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Normal forms for symplectic matrices

Jean Gutt*

Abstract. We give a self contained and elementary description of normal forms for
symplectic matrices, based on geometrical considerations. The normal forms in question
are expressed in terms of elementary Jordan matrices and integers with values in
{—1,0,1} related to signatures of quadratic forms naturally associated to the symplectic
matrix.
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1. Introduction

Let V' be a real vector space of dimension 2n with a non degenerate skewsym-
metric bilinear form Q. The symplectic group Sp(V,Q) is the set of linear
transformations of V' which preserve Q:

Sp(V,Q) ={A:V — V| A linear and Q(A4u, Av) = Q(u,v) for all u,v € V}.

A symplectic basis of the symplectic vector space (7, Q) of dimension 2n is a basis
{e1, ..., ey} in which the matrix representing the symplectic form is Qy = (fi 4 {)d) .
In a symplectic basis, the matrix A’ representing an element A € Sp(V, Q) belongs

to
Sp(2n, R) = {4’ € Mat(2n x 2n,R) | A" QpA" = Qy}

where (-)" denotes the transpose of a matrix.
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Given an element A in the symplectic group Sp(V,Q), we want to find a sym-
plectic basis of ¥ in which the matrix A’ representing 4 has a distinguished form;
to give a normal form for matrices in Sp(2n, R) means to describe a distinguished
representative in each conjugacy class. In general, one cannot find a symplectic
basis of the complexified vector space for which the matrix representing A has
Jordan normal form.

The normal forms considered here are expressed in terms of elementary
Jordan matrices and matrices depending on an integer s € {—1,0,1}. They are
closely related to the forms given by Long in [9], [8]; the main difference is that,
in those references, some indeterminacy was left in the choice of matrices in
each conjugacy class, in particular when the matrix admits 1 as an eigenvalue.
We speak in this case of quasi-normal forms. Other constructions can be found
in [16], [5], [6], [15], [12] but they are either quasi-normal or far from Jordan
normal forms. Closely related are the constructions of normal forms for real
matrices that are selfadjoint, skewadjoint or unitary with respect to an indefinite
inner product where sign characteristics are introduced; they have been studied
in many sources; for instance-mainly for selfadjoint and skewadjoint matrices-
in the monograph of 1. Gohberg, P. Lancaster and L. Rodman [2], and for
unitary matrices in the papers [1], [3], [10], [13]. Normal forms for symplectic
matrices have been given by C. Mehl in [11] and by V. Sergeichuk in [14]; in
those descriptions, the basis producing the normal form is not required to be
symplectic.

We construct here normal forms using elementary geometrical methods.

The choice of representatives for normal (or quasi normal) forms of ma-
trices depends on the application one has in view. Quasi normal forms were
used by Long to get precise formulas for indices of iterates of Hamiltonian or-
bits in [7]. The forms obtained here were useful for us to give new character-
isations of Conley-Zehnder indices of general paths of symplectic matrices [4].
We have chosen to give a normal form in a symplectic basis. The main inter-
est of our description is the natural interpretation of the signs appearing in
the decomposition, and the description of the decomposition for matrices with
1 as an eigenvalue. It also yields an easy natural characterization of the con-
jugacy class of an element in Sp(2n,R). We hope it can be useful in other
situations.

Assume that V' decomposes as a direct sum V' = V| @ V, where V' and V, are

Q-orthogonal A-invariant subspaces. Suppose that {ej,...,ex} is a symplectic
. . . . . . A Al
basis of V in which the matrix representing 4|, is 4" = ( Az Az)' Suppose also

that {fi,..., fu} is a symplectic basis of V, in which the matrix representing
. A" AV .
Aly, is A" = <AZ’ Az,). Then {er,...,ek, fiy- s fls€kily- €%y f1i1y---, f2} IS @

symplectic basis of V" and the matrix representing A in this basis is
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A0 4, 0
0 A 0 A
Ay 0 4, 0
0 4y 0 A4

The notation A’ ¢ A” is used in Long [7] for this matrix. It is “a direct sum of
matrices with obvious identifications”. We call it the symplectic direct sum of the
matrices A" and A",

We C-linearly extend Q to the complexified vector space V' © and we C-linearly
extend any 4 € Sp(V,Q) to V°. If v; denotes an eigenvector of 4 in V' of the
eigenvalue A, then Q(Av,, Av,) = Q(Av;, uv,) = AuQ(vy,v,), thus Q(v;,v,) =0
unless x4 = } Hence the eigenvalues of A4 arise in “quadruples”

0] = {li} (1)

We find a symplectic basis of '* so that 4 is a symplectic direct sum of block-
upper-triangular matrices of the form

J(2, k) 0 (Id D(k,s))
0 Jo kN0 1d )

or
J(7, k)™ 0 Id 0 0  D(k,s)
J(A k)™ Id D(k,s) 0
J(3,k)° Id 0 |
0 J(, k)] \ 0 Id
or
J( k)™ 0 Id 0 0 S(k, s, A)
J(k+1)7" Id S(k,s,2)" 0
J(2, k)" 1d 0
0 J(k+1)7/) \0 Id

Here, J(A,k) is the elementary k x k Jordan matrix corresponding to an eigen-
value A, D(k,s) is the diagonal k& x k& matrix

D(k,s) = diag(0,...0,s),
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and S(k, s, 1) is the k x (k 4+ 1) matrix defined by

0 -0 0 0
Stkos.2)i=| 0o
0 --- 0 %is Als

with s an integer in {—1,0,1}. Each s e {+1} is called a sign and the collection of
such signs appearing in the decomposition of a matrix 4 is called the sign charac-
teristic of 4.

More precisely, on the real vector space V', we shall prove:

Theorem 1.1 (Normal forms for symplectic matrices). Any symplectic endomor-
phism A of a finite dimensional symplectic vector space (V,Q) is the direct sum of
its restrictions Ay, to the real A-invariant symplectic subspace V;; whose complex-
ification is the direct sum of the generalized eigenspaces of eigenvalues 1, %, Aand %

We distinguish three cases: . ¢ S', . = +1 and ) € S"\{+1}.
Normal form for 4, Vi for 1 ¢ S!:
Let J.¢ S' be an eigenvalue of A. Let k := dimg Ker(4 — 41d) (on V) and
q be the smallest integer so that (A — 21d)7 is identically zero on the generalized
eigenspace E;.
e If ) is a real eigenvalue of A (A ¢ S' so A # +1), there exists a symplectic basis
of Vs in which the matrix representing the restriction of A to V) is a symplec-
tic direct sum of k matrices of the form

Jg) 0
0 ‘]()“7 qj)r

with g=q1 > qx >+ >qx and J(A,m) is the elementary m x m Jordan
matrix associated to A

~
(=)

J(A,m) =
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This decomposition is unique, when . has been chosen in {1,7."'}. It is deter-
mined by the chosen A and by the dimension dim(Ker(4 — 21d)") for each
r> 0.

o If i =re ¢ (S'UR) is a complex eigenvalue of A, there exists a symplectic
basis of V) in which the matrix representing the restriction of A to V) is a
symplectic direct sum of k matrices of the form

Tl ®2g)7 0
0 Jr(re™® 2¢;)"

withq = q1 > g2 > --- > qi and Jg(re'®,2m) is the 2m x 2m block upper trian-
gular matrix defined by

R(re) 1d
R(re’”) 1d 0
R(re’?) 1d
Ju(re 2m) = ' .
R(re) 1d
0 R(re’?) 1d

R(re')
with R(re') = (75nd ing). N

This decomposition is unique, when A has been chosen in {4, 2! AT It
is determined by the chosen A and by the dimension dim(Ker(A — /IId)r) for
each r > 0.

Normal form for A\Vm for A = +1:

Let A= +1 be an eigenvalue of A. There exists a symplectic basis of Vy;) in
which the matrix representing the restriction of A to Vi is a symplectic direct sum
of matrices of the form

J(r)™" Clrysi,2)
0 J(21)"

where C(rj,s;, 1) = J(/l,rjf1 diag(0,...,0,s) with s; € {0,1,—1}. If's; =0, then
1j is odd. The dimension of the eigenspace of the eigenvalue A is given by
2Card{j|s; = 0} + Card{j|s; # 0}.

The number of s; equal to +1 (resp. —1) arising in blocks of dimension 2k
(i.e. with corresponding r; = k) is equal to the number of positive (resp. negative)
eigenvalues of the symmetric 2-form
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0% : Ker((4 — /lId)Zk) x Ker((4 — “d)zk) R
(0,w) = 2Q((A4 — 21d)*v, (4 — 21d)*'w).

The decomposition is unique up to a permutation of the blocks and is determined by
A, by the dimension dim (Ker(A — /IId)r) fAO( each r > 1, and by the rank and the
signature of the symmetric bilinear 2-form Q3 for each k > 1.

Normal form for 4y, for 4 € SN\{+1}:

Let ). € S', A # +1 be an eigenvalue of A. There exists a symplectic basis of Vi
in which the matrix representing the restriction of A to Vy is a symplectic direct
sum of 4k; x 4k; matrices (k; > 1) of the form

0 ---0

e@2) |0 V@) 5129
0.0 2)

o | (Ja2,2K))°

and (4k; + 2) x (4k; + 2) matrices (k; > 0) of the form

0 ---0
7 -1 : : 5 =5
Ue(2k) | sUR@) | 5 0 VR 2V | UL@)
0 ---0
0 cos ¢ 0 ---0 1 0 5;sin ¢
(3)
0 0
0 : (J(2,2k)))° :
0 0
0 —sjsing | 0 --- 0 0 -5 cos ¢

where Jg(e™,2k) is defined as above, where (Vkl] (D)VE(P)) is the 2k; x 2 matrix
defined by

(1) R(e™?)
(Vi@ VE(9) = ; 4)
R(e')

sing cos¢

with R(e™) = (COW *Si“"j), where

(U (DU () = (Vi (9) Vi (9)) (R(e™)) (5)

and where s; = £1. The complex dimension of the eigenspace of the eigenvalue A
in VC is given by the number of such matrices.
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The number of s; equal to +1 (resp. —1) arising in blocks of dimension 2m in the
normal decomposition given above is equal to the number of positive (resp. negative)
eigenvalues of the Hermitian 2-form Q.. defined on Ker((A — A Id)m) by:

0/ - Ker((4 — 21d)") x Ker((4 — 41d)") — C
(v, W) — %Q((A—Md)km (4 -21d)"'w)  if m=2k
(0,w) = iQ((4 — 211d) v, (4 — 21d) W) if m =2k + 1.

This decomposition is unique up to a permutation of the blocks, when J. has been
chosen in {J,A}. It is determined by the chosen A, by the dimension
dim(Ker(4 — 21d)") for each r > 1 and by the rank and the signature of the
Hermitian bilinear 2-form Q;,, for each m > 1.

The normal form for A\V[,;] is given in Theorem 3.1 for A ¢ S!, in Theorem 4.1
for 4= +1, and in Theorem 5.2 for Ae S'\{+1}. The characterisation of
the signs is given in Proposition 4.3 for 4= +1 and in Proposition 5.4 for
e SN\{+1}).

A direct consequence of Theorem 1.1 is the following characterization of the
conjugacy class of a matrix in the symplectic group.

Theorem 1.2. The conjugacy class of a matrix A € Sp(2n, R) is determined by the
following data:

o the eigenvalues of A which arise in quadruples [ = {2, 27", 2,27},

e the dimension dim (Ker(A — /IId)r) for each r > 1 for one eigenvalue in each
class [2);

e for .= +1, the rank and the signature of the symmetric form Qék for each
k =1 and for an eigenvalue 7 in S {41} chosen in each [J], the rank and the
signature of the Hermitian form Q% for each m > 1, with

0 : Ker((4 — 21d)") x Ker((4 — 21d)") — C
(v, W) — %Q((A —21d)* v, (4 - 21d) W) if m =2k

(0, w) = iQ((4 — 21d) v, (4 — J1d) W) if m =2k + 1. O

2. Preliminaries

Lemma 2.1. Consider A € Sp(V,Q) and let 0 # j. € C. Then Ker(4 — A1d)7 in
V'€ is the symplectic orthogonal complement of Tm (A — % Id) /.
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Proof.

Q((A4 — Ald)u, Av) = Q(Au, Av) — 3Q(u, Av) = Q(u,v) — AQ(u, Av)

s (4~ fa):)

and by induction

A , A A
Q((A — /IId)-’u,Afv) = (=4)/Q (u, <A — Id) v). (6)
The result follows from the fact that A4 is invertible. O

Corollary 2.2. If E; denotes the generalized eigenspace of eigenvalue 1, i.e.
E;:={ve VY| (4 - 21d)v =0 for an integer j > 0}, we have

Q(E;,E,) =0 when iy # 1.

Indeed the symplectic orthogonal complement of E; = Uj Ker(4 — 21d) is
the intersection of the Im(4 —1 Id)’. By Jordan normal form, this intersection
is the sum of the generalized eigenspaces corresponding to the eigenvalues which
are not } _

If v=u+iu" is in Ker(4 — AId)’ with u and ' in V then ¢ =u —iu' is in
Ker(4 — A1d)’ so that E; @ E; is the complexification of a real subspace of V.
From this remark and Corollary 2.2 the space

Wi =E®E,®E @ ; (7)
is the complexification of a real and symplectic A-invariant subspace V|; and
V=V ® Vi@ @V (8)

where we denote by [4] the set {4, Z,%,%} and by [41],...,[Ak] the distinct such sets
exhausting the eigenvalues of A.

We denote by A4;, the restriction of 4 to V|;;. It is clearly enough to obtain
normal forms for each A4j;; since 4 will be a symplectic direct sum of those.

We shall construct a symplectic basis of W/;; (and of V|;;) adapted to 4 for a
given eigenvalue A of 4. We assume that (4 — 21d)”™" =0 and (4 — 21d)? #0
on the generalized eigenspace E;. Since A4 is real, this integer p is the same for
J. By Lemma 2.1, Ker(A4 — 21d)’ is the symplectic orthogonal complement of
Im(A4 —11d)’ for all j, thus dimKer(4 — 21d)’ = dim Ker(4 — 1 Id)’; hence
the integer p is the same for 4 and }
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We decompose W;; (and V) into a direct sum of A-invariant symplectic
subspaces. Given a symplectic subspace Z of V|; which is A-invariant, its
orthogonal complement (with respect to the symplectic 2-form) V' := Z1e is
again symplectic and A-invariant. The generalized eigenspace for 4 on V'C are
E = V' N E,, and the smallest integer p for which (4 — 21d)?* =0 on E’ is
such that p’ < p.

Hence, to get the decomposition of W, (and V) it is enough to build a
symplectic subspace of W}; which is 4-invariant and closed under complex conju-
gation and to proceed inductively. We shall construct such a subspace, containing
a well chosen vector v € E; so that (4 — 21d)”v # 0.

We shall distinguish three cases; first A¢S! then 1= +1 and finally
Je SN\{=£1}.

We first present a few technical lemmas which will be used for this con-
struction.

2.1. A few technical lemmas. Let (V,Q) be a real symplectic vector space.
Consider 4 € Sp(V,Q) and let / be an eigenvalue of 4 in V'C.

Lemma 2.3. For any positive integer j, the bilinear map

~ . 1 7
Q;: E;/Ker(4 — 21d)’ x El/z/Ker<A — /lld> —C

(Ie], W) — Q;([v], W) == Q((4 — /lld)jv,w) veE;, we Ey, 9)

is well defined and non degenerate. In the formula, [v] denotes the class containing
v in the appropriate quotient.

Proof. The fact that Q,- is well defined follows from equation (6); indeed, for any
integer j, we have

Q((4 - 21d) u,v) = (—-2)’Q (Aju, (A - % Id>jv> . (10)

The map is non degenerate because Qj([u], [w]) =0 for all w if and only if
(A—AId)’v=0 since Q is a non degenerate pairing between E; and Ej;,
thus if and only if [v] =0. Similarly, Q;([v], [w]) =0 for all v if and only if
w is Q-orthogonal to Im(4 — AId)’, thus if and only if w e Ker(4 —11d)’
hence [w] = 0. O

Lemma 2.4. For any v,w e V, any A € C\{0} and any integers i >0, j > 0 we
have:
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, j
Q((A — 21d)"v, (A —% Id) w)
1 i 1y
:—EQ (4—-21d)" v, A—de W

1 i A
_PQ<(A—/LId) v,(A—IId> w. (11)

In particular, if A is an eigenvalue of A, if v € E; is such that p > 0 is the largest
integer for which (A — A21d)"v # 0, we have for any integers k, j > 0:

Q((4 - 21d)" o, w) = (=22)/Q ((A — AId)" Ty, (A — % Id>jw> (12)

so that

Q((4 - A1d)’v,w) = (—1%)"Q <v, (A —% Id)pw> (13)
and

x Y
Q((A—/Hd) v7(A—IId>w>:O if k+j>p. (14)

Proof. We have:

Q ((A — 21d)'v, <A — % Id)jw>
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1 : 1.\
+2Qf (4 - 21d)"v, (A—Ild> n

1 ; 1.\
—FQ A(A — A1d)'v, (A_Ild> w

and formula (11) follows.
For any integers k, j > 0 and any v such that (4 — 21d)”v = 0, we have, by

(6),

A A j ‘
(=1)'Q ((A — ALd)PTRy, <A _% Id> W> =Q((4 - 21d)"* o, 47w) = 0.

~

Hence, applying formula (11) with a decreasing induction on j, we get formula
(12). The other formulas follow readily. O

Definition 2.5. For / € S' an eigenvalue of 4 and v € E; a generalized eigenvec-
tor, we define

T () i= ——=Q((4 - 21d)"v, (4 — )'5). (15)
’ li.
We have, by equation (11):
T j(v) = =Tit1,j(v) = Tig,j-1(v), (16)
and also,
T, j(v) = =Tj.(v). (17)

Lemma 2.6. Let A€ S' be an eigenvalue of A and v e E; be a generalised
eigenvector such that the largest integer p so that (A — A1d)"v # 0 is odd, say,
p =2k —1. Then, in the A-invariant subspace E] of E; generated by v, there
exists a vector v' generating the same A-invariant subspace Ef/ = E}, so that
(A4 — 21d)"v" # 0 and so that

T;,;(v)=0 foralli,j<k-—1.

If Zis real (ie. £1), and if v is a real vector (i.e. in V), the vector v' can be chosen
to be real as well.

Proof. Observe that
Tik-1(0) = =Tk (v) — Te1,x(v) by (11)
= _Tk—l,k(U) by (14)
= Tk7k71(v) by (17)
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is real and can be put to d = +1 by rescaling the vector. We use formulas (11)
and (17) and we proceed by decreasing induction on i + j as follows:

® if Tj_1 k—1(v) = oy, this «; is purely imaginary, we replace v by

o=y — 2
’ 2Ad

(4 — 21d)v;

clearly EY' = EV and T; ;(v') = T; ;(v) for i + j > 2k — 1 but now

or

il -
2d

>d Ty k—1(v)

Ti1h-1(v)) =0 — Ti—1,k(v) = 0;

so we can now assume Ty_; x—1(v) = 0; observe that if 4 is real and visin V,

then «; = 0 and v’ = v;

o if Ty s i—1(v) =0r =—Ty_1 x—2(v), this oy is real and we replace v by

02 N
A — 21d)"v;
de( )
the space E] does not change and the quantities 7; ;(v) do not vary for
i+ j>2k—2;now
o 223
Thon i1 (V) = o2 — o= T ko1 (0) — =2 Thn 1 =0,
k—2,k-1(0") = 0 5 Lk 1(v) 2 Lk 2,k+1(0)
hence also Ty x—»(v") = 0; observe that if 1 is real and v is in V/, then v’ is
inV.
e we now assume by induction to have a J >0 so that T7;;(v) =0 for all
0<i,j<k—1sothati+j>2k—1—-J;
o if Ty i—1(v) =ay, then Tj_; —1(v) = (—I)J_IT](_],](_J(U> so that oy is real
when J is even and is imaginary when J is odd; we replace v by

oLy
22°d

(A4 —A1d)7v;

the space E] does not change and the quantities 7; ;(v) do not vary for
i+ j>2k—J; but now

_
T d

A N
= 0oy 3 ( 1) 3 0.

oy
Ty i—1(v)) =0 Ty k-1(v) — ﬁ Ti—y kvs-1(v)
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Hence also Tj_ji1k-2(v") =0,...Tk—1 4—s+1(v") = 0; so the induction pro-
ceeds. Observe that if A is real and visin V then v/ isin V. O

We shall use repeatedly that a n x n block triangular symplectic matrix is of
the form

B = (D")!
A = < € Sp(2n, R) < B (D)7 18
1 . .
0 D C = (D7)”' S with S symmetric.

3. Normal forms for Ay, when 1 ¢ S’

As before, p denotes the largest integer such that (4 — A1d)” does not vanish
identically on the generalized eigenspace E;. Let us choose an element v € E;
and an element w € E}/; such that

Qp([”]? [WD = Q((A - /Hd)pv, W) # 0.

Let us consider the smallest 4-invariant subspace E} of E; containing v; it is of
dimension p + 1 and a basis is given by

ap:i=v,...,a; = (A—A1d)'v, ... a, := (4 — 21d)"v}.
{ ( ) p = ( )

Observe that Aa; = (A — A1d)a; + Aa; so that Aa; = la;+ a;; for i < p and
Aa, = a,.

Similarly, we consider the smallest 4-invariant subspace EY), of Ey/, contain-
ing w; it is also of dimension p + 1 and a basis is given by

1 J 1 r
bo:=w,... b= <A—;Id> W, ..., by = <A—zld) wop.
One has

Q(a;, a;) = 0 and Q(b;, b;) = 0 because Q(E;, E,) = 0 if iu # 1;

Q(a;, b)) = 0if i + j > p by equation (14);

Q(aj, by-i) = (;—j)piiQ((A — 21d)"v,w) by equation (12) and is non zero by the
choice of v, w.

The matrix representing Q in the basis {b,,...,bo,q0,...,a,} is thus of the
form



122 J. Gutt

0 0] = 0
0 0| = ¥
* * |0 0
0 |0 0

with non vanishing * Hence Q is non degenerate on E] @ Ey); which is thus a
symplectic A-invariant subspace.

We now construct a symplectic basis {bl/,, .., bhag, ... ay} of EVO® El‘%, ex-
tending {ao, ...,a,}, using a Gram-Schmidt procedure on the b;’s. This gives a
normal form for 4 on E] ® El"//1

If 7 is real, we take v, w in the real generalized eigenspaces E;* and El[Rj , and
we obtain a symplectic basis of the real A-invariant symplectic vector space,
EM @ Em’. If / is not real, one considers the basis of E)H @ El‘_vi defined by the
conjugate vectors {b),..., by, do,. .., d,} and this yields a conjugate normal form
on E; @ E, /3 hence a normal form on W|; and this will induce a real normal
form on V.

We choose v and w such that Q((A —11d)"w, u) = 1. We define inductively
on j
by = Q(bj,a()) by = by;
by =g (0 = Sy by )b} ),

so that any b; is a linear combination of the b, with r > j.

In the symplectic basis {b,, ..., bg, a, ..., a,} the matrix representing 4 is
B 0
0 JAp+ 1)
where
A1
A1 0
A1
J(A,m) = (19)
A1
0 A1
A
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is the elementary m x m Jordan matrix associated to A. Since the matrix
is symplectic, B is the transpose of the inverse of J(4,p+1)" by (18), so
B=J(J, p+1)"". This is the normal form for 4 restricted to E;®E},.

If . =re" ¢ R we consider the symplectic basis {b’ﬁ, ...byao, ... ay} of
EAL @ El‘_‘//1 as above and the conjugate symplectic basis {E, e ,b_(’), dy, ...,d,} of
E;®E[;. Writing bl = % (uj + iv;) and a; = % (w; — ix;) for all 0 < j < p with

the vectors u;, v;, w;, x; in the real vector space V, we get a symplectic basis
{up, vy ..., uo,v0, w0, X0 ..., wp, x,} of the real subspace of V whose complexifica-
tion is £} @ Elw/ , @ EE @ E” .. In this basis, the matrix representing A4 is

17
Je(L2(p+ 1) 0
0 Ja(2,2(p+ 1))
where Jg(re,2m) is the 2m x 2m matrix written in terms of 2 x 2 matrices as
R(re’?) 1d
R(re’?) 1d 0
R(re?) 1d
Jr(re' 2m) = (20)
R(re) 1d
0 R(re") 1d

R(re’?)

rsing rcos¢

with R(re?) = (’°°S¢ ~rsin ¢>. By induction, we get

Theorem 3.1 (Normal form for Ay, for A ¢ S'.). Let L ¢ S' be an eigenvalue of
A. Denote k := dim¢ Ker(4 — A1d) (on V®) and p the smallest integer so that
(A — A1d)"*Y is identically zero on the generalized eigenspace E,.

o If /. # +1 is a real eigenvalue of A, there exists a symplectic basis of Vy;) in
which the matrix representing the restriction of A to V| is a symplectic direct
sum of k matrices of the form

J(A,pi+1)7" 0
0 J(pj+ 1)

with p = py = py > -+ = p and J (A, k) defined by (19). To eliminate the am-
biguity in the choice of A in [A] = {1, 2""} we can consider the real eigenvalue
such that A > 1. The size of the blocks is determined knowing the dimension
dim(Ker(4 — 21d)") for each r > 1.
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o If L =re" ¢ (S'UR) is a complex eigenvalue of A, there exists a symplectic
basis of V;) in which the matrix representing the restriction of A to V;) is a
symplectic direct sum of k matrices of the form

(JR (re=,2(p;+ 1)) 0 )

0 Jr(re . 2(p; + 1))T

with p = p1 = pa > --- > pi and Jg(re' k) defined by (20). To eliminate the
ambiguity in the choice of 4 in [2] = {A,A~",2,27'} we can choose the eigen-
value A with a positive imaginary part and a modulus greater than 1. The size
of the blocks is determined by the dimension dimg (Ker(A — A Id)r) for each
r>1.

This normal form is unique, when a choice of /. in the set [A] is fixed.

4. Normal forms for 4y, when 4 = +1

In this situation [A] = {4} and V; is the generalized real eigenspace of eigenvalue
A, still denoted—with a slight abuse of notation—E). Again, p denotes the largest
integer such that (4 — AId)” does not vanish identically on E;. We consider
QI, : E;/Ker(4 — A1d)” x E; /Ker(A — A1d)” — R the non degenerate form de-

fined by Q,([v],[w]) = Q((4 — 21d)"v,w). We see directly from equation (13)
that @, is symmetric if p is odd and antisymmetric if p is even.

4.1. If p =2k — 1is odd. We choose v € E; such that

O([v], [v]) = Q((4 — A1d)"v,v) # 0
and consider the smallest A-invariant subspace E; of E; containing v; it is spanned
by
{a, .= (4 —21d)"v,...,a; :== (4 — A1d)'v, ... ag = v}
We have

Q(a;,a;) =0if i + j > p+ 1(= 2k) by equation (14);
Q(a;, a,-;) # 0; by equation (12) and by the choice of v.

Hence E7 is a symplectic subspace because, in the basis defined by the ¢;’s, Q has

. 0 .
the triangular form ( - and has a non-zero determinant.

* *
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We can choose v in E; = V so that Q((4 — 21d)*v, (4 — 11d)*'v) = As with
s = +1 by rescaling the vector and one may further assume, by Lemma 2.6, that

T;,(v) :L%Q((A —21d)'v, (4 - 21d)7v) =0  forall 0 <i,j<k—1.

)l
We now construct a symplectic basis {a,,...,a;,ao,...,ar—1} of Ej, extending
{ao,...,ak-1}, by a Gram-Schmidt procedure, having chosen v as above. We
define inductively on 0 < j < k — 1
ro_ 1 )
% = Qay,a0) P

1
a/*j = Qay_;,a;) (aP*j - Zk<j Q(aP*jﬁ ak)a‘,/;,k),

P
so that any 4; is a linear combination of the @’s with r > j and in particular
;1 k—1
@ = 7+ 3y Gk -

In the symplectic basis {a[/], ...,a;,q, ..., a1} the matrix representing A is

4= (ff J(fk)f)

with J(4, m) defined by (19) and with C identically zero except for the last column,
and the coefficient Cf = si. Since the matrix is symplectic, B is the transpose
of the inverse of J(4, p+ 1)" by (18), so B = J(4, k)" and J(4,k)C is symmetric
with zeroes except in the last column, hence diagonal of the form diag (0, ..., 0, s).
Thus

JO. k)" T4, k) " diag(0,...,0,5)
0 J(k)* ’

with s = +1, is the normal form of A4 restricted to £]. Recall that
s=27"'Q((4 - 21d)*v, (4 — 21d)* v).

4.2. If p = 2k is even. We choose v and w in E) such that

O([v], [w]) = Q((A4 — A1d)"v,w) = 2 =1

and we consider the smallest A4-invariant subspace £} @ E) of E; containing v
and w. It is of dimension 4k + 2. Remark that Q((4 — 21d)"v,v) = 0. We can
choose v so that

T, (v) = %Q((A —21d)"v, (4 — 21d)*v) =0  forall r,s.
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Indeed, by formula (11) we have T; ;(v) = —Tj41,;(v) — Tis1,j—1(v). Observe that
T; j(v) = —T;(v) so that T;;(v) =0 and Tj ( ): —Tjis1(v) = Tj—y,i11(v). We
proceed by induction, as in Lemma 2.6:

® 7, 0(v) =0implies 7T, ,(v) = 0 for all 0 < r < p by equation (12).

e We assume by decreasing induction on J, starting from J = p, that we have
T;j(v) =0 for all i+ j>J. Then we have T i_(v) = =T _1_541(v) —
Tj_r—5s+1(v); the first term on the righthand side vanishes by the
induction hypothesis, so 7_1 0(v) = (—1)"Ty_1_55(v) = (=)' Ty 1 (v) =

(—1)/ Ty 0.
If Ty_10(v) = a # 0, J must be even and we replace v by

o

W (A -2 Id)p_J+l w

v =v+
Then v' e E'@E), E'@®E) =E' ®E), Q((4—21d)"0,w) =4" and
T j(v") = T;;(v) =0 for all i + j > J but now

TJ,LQ(U/) = TJ,L()( ) ((A ild) w, l))

27
+ %Q((A —21d) o, (A — A1d) )

2
o
+WQ((A—)LI(1) w, (A — 21d)? J+1 )
oo
=%

so that 7; ;(v') = 0 for all i + j > J — 1 and the induction proceeds.

We assume from now on that we have chosen v and w in E; so that
Q((4—21d)’v,w) =1 and Q((4 - 21d)"v, (4 —11d)"v)=0 for all r, s. We
can proceed similarly with w so we can thus furthermore assume that
Q((4 = 21d)’w, (4 — 21d)*w) = 0 for all j, k.

A basis of E] @ E}’ is given by

{a, = (A—ild)pv,...,ao:U7b0:W7.._7bp = (4 — A1d)"w}.

We have

Q(a;,a;) = 0 and Q(b;, b;) = 0 by the choice of v and w;
Q(a;, bj) = 0if i + j > p by equation (14);

Q(a;, b,—;) # 0 by equation (12) and the choice of v, w.
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The matrix representing Q has the form hence is non

singular and the subspace E; @ E}’ is symplectic. We now construct a symplectic
basis {a,,...,ay,bo,...,bp} of EL @ EY,, extending {by,...,b,}, using a Gram-
Schmidt procedure on the a;’s. We define inductively on j

. 1
p *= Qa, by) U

a, /_gz(apl, , (ap = Yok Qap-y bi)ay ),

so that any a; is a linear combination of the a; with k > j.

In the symplectic basis {a,, ..., ag, by, ...,b,} the matrix representing 4 is

(0 sapiery)

Jp+ 17" 0
0 J(,p+ 1)

is a normal form for A restricted to £; @ E}". Thus we have:

Hence, the matrix

Theorem 4.1 (Normal form for A\V[,;] for A= +1.). Let 2= +1 be an eigenvalue
of A. There exists a symplectic basis of V) in which the matrix representing the
restriction of A to V) is a symplectic direct sum of matrices of the form

J(],,Vj)il C(Vj,Sj,/l)

0 J(/l,rj)T
where C(rj,s,7) = J(4,r;)” " diag(0,...,0,s;) with s;€{0,1,—1}. If 5 =0,
then r; is odd. The dimension of the eigenspace of eigenvalue 1 is given by

2Card{j|s; = 0} + Card{j|s; # 0}.

l?eﬁnition 4.2. Given 1 € {£1}, we define, for any integer k > 1, a bilinear form
03, on Ker((4 — 71d)*):

03 : Ker((4 — Md)”‘) x Ker((4 — Md)zk) R
(U, W) = AQ((A — /lld)kv7 (A _ }vId)k_lw). (21)

It is symmetric.
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Proposition 4.3. Given 1 € {+1}, the number of positive (resp. negative) eigen-
values of the symmetric 2-form sz is equal to the number of s; equal to +1
(resp. —1) arising in blocks of dimension 2k (i.e. with corresponding r; = k) in
the normal decomposition of A on V};) given in Theorem 4.1.

On V), we have:

=5

im V'

Z s; = Signature(Q k) (22)
J k=1

Proof. On the intersection of Ker((4 — /lld)Zk) with one of the symplectically
orthogonal subspaces E constructed above for an odd p # 2k — 1, the form Q3,
vanishes identically. On the intersection of Ker((4 — 2 Id)*) with a subspace
E! for a vso that p =2k —1 and Q((4 — A1d) v, (4 — 21d) ! v) = Zs the only
non vanishing component is ka(v, v) =s.

Indeed, Ker((4 — 41d)*) n E} is spanned by

{(4 - A1d)"v;r > 0 and r + 2k > p},

and Q((4 — 21d)""v, (4 - A“Id)k_“”lv) =0 when 2k+r+r' —1>p so the
only non vanishing cases arise when r = ' =0 and p = 2k — 1.

Similarly, the 2 form Q% vanishes on the intersection of Ker((4 — Md)zk)
with a subspace E] @ E)" constructed above for an even p. ]

The numbers s; appearing in the decomposition of 4 are thus invariant of the
matrix.

Corollary 4.4. The normal decomposition described in Theorem 4.1 is determined
by the eigenvalue 1, by the dimension dim(Ker(A4 — A1d)") for each r > 1, and
by the rank and the signature of the symmetric bilinear 2-forms ij for each
k > 1. It is unique up to a permutation of the blocks. O

5. Normal forms for Ay, when 1 = ' € ST\ {+1}

We denote again by p the largest integer such that (4 — A1d)” does not vanish
identically on E, and we consider the non degenerate sesquilinear form

O : E;/Ker(4 — 11d)" x E; /Ker(4 — J1d)”
O([v], [w]) = P7Q((4 — A1d)"v, w).
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Since @ is non degenerate, we can choose v € E; such that Q([v],[v]) # 0 thus
(4 —21d)’v # 0 and we consider the smallest A-invariant subspace, stable by
complex conjugaison, and containing v : EY @EZ c E; @ E;. A basis is given
by

{a; == (A — 21d)"'v,b; == (A — 21d)’5 0 < i,j < p}.

We have a; = b; and
e Q(a;,a;) =0, Q(b;,b;) = 0 because Q(E;, E;) = 0;
® Q(a;,by) =01if i+ k > p + 1 by equation (14);
® Qa;,by) #0if p =i+ k by equation (12) and by the choice of v.

We conclude that £} ® Ei is a symplectic subspace.

51.  p=2k—1 is odd. Observe that T 1(v):=1Q((4—21d)"p,
(4 -2 Id)kilﬁ) = s is real and can be put to +1 by rescaling the vector (we could
even put it to 1 exchanging if needed 1 and its conjugate). One may further
assume, by Lemma 2.6 that

T (v) = i %Q((A —21d)'v, (4 - 21d)’5) =0 forall0 <i,j <k —1.

A

We consider the basis {ax_1,...,ak,bp, ..., bk, bo,...,bx_1,a0,...,ar_1} for such
a vector v with Ty ;_1(v) =s= +1 and T;;(v) =0 for all 0 <i,j<k—1; the
matrix representing Q has the form

*I
(e

*I1
)

*I
*

*1
*

(e
*!
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and we transform it by a Gram-Schmidt method into a symplectic basis composed
of pairs of conjugate vectors, extending {by,...,bk_1,qa0,...,ax—1} on which Q
identically vanishes. We define

1
/
a S —
21 21,
Q(a—1,bo)

1

b2k—1 = a, —
b 2k—1
2](71,610)

békfl - Q(

and, inductively on increasing j with 1 < j <k

1 -
’ /
azk,j = m (azkfj - § Q(a2k7j> brfl)azkfr) )

r=1

/ —
by = ay._;-

Any ay,_; is a linear combination of the ax.; for 1 <i < j; reciprocally any ax;
can be written as a linear combination of the @}, ; for 1 <i < j, and the coeffi-
cient of aékfj is equal to Q(ax—;, bj_1).

The basis {a};,_,....a;,b% ,....,b;,bo,... ,bi_1,a9,...,ar_1} is symplectic,
and in that basis, since 4(a,) = Aa, +a,.1 and A(b,) = Jb, + b, for all r <
2k — 2, the matrix representing A4 is of the block upper triangular form

0 C
* C 0
J(k)* 0

where C is a k x k matrix such that the only non vanishing terms are on the last
column (CJ’ = 0 when j < k) and _C,f = Q(ak, by—1) = sA. The fact that the matrix
is symplectic implies that S := J(4, k) C is hermitean; since Sji = 0 when j # k, we
have,

() () ()
cC=Jk Lo = C(k,s, 7
(4, k) 0 0 0 ( )

0 0 s

and the matrix of the restriction of 4 to the subspace E7 @Ef has the block
triangular normal form
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J( k)" 0 0 C(k,s,7)
JO )Y Clk,s, 2) 0 (23)
J(A, k)" 0
0 J(A, k)"
Writing ay, ; = \/LE (-1 — iey), by = ay ;= \/ii(eg_,q +iey;), as well as a;_ =

%(fzj_l —ify) and by =@ = %(fzj_l + ify;) for 1 < j <k, the vectors e;,
/; all belong to the real subspace denoted V[ﬁ] of V' whose complexification is
E;® Ei and we get a symplectic basis

{61,...,621(,](1,...,](‘2](}

of this real subspace V[j]. The matrix representing A4 in this basis is:

( (Jr(Z,2k)) " Calk,s, Df) (24)
0 (Jr(Z,2k))

where Jp(e™,2k) is defined as in (20) and where Cg(k,s,e) is the (p+1) x
(p + 1) matrix written in terms of two by two matrices as

0 0 0

Cr(k,s,e?)" =s : : : 25

all.s. ) S 23)
(=D 'R(e™ ) .- —R(e™) R(e")

with R(e') = (°°S¢ *Sin‘ﬁ) as before and s = +1. This is the normal form of 4

sing cos¢
restricted to V[j]; recall that

s=27"'Q((4 - 21d)*v, (4 — 21d)* 7).
5.2. If p = 2k is even. We observe that Q((4 — 71d)"5, (4 — 21d)"v) is purely
imaginary and we choose v so that it is Q((4 — A‘Id)kﬁ, (4 — Md)kv) = si where

s = +1 (remark that the sign changes if one permutes 4 and 1). We can further
choose the vector v so that:

_ 1 1. .
Q((4 - 21d)*v, (4 — 21d)*'5) = 5280 (26)

Q((A4—21d)"v, (4 - 21d)’5) =0  forall 0 <i,j <k —1;
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Indeed, as before, by (11), we have T; j(v) = —Tiy1,;(v) — Tiy1,j—1(v) and T; ;(v) =

-T

;,i(v) and we proceed as in Lemma 2.6 by decreasing induction on i + j:
if Ty x—1(v) = oy, since Ty_y (v) = si — Ty x—1(v) the imaginary part of «; is
equal to %si and we replace v by v — % (A — A1d)uv; it generates the same A-

invariant subspace and the quantities 7; ;(v) do not vary for i + j > 2k but
now Ty j—1(v) = o — 5= Tt k-1 (0) + 5 Te k (0) = o — Joug — 3207 = s since

Ttk (v) = =Tys1,k—1(v) = —si; so we can now assume Ty x—1(v) = %si;

if Ty_1x-1(v) =0p, this op is purely imaginary and we replace v by
v— 2;0255 (4 — 21d)%v; it generates the same A-invariant subspace and the
quantities 7;;(v) do not vary for i+ j>2k—1; now Tj_1;—1(v) =
2 — 52 Tir1,k-1(0) + 3% Tie—1,541(0) = 02 — Loy +125=0. We may thus as-
sume this property to hold for v.

if Tpox1(v) =03 =—=Th_1,k-1(v) = Th—1,k—2(v) = Tr—2,4-1(v), this a3 is
real and we replace v by v — -2 (4 — /IId)3v; it generates and the same
A-invariant subspace and the alsllantities T;j(v) do not vary for i+ j=>
2k — 2; now Tk72,k71<v) = 3 — % Tk+l,k71 (U) + % kaz_lﬂ,z(v) = 0, since
Tk+1‘k,1(v) = —Tkyk(v) = —Tk,z,;\urg(v) = Si; hence also Tk,l‘k,z(v) = O;

we now assume by induction to have a J > 1 so that T;;(v) =0 for all
0<i,j<k—1lsothati+j>2k—1-J;

if Tk_JJ(_](U) =0y, then Tk_JJ(_](U) = (—I)J_lTk_Lk_J(U) so that oy
is real when J is even and is imaginary when J is odd; we replace v by

v— 2j‘jifﬂ (A—4 Id)”lv; it sgenerates the same A-invariant subspace and the

quantities 7; ;(v) do not vary for i+ j>2k —J, but now Tj_;—1(v) =
ET ; 7
0yt — 2 Tt ko1 (0) + 55 Ty ks (V) = oy — 250+ (=1)77 1 220 = 0.
Hence also Tj_jr1x—2(v) =0,..., Ti—1 k—s+1(v) = 0; so the induction

step is proven.

Remark 5.1. For such a v, all 7; ;(v) are determined inductively and we have

T;;(v)=0 ifi+j>2k+1 and forall0<i j<k-1
Ty 141 (V) (=1)"si  forall0 <r<k

cotsi (- m)(r = 1)
2 ml(r—m)!

T;(v) = Tyi(v) foralli,j.

Thi—r krm(v) = (—1) foral0 <m<r<k,r>1

With the notation a; = (4 — A1d)"v, b; = (4 — A1d)'5, we consider the basis

{a2k7"'7ak+1ab2k7'"7bk+17bk;b07"'7bk—17007~-'aak—17ak}
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for such a vector v; the matrix representing Q in this basis has the form

¥ 0
0 0 0 ’ 0 0
* *
* 0
0 0 0 0 0
* *
0 0 0 0 * * | Si
* * *
0 0 0 0
0 * *
* * *
0 . : 0 0 0
0 * *
0 0 —Si | % oo % 0 0

We transform (by a Gram-Schmidt method) the basis above into a symplectic
basis, composed of pairs of conjugate vectors (up to a factor) and extending

bOa"'7bk—17a07'°'7ak—l

on which Q identically vanishes. We define inductively, for increasing ;j with
I1<j<k-1

= Q((4 - )LlId)Zkv, ) (4 - 21d)%0 = Q(a;{,bo)azk

ba i = Q4 - ATIId)Zk, v,0) (4= 710)%5 (bzlk,ao) b =
Wy j = Q(azkl_jbj) (“2k—j - j; OQ(ax, br)aékfr)

ék_j = m (bzk—j - ’j; Qb ar)bék—r) = %

a, = ax — E Q(ag, by)dy,_,

k—
1 —
bl = (bk,ak (bk ZQbk,a, >:ga,’€.

=

._
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Each a5, ; is a linear combination of the (4 — A1d)* 7y for 0 <r<j. The
basis

/ / / / /. /
{aZk,...,akH, Zk,...,bk+1,bk,b0,...,bk,l,ao,...,ak,l,ak}

is now symplectic. Since 4(a,) = Aa, + a,, for all r < 2k, and A(ay;) = Jayy, the
matrix representing A in that basis is of the form

CZk d2k
A1 0 0 0o :
ck+1 dk+l
€2k
0 4, |0 eﬁ 1 0
ek
0 0 J(A, k)" 0
0 0 0 J(k+1)"

. . k . N k .
with  A(bx-1) = Abr—1 + 315 ekﬂb,’cﬂ, Alag—1) = a1 +ai + > ckﬂa,’cﬂ.
- P : A

and A(ay) = day + 3 d"Vay, .
Since a matrix (A/ £

0 D) is symplectic if and only if 4’ = (Df)f1 and D'E is sym-
metric, we have

A =IOk A=J(Ak+ 1)

and
2k g2k e
JO k)| 0 ol =lJk+D)]0 kZH
ckHl gk eek
This implies
2k g2k 0 0 e 0
J(2, k : S [ JOk+1 w2 | = |
( ) ck+2 dk+2 0 0 ( ) ek+1 0
kL gkl 51 S e ) S1
e S2
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so that s; = Ac*t! and s, = 1d¥T!. Now

A@@:AQ%+§:QWH):h¢+aﬂ+§:ymﬂﬂ
j>1 j=1

_ /! / 1j o1
= iak + akHQ(athk,l) + ZFI( Dy i1
i=1

so that d*t! = Q(ay41, br_1) = A%is and s, = Ais. We also have

A(ak_1> = Aag_ 1+ ar = ag_ + Cl,’C + Q(ak,bk_l)a;{H + Z Gja]l€+j

i>2

so that "' = Q(ay,br—1) = ALisand s; = Lis.
We have thus shown that the matrix representing A in the chosen basis has
the block upper-triangular normal form

J(2, k)" 0 0 J(,k)'s
JOk+ 1) Ik +1)7'sT 0 27)
JO, k)" 0
0 T(k+1)°
where S is the k x (k + 1) matrix defined by
O ... 0 0 O
S=5S(k,d2)=|" a 28
( ) ... 0 0 O (28)
0 0 %IS Als
We write a3 ;= (-1 —iey), Dy ;= ay, ;= Js(ey-1 +iey), as

well as @, = %(fzj_l —ify)and b = a1 = %(fzj_l +ify;) for 1 < j <k, and
a, = %(6’2]{4,1 +1id fors1), by = —ida] = \%(—fzkﬂ —idex41). The vectors e;, f;
all belong to the real subspace V7 of V' whose complexification is E} @ E)Q and

we get a symplectic basis

{61,...7€2k+1,ﬁ,...,]r2k+1}

of V[j]. In this basis, the matrix representing A is:
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0 ---0
e@20) | sUXg) | 0 VA V) | U9
0 ---0
0 cos¢p |0 --- 0 1 0 ssin ¢
0 0
0 . (JR(E,zk))T :
0 0
0 —ssingg | 0 --- 0 0 —s cos ¢

where s = +1, U'(¢), U(4), V'(¢) and V?*(¢) are real 2k x 1 column matrices
such that

R(e™%)
This is the normal form of A4 restricted to V[j]. Recall that
s = iQ((4 — 21d)*v, (4 — 71d)*D).

Theorem 5.2 (Normal form for A, for 2 € S'"\{+1}.). Let /. € S'"\{+1} be an
eigenvalue of A. There exists a symplectic basis of V/;; in which the matrix repre-
senting the restriction of A to V;) is a symplectic direct sum of 4k; x 4k; matrices
(kj > 1) of the form

Ja(2) ™ | 1 sVi9) sV

and (4k; + 2) x (4k; + 2) matrices (k; > 0) of the form
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0 ---0
5 -1 . . S —Sj
VaZ2) | 5O | P IR 2@ | U@
0 ---0
0 cos ¢ 0 -0 1 0 s sin ¢
(30)
0 0
0 (Jr(4,2k;))° :
0 0
0 —s;jsing | 0 --- 0 0 —; Ccos ¢

where Jy(e™,2k) is defined as in (20), where (Vkl/(¢) sz/(qﬁ)) is the 2k;j x 2 matrix
defined by ‘ ‘

(1) R(e™?)
(V@ Vi(9) = : (31)
R(e)

sing cos¢

with R(e') = (°°S¢ —sin ¢), where

(VL@ ULD) = (VL DVE#) (Re) )

and where s; = +1. The complex dimension of the eigenspace of eigenvalue J.in V'°
is given by the number of such matrices.

Definition 5.3. Given 1€ § "\{+1}, we define, for any integer m > 1, a Hermi-
tian form O}, on Ker((4 — A1d)") by:

O/ - Ker((4 — 21d)") x Ker((4 — 41d)") — C
(v, W) — %Q((A —21d)* 0, (4 - 210 'w)  ifm =2k

(0,w) = iQ((4 — 21d)*v, (4 — 21d)* W) if m =2k + 1.

Proposition 5.4. For i € S'\{+1}, the number of positive (resp. negative) eigen-
values of the Hermitian 2-form Q,fq is equal to the number of s; equal to +1 (resp.
—1) arising in blocks of dimension 2m in the normal decomposition of A on Vy
given in Theorem 5.2.

Proof. On the intersection of Ker((4 — 21d)™) with one of the symplectically or-
thogonal subspaces £ @ E)Lf constructed above from a v such that (4 — 11d)"v # 0
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and (4 — 21d)” 1y = 0, the form Q,jl vanishes identically, except if p = m — 1 and
the only non vanishing component is Q) (v, v) = s.
Indeed, Ker((4 — 41d)™) n E! is spanned by

{(4—21d)"v;r >0 and r +m > p},

and Q% ((4 — 21d)"v, (4 — 21d)" v) = 0 when m + r 4 ' — 1 > p so the only non
vanishing cases arise when r = 1’ = 0 and m = p + 1 so for @y, (v,v). This is equal
to 1Q((4 — 21d)*, (4 - 71d)*'5) = Lis = s if m = 2k, and to iQ((4 — 21d)"v,

(A —21d)*8) = i(—is) = sif m = 2k + 1. O

The numbers s; appearing in the decomposition are thus invariant of the
matrix.

Corollary 5.5. The normal decomposition described in Theorem 5.2 is unique up to
a permutation of the blocks when the eigenvalue ) has been chosen in {1, 1}, for in-
stance by specifyng that its imaginary part is positive. It is completely determined
by this chosen 1, by the dimension dim¢ (Ker(A4 — A1d)") for each r > 1 and by the
rank and the signature of the Hermitian bilinear 2-forms Q,)n for each m = 1. O
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