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Normal forms for symplectic matrices

Jean Gutt*

Abstract. We give a self contained and elementary description of normal forms for
symplectic matrices, based on geometrical considerations. The normal forms in question
are expressed in terms of elementary Jordan matrices and integers with values in
f�1; 0; 1g related to signatures of quadratic forms naturally associated to the symplectic
matrix.
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1. Introduction

Let V be a real vector space of dimension 2n with a non degenerate skewsym-

metric bilinear form W. The symplectic group SpðV ;WÞ is the set of linear

transformations of V which preserve W:

SpðV ;WÞ ¼ fA : V ! V jA linear and WðAu;AvÞ ¼ Wðu; vÞ for all u; v a Vg:

A symplectic basis of the symplectic vector space ðV ;WÞ of dimension 2n is a basis

fe1; . . . ; e2ng in which the matrix representing the symplectic form is W0 ¼ 0 Id
�Id 0

� �
.

In a symplectic basis, the matrix A 0 representing an element A a SpðV ;WÞ belongs
to

Spð2n;RÞ ¼ fA 0 a Matð2n� 2n;RÞ jA 0tW0A
0 ¼ W0g

where ð�Þt denotes the transpose of a matrix.
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[11], [14]. I am grateful to the Foundation for Scientific Research (FNRS-FRS) for its support. The
author acknowledges partial support from the ERC via the grant StG-259118-STEIN, from an ARC of
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Given an element A in the symplectic group SpðV ;WÞ, we want to find a sym-

plectic basis of V in which the matrix A 0 representing A has a distinguished form;

to give a normal form for matrices in Spð2n;RÞ means to describe a distinguished

representative in each conjugacy class. In general, one cannot find a symplectic

basis of the complexified vector space for which the matrix representing A has

Jordan normal form.

The normal forms considered here are expressed in terms of elementary

Jordan matrices and matrices depending on an integer s a f�1; 0; 1g. They are

closely related to the forms given by Long in [9], [8]; the main di¤erence is that,

in those references, some indeterminacy was left in the choice of matrices in

each conjugacy class, in particular when the matrix admits 1 as an eigenvalue.

We speak in this case of quasi-normal forms. Other constructions can be found

in [16], [5], [6], [15], [12] but they are either quasi-normal or far from Jordan

normal forms. Closely related are the constructions of normal forms for real

matrices that are selfadjoint, skewadjoint or unitary with respect to an indefinite

inner product where sign characteristics are introduced; they have been studied

in many sources; for instance-mainly for selfadjoint and skewadjoint matrices-

in the monograph of I. Gohberg, P. Lancaster and L. Rodman [2], and for

unitary matrices in the papers [1], [3], [10], [13]. Normal forms for symplectic

matrices have been given by C. Mehl in [11] and by V. Sergeichuk in [14]; in

those descriptions, the basis producing the normal form is not required to be

symplectic.

We construct here normal forms using elementary geometrical methods.

The choice of representatives for normal (or quasi normal) forms of ma-

trices depends on the application one has in view. Quasi normal forms were

used by Long to get precise formulas for indices of iterates of Hamiltonian or-

bits in [7]. The forms obtained here were useful for us to give new character-

isations of Conley-Zehnder indices of general paths of symplectic matrices [4].

We have chosen to give a normal form in a symplectic basis. The main inter-

est of our description is the natural interpretation of the signs appearing in

the decomposition, and the description of the decomposition for matrices with

1 as an eigenvalue. It also yields an easy natural characterization of the con-

jugacy class of an element in Spð2n;RÞ. We hope it can be useful in other

situations.

Assume that V decomposes as a direct sum V ¼ V1aV2 where V1 and V2 are

W-orthogonal A-invariant subspaces. Suppose that fe1; . . . ; e2kg is a symplectic

basis of V1 in which the matrix representing AjV1
is A 0 ¼ A 0

1
A 0

2

A 0
3

A 0
4

� �
. Suppose also

that f f1; . . . ; f2lg is a symplectic basis of V2 in which the matrix representing

AjV2
is A 00 ¼ A 00

1
A 00
2

A 00
3

A 00
4

� �
. Then fe1; . . . ; ek; f1; . . . ; fl ; ekþ1; . . . ; e2k; flþ1; . . . ; f2lg is a

symplectic basis of V and the matrix representing A in this basis is
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A 0
1 0 A 0

2 0

0 A 00
1 0 A 00

2

A 0
3 0 A 0

4 0

0 A 00
3 0 A 00

4

0
BBB@

1
CCCA:

The notation A 0 � A 00 is used in Long [7] for this matrix. It is ‘‘a direct sum of

matrices with obvious identifications’’. We call it the symplectic direct sum of the

matrices A 0 and A 00.
We C-linearly extend W to the complexified vector space V C and we C-linearly

extend any A a SpðV ;WÞ to V C: If vl denotes an eigenvector of A in V C of the

eigenvalue l, then WðAvl;AvmÞ ¼ Wðlvl; mvmÞ ¼ lmWðvl; vmÞ; thus Wðvl; vmÞ ¼ 0

unless m ¼ 1
l
. Hence the eigenvalues of A arise in ‘‘quadruples’’

½l� :¼ l;
1

l
; l;

1

l

� �
: ð1Þ

We find a symplectic basis of V C so that A is a symplectic direct sum of block-

upper-triangular matrices of the form

Jðl; kÞ�1 0

0 Jðl; kÞt

 !
Id Dðk; sÞ
0 Id

� �
;

or

Jðl; kÞ�1 0

Jðl; kÞ�1

Jðl; kÞt

0 Jðl; kÞt

0
BBB@

1
CCCA

Id 0 0 Dðk; sÞ
Id Dðk; sÞ 0

Id 0

0 Id

0
BBB@

1
CCCA;

or

Jðl; kÞ�1 0

Jðl; k þ 1Þ�1

Jðl; kÞt

0 Jðl; k þ 1Þt

0
BBB@

1
CCCA

Id 0 0 Sðk; s; lÞ
Id Sðk; s; lÞt 0

Id 0

0 Id

0
BBB@

1
CCCA:

Here, Jðl; kÞ is the elementary k � k Jordan matrix corresponding to an eigen-

value l, Dðk; sÞ is the diagonal k � k matrix

Dðk; sÞ ¼ diagð0; . . . 0; sÞ;
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and Sðk; s; lÞ is the k � ðk þ 1Þ matrix defined by

Sðk; s; lÞ :¼

0 � � � 0 0 0

..

. ..
. ..

. ..
.

0 � � � 0 0 0

0 � � � 0 1
2 is lis

0
BBBB@

1
CCCCA;

with s an integer in f�1; 0; 1g. Each s a fe1g is called a sign and the collection of

such signs appearing in the decomposition of a matrix A is called the sign charac-

teristic of A.

More precisely, on the real vector space V , we shall prove:

Theorem 1.1 (Normal forms for symplectic matrices). Any symplectic endomor-

phism A of a finite dimensional symplectic vector space ðV ;WÞ is the direct sum of

its restrictions AjV½l� to the real A-invariant symplectic subspace V½l� whose complex-

ification is the direct sum of the generalized eigenspaces of eigenvalues l, 1
l
, l and 1

l
:

V C
½l� :¼ ElaE1=laE

l
aE

1=l
:

We distinguish three cases: l B S1, l ¼e1 and l a S1nfe1g.
Normal form for AjV½l� for l B S1:

Let l B S1 be an eigenvalue of A. Let k :¼ dimC KerðA� l IdÞ (on V C) and

q be the smallest integer so that ðA� l IdÞq is identically zero on the generalized

eigenspace El.

• If l is a real eigenvalue of A ðl B S1 so lAe1Þ, there exists a symplectic basis

of V½l� in which the matrix representing the restriction of A to V½l� is a symplec-

tic direct sum of k matrices of the form

Jðl; qjÞ�1 0

0 Jðl; qjÞt

 !

with q ¼ q1b q2b � � �b qk and Jðl;mÞ is the elementary m�m Jordan

matrix associated to l

Jðl;mÞ ¼

l 1

l 1 0

l 1

. .
. . .

.

l 1

0 l 1

l

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
:
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This decomposition is unique, when l has been chosen in fl; l�1g. It is deter-

mined by the chosen l and by the dimension dim
�
KerðA� l IdÞr

�
for each

r > 0.

• If l ¼ reif B ðS1ARÞ is a complex eigenvalue of A, there exists a symplectic

basis of V½l� in which the matrix representing the restriction of A to V½l� is a

symplectic direct sum of k matrices of the form

JRðre�if; 2qjÞ�1 0

0 JRðre�if; 2qjÞt

 !

with q ¼ q1b q2b � � �b qk and JRðreif; 2mÞ is the 2m� 2m block upper trian-

gular matrix defined by

JRðreif; 2mÞ :¼

RðreifÞ Id

RðreifÞ Id 0

RðreifÞ Id

. .
. . .

.

RðreifÞ Id

0 RðreifÞ Id

RðreifÞ

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

with RðreifÞ ¼ r cos f �r sin f
r sin f r cos f

� �
.

This decomposition is unique, when l has been chosen in fl; l�1; l; l�1g. It

is determined by the chosen l and by the dimension dim
�
KerðA� l IdÞr

�
for

each r > 0.

Normal form for AjV½l� for l ¼e1:

Let l ¼e1 be an eigenvalue of A. There exists a symplectic basis of V½l� in
which the matrix representing the restriction of A to V½l� is a symplectic direct sum

of matrices of the form

Jðl; rjÞ�1
Cðrj ; sj; lÞ

0 Jðl; rjÞt

 !

where Cðrj ; sj; lÞ :¼ Jðl; rjÞ�1 diagð0; . . . ; 0; sjÞ with sj a f0; 1;�1g. If sj ¼ 0, then

rj is odd. The dimension of the eigenspace of the eigenvalue l is given by

2Cardf j j sj ¼ 0g þ Cardf j j sj A 0g.
The number of sj equal to þ1 (resp. �1) arising in blocks of dimension 2k

(i.e. with corresponding rj ¼ k) is equal to the number of positive (resp. negative)

eigenvalues of the symmetric 2-form
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Q̂Ql
2k : Ker

�
ðA� l IdÞ2k

�
�Ker

�
ðA� l IdÞ2k

�
! R

ðv;wÞ 7! lW
�
ðA� l IdÞkv; ðA� l IdÞk�1

w
�
:

The decomposition is unique up to a permutation of the blocks and is determined by

l, by the dimension dim
�
KerðA� l IdÞr

�
for each rb 1, and by the rank and the

signature of the symmetric bilinear 2-form Q̂Ql
2k for each kb 1.

Normal form for AjV½l� for l a S1nfe1g:
Let l a S1, lAe1 be an eigenvalue of A. There exists a symplectic basis of V½l�

in which the matrix representing the restriction of A to V½l� is a symplectic direct

sum of 4kj � 4kj matrices ðkj b 1Þ of the form

�
JRðl; 2kjÞ

��1
0 � � � 0
..
. ..

.

0 � � � 0

sjV
1
kj
ðfÞ sjV

2
kj
ðfÞ

0
�
JRðl; 2kjÞ

�t

0
BBBB@

1
CCCCA ð2Þ

and ð4kj þ 2Þ � ð4kj þ 2Þ matrices ðkj b 0Þ of the form

�
JRðl; 2kjÞ

��1
sjU

2
kj
ðfÞ

0 � � � 0
..
. ..

.

0 � � � 0

sj
2 V

2
kj
ðfÞ �sj

2 V 1
kj
ðfÞ U 1

kj
ðfÞ

0 cos f 0 � � � 0 1 0 sj sin f

0

0
..
.

0

�
JRðl; 2kjÞ

�t 0
..
.

0

0 �sj sin f 0 � � � 0 0 �sj cos f

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

ð3Þ

where JRðeif; 2kÞ is defined as above, where
�
V 1

kj
ðfÞV 2

kj
ðfÞ
�
is the 2kj � 2 matrix

defined by

�
V 1

kj
ðfÞV 2

kj
ðfÞ
�
¼

ð�1Þkj�1
RðeikjfÞ
..
.

RðeifÞ

0
BB@

1
CCA ð4Þ

with RðeifÞ ¼ cos f �sin f
sin f cos f

� �
, where

�
U 1

kj
ðfÞU 2

kj
ðfÞ
�
¼
�
V 1

kj
ðfÞV 2

kj
ðfÞ
��
RðeifÞ

�
ð5Þ

and where sj ¼e1. The complex dimension of the eigenspace of the eigenvalue l

in V C is given by the number of such matrices.

114 J. Gutt



The number of sj equal to þ1 (resp. �1) arising in blocks of dimension 2m in the

normal decompositiongiven above is equal to the number of positive (resp. negative)

eigenvalues of the Hermitian 2-form Q̂Ql
m defined on Ker

�
ðA� l IdÞm

�
by:

Q̂Ql
m : Ker

�
ðA� l IdÞm

�
�Ker

�
ðA� l IdÞm

�
! C

ðv;wÞ 7! 1

l
W
�
ðA� l IdÞkv; ðA� l IdÞk�1

w
�

if m ¼ 2k

ðv;wÞ 7! iW
�
ðA� l IdÞkv; ðA� l IdÞkw

�
if m ¼ 2k þ 1:

This decomposition is unique up to a permutation of the blocks, when l has been

chosen in fl; lg. It is determined by the chosen l, by the dimension

dim
�
KerðA� l IdÞr

�
for each rb 1 and by the rank and the signature of the

Hermitian bilinear 2-form Q̂Ql
m for each mb 1.

The normal form for AjV½l� is given in Theorem 3.1 for l B S1, in Theorem 4.1

for l ¼e1, and in Theorem 5.2 for l a S1nfe1g. The characterisation of

the signs is given in Proposition 4.3 for l ¼e1 and in Proposition 5.4 for

l a S1nfe1g.
A direct consequence of Theorem 1.1 is the following characterization of the

conjugacy class of a matrix in the symplectic group.

Theorem 1.2. The conjugacy class of a matrix A a Spð2n;RÞ is determined by the

following data:

• the eigenvalues of A which arise in quadruples ½l� ¼ fl; l�1; l; l�1g;

• the dimension dim
�
KerðA� l IdÞr

�
for each rb 1 for one eigenvalue in each

class ½l�;

• for l ¼e1, the rank and the signature of the symmetric form Q̂Ql
2k for each

kb 1 and for an eigenvalue l in S1nfe1g chosen in each ½l�, the rank and the

signature of the Hermitian form Q̂Ql
m for each mb 1, with

Q̂Ql
m : Ker

�
ðA� l IdÞm

�
�Ker

�
ðA� l IdÞm

�
! C

ðv;wÞ 7! 1

l
W
�
ðA� l IdÞkv; ðA� l IdÞk�1

w
�

if m ¼ 2k

ðv;wÞ 7! iW
�
ðA� l IdÞkv; ðA� l IdÞkw

�
if m ¼ 2k þ 1: r

2. Preliminaries

Lemma 2.1. Consider A a SpðV ;WÞ and let 0A l a C. Then KerðA� l IdÞ j in
V C is the symplectic orthogonal complement of Im

�
A� 1

l
Id
� j
.
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Proof.

W
�
ðA� l IdÞu;Av

�
¼ WðAu;AvÞ � lWðu;AvÞ ¼ Wðu; vÞ � lWðu;AvÞ

¼ �lW u; A� 1

l
Id

� �
v

 !

and by induction

W
�
ðA� l IdÞ ju;A jv

�
¼ ð�lÞ jW u; A� 1

l
Id

� �j

v

 !
: ð6Þ

The result follows from the fact that A is invertible. r

Corollary 2.2. If El denotes the generalized eigenspace of eigenvalue l, i.e.

El :¼ fv a V C j ðA� l IdÞ jv ¼ 0 for an integer j > 0g, we have

WðEl;EmÞ ¼ 0 when lmA 1:

Indeed the symplectic orthogonal complement of El ¼ 6
j
KerðA� l IdÞ j is

the intersection of the Im
�
A� 1

l
Id
� j
: By Jordan normal form, this intersection

is the sum of the generalized eigenspaces corresponding to the eigenvalues which

are not 1
l
.

If v ¼ uþ iu 0 is in KerðA� l IdÞ j with u and u 0 in V then v ¼ u� iu 0 is in

KerðA� l IdÞ j so that ElaE
l
is the complexification of a real subspace of V .

From this remark and Corollary 2.2 the space

W½l� :¼ ElaE1=laE
l
aE

1=l
ð7Þ

is the complexification of a real and symplectic A-invariant subspace V½l� and

V ¼ V½l1�aV½l2�a � � �aV½lK � ð8Þ

where we denote by l½ � the set
	
l; l; 1

l
; 1
l



and by l1½ �; . . . ; lK½ � the distinct such sets

exhausting the eigenvalues of A.

We denote by A½li � the restriction of A to V½li �: It is clearly enough to obtain

normal forms for each A½li � since A will be a symplectic direct sum of those.

We shall construct a symplectic basis of W½l� (and of V½l�) adapted to A for a

given eigenvalue l of A. We assume that ðA� l IdÞpþ1 ¼ 0 and ðA� l IdÞpA 0

on the generalized eigenspace El: Since A is real, this integer p is the same for

l. By Lemma 2.1, KerðA� l IdÞ j is the symplectic orthogonal complement of

Im
�
A� 1

l
Id
� j

for all j; thus dimKerðA� l IdÞ j ¼ dimKer
�
A� 1

l
Id
� j
; hence

the integer p is the same for l and 1
l
.
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We decompose W½l� (and V½l�) into a direct sum of A-invariant symplectic

subspaces. Given a symplectic subspace Z of V½l� which is A-invariant, its

orthogonal complement (with respect to the symplectic 2-form) V 0 :¼ Z?W is

again symplectic and A-invariant. The generalized eigenspace for A on V 0C are

E 0
m ¼ V 0CBEm, and the smallest integer p 0 for which ðA� l IdÞp

0þ1 ¼ 0 on E 0
l is

such that p 0a p.

Hence, to get the decomposition of W½l� (and V½l�) it is enough to build a

symplectic subspace of W½l� which is A-invariant and closed under complex conju-

gation and to proceed inductively. We shall construct such a subspace, containing

a well chosen vector v a El so that ðA� l IdÞpvA 0.

We shall distinguish three cases; first l B S1 then l ¼e1 and finally

l a S1nfe1g:
We first present a few technical lemmas which will be used for this con-

struction.

2.1. A few technical lemmas. Let ðV ;WÞ be a real symplectic vector space.

Consider A a SpðV ;WÞ and let l be an eigenvalue of A in V C.

Lemma 2.3. For any positive integer j, the bilinear map

~QQj : El=KerðA� l IdÞ j � E1=l=Ker A� 1

l
Id

� �j

! C

ð½v�; ½w�Þ 7! ~QQjð½v�; ½w�Þ :¼ W
�
ðA� l IdÞ jv;w

�
v a El; w a E1=l ð9Þ

is well defined and non degenerate. In the formula, ½v� denotes the class containing

v in the appropriate quotient.

Proof. The fact that ~QQj is well defined follows from equation (6); indeed, for any

integer j, we have

W
�
ðA� l IdÞ ju; v

�
¼ ð�lÞ jW A ju; A� 1

l
Id

� �j

v

 !
: ð10Þ

The map is non degenerate because ~QQjð½v�; ½w�Þ ¼ 0 for all w if and only if

ðA� l IdÞ jv ¼ 0 since W is a non degenerate pairing between El and E1=l,

thus if and only if ½v� ¼ 0. Similarly, ~QQjð½v�; ½w�Þ ¼ 0 for all v if and only if

w is W-orthogonal to ImðA� l IdÞ j ; thus if and only if w a Ker
�
A� 1

l
Id
� j

hence ½w� ¼ 0. r

Lemma 2.4. For any v;w a V, any l a Cnf0g and any integers ib 0, j > 0 we

have:
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W ðA� l IdÞ iv; A� 1

l
Id

� �j

w

 !

¼ � 1

l
W ðA� l IdÞ iþ1

v; A� 1

l
Id

� �j

w

 !

� 1

l2
W ðA� l IdÞ iþ1

v; A� 1

l
Id

� �j�1

w

 !
: ð11Þ

In particular, if l is an eigenvalue of A, if v a El is such that pb 0 is the largest

integer for which ðA� l IdÞpvA 0, we have for any integers k; jb 0:

W
�
ðA� l IdÞpþk

v;w
�
¼ ð�l2Þ jW ðA� l IdÞpþk�j

v; A� 1

l
Id

� �j

w

 !
ð12Þ

so that

W
�
ðA� l IdÞpv;w

�
¼ ð�l2ÞpW v; A� 1

l
Id

� �p

w

 !
ð13Þ

and

W ðA� l IdÞkv; A� 1

l
Id

� �j

w

 !
¼ 0 if k þ j > p: ð14Þ

Proof. We have:

W ðA� l IdÞ iv; A� 1

l
Id

� �j

w

 !

¼ � 1

l
W A� l Id� Að ÞðA� l IdÞ iv; A� 1

l
Id

� �j

w

 !

¼ � 1

l
W ðA� l IdÞ iþ1

v; A� 1

l
Id

� �j

w

 !

þ 1

l
W AðA� l IdÞ iv; A� 1

l
Id

� �
A� 1

l
Id

� �j�1

w

 !

¼ � 1

l
W ðA� l IdÞ iþ1

v; A� 1

l
Id

� �j

w

 !
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þ 1

l
W ðA� l IdÞ iv; A� 1

l
Id

� �j�1

w

 !

� 1

l2
W AðA� l IdÞ iv; A� 1

l
Id

� �j�1

w

 !

and formula (11) follows.

For any integers k; jb 0 and any v such that ðA� l IdÞpv ¼ 0, we have, by

(6),

ð�lÞ jW ðA� l IdÞpþkþ1� j
v; A� 1

l
Id

� �j

w

 !
¼ W

�
ðA� l IdÞpþkþ1

v;A jw
�
¼ 0:

Hence, applying formula (11) with a decreasing induction on j, we get formula

(12). The other formulas follow readily. r

Definition 2.5. For l a S1 an eigenvalue of A and v a El a generalized eigenvec-

tor, we define

Ti; jðvÞ :¼
1

l il
j
W
�
ðA� l IdÞ iv; ðA� lÞ jv

�
: ð15Þ

We have, by equation (11):

Ti; jðvÞ ¼ �Tiþ1; jðvÞ � Tiþ1; j�1ðvÞ; ð16Þ

and also,

Ti; jðvÞ ¼ �Tj; iðvÞ: ð17Þ

Lemma 2.6. Let l a S1 be an eigenvalue of A and v a El be a generalised

eigenvector such that the largest integer p so that ðA� l IdÞpvA 0 is odd, say,

p ¼ 2k � 1. Then, in the A-invariant subspace Ev
l of El generated by v, there

exists a vector v 0 generating the same A-invariant subspace Ev 0

l ¼ Ev
l , so that

ðA� l IdÞpv 0A 0 and so that

Ti; jðv 0Þ ¼ 0 for all i; ja k � 1:

If l is real (i.e.e1), and if v is a real vector (i.e. in V ), the vector v 0 can be chosen

to be real as well.

Proof. Observe that

Tk;k�1ðvÞ ¼ �Tk;kðvÞ � Tk�1;kðvÞ by ð11Þ
¼ �Tk�1;kðvÞ by ð14Þ

¼ Tk;k�1ðvÞ by ð17Þ
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is real and can be put to d ¼e1 by rescaling the vector. We use formulas (11)

and (17) and we proceed by decreasing induction on i þ j as follows:

• if Tk�1;k�1ðvÞ ¼ a1, this a1 is purely imaginary, we replace v by

v 0 :¼ v� a1

2ld
ðA� l IdÞv;

clearly Ev 0

l ¼ Ev
l and Ti; jðv 0Þ ¼ Ti; jðvÞ for i þ jb 2k � 1 but now

Tk�1;k�1ðv 0Þ ¼ a1 �
a1

2d
Tk;k�1ðvÞ �

a1

2d
Tk�1;kðvÞ ¼ 0;

so we can now assume Tk�1;k�1ðvÞ ¼ 0; observe that if l is real and v is in V ,

then a1 ¼ 0 and v 0 ¼ v;

• if Tk�2;k�1ðvÞ ¼ a2 ¼ �Tk�1;k�2ðvÞ, this a2 is real and we replace v by

v� a2

2l2d
ðA� l IdÞ2v;

the space Ev
l does not change and the quantities Ti; jðvÞ do not vary for

i þ jb 2k � 2; now

Tk�2;k�1ðv 0Þ ¼ a2 �
a2

2d
Tk;k�1ðvÞ �

a2

2d
Tk�2;kþ1ðvÞ ¼ 0;

hence also Tk�1;k�2ðv 0Þ ¼ 0; observe that if l is real and v is in V , then v 0 is
in V .

• we now assume by induction to have a J > 0 so that Ti; jðvÞ ¼ 0 for all

0a i; ja k � 1 so that i þ j > 2k � 1� J;

• if Tk�J;k�1ðvÞ ¼ aJ , then Tk�J;k�1ðvÞ ¼ ð�1ÞJ�1
Tk�1;k�JðvÞ so that aJ is real

when J is even and is imaginary when J is odd; we replace v by

v� aJ

2lJd
ðA� l IdÞJv;

the space Ev
l does not change and the quantities Ti; jðvÞ do not vary for

i þ jb 2k � J; but now

Tk�J;k�1ðv 0Þ ¼ aJ �
aJ

2d
Tk;k�1ðvÞ �

aJ

2d
Tk�J;kþJ�1ðvÞ

¼ aJ �
aJ

2
� ð�1ÞJ aJ

2
¼ 0:
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Hence also Tk�Jþ1;k�2ðv 0Þ ¼ 0; . . .Tk�1;k�Jþ1ðv 0Þ ¼ 0; so the induction pro-

ceeds. Observe that if l is real and v is in V then v 0 is in V . r

We shall use repeatedly that a n� n block triangular symplectic matrix is of

the form

A 0 ¼ B C

0 D

� �
a Spð2n;RÞ () B ¼ ðDtÞ�1

C ¼ ðDtÞ�1
S with S symmetric:

(
ð18Þ

3. Normal forms for ASV[l]
when l BB S 1

As before, p denotes the largest integer such that ðA� l IdÞp does not vanish

identically on the generalized eigenspace El. Let us choose an element v a El

and an element w a E1=l such that

~QQpð½v�; ½w�Þ ¼ W
�
ðA� l IdÞpv;w

�
A 0:

Let us consider the smallest A-invariant subspace Ev
l of El containing v; it is of

dimension pþ 1 and a basis is given by

fa0 :¼ v; . . . ; ai :¼ ðA� l IdÞ iv; . . . ; ap :¼ ðA� l IdÞpvg:

Observe that Aai ¼ ðA� l IdÞai þ lai so that Aai ¼ lai þ aiþ1 for i < p and

Aap ¼ ap.

Similarly, we consider the smallest A-invariant subspace Ew
1=l of E1=l contain-

ing w; it is also of dimension pþ 1 and a basis is given by

b0 :¼ w; . . . ; bj :¼ A� 1

l
Id

� �j

w; . . . ; bp :¼ A� 1

l
Id

� �p

w

( )
:

One has

Wðai; ajÞ ¼ 0 and Wðbi; bjÞ ¼ 0 because WðEl;EmÞ ¼ 0 if lmA 1;

Wðai; bjÞ ¼ 0 if i þ j > p by equation (14);

Wðai; bp�iÞ ¼
��1

l2

�p�i
W
�
ðA� l IdÞpv;w

�
by equation (12) and is non zero by the

choice of v, w.

The matrix representing W in the basis fbp; . . . ; b0; a0; . . . ; apg is thus of the

form
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0 0

. .
.

0 0

� 0

. .
.

� �

� �
. .
.

0 �

0 0

. .
.

0 0

0
BBBBBBBBBB@

1
CCCCCCCCCCA

with non vanishing �. Hence W is non degenerate on Ev
l aEw

1=l which is thus a

symplectic A-invariant subspace.

We now construct a symplectic basis fb 0
p; . . . ; b

0
0; a0; . . . ; apg of Ev

l aEw
1=l, ex-

tending fa0; . . . ; apg, using a Gram-Schmidt procedure on the bi’s. This gives a

normal form for A on Ev
l aEw

1=l.

If l is real, we take v, w in the real generalized eigenspaces ER
l and ER

1=l and

we obtain a symplectic basis of the real A-invariant symplectic vector space,

ERv
l aERw

1=l . If l is not real, one considers the basis of Ev

l
aEw

1=l
defined by the

conjugate vectors fb 0
p; . . . ; b

0
0; a0; . . . ; apg and this yields a conjugate normal form

on E
l
aE

1=l
, hence a normal form on W½l� and this will induce a real normal

form on V½l�.
We choose v and w such that W

��
A� 1

l
Id
�p
w; v
�
¼ 1: We define inductively

on j

b 0
p :¼ 1

Wðbp;a0Þ
bp ¼ bp;

b 0
p�j ¼ 1

Wðbp�j ;ajÞ
�
bp�j �

P
k< j Wðbp�j; akÞb 0

p�k

�
;

so that any b 0
j is a linear combination of the br with rb j.

In the symplectic basis fb 0
p; . . . ; b

0
0; a0; . . . ; apg the matrix representing A is

B 0

0 Jðl; pþ 1Þt
� �

where

Jðl;mÞ ¼

l 1

l 1 0

l 1

. .
. . .

.

l 1

0 l 1

l

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

ð19Þ

122 J. Gutt



is the elementary m�m Jordan matrix associated to l. Since the matrix

is symplectic, B is the transpose of the inverse of Jðl; pþ 1Þt by (18), so

B ¼ Jðl; pþ 1Þ�1. This is the normal form for A restricted to Ev
l aEw

1=l.

If l ¼ reif B R we consider the symplectic basis fb 0
p; . . . ; b

0
0; a0; . . . ; apg of

Ev
l aEw

1=l as above and the conjugate symplectic basis fb 0
p; . . . ; b

0
0; a0; . . . ; apg of

Ev

l
aEw

1=l
: Writing b 0

j ¼ 1ffiffi
2

p ðuj þ ivjÞ and aj ¼ 1ffiffi
2

p ðwj � ixjÞ for all 0a ja p with

the vectors uj , vj, wj , xj in the real vector space V ; we get a symplectic basis

fup; vp . . . ; u0; v0;w0; x0 . . . ;wp; xpg of the real subspace of V whose complexifica-

tion is Ev
l aEw

1=laEv

l
aEw

1=l
. In this basis, the matrix representing A is

JR
�
l; 2ðpþ 1Þ

��1
0

0 JR
�
l; 2ðpþ 1Þ

�t
 !

where JRðreif; 2mÞ is the 2m� 2m matrix written in terms of 2� 2 matrices as

JRðreif; 2mÞ :¼

RðreifÞ Id

RðreifÞ Id 0

RðreifÞ Id

. .
. . .

.

RðreifÞ Id

0 RðreifÞ Id

RðreifÞ

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

ð20Þ

with RðreifÞ ¼ r cos f �r sin f
r sin f r cos f

� �
. By induction, we get

Theorem 3.1 (Normal form for AjV½l� for l B S1.). Let l B S1 be an eigenvalue of

A. Denote k :¼ dimC KerðA� l IdÞ (on V C) and p the smallest integer so that

ðA� l IdÞpþ1
is identically zero on the generalized eigenspace El.

• If lAe1 is a real eigenvalue of A, there exists a symplectic basis of V½l� in
which the matrix representing the restriction of A to V½l� is a symplectic direct

sum of k matrices of the form

Jðl; pj þ 1Þ�1 0

0 Jðl; pj þ 1Þt

 !

with p ¼ p1b p2b � � �b pk and Jðl; kÞ defined by (19). To eliminate the am-

biguity in the choice of l in ½l� ¼ fl; l�1g we can consider the real eigenvalue

such that l > 1. The size of the blocks is determined knowing the dimension

dim
�
KerðA� l IdÞr

�
for each rb 1.
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• If l ¼ reif B ðS1ARÞ is a complex eigenvalue of A, there exists a symplectic

basis of V½l� in which the matrix representing the restriction of A to V½l� is a

symplectic direct sum of k matrices of the form

JR
�
re�if; 2ðpj þ 1Þ

��1
0

0 JR
�
re�if; 2ðpj þ 1Þ

�t
 !

with p ¼ p1b p2b � � �b pk and JRðreif; kÞ defined by (20). To eliminate the

ambiguity in the choice of l in ½l� ¼ fl; l�1; l; l�1g we can choose the eigen-

value l with a positive imaginary part and a modulus greater than 1. The size

of the blocks is determined by the dimension dimC

�
KerðA� l IdÞr

�
for each

rb 1.

This normal form is unique, when a choice of l in the set ½l� is fixed.

4. Normal forms for ASV[l]
when lFG1

In this situation ½l� ¼ flg and V½l� is the generalized real eigenspace of eigenvalue

l, still denoted—with a slight abuse of notation—El. Again, p denotes the largest

integer such that ðA� l IdÞp does not vanish identically on El. We consider
~QQp : El=KerðA� l IdÞp � El=KerðA� l IdÞp ! R the non degenerate form de-

fined by ~QQpð½v�; ½w�Þ ¼ W
�
ðA� l IdÞpv;w

�
: We see directly from equation (13)

that ~QQp is symmetric if p is odd and antisymmetric if p is even.

4.1. If pF 2kC 1 is odd. We choose v a El such that

~QQð½v�; ½v�Þ ¼ W
�
ðA� l IdÞpv; v

�
A 0

and consider the smallest A-invariant subspace Ev
l of El containing v; it is spanned

by

fap :¼ ðA� l IdÞpv; . . . ; ai :¼ ðA� l IdÞ iv; . . . ; a0 :¼ vg:

We have

Wðai; ajÞ ¼ 0 if i þ jb pþ 1ð¼ 2kÞ by equation (14);

Wðai; ap�iÞA 0; by equation (12) and by the choice of v.

Hence Ev
l is a symplectic subspace because, in the basis defined by the ei’s, W has

the triangular form
0 �

..
.

� �

� �
and has a non-zero determinant.
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We can choose v in El HV so that W
�
ðA� l IdÞkv; ðA� l IdÞk�1

v
�
¼ ls with

s ¼e1 by rescaling the vector and one may further assume, by Lemma 2.6, that

Ti; jðvÞ ¼
1

l i

1

l j
W
�
ðA� l IdÞ iv; ðA� l IdÞ jv

�
¼ 0 for all 0a i; ja k � 1:

We now construct a symplectic basis fa 0
p; . . . ; a

0
k; a0; . . . ; ak�1g of Ev

l , extending

fa0; . . . ; ak�1g, by a Gram-Schmidt procedure, having chosen v as above. We

define inductively on 0a ja k � 1

a 0
p :¼ 1

Wðap;a0Þ ap;

a 0
p�j ¼ 1

Wðap�j ;ajÞ
�
ap�j �

P
k< j Wðap�j; akÞa 0

p�k

�
;

so that any a 0
j is a linear combination of the ar’s with rb j and in particular

a 0
k ¼ 1

sl
ak þ

Pk�1
j¼1 cjakþ j.

In the symplectic basis fa 0
p; . . . ; a

0
k; a0; . . . ; ak�1g the matrix representing A is

A 0 ¼ B C

0 Jðl; kÞt
� �

with Jðl;mÞ defined by (19) and with C identically zero except for the last column,

and the coe‰cient Ck
k ¼ sl. Since the matrix is symplectic, B is the transpose

of the inverse of Jðl; pþ 1Þt by (18), so B ¼ Jðl; kÞ�1 and Jðl; kÞC is symmetric

with zeroes except in the last column, hence diagonal of the form diag
�
0; . . . ; 0; s

�
.

Thus

Jðl; kÞ�1
Jðl; kÞ�1 diag

�
0; . . . ; 0; s

�
0 Jðl; kÞt

 !
;

with s ¼e1, is the normal form of A restricted to Ev
l . Recall that

s ¼ l�1W
�
ðA� l IdÞkv; ðA� l IdÞk�1

v
�
:

4.2. If pF 2k is even. We choose v and w in El such that

~QQð½v�; ½w�Þ ¼ W
�
ðA� l IdÞpv;w

�
¼ lp ¼ 1

and we consider the smallest A-invariant subspace Ev
l aEw

l of El containing v

and w: It is of dimension 4k þ 2: Remark that W
�
ðA� l IdÞpv; v

�
¼ 0. We can

choose v so that

Tr; sðvÞ ¼
1

lrþs W
�
ðA� l IdÞrv; ðA� l IdÞsv

�
¼ 0 for all r; s:
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Indeed, by formula (11) we have Ti; jðvÞ ¼ �Tiþ1; jðvÞ � Tiþ1; j�1ðvÞ. Observe that

Ti; jðvÞ ¼ �Tj; iðvÞ so that Ti; iðvÞ ¼ 0 and Tj; iðvÞ ¼ �Tj; iþ1ðvÞ � Tj�1; iþ1ðvÞ. We

proceed by induction, as in Lemma 2.6:

• Tp;0ðvÞ ¼ 0 implies Tp�r; rðvÞ ¼ 0 for all 0a ra p by equation (12).

• We assume by decreasing induction on J, starting from J ¼ p, that we have

Ti; jðvÞ ¼ 0 for all i þ jb J. Then we have TJ�1�s; sðvÞ ¼ �TJ�1�s; sþ1ðvÞ�
TJ�2�s; sþ1ðvÞ; the first term on the righthand side vanishes by the

induction hypothesis, so TJ�1;0ðvÞ ¼ ð�1ÞsTJ�1�s; sðvÞ ¼ ð�1ÞJ�1
T0;J�1ðvÞ ¼

ð�1ÞJTJ�1;0.

If TJ�1;0ðvÞ ¼ aA 0, J must be even and we replace v by

v 0 ¼ vþ a

2lp�Jþ1
ðA� l IdÞp�Jþ1

w:

Then v 0 a Ev
l aEw

l , Ev
l aEw

l ¼ Ev 0

l aEw
l , W

�
ðA� l IdÞpv0;w

�
¼ lp and

Ti; jðv 0Þ ¼ Ti; jðvÞ ¼ 0 for all i þ jb J but now

TJ�1;0ðv 0Þ ¼ TJ�1;0ðvÞ þ
a

2lp W
�
ðA� l IdÞpw; v

�
þ a

2lp W
�
ðA� l IdÞJ�1

v; ðA� l IdÞp�Jþ1
w
�

þ a2

4lp W
�
ðA� l IdÞpw; ðA� l IdÞp�Jþ1

w
�

¼ a� a

2
� a

2
¼ 0

so that Ti; jðv 0Þ ¼ 0 for all i þ jb J � 1 and the induction proceeds.

We assume from now on that we have chosen v and w in El so that

W
�
ðA� l IdÞpv;w

�
¼ 1 and W

�
ðA� l IdÞrv;

�
A� 1

l
Id
�s
v
�
¼ 0 for all r, s. We

can proceed similarly with w so we can thus furthermore assume that

W
�
ðA� l IdÞ jw; ðA� l IdÞkw

�
¼ 0 for all j, k.

A basis of Ev
l aEw

l is given by

fap ¼ ðA� l IdÞpv; . . . ; a0 ¼ v; b0 ¼ w; . . . ; bp ¼ ðA� l IdÞpwg:

We have

Wðai; ajÞ ¼ 0 and Wðbi; bjÞ ¼ 0 by the choice of v and w;

Wðai; bjÞ ¼ 0 if i þ j > p by equation (14);

Wðai; bp�iÞA 0 by equation (12) and the choice of v, w.
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The matrix representing W has the form

0
� 0

. .
.

� �

� �
. .
.

0 �
0

0
BBB@

1
CCCA hence is non

singular and the subspace Ev
l aEw

l is symplectic. We now construct a symplectic

basis fa 0
p; . . . ; a

0
0; b0; . . . ; bpg of Ev

l aEw
1=l, extending fb0; . . . ; bpg, using a Gram-

Schmidt procedure on the ai’s. We define inductively on j

a 0
p :¼ 1

Wðap;b0Þ ap;

a 0
p�j ¼ 1

Wðap�j ;bjÞ
�
ap�j �

P
k< j Wðap�j; bkÞa 0

p�k

�
;

so that any a 0
j is a linear combination of the a 0

k with kb j.

In the symplectic basis fa 0
p; . . . ; a

0
0; b0; . . . ; bpg the matrix representing A is

B 0

0 Jðl; pþ 1Þt
� �

:

Hence, the matrix

Jðl; pþ 1Þ�1 0

0 Jðl; pþ 1Þt

 !

is a normal form for A restricted to Ev
l aEw

l . Thus we have:

Theorem 4.1 (Normal form for AjV½l� for l ¼e1.). Let l ¼e1 be an eigenvalue

of A. There exists a symplectic basis of V½l� in which the matrix representing the

restriction of A to V½l� is a symplectic direct sum of matrices of the form

Jðl; rjÞ�1
Cðrj ; sj; lÞ

0 Jðl; rjÞt

 !

where Cðrj; sj; lÞ :¼ Jðl; rjÞ�1 diagð0; . . . ; 0; sjÞ with sj a f0; 1;�1g. If sj ¼ 0,

then rj is odd. The dimension of the eigenspace of eigenvalue 1 is given by

2Cardf j j sj ¼ 0g þ Cardf j j sj A 0g.

Definition 4.2. Given l a fe1g, we define, for any integer kb 1, a bilinear form

Q̂Ql
2k on Ker

�
ðA� l IdÞ2kÞ:

Q̂Ql
2k : Ker

�
ðA� l IdÞ2k

�
�Ker

�
ðA� l IdÞ2k

�
! R

ðv;wÞ 7! lW
�
ðA� l IdÞkv; ðA� l IdÞk�1

w
�
: ð21Þ

It is symmetric.
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Proposition 4.3. Given l a fe1g, the number of positive (resp. negative) eigen-

values of the symmetric 2-form Q̂Ql
2k is equal to the number of sj equal to þ1

(resp. �1) arising in blocks of dimension 2k (i.e. with corresponding rj ¼ k) in

the normal decomposition of A on V½l� given in Theorem 4.1.

On V½l�, we have:

X
j

sj ¼
XdimV

k¼1

SignatureðQ̂Ql
2kÞ ð22Þ

Proof. On the intersection of Ker
�
ðA� l IdÞ2k

�
with one of the symplectically

orthogonal subspaces Ev
l constructed above for an odd pA 2k � 1, the form Q̂Ql

2k

vanishes identically. On the intersection of Ker
�
ðA� l IdÞ2kÞ with a subspace

Ev
l for a v so that p ¼ 2k � 1 and W

�
ðA� l IdÞkv; ðA� l IdÞk�1

v
�
¼ ls the only

non vanishing component is Q̂Ql
2kðv; vÞ ¼ s.

Indeed, Ker
�
ðA� l IdÞ2k

�
BEv

l is spanned by

fðA� l IdÞrv; rb 0 and rþ 2k > pg;

and W
�
ðA� l IdÞkþr

v; ðA� l IdÞk�1þr 0
v
�
¼ 0 when 2k þ rþ r 0 � 1 > p so the

only non vanishing cases arise when r ¼ r 0 ¼ 0 and p ¼ 2k � 1.

Similarly, the 2 form Q̂Ql
2k vanishes on the intersection of Ker

�
ðA� l IdÞ2k

�
with a subspace Ev

l aEw
l constructed above for an even p. r

The numbers sj appearing in the decomposition of A are thus invariant of the

matrix.

Corollary 4.4. The normal decomposition described in Theorem 4.1 is determined

by the eigenvalue l, by the dimension dim
�
KerðA� l IdÞr

�
for each rb 1, and

by the rank and the signature of the symmetric bilinear 2-forms Q̂Ql
2k for each

kb 1. It is unique up to a permutation of the blocks. r

5. Normal forms for ASV[l]
when lF eif aa S 1nn{G1}

We denote again by p the largest integer such that ðA� l IdÞp does not vanish

identically on El and we consider the non degenerate sesquilinear form

Q̂Q : El=KerðA� l IdÞp � El=KerðA� l IdÞp ! C

Q̂Qð½v�; ½w�Þ ¼ lpW
�
ðA� l IdÞpv; w

�
:
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Since Q̂Q is non degenerate, we can choose v a El such that Q̂Qð½v�; ½v�ÞA 0 thus

ðA� l IdÞpvA 0 and we consider the smallest A-invariant subspace, stable by

complex conjugaison, and containing v : Ev
l aEv

l
HElaE

l
. A basis is given

by

fai :¼ ðA� l IdÞ iv; bj :¼ ðA� l IdÞ jv 0a i; ja pg:

We have ai ¼ bi and

• Wðai; ajÞ ¼ 0, Wðbi; bjÞ ¼ 0 because WðEl;ElÞ ¼ 0;

• Wðai; bkÞ ¼ 0 if i þ kb pþ 1 by equation (14);

• Wðai; bkÞA 0 if p ¼ i þ k by equation (12) and by the choice of v.

We conclude that Ev
l aEv

l
is a symplectic subspace.

5.1. If pF 2kC 1 is odd. Observe that Tk;k�1ðvÞ :¼ 1
l
W
�
ðA� l IdÞkv;

ðA� l IdÞk�1
v
�
¼ s is real and can be put toe1 by rescaling the vector (we could

even put it to 1 exchanging if needed l and its conjugate). One may further

assume, by Lemma 2.6 that

Ti; jðvÞ ¼
1

l i

1

l
j
W
�
ðA� l IdÞ iv; ðA� l IdÞ jv

�
¼ 0 for all 0a i; ja k � 1:

We consider the basis fa2k�1; . . . ; ak; bp; . . . ; bk; b0; . . . ; bk�1; a0; . . . ; ak�1g for such

a vector v with Tk;k�1ðvÞ ¼ s ¼e1 and Ti; jðvÞ ¼ 0 for all 0a i; ja k � 1; the

matrix representing W has the form

0

� 0
. .
.

� �
0

0

� 0
. .
.

� �

� �
. .
.

0 �
0

0

� �
. .
.

0 �

0

0
BBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCA
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and we transform it by a Gram-Schmidt method into a symplectic basis composed

of pairs of conjugate vectors, extending fb0; . . . ; bk�1; a0; . . . ; ak�1g on which W

identically vanishes. We define

a 0
2k�1 ¼

1

Wða2k�1; b0Þ
a2k�1;

b 0
2k�1 ¼

1

Wðb2k�1; a0Þ
b2k�1 ¼ a 0

2k�1

and, inductively on increasing j with 1 < ja k

a 0
2k�j ¼

1

Wða2k�j; bj�1Þ

�
a2k�j �

Xj�1

r¼1

Wða2k�j; br�1Þa 0
2k�r

�
;

b 0
2k�j ¼ a 0

2k�j:

Any a 0
2k�j is a linear combination of the a2k�i for 1a ia j; reciprocally any a2k�j

can be written as a linear combination of the a 0
2k�i for 1a ia j, and the coe‰-

cient of a 0
2k�j is equal to Wða2k�j; bj�1Þ.

The basis fa 0
2k�1; . . . ; a

0
k; b

0
2k�1; . . . ; b

0
k; b0; . . . ; bk�1; a0; . . . ; ak�1g is symplectic,

and in that basis, since AðarÞ ¼ lar þ arþ1 and AðbrÞ ¼ lbr þ brþ1 for all r <

2k � 2, the matrix representing A is of the block upper triangular form

� 0 0 C

� C 0

Jðl; kÞt 0

0 Jðl; kÞt

0
BBB@

1
CCCA

where C is a k � k matrix such that the only non vanishing terms are on the last

column (Ci
j ¼ 0 when j < k) and Ck

k ¼ Wðak; bk�1Þ ¼ sl. The fact that the matrix

is symplectic implies that S :¼ Jðl; kÞC is hermitean; since Si
j ¼ 0 when jA k, we

have,

C ¼ Jðl; kÞ�1

0 � � � 0 0

..

. . .
. ..

. ..
.

0 � � � 0 0

0 � � � 0 s

0
BBBB@

1
CCCCA¼ Cðk; s; lÞ

and the matrix of the restriction of A to the subspace Ev
l aEv

l
has the block

triangular normal form
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Jðl; kÞ�1 0 0 Cðk; s; lÞ
Jðl; kÞ�1

Cðk; s; lÞ 0

Jðl; kÞt 0

0 Jðl; kÞt

0
BBBB@

1
CCCCA: ð23Þ

Writing a 0
2k�j ¼ 1ffiffi

2
p ðe2j�1 � ie2jÞ, b 0

2k�j ¼ a 0
2k�j ¼ 1ffiffi

2
p ðe2j�1 þ ie2jÞ, as well as aj�1 ¼

1ffiffi
2

p ð f2j�1 � if2jÞ and bj�1 ¼ aj�1 ¼ 1ffiffi
2

p ð f2j�1 þ if2jÞ for 1a ja k, the vectors ei,

fj all belong to the real subspace denoted V v
½l� of V whose complexification is

Ev
l aEv

l
and we get a symplectic basis

fe1; . . . ; e2k; f1; . . . ; f2kg

of this real subspace V v
½l�. The matrix representing A in this basis is:

�
JRðl; 2kÞ

��1
CRðk; s; lÞ

0
�
JRðl; 2kÞ

�t
 !

ð24Þ

where JRðeif; 2kÞ is defined as in (20) and where CRðk; s; eifÞ is the ðpþ 1Þ�
ðpþ 1Þ matrix written in terms of two by two matrices as

CRðk; s; eifÞt ¼ s

0 � � � 0 0

..

. ..
. ..

.

0 � � � 0 0

ð�1Þk�1
RðeikfÞ � � � �Rðei2fÞ RðeifÞ

0
BBBB@

1
CCCCA ð25Þ

with RðeifÞ ¼ cos f �sin f
sin f cos f

� �
as before and s ¼e1. This is the normal form of A

restricted to V v
½l�; recall that

s ¼ l�1W
�
ðA� l IdÞkv; ðA� l IdÞk�1

v
�
:

5.2. If pF 2k is even. We observe that W
�
ðA� l IdÞkv; ðA� l IdÞkv

�
is purely

imaginary and we choose v so that it is W
�
ðA� l IdÞkv; ðA� l IdÞkv

�
¼ si where

s ¼e1 (remark that the sign changes if one permutes l and l). We can further

choose the vector v so that:

W
�
ðA� l IdÞkv; ðA� l IdÞk�1

v
�
¼ 1

2
lsi ð26Þ

Ti; jðvÞ :¼
1

l il
j
W
�
ðA� l IdÞ iv; ðA� l IdÞ jv

�
¼ 0 for all 0a i; ja k � 1;

131Normal forms for symplectic matrices



Indeed, as before, by (11), we have Ti; jðvÞ ¼ �Tiþ1; jðvÞ � Tiþ1; j�1ðvÞ and Ti; jðvÞ ¼
�Tj; iðvÞ and we proceed as in Lemma 2.6 by decreasing induction on i þ j:

• if Tk;k�1ðvÞ ¼ a1, since Tk�1;kðvÞ ¼ si � Tk;k�1ðvÞ the imaginary part of a1 is

equal to 1
2 si and we replace v by v� a1

2lsi
ðA� l IdÞv; it generates the same A-

invariant subspace and the quantities Ti; jðvÞ do not vary for i þ jb 2k but

now Tk;k�1ðvÞ ¼ a1 � a1
2si Tkþ1;k�1ðvÞ þ a1

2si Tk;kðvÞ ¼ a1 � 1
2 a1 � 1

2 a1 ¼ 1
2 si since

Tk;kðvÞ ¼ �Tkþ1;k�1ðvÞ ¼ �si; so we can now assume Tk;k�1ðvÞ ¼ 1
2 si;

• if Tk�1;k�1ðvÞ ¼ a2, this a2 is purely imaginary and we replace v by

v� a2

2l2si
ðA� l IdÞ2v; it generates the same A-invariant subspace and the

quantities Ti; jðvÞ do not vary for i þ jb 2k � 1; now Tk�1;k�1ðvÞ ¼
a2 � a2

2si Tkþ1;k�1ðvÞ þ a2
2si Tk�1;kþ1ðvÞ ¼ a2 � 1

2 a2 þ 1
2 a2 ¼ 0. We may thus as-

sume this property to hold for v.

• if Tk�2;k�1ðvÞ ¼ a3 ¼ �Tk�1;k�1ðvÞ � Tk�1;k�2ðvÞ ¼ Tk�2;k�1ðvÞ, this a3 is

real and we replace v by v� a3

2l3si
ðA� l IdÞ3v; it generates and the same

A-invariant subspace and the quantities Ti; jðvÞ do not vary for i þ jb

2k � 2; now Tk�2;k�1ðvÞ ¼ a3 � a3
2si Tkþ1;k�1ðvÞ þ a3

2si Tk�2;kþ2ðvÞ ¼ 0, since

Tkþ1;k�1ðvÞ ¼ �Tk;kðvÞ ¼ �Tk�2;kþ2ðvÞ ¼ si; hence also Tk�1;k�2ðvÞ ¼ 0;

• we now assume by induction to have a J > 1 so that Ti; jðvÞ ¼ 0 for all

0a i; ja k � 1 so that i þ j > 2k � 1� J;

• if Tk�J;k�1ðvÞ ¼ aJþ1, then Tk�J;k�1ðvÞ ¼ ð�1ÞJ�1
Tk�1;k�JðvÞ so that aJþ1

is real when J is even and is imaginary when J is odd; we replace v by

v� aJþ1

2lJþ1si
ðA� l IdÞJþ1

v; it sgenerates the same A-invariant subspace and the

quantities Ti; jðvÞ do not vary for i þ jb 2k � J, but now Tk�J;k�1ðvÞ ¼
aJþ1 � aJþ1

2si Tkþ1;k�1ðvÞ þ aJþ1

2si Tk�J;kþJðvÞ ¼ aJþ1 � aJþ1

2 þ ð�1ÞJþ1 aJþ1

2 ¼ 0.

Hence also Tk�Jþ1;k�2ðvÞ ¼ 0; . . . ;Tk�1;k�Jþ1ðvÞ ¼ 0; so the induction

step is proven.

Remark 5.1. For such a v, all Ti; jðvÞ are determined inductively and we have

Ti; jðvÞ ¼ 0 if i þ jb 2k þ 1 and for all 0a i; ja k � 1

Tk�r;kþrðvÞ ¼ ð�1Þrþ1
si for all 0a ra k

Tk�r;kþmðvÞ ¼ ð�1Þrþ1 si

2

ðrþmÞðr� 1Þ!
m!ðr�mÞ! for all 0ama ra k; r > 1

Ti; jðvÞ ¼ Tj; iðvÞ for all i; j:

With the notation ai ¼ ðA� l IdÞ iv, bi ¼ ðA� l IdÞ iv, we consider the basis

fa2k; . . . ; akþ1; b2k; . . . ; bkþ1; bk; b0; . . . ; bk�1; a0; . . . ; ak�1; akg
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for such a vector v; the matrix representing W in this basis has the form

0 0 0

� 0
. .
.

� �
0 0

0 0 0 0

� 0
. .
.

� �
0

0 0 0 0 � � � � � si

� �
. .
.

0 �
0 0 0 0

�
..
.

�

0

� �
. .
.

0 �

�
..
.

�
0 0 0

0 0 �si � � � � � 0 0

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

:

We transform (by a Gram-Schmidt method) the basis above into a symplectic

basis, composed of pairs of conjugate vectors (up to a factor) and extending

b0; . . . ; bk�1; a0; . . . ; ak�1

on which W identically vanishes. We define inductively, for increasing j with

1a ja k � 1

a 0
2k : ¼

1

W
�
ðA� l IdÞ2kv; v

� ðA� l IdÞ2kv ¼ 1

Wða2k; b0Þ
a2k

b 0
2k : ¼

1

W
�
ðA� l IdÞ2k; v; v

� ðA� l IdÞ2kv ¼ 1

Wðb2k; a0Þ
b2k ¼ a 0

2k

a 0
2k�j ¼

1

Wða2k�j ; bjÞ

�
a2k�j �

Xj�1

r¼0

Wða2k�j; brÞa 0
2k�r

�

b 0
2k�j ¼

1

Wðb2k�j ; ajÞ

�
b2k�j �

Xj�1

r¼0

Wðb2k�j; arÞb 0
2k�r

�
¼ a 0

2k�j

a 0
k ¼ ak �

Xk�1

r¼0

Wðak; brÞa 0
2k�r

b 0
k ¼

1

Wðbk; akÞ

�
bk �

Xk�1

r¼0

Wðbk; arÞb 0
2k�r

�
¼ 1

is
a 0
k:
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Each a 0
2k�j is a linear combination of the ðA� l IdÞ2k�r

v for 0a ra j. The

basis

fa 0
2k; . . . ; a

0
kþ1; b

0
2k; . . . ; b

0
kþ1; b

0
k; b0; . . . ; bk�1; a0; . . . ; ak�1; a

0
kg

is now symplectic. Since AðarÞ ¼ lar þ arþ1 for all r < 2k, and Aða2kÞ ¼ la2k, the

matrix representing A in that basis is of the form

A1 0 0 0

c2k d 2k

..

. ..
.

ckþ1 d kþ1

0
B@

1
CA

0 A2 0

e2k

..

.

ekþ1

ek

0
BBB@

1
CCCA 0

0 0 Jðl; kÞt 0

0 0 0 Jðl; k þ 1Þt

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

with Aðbk�1Þ ¼ lbk�1 þ
Pk

j¼0 e
kþ jb 0

kþ j, Aðak�1Þ ¼ lak�1 þ a 0
k þ

Pk
j¼1 c

kþ ja 0
kþ j

and Aða 0
kÞ ¼ la 0

k þ
Pk

j¼1 d
kþ ja 0

kþ j.

Since a matrix A 0 E
0 D

� �
is symplectic if and only if A 0 ¼ ðDtÞ�1 and DtE is sym-

metric, we have

A1 ¼ Jðl; kÞ�1
A2 ¼ Jðl; k þ 1Þ�1

and

Jðl; kÞ 0

c2k d 2k

..

. ..
.

ckþ1 d kþ1

0
BB@

1
CCA ¼ Jðl; k þ 1Þ 0

e2k

..

.

ekþ1

ek

0
BBBB@

1
CCCCA

0
BBBB@

1
CCCCA
t

:

This implies

Jðl; kÞ

c2k d 2k

..

. ..
.

ckþ2 d kþ2

ckþ1 d kþ1

0
BBBB@

1
CCCCA¼

0 0

..

. ..
.

0 0

s1 s2

0
BBBB@

1
CCCCA Jðl; k þ 1Þ

e2k

..

.

ekþ2

ekþ1

ek

0
BBBBBBB@

1
CCCCCCCA

¼

0

..

.

0

s1

s2

0
BBBBBB@

1
CCCCCCA
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so that s1 ¼ lckþ1 and s2 ¼ ld kþ1. Now

Aða 0
kÞ ¼ A

�
ak þ

X
jb1

F
j
k akþ j

�
¼ la 0

k þ akþ1 þ
X
jb1

F
j
k akþ jþ1

¼ la 0
k þ a 0

kþ1Wðakþ1; bk�1Þ þ
X
jb1

F
0 j
k a 0

kþ jþ1

so that d kþ1 ¼ Wðakþ1; bk�1Þ ¼ l2is and s2 ¼ lis. We also have

Aðak�1Þ ¼ lak�1 þ ak ¼ lak�1 þ a 0
k þWðak; bk�1Þa 0

kþ1 þ
X
jb2

G ja 0
kþ j

so that ckþ1 ¼ Wðak; bk�1Þ ¼ l 1
2 is and s1 ¼ 1

2 is.

We have thus shown that the matrix representing A in the chosen basis has

the block upper-triangular normal form

Jðl; kÞ�1 0 0 Jðl; kÞ�1
S

Jðl; k þ 1Þ�1
Jðl; k þ 1Þ�1

S t 0

Jðl; kÞt 0

0 Jðl; k þ 1Þt

0
BBBB@

1
CCCCA ð27Þ

where S is the k � ðk þ 1Þ matrix defined by

S ¼ Sðk; d; lÞ :¼

0 . . . 0 0 0

..

. ..
. ..

. ..
.

0 . . . 0 0 0

0 . . . 0 1
2 is lis

0
BBBB@

1
CCCCA: ð28Þ

We write a 0
2kþ1�j ¼ 1ffiffi

2
p ðe2j�1 � ie2jÞ, b 0

2kþ1�j ¼ a 0
2kþ1�j ¼ 1ffiffi

2
p ðe2j�1 þ ie2jÞ, as

well as aj�1 ¼ 1ffiffi
2

p ð f2j�1 � if2jÞ and bj�1 ¼ aj�1 ¼ 1ffiffi
2

p ð f2j�1 þ if2jÞ for 1a ja k, and

a 0
k ¼ 1ffiffi

2
p ðe2kþ1 þ id f2kþ1Þ, b 0

k ¼ �id a 0
k ¼ 1ffiffi

2
p ð� f2kþ1 � id e2kþ1Þ. The vectors ei, fj

all belong to the real subspace V v
½l� of V whose complexification is Ev

l aEv

l
and

we get a symplectic basis

fe1; . . . ; e2kþ1; f1; . . . ; f2kþ1g

of V v
½l�. In this basis, the matrix representing A is:
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�
JRðl; 2kÞ

��1
sU 2ðfÞ

0 � � � 0
..
. ..

.

0 � � � 0

s

2V
2ðfÞ �s

2 V 1ðfÞ U 1ðfÞ

0 cos f 0 � � � 0 1 0 s sin f

0

0
..
.

0

�
JRðl; 2kÞ

�t 0
..
.

0

0 �s sin f 0 � � � 0 0 �s cos f

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

where s ¼e1, U 1ðfÞ, U 2ðfÞ, V 1ðfÞ and V 2ðfÞ are real 2k � 1 column matrices

such that

�
V 1ðfÞV 2ðfÞ

�
¼

ð�1Þk�1
RðeikfÞ
..
.

RðeifÞ

0
BB@

1
CCA

�
U 1ðfÞU 2ðfÞ

�
¼

ð�1Þk�1
Rðeiðkþ1ÞfÞ
..
.

Rðei2fÞ

0
BB@

1
CCA¼

�
V 1ðfÞV 2ðfÞ

��
RðeifÞ

�
:

This is the normal form of A restricted to V v
½l�. Recall that

s ¼ iW
�
ðA� l IdÞkv; ðA� l IdÞkv

�
:

Theorem 5.2 (Normal form for AjV½l� for l a S1nfe1g.). Let l a S1nfe1g be an

eigenvalue of A. There exists a symplectic basis of V½l� in which the matrix repre-

senting the restriction of A to V½l� is a symplectic direct sum of 4kj � 4kj matrices

ðkj b 1Þ of the form

�
JRðl; 2kjÞ

��1
0 � � � 0
..
. ..

.

0 � � � 0

sjV
1
kj
ðfÞ sjV

2
kj
ðfÞ

0
�
JRðl; 2kjÞ

�t

0
BBBB@

1
CCCCA ð29Þ

and ð4kj þ 2Þ � ð4kj þ 2Þ matrices ðkj b 0Þ of the form
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�
JRðl; 2kjÞ

��1
sjU

2
kj
ðfÞ

0 � � � 0
..
. ..

.

0 � � � 0

sj
2 V

2
kj
ðfÞ �sj

2 V 1
kj
ðfÞ U 1

kj
ðfÞ

0 cos f 0 � � � 0 1 0 sj sin f

0

0
..
.

0

�
JRðl; 2kjÞ

�t 0
..
.

0

0 �sj sin f 0 � � � 0 0 �sj cos f

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

ð30Þ

where JRðeif; 2kÞ is defined as in (20), where
�
V 1

kj
ðfÞV 2

kj
ðfÞ
�
is the 2kj � 2 matrix

defined by

�
V 1

kj
ðfÞV 2

kj
ðfÞ
�
¼

ð�1Þkj�1
RðeikjfÞ
..
.

RðeifÞ

0
BB@

1
CCA ð31Þ

with RðeifÞ ¼ cos f �sin f
sin f cos f

� �
, where

�
U 1

kj
ðfÞU 2

kj
ðfÞ
�
¼
�
V 1

kj
ðfÞV 2

kj
ðfÞ
��
RðeifÞ

�
ð32Þ

and where sj ¼e1. The complex dimension of the eigenspace of eigenvalue l in V C

is given by the number of such matrices.

Definition 5.3. Given l a S1nfe1g, we define, for any integer mb 1, a Hermi-

tian form Q̂Ql
m on Ker

�
ðA� l IdÞm

�
by:

Q̂Ql
m : Ker

�
ðA� l IdÞm

�
�Ker

�
ðA� l IdÞm

�
! C

ðv;wÞ 7! 1

l
W
�
ðA� l IdÞkv; ðA� l IdÞk�1

w
�

if m ¼ 2k

ðv;wÞ 7! iW
�
ðA� l IdÞkv; ðA� l IdÞkw

�
if m ¼ 2k þ 1:

Proposition 5.4. For l a S1nfe1g, the number of positive (resp. negative) eigen-

values of the Hermitian 2-form Q̂Ql
m is equal to the number of sj equal to þ1 (resp.

�1) arising in blocks of dimension 2m in the normal decomposition of A on V½l�
given in Theorem 5.2.

Proof. On the intersection of Ker
�
ðA� l IdÞm

�
with one of the symplectically or-

thogonal subspaces Ev
l aEv

l
constructed above from a v such that ðA� l IdÞpvA0
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and ðA� l IdÞpþ1
v ¼ 0, the form Q̂Ql

m vanishes identically, except if p ¼ m� 1 and

the only non vanishing component is Q̂Ql
mðv; vÞ ¼ s.

Indeed, Ker
�
ðA� l IdÞm

�
BEv

l is spanned by

fðA� l IdÞrv; rb 0 and rþm > pg;

and Q̂Ql
m

�
ðA� l IdÞrv; ðA� l IdÞr

0
v
�
¼ 0 when mþ rþ r 0 � 1 > p so the only non

vanishing cases arise when r ¼ r 0 ¼ 0 and m ¼ pþ 1 so for Q̂Ql
mðv; vÞ. This is equal

to 1
l
W
�
ðA� l IdÞkv; ðA� l IdÞk�1

v
�
¼ 1

l
ls ¼ s if m ¼ 2k, and to iW

�
ðA� l IdÞkv;

ðA� l IdÞkv
�
¼ ið�isÞ ¼ s if m ¼ 2k þ 1. r

The numbers sj appearing in the decomposition are thus invariant of the

matrix.

Corollary 5.5. The normal decomposition described in Theorem 5.2 is unique up to

a permutation of the blocks when the eigenvalue l has been chosen in fl; lg, for in-
stance by specifyng that its imaginary part is positive. It is completely determined

by this chosen l, by the dimension dimC

�
KerðA� l IdÞr

�
for each rb 1 and by the

rank and the signature of the Hermitian bilinear 2-forms Q̂Ql
m for each mb 1. r
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