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Classification of three-dimensional complex w-Lie algebras

Yin Chen, Chang Liu and Runxuan Zhang*

Abstract. A complex w-Lie algebra is a vector space L over the complex field, equipped
with a skew-symmetric bracket [—, —] and a bilinear form w such that

(Lo y], 2]+ [ 21, x] + [[2,x], 5] = o(x, y)z + o(p,2)x + oz, x)

for all x, y,z € L. The notion of w-Lie algebras, as a generalization of Lie algebras, was
introduced in Nurowski [3]. Fundamental results about finite-dimensional w-Lie algebras
were developed by Zusmanovich [5]. In [3], all three dimensional non-Lie real w-Lie
algebras were classified. The purpose of this note is to provide an approach to classify all
three dimensional non-Lie complex w-Lie algebras. Our method also gives a new proof of
the classification in Nurowski [3].
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1. Introduction

Let k£ be a field of characteristic zero and L be a finite-dimensional vector space
over k. Let [-.—]:Lx L — L be an anti-commutative product on L and
®:LxL—k be a bilinear form on L. The triple (L,[—.—],w) is called an
w-Lie algebra if the following condition is satisfied:

[, ¥, 2] + [y, 2], x] + [z, x], ¥] = o(x, y)z + o(p,2)x + @(z,x) y (1)

for all x, y,z € L. The equation (1) is called the w-Jacobi identity. Apparently,
the w is also skew-symmetric; an w-Lie algebra is a Lie algebra if and only if the
bilinear form w = 0. So we usually call the Lie algebras trivial w-Lie algebras.

*The authors are grateful to an anonymous referee for his/her valuable comments and suggestions on
the first version of our paper. In particular, the origin of all presentations in Section 5 comes from the
referee’s report. This work was supported partially by NSF of China (11301061, 11226051), STDRP of
Jilin Province (20130522098JH, 20140520052JH), and IETPUS (201210200041).
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The notion of w-Lie algebras, which is related to the study of isoparametric
hypersufaces in Riemannian geometry ([1], [4]), was introduced in the recent
work of Nurowski [3]. By the definition, it is easy to see that all w-Lie algebras
are trivial in the case of dimension 1 and 2. The first example of nontrivial
3-dimensional w-Lie algebra was given in [3]. In that paper, Nurowski finally
completed the classification of 3-dimensional w-Lie algebra over the field of real
numbers.

A fundamental development of w-Lie algebras was by Zusmanovich [5], in
which a lot of basic concepts, such as modules, (quasi-)ideals and (generalized)
derivations, were introduced; some basic properties of w-Lie algebras were
found. One of Zusmanovich’s results asserts that finite-dimensional nontrivial
w-Lie algebras are either low-dimensional or have an abelian subalgebra of small
codimension with some restrictive conditions. In particular, the following useful
result is proved.

Lemma 1 ([5], Lemma 8.1). If L is a finite-dimensional w-Lie algebra with non-
degenerate w, then dim L = 2.

Recall that a skew-symmetric bilinear form w on L is degenerate if there exists
a nonzero vector x € L such that w(x, y) =0 for all y € L. Lemma | mentioned
above means that the bilinear form w on any w-Lie algebra L must be degenerate
if dim L > 3.

The main purpose of this note is to provide an approach to classify all
3-dimensional nontrivial w-Lie algebras over the field of complex numbers. In
final remarks (Section 5), our method is also applied to give a classification of
all 3-dimensional nontrivial real w-Lie algebras.

In what follows, R and C are the fields of real and complex numbers
respectively, and L denotes an w-Lie algebra with a basis {x, y,z}. We write
/\ L for the exterior power of L with the basis {xA y,xAz, yAz} and
p=[-— /\ L — L is the bracket product. We use L' = [L, L] to denote the
commutator subalgebra of L. We call the dimension of L’ the rank of ¢. In the
book [2], Fulton and Harris presented a classification of 3-dimensional complex
Lie algebras by considering the rank of ¢ case by case.

In this note, we will follow some ideas in [2] and discuss the rank of ¢, which
may be 0,1,2, 3.

The following theorem is our main result.

Theorem 2. Let L be a nontrivial (i.e. non-Lie) 3-dimensional w-Lie algebra, then it
must be isomorphic to one of the following algebras:

(1) Ly : [x,2] =0, [y,zl =z, [x,y] = yand o(y,z) = w(x,z) =0, w(x, y) = L.
(2) Ly : [x,y] =0, [x,z] =y, [y,z] =z and w(x,y) =0, w(x,z) = 1, o(y,z) = 0.
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(3) Ay : [x,y]=x,[x,zl =x+p, [y,z] =z+ oax and w(x,y) = w(x,z) =0,
w(y,z)=—1, wherea e C.

@) B:[x,y]=y[x,z]l=y+z [y,z] =xand o(x,y) = o(x,z) =0, w(y,z) = 2.
(5) Co:lx, ¥y =y, [x,z] =0z, [y,z] = x and w(x, y) = o(x,z) =0,

o(y,z)=14a, where0 # o€ C.

2. Ranks 0 and 1

We continue to follow the notations in the preceding section.
If the rank of ¢ is zero, then L is abelian. It follows from the w-Jacobi identity
(1) that

w(x, y)z+o(y,z)x+w(z,x)y =0.

Since {x, y,z} is a basis of L, w(x, y) = w(y,z) = w(z,x) = 0. Thus in this case,
the w-Lie structure on L is trivial.

If the rank of ¢ is 1, then dim L’ = 1 and the kernel of ¢ is two dimensional.
Suppose that {x,y,z} is a basis of L such that [x,y] =[x,z] =0. We let
[v,z] = ax + by + cz for some a,b,c € C. By w-Jacobi identity, we have

o(x, y)z + oy, 2)x + w(z,x)y = [[x, y], z] + [y, 2], x] + [[z, x], y]
= [ax + by + cz,x] = 0.

Since x, y, z is linearly independent, w(x, y) = w(y,z) = w(z,x) = 0. Thus w is
trivial. The same arguments as in [2] (page 137) will imply that there only exist
two Lie algebras:
gl:[x,y]:[x,z]zo, and [y,Z]:y.
92:[x7y]:[x7z]:0a and [y,z]:x

They are trivial w-Lie algebras.

3. Rank 2

In this case, we choose {y,z} as a basis of L’ and x¢ L’. We assume that
[v,z] = ay + bz. Our arguments will be separated into the following two cases:
a = b = 0 or the others.
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Case 1. If both a and b are zero, then [x, y] # 0 and [x,z] # 0 because the
kernel of ¢ is one dimensional. Thus the linear map ady : L' — L’ by u — [x, u]
is bijective. By linear algebra, we can choose the suitable basis elements y, z such

that ad, is similar to
c 0 or e 0
0 d 1 e)’

where ¢, d, e are nonzero complex numbers. In the first situation, [x, y] =
ad,(y) = cy and [x,z] = ad,(z) =dz. Let X = ¢ 'x, then [X,y] = y and [X,z] =
(c7'd)z. We obtain a family of Lie algebras with one parameter:

b,:[x,y]=», [x,zZ]=0z and [y,z]=0, whereO # ae C.

In the second situation, [x, y] = ey and [x,z] = y +ez. Let X = e 'x, then
[¥,] = yand [X,z] =e 'y 4z Let y=e'y, then [%, 7] = y and [X,z] = J + z.
Thus we get a Lie algebra:

a:x Y=y, [xzl=y+z and [y,z]=0.

Case 2. Assume that one of ¢ and b is not zero. We need only to consider the
case of b # 0 because if a # 0 then we can transpose y and z and will get the same
results.

Let Z=z+b'ay, then [y,Z] = [y,z] =ay +bz=0bz Let y =b"'y then
[7,2] = Z. So in this case, we can assume that [y, z] = z. Since the kernel of ¢ is
one dimensional, one of [x, z] and [x, y] is zero, and the other is not zero.

Subcase 1. If [x, y] = ay + ¢z # 0 and [x, z] = 0, then

o(x, y)z + oy, 2)x + o(z,x)y = [[x, ], 2] + [y, 2], x] + [[z, %], y]

=lay + cz,z] + [z, X] = az.

This means that o(y,z) = w(z,x) =0 and a = w(x,y). If ¢=0, then a #0.
We let ¥ =a'x and it is easy to check that [x,z] =0, [y,z] =z, [X, )] =,
w(y,z) =w(X,z) =0 and (X, y) = 1. Thus we get a nontrivial w-Lie algebra:

Ly:[xz]=0, [yzl=2z |[x,y=y» and
o(y,z) =w(x,z)=0, o(xy) =1

If ¢ # 0 and a = 0, then the w-Jacobi identity implies that w is trivial. If ¢ # 0
and a # 0, we assume that = y +a~'cz, then [x,z] =0, [y,2] = z, [x, J] = ay
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and o(p,z) = w(x,z) =0, o(x, ) = a, so it is easy to see that the corresponding

w-Lie algebra is isomorphic to L;.
Subcase 2. If [z,x] = —[x,z] = ay + ¢z # 0 and [x, y] = 0, then

o(x, )z +o(y,2)x + o(z,x)y = [[x, y], 2] + [y, 2], x] + [[z, x], ¥]
= [va] + [CZv y] =ay.

Thus w(y,z) =0, w(x, y) = 0 and w(z,x) = a. Now we have
zl=z [x)]=0 [zx]=ay+ecz

Since the dimension of L’ is two, @ # 0. Let y = y + a~'cz, then

[Z’x]:aj}v [JN)vZ]sz [x,j/]:—cy.

Recall that the kernel of ¢ is one dimensional, so ¢ must be zero. Now we can
assume that Z = ¢!z and X = —x. This yields that

[JN/vZ]:i [)Nc,j)]:(), [X‘,Z]:JN};
(y,2)=0, oxy)=0, o(x)=-1.

Hence there is a nontrivial w-Lie algebra:

Ly:[x,y]=0, [xzl=y, [y,z]=z and
o(x,y) =0, o(x,z)=1, o(yz)=0.

4. Rank 3

For the case of w =0, it follows from the Fulton and Harris’s arguments in [2]
(pages 141-142) that there exists only one Lie algebra:

ot [x ¥ =2y, [x,zl=-2z and [y, z]=x

Next we consider the nontrivial case. Since the dimension of L’ is 3, the rank
of adjoint map ad, : L — L must be 2 for any nonzero x € L. Thus the kernel of
ad, is equal to C - x.

By Lemma 1, if @ is non-degenerate, then L must have dimension 2. So the
bilinear form «» we consider here is degenerate. This means that there exists a
nonzero element x € L such that w(x,v) =0 for all v € L. Now we fix x. By the



102 Y. Chen, C. Liu and R. Zhang

Jordan canonical form, we can choose a suitable basis {u, y, z} of L such that ad,
is similar to

0 0 0 0 0 0
A=]11 0 0|, B=]|0 ¢ 0],
01 0 01 o
(2)
0 0 0 0 0 0
C=|0 u 0], or D=1 0 0],
0 0 v 00 7

where 6, u, v and t are all nonzero and are the eigenvalues of ad,. Thus our
arguments consist of the following four cases.

Case 1. If ad, is similar to A4, then [x,u] =0, [x, y] =u and [x,z] = y. Let
u = ax for some nonzero ¢ € C. Then we have [x, y] = ax and [x,z] = y. That
is, [a"'x,a”'y] =a"'x and [@"'x,z] = a~'y. Thus we can assume that {x, y,z}
is a basis of L such that

[xay]:x? [X)Z] =)

Next we need to determine the commutator relation of y and z. Let [y,z] =
bx + ¢y + dz, then

@(x, y)z +o(p,2)x + oz x)y = [[x, ], 2] + [y, 2], 5] + [[2, 4], )]
[x,z] + [cy + dz, x]
(1—d)y—cx.

Thus w(x,y) =0, w(x,z) =d — 1, w(y,z) = —¢. Since w(x,z) =0, d =1. No-
tice that  is not trivial, so ¢ # 0. In the equation [y, z] = bx + ¢y + z, we first
can assume that Z = z 4 ¢y. Then

[yai]:2+bxa [X,y]:X, [x,Z]:cx—i—y,

and o(x, y) =0, w(x,Z) =0and w(y,2) = —c. Leta=c'b,f=c"", z/ =c'%
then

[y,Z,]:Z/+OCX7 [x’y]:xv [X,Z,]:X-i-ﬂy

and o(x,y) =0, o(x,z’) =0 and w(y,z’) = —1. We define x' = 'x and
y = ofi. Then

Xyl =x, [.Z]=x"+y, [y]=24p
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with o(x’, y) =0, o(x’',z') =0, w(y,z") = —1. Hence we get a family of w-Lie
algebras with one parameter:

Ay [x,y]=x, [xz]=x+y, [y.z]=z+ax
o(x,y)=0, o(xz)=0, o(yz)=-1, whereuaeC.
Case 2. If ad, is similar to B, then [x,u] =0, [x,y] =0y, [x,z] =y +Jz.

Obviously, [0'x,07'y] =07 'y, [07'x,2] =0 'y + 2 Thus we can assume that
{x, y,z} is a basis of L such that

x,y=y, [xz]l=y+z
Let [y, z] = ax + by + cz, then

w(x, y)z+o(y, 2)x+ w(z,x)y = [[x, y], 2] + [[y, 2], x] + [[z, x], )]
=2[y,z] + [by + ¢z, ]
=2ax+ (b—c)y+cz.

Thus w(x, y) = ¢, w(x,z) = ¢ — b and w(y,z) = 2a. Recall that x belongs to the
kernel of w, so ¢ = b = 0. Hence we have

X,y =y, [xZd=y+z, [y =ox
o(x,y)=0, o(x,z)=0, o(y,z)=2a, where0#aeC.

Let u = (v/a) ', then
[x,uy| =uy, [y uzl| =uy+uz, [uy,uz]=x.
Therefore, we obtain a new w-Lie algebra:

BZ[X,y]:y, [x,z]:y—l—z, [y,z}:x;
w(x,y) =0, o(x,z)=0, «(yz) =2

Case 3. If ad, is similar to C, then [x,u] =0, [x, y] = wy, [x,z] = vz. We can
assume that {x, y,z} is a basis of L. Let [y,z] = ax+ by + ¢z. Notice that the
dimension of L’ is 3, so a #0. Thus as before, we can assume that [x, y] = y,
[x,z] = az and [y,z] = x + by + cz, where o # 0. The w-Jacobi identity implies
that

b=c=0 and o(x,y)=0, olxz)=0 oyz)=1+o0
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We obtain again a family of w-Lie algebras of one parameter:

Clz[xay]:.% [X,Z]:OCZ, [y,Z]:X;
o(x,y) =0, w(xz)=0, (y,z)=1+4+0a, where0 #oeC.

Case 4. If ad, is similar to D, then [x,u] =0, [x,y] =u, [x,z] =7z. Let
{x, y,z} be a basis of L and [y,z] = ax + by + cz. As before, we can assume that
[x,y] =x, [x,z] =z and [y,z] = ax+ by + cz. By the w-Jacobi identity we will
see that w(x, y) = 1, which contradicts with the assumption that w(x,v) = 0 for
all v € L. Thus in this situation, there do not exist any w-Lie algebras.

This completes the proof of Theorem 2.

5. Remarks

We close this paper with the following remarks, in which almost all of the ideas
come from the referee’s report on the first version of our paper.

The method that we use in this paper can actually be applied to classify all
three dimensional real w-Lie algebras. The discussion of rank(¢) =0 or I in
Section 2 can be carried to the case of real numbers, and we do not obtain any
new w-Lie algebras.

Notice that our proof of Theorem 2 relies deeply on the Jordan canonical form
(see Sections 3 and 4) and the fact that each nonzero complex number has a square
root in C. Moreover, we are interested in nontrivial (i.e., non-Lie) w-Lie algebras.
So in the case of rank(¢) = 2, the direct computation shows that there are not any
new nontrivial w-Lie algebras. However, in the case of rank 3, some interesting
things will happen. First, two families of new nontrivial w-Lie algebras (not
contained in the list of Theorem 2) will appear, because there are five possibilities
of the similar canonical form. Second, the canonical form B will give two real
non-isomorphic w-Lie algebras.

In Remark 1 below, we explain the reason why the complex w-Lie algebra B
in Theorem 2 can “split” into two real w-Lie algebras #; and 4_;. We also
describe &," and &, , the two new families of nontrivial w-Lie algebras over R
in detail. Thus we write out in advance all nontrivial real w-Lie algebras up to
isomorphism:

Li, Ly, Ay, €., B1, B, &, , 6, . (3)

Another reason why Nurowski’s list is bigger than the above (3) is that Nurowski
considered the action of orthogonal group O(R) and classified all w-Lie algebras
up to “equivalence”. In Remark 2, we compare Nurowski’s list with ours.
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Remark 1. We employ the notations in Section 4, and assume that the ground
field in the consideration is R. By linear algebra, we can choose a suitable basis
{u, y,z} of L such that

w(x,v) =0, VYvelL,
and ad, is similar to the canonical forms A, B, C, D in (2), or

0 0 O
E=|0 0 —-b|,
01 a

where a? < 4b.

In the cases 4, C, D, we proceed as in the case over C before. Thus we will
obtain two families of real w-Lie algebras: .7, and %,, which correspond to 4,
and C, respectively in our Theorem 2, with the small difference that the parameter
o belongs to R not C.

The case when ad, is similar to B is very interesting because it gives one of the
reasons why our list in Theorem 2 can split into Nurowski’s list. First of all, as in
Case 2 of Section 4, we obtain a family of w-Lie algebras

Byl yl =y, [xz=y+z [y =ax
o(x,y) =0, o(x,z)=0, (y,z)=20 where0 #oecR.

There are two cases: o > 0 and o« < 0. With similar arguments, we obtain two
new nontrivial w-Lie algebras:

B y=y, d=y+z [id=x
o(x,y) =0, w(xz)=0, w(yz)=2, (whenoa>0.,)
and
%*1:[)67)/]:)/’ [X,Z]:y+2, [y,Z]:—X;
o(x,y) =0, o(xz)=0, o(yz)=-2. (whena<D0.,)
It is not difficult to show that they are isomorphic as complex w-Lie algebras but
not as real w-Lie algebras.

The case when ad, is similar to E is new, and here we discuss it in detail.
Notice that » > 0. We let u = v/b and consider the following matrix:

0 0 O
E'=|0 0 —ul,
0 u a
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which is similar to £ because they have the same characteristic polynomial. We
choose a suitable basis {x, y,z} of L such that w(x,L) =0, and ad, is similar
to E’. Thus

[X, y] = —uz,

[x,z] = uy + az.

So [u'x,uy] = —uz and [u~'x,uz] = uy + au='(uz). Therefore we can assume
that {x, y,z} is a basis of L such that

[X, y] = I [X,Z] =y +oaz

where o € R. Now we need only to determine the commutator relation of y
and z. As before, we let [y,z] = cx+dy+ez. Since w(x,y) =0, w(x,z) =0,
the w-Jacobi identity implies that d = e =0, ¢ # 0 and w(y,z) = ac #0. Thus
we have

X,y =—z, [xz=y+oz, [yz]=cx
ox,y)=0, o(x,z)=0, o(yz)=ca, where0 #c, aeR.

Notice that if o = 0 then we obtain a trivial w-Lie algebra. Thus o # 0.
If ¢ > 0, we write v = (v/¢) ' > 0. Thus

[x,v09] = —vz, [x,vz] = vy + (a/C)vz,  [vy,vz] = x.

We replace vy, vz, oy/c by y, z and o respectively, and finally obtain a family of
new real w-Lie algebras with one parameter:

(o@j : [X, y] = =3I [X,Z] = y+ oz, [y,Z] =X
o(x,y) =0, o(x,z)=0, w(y,z)=0, where0 #uaeR.

If ¢ <0, we proceed in a similar way and obtain another family of w-Lie
algebras:

@@oj : [x,y}z—z, [X7Z]:y+OCZ, [y,z]z—x;
o(x,y)=0, ow(x,z)=0, o(yz)=-a  where0#oeR.
Remark 2. For the convenience of the reader, we reproduce Nurowski’s list in

Theorem 2.1 of [3] in such a way that it corresponds to our results more clearly.
We consider all w-Lie algebras of Bianchi type case by case. In order to illustrate
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Table 1. Nontrivial Real Three-dimensional w-Lie Algebras

B-type Commutation relations Our type
X, 0=y [xzl=zpz]=x »
W o(x, ) = 0(x.2) = 0, o(y,2) = -2 “
X,y =y [xz=y+z[rz=x p
v olx, ) = 0(x,2) = 0, 0(y,2) = -2 7
[va] = —X, [X,Z} =) [y,Z} =X+z
VIS CO(X, y) = w(yv Z) = 0: CO(.X, Z) =-2 %1
X y=—x+4+yxzl=y+z [yz]=x+z
= ox,y) =0, 0(y,2) = o(x,2) = -2 b
[xuy]:ya [X,Z]:—y+Z, [y7Z]:X 7
Vit (%, ) = 0(x,2) = 0, o(y,2) = -2 s
X, 5] =—z [x,z2] = —ax— y, [y,z] = x —ay +
Ve | o, y) = 20, 0(x,2) = 0(3,2) = 0, (a > 0) &
VIIT [xvy]:ayfza [x,Z]:nyraz, [y,z]zx L, ifa=1
Ta o(x,y) =w(x,z) =0, w(y,z) = —2a, (a > 0) Gy ifa#1
X, y]=ay—z [xz] = —ax— y+az, [y,z] =x—ay
VI | o, y) = 2a, 0(x,2) = 0, o(y,2) = —24, (a > 0) i
IXa [X,y]:Z, [X7Z]:_ax_y> [y7z]=x—ay &
o(x,y) = —2a, o(x,z) = w(y,z) =0, (a > 0) o

the sort of arguments that we use to prove that an w-Lie algebra of Bianchi type is
isomorphic to some in our list, we present an example as follows.

We choose V7. According to the commutation relations given in the list of
Nurowski, we observe that w(x, L) = 0 and

ad x =

oS O O
S = O
—_— O O

which is just the matrix C in (2) with £ = v = 1. Thus /V7 must be isomorphic to
some w-Lie algebra belonging to the family %,. Actually, the direct computation
shows that IV ~ €.

Analogous routes and techniques can be applied to other cases, so here we
only list all the correspondences between Nurowski’s list and ours (see Table 1
below), and the detailed proofs are not given. Note that here “B-type” means
the “Bianchi type” in [3].
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