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1. Introduction

We consider the relations between Sobolev inequalities and some isoperimetric

constants. It was observed by Maz’ya and Federer and Fleming that the best con-

stant in the Sobolev inequality

CkukLN=ðN�1ÞðRN Þa k‘ukL1ðRN Þ ð1Þ

is given by the classical isoperimetric constant

C ¼ NV
1=N
N

where VN is the volume of the unit open ball in RN . We denote by W an open

subset of RN and by DðWÞ the space of functions u in ClðWÞ with compact sup-

port in W.

The optimal constant d of the Sobolev inequality on DðWÞ

dkukLqðWÞa k‘ukL1ðWÞ ð2Þ



and c of the Poincaré-Sobolev inequality on ClðWÞ

c min
t AR

ku� tkL1ðWÞa k‘ukL1ðWÞ ð3Þ

are given in [8] (see also [7]).

We denote by mðoÞ the Lebesgue measure of o, by pðoÞ the perimeter of o

and by pWðoÞ the perimeter of o relative to W.

Definition 1.1 ([7]). We define, for qb 1,

dðq;WÞ ¼ inffpðoÞ=mðoÞ1=q : o a AðWÞg

where AðWÞ is the set of smooth open subset o of W with compact closure in W.

Definition 1.2 ([4]). We define for qb 1,

cðq;WÞ ¼ inffpWðoÞ=mðoÞ1=q : o a BðWÞg

where BðWÞ is the set of open subset o of W with a smooth relative boundary

WB qo and such that mðoÞamðWnoÞ.
For 1a qaNðN � 1Þ, the optimal constant in (2) is given by

d ¼ dðq;WÞ

and the optimal constant in (3) is given by

c ¼ cð1;WÞ:

The classical isoperimetric inequality is nothing but

d
�
N=ðN � 1Þ;RN

�
¼ NV

1=N
N :

Classical Cheeger’s inequality (see [3]) is equivalent to

1

2
cð1;WÞ

���u�
ð
�
W

u
���
L2ðWÞ

a k‘ukL2ðWÞ

where the constant is not sharp. Let us recall that

ð
�
W

u ¼ 1

mðWÞ

ð
W

uðxÞ dx:

For p > 1, the generalized Cheeger inequality (see [6]) is equivalent to

1

p
cð1;WÞ min

t AR
ku� tkLpðWÞa k‘ukLpðWÞ; ð4Þ
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where the constant is not sharp. The corresponding result in DðWÞ (see [5]) is

1

p
dð1;WÞkukLpðWÞa k‘ukLpðWÞ: ð5Þ

Our goal is to generalize all the above inequalities. We define 0 � ðþlÞ ¼ 0.

Theorem 1.3. Let W be an open subset of RN, let p, q, r be such that 1a pa q and

1

p
� 1

q
¼ 1� 1

r
: ð6Þ

Then, for every u a DðWÞ,

r

q
dðr;WÞkukLqðWÞa k‘ukLpðWÞ: ð7Þ

Theorem 1.4. Let W be an open subset of RN such that mðWÞ < l and let p, q, r

be such that 1a pa q and (6) is satisfied. Then, for every u a ClðWÞ,

r

q
cðr;WÞ min

t AR
ku� tkLqðWÞa k‘ukLpðWÞ: ð8Þ

Of course the constants in (7) and (8) are not sharp, but their geometric meaning

is clear.

In Section 2, we give a self-contained proof of Theorem 1.4. The proof of

Theorem 1.3 is similar, but simpler. Section 3 is devoted to some estimates.

2. Proof of Theorem 1.4

Elementary proofs of the following results are given in [8] and [9].

Theorem 2.1. Let 1a p < l and u a LpðWÞ. Then

kukLpðWÞa

ðl
0

mðfjuj > tgÞ1=p dt:

Theorem 2.2 (Coarea formula). Let u a ClðWÞ be such that ‘u a L1ðW;RNÞ.
Then

ð
W

j‘uj dx ¼
ðl
0

pWðfjuj > tgÞ dt:
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Proof of Theorem 1.4. Let u a ClðWÞ be such that ‘u a LpðW;RNÞ. We define

m ¼ supft : mðfu > tgÞ > mðfua tgÞ

and v ¼ ðu�mÞþ, w ¼ vq=r. By Sard’s theorem, for almost every t > 0, fw > tg a
BðWÞ. By definition, we have

cðr;WÞmðfw > tgÞ1=ra pWðfw > tgÞ:

Using Theorems 2.1 and 2.2, we obtain, after integrating from 0 to l,

cðr;WÞkwkLrðWÞa k‘wkL1ðWÞ:

It follows from Hölder inequality that

cðr;WÞ
� ð

W

vq dx
�1=r

a
q

r

� ð
W

vðq=r�1Þp 0
dx

�1=p 0� ð
W

j‘vjp dx
�1=p

:

Using (6), we conclude that

r

q
cðr;WÞ

� ð
W

vq dx
�1=q

a

� ð
W

j‘vjp dx
�1=p

or

r

q
cðr;WÞ

� ð
u>m

ðu�mÞq dx
�1=q

a

� ð
u>m

j‘ujp dx
�1=p

:

Similarly, we have that

r

q
cðr;WÞ

� ð
u<m

ðm� uÞq dx
�1=q

a

� ð
u<m

j‘ujp dx
�1=p

:

Since pa q,

� ð
u>m

j‘ujp dx
�q=p

þ
� ð

u<m

j‘ujp dx
�q=p

a

� ð
W

j‘ujp dx
�q=p

;

and the proof is complete. r

180 M. Willem



3. Estimates

We denote by W� the open ball Bð0; rÞ such that

rNVn ¼ mðWÞ:

Proposition 3.1. (a) Let W1 HW2 and qb 1. Then

dðq;W2Þa dðq;W1Þ:

(b) Let q > N=ðN � 1Þ. Then dðq;WÞ ¼ 0.

(c) Let 1a qaN=ðN � 1Þ and mðWÞ < l. Then

NV
1=N
N mðWÞðN�1Þ=N�1=q ¼ dðq;W�Þa dðq;WÞ:

Proof. Using the definition of dðq;WÞ it is easy to prove (a) and (b). To prove (c),

it su‰ces to use Schwarz symmetrization (see e.g. [9]). r

It is more di‰cult to estimate the isoperimetric constant cðq;WÞ. Of course

dðq;WÞ is related to the Dirichlet boundary condition and cðq;WÞ is related to the

Neumann boundary condition. The monotonicity relation is not valid for cðq;WÞ
in particular, if W is not connected, then cðq;WÞ ¼ 0. Estimates of cðq;WÞ ¼ 0

involve the geometry of qW and cðq;WÞ ¼ 0 for some connected open bounded

subsets W of RN (see [8]).

We will use the following Theorem from [1].

Theorem 3.2. Assume that mðWÞ < l. Then there exists x a SN�1 such that

mN�1ðWB x?ÞamN�1ðW�B x?Þ:

Theorem 3.3. Let 1a qaN=ðN � 1Þ and let W be a centrally symmetric open

subset of RN such that mðWÞ < l. Then

cðq;WÞa cðq;W�Þ ¼ 21=q
VN�1

V
ðN�1Þ=N
N

mðWÞðN�1Þ=N�1=q:

Proof. By Lemma 8 in [2],

cðq;W�Þ ¼ 21=q
VN�1

V
1=q
N

rN�1�N=q:

Since W is centrally symmetric, Theorem 3.2 implies that cðq;WÞa cðq;W�Þ. r

181Analytical inequalities and isoperimetric constants



References

[1] Brock, F. and Willem, M., A relative isoperimetric inequality, Commun. Contemp.

Math. 14 (2012) 1250023/6 pp.

[2] Burago, Yu. D. and Maz’ya, V. G., Potential theory and function theory for irregular
regions, Steklov Mathematical Institute, Leningrad, vol. 3, Consultants Bureau, New
York (1969).

[3] Cheeger, J., A lower bound for the smallest eigenvalue of the Laplacian in Problems in

analysis (Papers dedicated to Salomon Bochner, 1969), Princeton Univ. Press (1970)
195–199.

[4] Fleming, W. and Rishel, R., An integral formula for total gradient variation, Arch.
Math. (Basel) 11 (1960) 218–222.

[5] Kawohl, B. and Fridman, V., Isoperimetric estimates for the first eigenvalue of the
p-Laplace operator and the Cheeger constant, Comment. Math. Univ. Carolin. 44

(2003) 659–667.

[6] Matei, A. M., First eigenvalue for the p-Laplace operator, Nonlinear Anal. Ser. A. 39
(2000) 1051–1068.

[7] Maz’ja, V. G., Classes of domains and imbedding theorems for function spaces, Soviet
Math. Dokl. 1 (1960) 882–885.

[8] Maz’ja, V. G., Sobolev spaces, Springer-Verlag, Berlin (1985).

[9] Willem, M., Functional analysis, Fundamentals and applications, Birkhäuser Springer,
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