not attained for these graphs. However, it is also possible

to build them using the procedure of construction by ðk; tÞ-extensions described in

Section 2, in this case, by ð1; 3Þ-extensions of size 4.

Figure 3. The smallest regular exceptional graphs in the 2nd layer.

Figure 4. Hasse diagram of graphs from the 2nd layer.
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So, the aim now is to build a set of regular graphs obtained by an ð1; 3Þ-
extension, HaG, such that G is a r-regular graph of order n, with r ¼ 4n

3 � 2,

and H is the 1-regular graph of order 4, i.e. 2K2.

Starting from the line graph 2K2 and extending the graphs in turn by four

vertex (1,3)-regular sets we obtained the exceptional graphs 185, 186 and 187.

They have 8, 12 and 16 vertices respectively. Graph 185 is presented in Fig. 5.

Graph 187 is the well known Clebsh graph.

4. Computational results

Our algorithm was implemented in Matlab R2009b in order to construct the

adjacency matrices of the regular exceptional graphs of the first layer. Similar

algorithms were implemented in the cases of the graphs of the second and third

layers. The results produced in each layer are described in the Appendix.

The Hasse diagram of the partially ordered set of regular exceptional graphs

has four components. Two of these components are associated with the first layer

of the regular exceptional graphs: one for the graphs with even degree and the

other for the graphs with odd degree.

Notice that there are 3 regular exceptional graphs from the first layer that are

not obtained by a ð0; 2Þ-extension of the minimal graphs 3K2, 2C4, C3 _AAC5, C8:

the 5-regular exceptional graph 17, which is obtained by a ð0; 2Þ-extension from

the disconnected line graph L1 (see Fig. 6), the 6-regular exceptional graph 56,

which is obtained by ð0; 2Þ-extension from the 4-regular line graph L2 (see Fig. 6)

and the 8-regular exceptional graph 134, which is obtained by ð0; 2Þ-extension
from the 6-regular line graph L3 (see the root graph of L3 in Fig. 7).

The maximal elements in the first layer are the eight regular exceptional graphs

of order 20 (113–117, 119–121), all the regular exceptional graphs with order 22

(135–152), and the three Chang graphs (strongly regular exceptional graphs of

order 28).

The third component of the Hasse diagram is associated with the regular

exceptional graphs from the second layer (see Fig. 4). The minimal elements are

Figure 5. The smallest regular exceptional graph in the 3rd layer.
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C6 and 2K3 and the maximal elements are the regular exceptional graphs 181 and

184 (the Schläfli graph).

For the third layer there is a minimal graph 2K2 and a strongly regular graph,

the Clebsh graph, as maximal.

Appendix: Extensions of regular exceptional graphs

The data on the 187 regular exceptional graphs are given in Table A3 from the

book [9]. These graphs are denoted here by numbers 1–187 and these numbers

refer to [9]. The graphs are divided into three layers and into smaller groups

according to the number of vertices n and the degree r. For each graph the list

of regular exceptional graphs obtained by ðk; tÞ-extensions is given.

First layer

n ¼ 10, r ¼ 3

1. 14, 16, 18, 22, 23, 24, 27, 28, 30, 32, 33

2. 19, 20, 21, 22, 23, 25, 26, 27, 28, 31, 32, 33, 34

3. 18, 27, 28, 29, 30, 32, 33, 34

4. 15, 16, 18, 19, 20, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34

5. 30

Figure 7. The root graph of the line graph L3.

Figure 6. The line graphs L1 and L2.
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n ¼ 12, r ¼ 4

6. 37, 49, 51, 57, 58, 68

7. 39, 40, 41, 42, 46, 47, 48, 51, 52, 53, 55, 57, 58

8. 39, 40, 42, 55, 57, 61, 63, 64, 65, 66, 67, 68

9. 35, 37, 44, 45, 59, 60, 69

10. 35, 36, 40, 41, 42, 47, 48, 49, 53, 60, 62, 64, 65

11. 35, 37, 38, 39, 40, 46, 47, 48, 49, 50, 51, 54, 59, 60, 62, 63, 64, 67, 68

12. 39, 40, 46, 47, 48, 49, 50, 51, 52, 54, 57, 58, 61, 62, 63, 64

13. 43, 44, 45, 46, 49, 51, 59, 60, 67

n ¼ 14, r ¼ 5

14. 70, 83, 84, 88, 89, 97, 98, 99, 100

15. 81, 82, 90, 95, 96, 105

16. 84, 85, 91, 92, 93, 94, 97, 107

17. 89, 100

18. 90, 92, 94, 97, 99, 101, 103

19. 71, 72, 73, 74, 77, 78, 86, 87, 88, 90, 91, 94, 95

20. 71, 72, 74, 78, 79, 86, 88, 89, 91, 92, 93, 94

21. 78, 88, 93

22. 71, 72, 74, 75, 76, 80, 96, 97, 99, 100, 103, 104

23. 71, 74, 76, 77, 78, 79, 97, 98, 99, 101, 102, 104

24. 71, 72, 75, 76, 81, 84, 91, 92, 94, 100, 103, 104

25. 72, 73, 77, 84, 87, 88, 89, 97, 98, 99

26. 71, 77, 78, 82, 83, 86, 91, 97, 102, 104

27. 71, 72, 77, 78, 79, 82, 84, 85, 90, 93, 94, 95, 96, 97, 101, 102, 103

28. 71, 72, 74, 75, 76, 78, 79, 83, 84, 86, 88, 92, 93, 96, 97, 102, 103

29. 86, 90, 94, 106, 107

30. 88, 92, 94, 95, 105, 107

31. 77, 78, 82, 86, 87, 93, 97, 101, 102, 107

32. 71, 72, 77, 79, 82, 85, 90, 91, 92, 93, 96, 97, 101, 102, 103, 105, 107

33. 71, 72, 75, 76, 78, 79, 83, 84, 86, 88, 89, 91, 94, 97, 98, 99, 100, 102, 103,

104, 106, 107

34. 74, 78, 84, 91, 94, 95, 99, 102, 103, 107

n ¼ 16, r ¼ 6

35. 108, 109, 111, 123, 124, 126, 128, 129, 132

36. 108, 121, 128, 131

37. 110, 111, 112, 123, 124, 129, 130, 133

38. 120, 124, 128

39. 115, 117, 118, 119, 120, 121, 122, 123, 124, 126, 130, 131
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40. 116, 117, 119, 121, 123, 124, 125, 126, 127, 128, 129, 133

41. 113, 116, 121, 123, 126, 127

42. 114, 116, 117, 120, 121, 125, 128, 131, 132

43. 108, 109, 122, 130

44. 109, 112, 127, 129

45. 109, 111, 124, 132, 133

46. 113, 114, 115, 116, 118, 119, 122, 124, 126, 127, 128

47. 113, 116, 117, 120, 121, 124, 126, 128, 131

48. 114, 117, 120, 121, 128

49. 113, 116, 119, 123, 124, 127, 129, 133

50. 113, 114, 124, 127, 129

51. 114, 115, 116, 118, 123, 124, 127, 129, 130

52. 118, 119, 121, 122, 125

53. 116, 117, 121, 125, 131

54. 114, 118, 120, 125, 131

55. 114, 116, 117, 120

56. 118

57. 116, 117, 118

58. 113, 114, 115, 116, 117, 118, 119

59. 109, 112, 124, 129, 130, 133

60. 108, 111, 126, 127, 128, 132, 133

61. 114, 117, 118, 119

62. 113, 114, 117, 119, 120

63. 115, 116, 118, 119

64. 116, 117, 120

65. 128

66. 131

67. 127, 130, 132

68. 129

69. 111, 112

n ¼ 18, r ¼ 7

70. 142, 143, 146

71. 136, 138, 139, 140, 141, 142

72. 136, 138, 140, 143, 144

73. 135, 136, 142, 145

74. 138, 139, 144, 145

75. 136, 142, 146, 147

76. 136, 138, 143, 147

77. 137, 138, 139, 141

78. 139, 141, 142, 143
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79. 138, 141, 144

80. 136, 146

81. 136, 140, 149

82. 137, 140, 141, 152

83. 138, 142, 144, 147, 151

84. 138, 139, 140, 141, 142, 143, 144, 145, 150, 151

85. 140, 141, 152

86. 138, 149, 151

87. 139, 150

88. 142, 150, 151

89. 143, 151

90. 137, 140, 148, 149, 150, 152

91. 141, 144, 149, 151, 152

92. 140, 149, 151

93. 141, 149, 150

94. 140, 145, 149, 150, 151, 152

95. 140, 150, 152

96. 136, 141

97. 138, 139, 140, 141, 142, 143

98. 138, 142

99. 142, 143, 144, 145

100. 143, 144, 146, 147

101. 137, 141

102. 138, 139, 141

103. 140, 141, 144

104. 138, 141, 147

105. 149, 152

106. 151

107. 150, 151, 152

n ¼ 20, r ¼ 8

108. 155, 156, 157

109. 155, 158

110. 153, 159

111. 157, 158, 159, 160

112. 158, 159

113. -

114. -

115. -

116. -

117. -
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118. 155, 156

119. -

120. -

121. -

122. 154, 155, 156

123. 153, 155, 156

124. 155, 157, 158

125. 155

126. 156, 158

127. 155, 158

128. 155, 156, 157

129. 153, 158, 159

130. 153, 157, 158

131. 156

132. 155, 157, 160

133. 157, 158, 159

134. 158

n ¼ 22, r ¼ 9

135. - 136. - 137. - 138. - 139. - 140. - 141. - 142. - 143. - 144. - 145. -

146. - 147. - 148. - 149. - 150. - 151. - 152. -

n ¼ 24, r ¼ 10

153. 161

154. 162

155. 163

156. 162, 163

157. 163

158. 161, 163

159. 161

160. 163

n ¼ 28, r ¼ 12

161. - 162. - 163. -

Second layer

n ¼ 9, r ¼ 4

164. 166, 167, 170

165. 167, 168, 169
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n ¼ 12, r ¼ 6

166. 174, 176

167. 171, 172, 173, 176

168. 171, 173, 175

169. 173

170. 173, 174, 176

n ¼ 15, r ¼ 8

171. 177

172. 177

173. 177, 178, 180

174. 179, 180

175. 178

176. 180

n ¼ 18, r ¼ 10

177. 181

178. 181, 182

179. 182

180. 182

n ¼ 21, r ¼ 12

181. -

182. 183

n ¼ 24, r ¼ 14

183. 184

n ¼ 27, r ¼ 16

184. -

Third layer

n ¼ 8, r ¼ 4

185. 186

n ¼ 12, r ¼ 7

186. 187

n ¼ 16, r ¼ 10

187. -
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[9] D. Cvetković, P. Rowlinson, and S. Simić, Spectral generalizations of line graphs.
London Math. Soc. Lecture Note Ser. 314, Cambridge University Press, Cambridge
2004. Zbl 1061.05057 MR 2120511

[10] C. D. Godsil and M. W. Newman, Eigenvalue bounds for independent sets. J. Combin.

Theory Ser. B 98 (2008), 721–734. Zbl 1156.05041 MR 2418768

[11] W. H. Haemers, Interlacing eigenvalues and graphs. Linear Algebra Appl. 226/228

(1995), 593–616. Zbl 0831.05044 MR 1344588

[12] A. Neumaier, Regular sets and quasisymmetric 2-designs. In Combinatorial theory

(Schloss Rauischholzhausen, 1982), Lecture Notes in Math. 969, Springer, Berlin
1982, 258–275. Zbl 0497.05014 MR 692246

[13] D. M. Thompson, Eigengraphs: constructing strongly regular graphs with block
designs. Utilitas Math. 20 (1981), 83–115. Zbl 0494.05043 MR 639883

Received March 7, 2014

I. Barbedo, Center for Research and Development in Mathematics and Applications,
EsACT, Politechnic Institute of Bragança, Rua João Maria Sarmento Pimentel, Apartado
128, 5370-326 Mirandela, Portugal

E-mail: inesb@ipb.pt

95Regular exceptional graphs with least eigenvalue �2

http://www.emis.de/MATH-item?0392.05055
http://www.ams.org/mathscinet-getitem?mr=519264
http://www.emis.de/MATH-item?1265.05353
http://www.ams.org/mathscinet-getitem?mr=2361111
http://www.emis.de/MATH-item?1079.05072
http://www.ams.org/mathscinet-getitem?mr=2099043
http://www.emis.de/MATH-item?1118.05059
http://www.ams.org/mathscinet-getitem?mr=2311101
http://www.emis.de/MATH-item?1119.05065
http://www.ams.org/mathscinet-getitem?mr=2312326
http://www.emis.de/MATH-item?0458.05042
http://www.ams.org/mathscinet-getitem?mr=572262
http://www.emis.de/MATH-item?1028.05063
http://www.ams.org/mathscinet-getitem?mr=1933468
http://www.emis.de/MATH-item?0982.05065
http://www.ams.org/mathscinet-getitem?mr=1856225
http://www.emis.de/MATH-item?1061.05057
http://www.ams.org/mathscinet-getitem?mr=2120511
http://www.emis.de/MATH-item?1156.05041
http://www.ams.org/mathscinet-getitem?mr=2418768
http://www.emis.de/MATH-item?0831.05044
http://www.ams.org/mathscinet-getitem?mr=1344588
http://www.emis.de/MATH-item?0497.05014
http://www.ams.org/mathscinet-getitem?mr=692246
http://www.emis.de/MATH-item?0494.05043
http://www.ams.org/mathscinet-getitem?mr=639883


D. M. Cardoso, Center for Research and Development in Mathematics and Applications,
Department of Mathematics, University of Aveiro, Campus de Santiago, 3810-193 Aveiro,
Portugal

E-mail: dcardoso@ua.pt
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