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Abstract. The pendulum equation is forced by a continuous and T-periodic function with
zero average. In these conditions it is well known that there exist at least two T-periodic
solutions. We construct some examples where there are exactly two T -periodic solutions
and both are unstable.

Mathematics Subject Classification (2010). Primary 34D20; Secondary 34C25, 37C75.

Keywords. Lyapunov stability, forced pendulum, periodic solution, resonance.

1. Introduction

Consider the di¤erential equation

€xxþ b sin x ¼ f ðtÞ ð1Þ

where b > 0 is a real parameter and f : R ! R is a continuous and T-periodic

function satisfying ðT

0

f ðtÞ dt ¼ 0: ð2Þ

Many authors have discussed di¤erent properties of this equation and an extensive

list of references can be found in the survey paper [3]. In a recent paper [5] I

discussed the existence of T-periodic solutions that are stable in the Lyapunov

sense. It was proved in [5] that if

ba
p

T

� �2
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then there exists a stable T-periodic solution for a large class of forcings satisfying

(2). Two examples of non-existence of stable periodic solutions will be constructed

in the present paper. They show that, in some aspects, the result obtained in [5] is

sharp.

Theorem 1.1. Assume that

b >
2p

3T

� �2

:

Then there exists a real analytic function f : R ! R satisfying

f ðtþ TÞ ¼ f ðtÞ; f ð�tÞ ¼ � f ðtÞ; t a R ð3Þ

and such that the equation (1) has no stable T-periodic solution.

The function f ðtÞ in the above result is odd and, in particular, the condition (2)

holds. This shows that the conclusion of the theorem in [5] cannot hold for every

forcing. Therefore, the phrase for almost every forcing employed in [5] is essential,

at least for parameters lying in the interval

2p

3T

� �2

< ba
p

T

� �2

:

Let us recall the precise meaning in our context of a property that holds almost

everywhere. The space X of continuous and T-periodic functions with mean value

zero has infinite dimensions. It becomes a Banach space with the norm

k f k ¼ max
t AR

j f ðtÞj:

We say that a property holds for almost every forcing if it holds for every f a P,

where P is a prevalent subset of X . The definition of prevalence is analyzed in [6].

We just recall this definition: a subset P of X is prevalent if there exist a Borel

measure m on X , a Borel subset NHX and a compact set K HX such that

XnPHN, mðKÞ > 0 and mðNþ gÞ ¼ 0 for every g a X . Prevalent sets are dense

in X and so the next result shows that the number
�
p
T

�2
is optimal for the theorem

in [5].

Theorem 1.2. Assume that

b >
p

T

� �2

:
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Then there exist a number e > 0 and a real analytic function f : R ! R satisfying

the conditions in (3) and such that the equation

€xxþ b sin x ¼ gðtÞ

has no stable T-periodic solution if g : R ! R is a continuous and T-periodic func-

tion satisfying ðT

0

gðtÞ dt ¼ 0; k f � gk < e:

The rest of the paper is dedicated to the proof of these results. The proof of

Theorem 1.1 is based on the phenomenon of strong resonance at the third root

of unity, as described in Section 2. This explains the restriction on b imposed in

Theorem 1.1. Perhaps the analysis of resonances at higher roots of unity could

help to improve this result. I do not know if the conclusion of Theorem 1.1 is

valid for arbitrary b > 0. In my experience with the pendulum equation, I have

found that an useful strategy to produce examples with special properties is to as-

sume first that (1) is an autonomous equation with impulses, that is f ¼
P

j cjDdj,

where Ddj is the derivative of a Dirac measure. Once a preliminary example of

this type has been constructed, one can try to change f by an authentic function

via perturbation arguments. In this process weak topologies play an important

role. This explains why two sections of the paper, 3 and 6, are devoted to study

the e¤ect of the weak� topology on equations of pendulum type. The examples

proving the two theorems are presented in Sections 4 and 5. The period T > 0

is arbitrary in both theorems but, after a re-scaling of time, it is not restrictive to

assume that T has a fixed value. To simplify computations we will choose T ¼ 2p
3

in the first theorem and T ¼ 2p in the second one.

With respect to the notations employed in the paper, I think they are more or

less standard. In particular LpðR=TZÞ and CpðR=TZÞ are spaces of T-periodic

functions.

2. Resonance at the third root of unity

Let R3 be the class of 2� 2 matrices L a R2�2 satisfying

L3 ¼ I ; LA I :

These matrices are conjugate to the rotation of angle 120� and they play a sin-

gular role in stability theory. Assume that L is in R3 and consider the di¤erence

equations

xnþ1 ¼ Lxn ð4Þ
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and

xnþ1 ¼ Lxn þNðxnÞ; ð5Þ

where N is a nonlinear map satisfying Nð0Þ ¼ 0, N 0ð0Þ ¼ 0. For the linear equa-

tion (4) all non-trivial solutions are 3-cycles and the origin x ¼ 0 is stable. How-

ever, for a typical nonlinear perturbation (5) the origin is unstable. The purpose of

this section is to describe this phenomenon in precise terms. The exposition will be

inspired by the book [7].

Let U be any open subset of the plane containing the origin and assume that

F : UHR2 ! R2

is a C2 map with Fð0Þ ¼ 0. The origin x ¼ 0 is stable with respect to F if given

any neighborhood V there exists another neighborhood W such that the iterates

F nðWÞ are well defined for the future and

F nðWÞHV if nb 0:

The fixed point x ¼ 0 is unstable when the previous condition does not hold. The

notions of stability and instability are topological, meaning that they are invariant

under conjugacy by homeomorphisms.

The map F is C2 and so it can be expanded as

F ðxÞ ¼ LxþQðxÞ þ oðjxj2Þ as jxj ! 0

where L a R2�2 and Q is a quadratic polynomial of the type

Qðx1; x2Þ ¼ ax2
1 þ bx1x2 þ gx2

2 ; a; b; g a R2:

Let us assume that L a R3 and define

QaðxÞ ¼ L2QðxÞ þ LQðLxÞ þQðL2xÞ:

This is a new quadratic polynomial. Sometimes we will write QF and Qa
F to

emphasize the dependence on F .

The 2-jet of F at the origin will be described as

J 2
0F ¼ ðL; a; b; gÞ:

To measure the distance between jets we fix some norm j � j in the space

R2�2 � R2 � R2 � R2.
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Proposition 2.1. Given F in the previous conditions, assume that Qa
F is not identi-

cally zero. Then there exists eF > 0 such that the origin x ¼ 0 is unstable with

respect to any C2 map G : UHR2 ! R2 satisfying

Gð0Þ ¼ 0; G 0ð0Þ a R3; jJ 2
0F � J 2

0Gj < eF :

Later we will present some examples on how to apply this result. By now we

just concentrate ourselves on the proof. As a first step we mention two straight-

forward properties of the polynomial Qa.

• Given F in the conditions of the above proposition, there exists eF > 0 such

that Qa
G A 0 if G : UHR2 ! R2 is a C2 map with Gð0Þ ¼ 0, G 0ð0Þ a R3 and

jJ 2
0F � J 2

0Gj < eF .

• Assume that L ¼ PRP�1 where P is a non-singular matrix and R is one of the

two rotations of angle 2p
3 (with positive or negative orientation). If we define

F�ðxÞ ¼ P�1FðPxÞ then F 0
�ð0Þ ¼ R and Qa

F�
ðxÞ ¼ P�1Qa

F ðPxÞ.

After these remarks the above proposition becomes equivalent to the following

simplified result: Given a C2 map F : UHR2 ! R2 satisfying

Fð0Þ ¼ 0; F 0ð0Þ ¼ R; Qa
F A 0;

the origin is unstable with respect to F .

The use of complex notation is very convenient for the proof of this result. We

identify C and R2 with z ¼ x1 þ ix2. The map F : UHC ! C can be expressed

as

Fðz; zÞ ¼ ozþQðz; zÞ þ oðjzj2Þ as jzj ! 0

with o2 þ oþ 1 ¼ 0 and Qðz; zÞ ¼ Az2 þ Bzzþ Cz2, A;B;C a C. The polyno-

mial Qa becomes

Qaðz; zÞ ¼ 3oCz2;

and the assumption QaA 0 is equivalent to CA 0. For simplicity we assume that

3oC ¼ 1. This is always the case after a change Z ¼ lz for appropriate l. The

third iterate of F has the expansion

z3 ¼ zþQaðz; zÞ þ oðjzj2Þ ¼ zþ z2 þ oðjzj2Þ;

and a direct computation leads to

Reðz33Þ ¼ Reðz3Þ þ 3jzj4 þ oðjzj4Þ:

197A forced pendulum equation



Let us fix r > 0 such that if jzja r then

Reðz33Þ > Reðz3Þ þ 2jzj4: ð6Þ

We are going to prove that no forward orbit with Reðz30Þ > 0 can remain in the

disk D ¼ fz a C : jzja rg. This proves the instability of z ¼ 0.

We proceed by contradiction and assume that the positive orbit fzngnb0 is well

defined and satisfies

jznja r; nb 0

for some z0 in the above conditions. From the inequality (6) we deduce that

2
XN
n¼0

jz3nj4 < Reðz33Nþ3Þ � Reðz30Þa 2r3:

This implies that the series
P

jz3nj4 converges and, in particular, jz3nj ! 0. This

fact is not compatible with another consequence of (6), namely

� � � > Reðz33nÞ > Reðz33n�3Þ > � � � > Reðz33Þ > Reðz30Þ > 0:

Once we have completed the proof of Proposition 2.1 we apply it to an exam-

ple that will be important later. Consider the di¤erential equation

€yyþ yþ gðtÞy2 ¼ 0

where g a L1ðR=TZÞ. Further assume that the period is

T ¼ 2p

3
:

We will prove that the trivial solution y ¼ 0 is unstable if

ð2p=3

0

gðtÞe3it dtA 0: ð7Þ

The equation is understood in the Carathéodory sense. Solutions are well defined

on the interval ½0;T � for small initial conditions and the Poincaré map can be

defined as

F : UHR2 ! R2; F ðy0; v0Þ ¼
�
yðT ; y0; v0Þ; _yyðT ; y0; v0Þ

�
where U is a neighborhood of the origin and yðT ; y0; v0Þ is the solution with initial

conditions yð0Þ ¼ y0, _yyð0Þ ¼ v0. This is a Cl map and the origin y0 ¼ 0, v0 ¼ 0
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is a fixed point corresponding to the trivial solution y ¼ 0. Note that the two

notions of stability, for the map and the di¤erential equation, are equivalent.

The variational equation at y ¼ 0 is

€yyþ y ¼ 0

and so

F 0ð0; 0Þ ¼ cosT sinT

�sinT cosT

� �
:

This matrix is precisely the rotation of angle 2p
3 in the clockwise sense. To compute

the quadratic polynomial Q it is useful to employ complex notation. Letting

w ¼ yþ i _yy and z ¼ y0 þ iv0, the equation is written as

_ww ¼ �iw� igðtÞ wþ w

2

� �2

; wð0Þ ¼ z:

Using the formula of variation of constants we transform the initial value problem

in the integral equation

wðtÞ ¼ e�itz� i

ð t

0

e�iðt�sÞgðsÞ wðsÞ þ wðsÞ
2

� �2

ds:

The variational equation leads to the first order approximation

wðtÞ ¼ e�itzþOðjzj2Þ as jzj ! 0;

uniformly in t a ½0;T �. Combining the previous identities we obtain the expansion

F ðz; zÞ ¼ ozþQðz; zÞ þ � � � with Q given by

� io

4

� ð2p=3

0

e�isgðsÞ ds
�
z2 � io

2

� ð2p=3

0

eisgðsÞ ds
�
zz� io

4

� ð2p=3

0

e3isgðsÞ ds
�
z2

and o ¼ eð2p=3Þi. From (7) we deduce that QaA 0 and the conclusion follows.

3. Weak convergence and number of periodic solutions

Let jðtÞ be a T-periodic solution of the forced pendulum equation (1). The

change of variables x ¼ yþ jðtÞ transforms the original equation in

€yyþ b sin
�
yþ jðtÞ

�
¼ b sin jðtÞ: ð8Þ
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When j is non-smooth or even discontinuous this equation still makes sense, even

if it does not come from an equation of the type (1). Due to the properties of the

sine function, this equation can be rewritten as

€yyþ b cos jðtÞ sin yþ b sin jðtÞ cos y ¼ b sin jðtÞ:

We will work with the more general class of equations

€yyþ aðtÞ sin yþ bðtÞ cos y ¼ cðtÞ ð9Þ

with a; b; c a LlðR=TZÞ. This equation is understood in the Carathéodory sense.

Given a T-periodic solution cðtÞ, the linearized equation is

€xxþ
�
aðtÞ coscðtÞ � bðtÞ sincðtÞ

�
x ¼ 0: ð10Þ

We say that cðtÞ is simple when 1 is not a Floquet multiplier of (10). The equa-

tion (9) will be called simple if all T-periodic solutions are simple.

As an example consider the pendulum equation

€yyþ l sin y ¼ 0

corresponding to aðtÞ ¼ l > 0, bðtÞ ¼ 0, cðtÞ ¼ 0. This equation is simple

whenever

l <
2p

T

� �2

:

To prove this we first recall that the closed orbits of this autonomous equation

have minimal period t > 2pffiffi
l

p . Hence they do not produce T-periodic solutions

if la
�
2p
T

�2
. Under this condition the only T-periodic solutions are y ¼ 0 and

y ¼ p. A direct computation shows that y ¼ p is always simple and y ¼ 0 is

also simple excepting for l ¼
�
2pn
T

�2
, n ¼ 1; 2; . . .

Note that, given a solution yðtÞ of (9), new solutions can be produced by

adding 2p. The family yðtÞ þ 2pn, n a Z, is interpreted as a single solution. This

identification, already employed in the previous example, will apply in the rest of

the paper. Next we present an important property of simple equations.

Lemma 3.1. Assume that the equation (9) is simple. Then the number of T-

periodic solutions is finite.

From now on this number will be indicated by Nða; b; cÞ. In particular

Nðl; 0; 0Þ ¼ 2 if la
�
2p
T

�2
.

200 R. Ortega



Proof. Given a T-periodic solution cðtÞ, there exists some t a
�
� T

2 ;
T
2

	
such that

_ccðtÞ ¼ 0. Thus

j _ccð0Þj ¼



 ð0

t

€ccðsÞ ds



a ðkakLlðR=TZÞ þ kbkLlðR=TZÞ þ kckLlðR=TZÞÞ

T

2
¼: C:

Let F : R2 ! R2 be the Poincaré map associated to (9),

F ðy0; v0Þ ¼
�
yðT ; y0; v0Þ; _yyðT ; y0; v0Þ

�
:

This is a real analytic di¤eomorphism whose fixed points are in correspondence

with T-periodic solutions. Moreover, if
�
cð0Þ; _ccð0Þ

�
¼ ðy0; v0Þ then the eigen-

values of F 0ðy0; v0Þ are precisely the Floquet multipliers of (10). In particular 1

is not an eigenvalue if cðtÞ is simple. The inverse function theorem applied to

id � F implies that
�
cð0Þ; _ccð0Þ

�
is an isolated fixed point of F . Summing up, we

can say that the set of fixed points

F ¼ fðy0; v0Þ a ½0; 2p� � R : F ðy0; v0Þ ¼ ðy0; v0Þg

is closed, bounded (jv0jaC) and discrete, and so it is finite. 9

Assume now that (9) is simple and consider sequences fang, fbng and fcng in

LlðR=TZÞ with an ! a, bn ! b and cn ! c in an appropriate topology. We will

prove that for large n the number of T-periodic solutions of

€yyþ anðtÞ sin yþ bnðtÞ cos y ¼ cnðtÞ ð11Þ

is independent of n. This is a more or less standard result if the convergence of the

sequences an, bn, cn is strong, the main point of this section is that it also holds

when the convergence is understood in a weak sense. To be precise we recall the

notion of weak� convergence in Ll.

Given a sequence f fng in LlðR=TZÞ, we say that it converges to

f a LlðR=TZÞ in the weak� sense if

ðT

0

fnf !
ðT

0

f f

for every f a L1ðR=TZÞ. Sometimes we will employ the notation fn * f to indi-

cate this convergence.

Weak� convergence in LlðR=TZÞ can be characterized by the two properties

below,
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• supnk fnkLlðR=TZÞ < l

•
Ð T

0 fnw½a;b� !
Ð T

0 f w½a;b� for every compact interval ½a; b�H ½0;T �.

Here w½a;b� denotes the characteristic function of the set ½a; b�. The proof of this

characterization is based on Banach-Steinhaus theorem and the density of simple

functions in L1ð0;TÞ. Note that L1ðR=TZÞ and L1ð0;TÞ can be identified.

We are ready to present the main result of the section.

Proposition 3.2. Assume that the equation (9) is simple and the sequences fang,
fbng and fcng in LlðR=TZÞ satisfy

an * a; bn * b; cn * c:

Then, for large n, the equation (11) is simple and Nðan; bn; cnÞ ¼ Nða; b; cÞ.

To illustrate this proposition we present some concrete examples of sequences

in the above conditions.

Example 1. For each n > 2 consider the uniform partition of ½0;T �

t0 ¼ 0 < t1 ¼
T

n
< t2 ¼

2T

n
< � � � < tn ¼ T

and fix a number y. Define

jnðtÞ ¼ ð�1Þky if t a �tk; tkþ1½:

We consider the equation

€yyþ b sin
�
yþ jnðtÞ

�
¼ b sin jnðtÞ

and try to apply the above proposition. The sequence an ¼ b cos jn is constant

and so it converges to l ¼ b cos y in any topology. Next we prove that bn ¼
cn ¼ b sin jn converges to 0 in the weak� sense. Note that ksin jnkLl a 1 and so

we can assume f ¼ w½a;b�. Then

ðT

0

sin jnw½a;b� ¼
ð tr

a

sin jn þ
Xs�1

k¼r

ð tkþ1

tk

sin jn þ
ð b

ts

sin jn

where r and s are the indexes such that

tr�1 < aa tra tsa b < tsþ1:
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All the integrals inside the sum have the same value up to an alternating sign.

Hence they cancel in pairs and the sum is either zero or it reduces to one sin-

gle integral, depending on the parity of s� 1� r. In both cases we obtain the

estimate




 ðT

0

sin jnw½a;b�




a 3T

n
:

The limit equation is €yyþ l sin y ¼ 0 and so, for large n, Nðan; bn; cnÞ ¼ 2 if

l <
�
2p
T

�2
.

Example 2. Consider a function f ðtÞ satisfying

f a L1ðR=TZÞ;
ðT

0

f ðtÞ dt ¼ 0

and let hðtÞ be the unique solution of

€hh ¼ f ðtÞ; h is T-periodic;

ðT

0

hðtÞ dt ¼ 0:

The change of variables x ¼ yþ hðtÞ transforms the pendulum equation (1) into

€yyþ b sin
�
yþ hðtÞ

�
¼ 0:

When this equation is simple and has N periodic solutions of period T , the above

proposition can be applied. In particular there exists e > 0 such that for any func-

tion g satisfying

g a L1ðR=TZÞ;
ðT

0

gðtÞ dt ¼ 0; k f � gkL1ðR=TZÞ < e

the equation

€xxþ b sin x ¼ gðtÞ

has exactly N periodic solutions of period T .

Example 3. Consider the equation of a pendulum of variable length

€yyþ aðtÞ sin y ¼ 0:
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We fix two positive numbers M and l <
�
2p
T

�2
. The above result can be applied to

deduce that there exists e > 0 such that the equation has exactly two T-periodic

solutions if a a LlðR=TZÞ satisfies

kakLlðR=TZÞ < M; ka� lkL1ðR=TZÞ < e:

The key for the proof of Proposition 3.2 is the following result on continuous

dependence with respect to weak topologies.

Lemma 3.3. Assume that fang, fbng and fcng are sequences in the conditions of

Proposition 3.2 and let Fn : R
2 ! R2 be the Poincaré map associated to (11).

Then, for each a ¼ ða1; a2Þ a N2,

qaFnðy0; v0Þ ! qaF ðy0; v0Þ;

and the convergence is uniform on ðy0; v0Þ a K for each compact set KHR2.

We are using the multi-index notation qa ¼ qa1þa2F
qa1y0q

a2 v0
. The proof of this lemma

is unrelated to the rest of the paper and we postpone it to Section 6.

Proof of Proposition 3.2. Assume that the set F defined in the proof of Lemma

3.1 has no points lying on y0 ¼ 0. Otherwise we could work on the strip

½e; 2pþ e� � R. Consider the sets of fixed points

Fn ¼ fðy0; v0Þ a ½0; 2p� � R : Fnðy0; v0Þ ¼ ðy0; v0Þg:

From the proof of Lemma 3.1 we know that the sets Fn are compact and

contained in a common rectangle R ¼ ½0; 2p� � ½�C;C�. Assume that the set F

associated to (9) has N points, that isaF ¼ N. By assumption these fixed points

are simple. Let us fix closed disks D1; . . . ;DN centered in these fixed points and

pairwise disjoint. The maps Fn converge to F in C1ðDiÞ and so FnBDi is a

singleton for large n. Moreover, the points in these intersections are also simple

as fixed points of Fn. We are lead to the inequality

Nðan; bn; cnÞ ¼aFnbaF ¼ Nða; b; cÞ ¼ N:

To prove the reversed inequality we proceed by contradiction. If Nðak; bk; ckÞ
were greater than N for some subsequence, then Fk should have a point lying

in Rn6N

i¼1
Di. By a passage to the limit we conclude that the same should occur

to the set F and this is absurd. 9

Remark. The previous proof shows that the set Fn converges to F in the

Hausdor¤ topology on the space of compact subsets of R2. Later this fact will

be combined with a consequence of the proof of Lemma 3.3. The general solution

of (11), denoted by ynðt; y0; v0Þ, satisfies that
�
ynðt; y0; v0Þ; _yynðt; y0; v0Þ

�
converges
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to
�
yðt; y0; v0Þ; _yyðt; y0; v0Þ

�
uniformly in t a ½0;T �, ðy0; v0Þ a K , where K is any

compact subset of R2.

4. The first construction

We fix the period T ¼ 2p
3 and assume b > 1. For each integer nb 3 consider

a partition of the interval
�
0; T2

	
of the type

t0 ¼ 0 < t1 < t2 ¼
2T

2n
< t3 ¼

3T

2n
< � � � < tn ¼

T

2
:

There are two di¤erences with respect to the partition considered in Example 1

after Proposition 3.2, now the interval has length T
2 and one of the knots is not

fixed. Indeed t1 can be interpreted as a parameter lying in the interval 0; T
n

	 �
.

Let y be the number in 0; p2
	 �

satisfying

cos y ¼ 1

b
:

We define the function pn a LlðR=TZÞ by

pnð�tÞ ¼ �pnðtÞ; pnðtþ TÞ ¼ pnðtÞ; a:e: t a R;

pnðtÞ ¼ ð�1Þky if t a �tk; tkþ1½; 0a k < n:

Note that the function pn depends upon the choice of t1. We will use this freedom

to select a value of t1 such that the condition

ðT

0

e3it sin pnðtÞ dtA 0 ð12Þ

holds. To prove that this choice is possible we observe that e3it is T-periodic and

so the integral can be translated to the interval � T
2 ;

T
2

� 	
,

ðT

0

e3it sin pnðtÞ dt ¼
ðT=2

0

þ
ð0

�T=2

¼
ðT=2

0

ðe3it � e�3itÞ sin pnðtÞ dt

¼ 2iðsin yÞ
Xn�1

k¼0

ð�1Þk
ð tkþ1

tk

sin 3t dt ¼ � 4

3
i sin y cos 3t1 þ g

where g is a complex number depending on n and y but independent of t1. The

condition (12) will hold for all numbers t1 a 0; T
n

	 �
excepting perhaps for a finite

number of choices.
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Once t1 has been fixed we observe that

cos pnðtÞ ¼
1

b
a:e: t a R

and

sin pn * 0

in the weak� sense. The proof of this fact is almost the same as the proof given in

Example 1 after Proposition 3.2. This proposition can be applied to conclude that

the equation

€yyþ b sin
�
yþ pnðtÞ

�
¼ b sin pnðtÞ ð13Þ

has exactly two T-periodic solutions, y ¼ 0 and znðtÞ. Moreover znðtÞ converges
uniformly to p. At this point the remark after the proof of Proposition 3.2 is

useful. We will prove that both solutions are unstable if nb n0 for some n0. Let

us start with y ¼ 0 and expand the equation to obtain

€yyþ b
�
cos pnðtÞ

�
y� b

2

�
sin pnðtÞ

�
y2 þ � � � ¼ 0;

where the remainder is of order y3. In consequence this equation has a contact of

order two with

€yyþ yþ gnðtÞy2 ¼ 0

and

gnðtÞ ¼ � b

2
sin pnðtÞ:

Note that the condition (12) implies that (7) holds. Let Fn : R
2 ! R2 be the

Poincaré map associated to (13). The expansion of Fn around the origin coincides,

up to second order, with the expansion computed in Section 2. Then Proposition

2.1 is applicable to Fn and y ¼ 0 is unstable as a solution of (13). To prove the

instability of znðtÞ set z ¼ y� znðtÞ in (13) to obtain

€zzþ b sin
�
zþ znðtÞ þ pnðtÞ

�
� b sin

�
znðtÞ þ pnðtÞ

�
¼ 0:

The linearization at z ¼ 0 is

€xxþ b cos
�
znðtÞ þ pnðtÞ

�
x ¼ 0: ð14Þ
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Since znðtÞ ! p uniformly, this equation converges to

€xx� x ¼ 0:

The Floquet multipliers of the limit equation are 0 < m1 ¼ e�T < 1 < m2 ¼ eT .

By continuous dependence, the Floquet multipliers of (14) also satisfy 0 < m1 <

1 < m2 for large n. The first Lyapunov method says that znðtÞ is unstable as a

solution of (13).

If the function pnðtÞ were real analytic, the proof of Theorem 1.1 would be

complete, since it would be su‰cient to define x ¼ yþ pnðtÞ and f ðtÞ ¼ €ppnðtÞþ
b sin pnðtÞ. Of course this is not right and our strategy will be to perform this

change of variable after approximating pn by an appropriate analytic function.

Lemma 4.1. For each nb n0 and d > 0 there exists qn a CoðR=TZÞ satisfying
(i) qn is odd

(ii) kpn � qnkL2ðR=TZÞ < d

(iii) the linear equation

€yyþ b cos qnðtÞy ¼ 0 ð15Þ

has Floquet multipliers m1 ¼ o, m2 ¼ o with o2 þ oþ 1 ¼ 0.

Before proving this result let us discuss how to complete the proof of Theorem

1.1. We claim that there exists a sequence dn # 0 such that the equation

€yyþ b sin
�
yþ qnðtÞ

�
¼ b sin qnðtÞ ð16Þ

has exactly two T-periodic solutions and both of them are unstable if n is large

enough. Here qn is the function given by the previous lemma when d ¼ dn. First

note that

sin qn * 0 weak� in LlðR=TZÞ; cos qn !
1

b
in L2ðR=TZÞ

for any sequence dn # 0. Indeed, to justify the first convergence, we take a char-

acteristic function w½a;b� and observe that




 ðT

0

ðsin qnÞw½a;b�



a 


 ðT

0

ðsin pnÞw½a;b�



þ 


 ðT

0

ðsin qn � sin pnÞw½a;b�





a




 ðT

0

ðsin pnÞw½a;b�



þ ffiffiffiffi

T
p

kpn � qnkL2ðR=TZÞ ! 0:
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The second convergence is obtained in a similar way. The next step is to select dn
in an appropriate way. The Poincaré maps associated to (13) and (16) are denoted

by Fn and ~FFn and, by Lemma 3.3, they are close in the C2 topology on compact

sets. According to Proposition 2.1 we adjust dn so that

jJ 2
0Fn � J 2

0
~FFnj < eFn

:

The eigenvalues of the matrix ~FF 0
nð0Þ are the Floquet multipliers of (15); that is, o

and o. This implies that ~FF 0
nð0Þ a R3. Now Proposition 2.1 also says that y ¼ 0 is

unstable as a solution of (16). Moreover, from Proposition 3.2 we know that the

equation (16) has exactly two T-periodic solutions y ¼ 0 and ~zzn ! p. As before

we observe that the equation

€xxþ b cos
�
~zznðtÞ þ qnðtÞ

�
x ¼ 0

converges, in the sense of L2ðR=TZÞ, to €xx� x ¼ 0. This is su‰cient to guarantee

that also ~zznðtÞ is unstable for large n. The proof of Theorem 1.1 is complete, we

just define f ðtÞ ¼ €qqnðtÞ þ b sin qnðtÞ.

Proof of Lemma 4.1. Let us recall some well known facts on the discriminant of

Hill’s equation. Given a a L2ðR=TZÞ consider the linear equation

€yyþ aðtÞy ¼ 0 ð17Þ

with Floquet multipliers m1 and m2 and m1 � m2 ¼ 1. The discriminant is defined as

D ¼ m1 þ m2

and so the condition (iii) on the multipliers is equivalent to D ¼ oþ o ¼ �1. The

discriminant can be thought as a functional

D : L2ðR=TZÞ ! R; a 7! D½a�:

It is well known that D is continuous. We will be interested in the discriminant

of the equation (17) with aðtÞ ¼ b cos qðtÞ. For this reason we define the new

functional

D : L2ðR=TZÞ ! R; D½q� ¼ D½b cos q�:

It is also continuous because it can be expressed as the composition D ¼ D �N
where N is the Lipschitz-continuous operator

N : L2ðR=TZÞ ! L2ðR=TZÞ; NðqÞ ¼ b cos q:
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To work with odd functions we introduce the subspace of L2ðR=TZÞ,

L2
\ ¼ fq a L2ðR=TZÞ : qð�tÞ ¼ �qðtÞ a:e: tg:

It is a Hilbert space with the dense subspace of odd analytic functions

V ¼ CoðR=TZÞBL2
\ :

To prove the density of V we expand every function q a L2
\ in a Fourier series of

sines,

qðtÞP
Xl
n¼1

qn sin
2pnt

T

converging to q in the L2 sense. The partial sums
PN

n¼1 qn sin
2pnt
T

belong to V and

q is the L2-limit.

Define

Co ¼ fq a V : kq� pnkL2ðR=TZÞ < dg:

This is a non-empty convex set whose closure in L2
\ is the ball

C ¼ fq a L2
\ : kq� pnkL2ðR=TZÞa dg:

To prove the lemma we must show that the functional D takes the value �1 at

some function in Co. Note that D½ pn� ¼ �1. We proceed by contradiction and

assume that

D½q�A�1 if q a Co:

Since Co is convex, we can assume that Dþ 1 does not change sign on this set.

The two possible cases are Dþ 1 > 0 and Dþ 1 < 0 and both can be handled

similarly. From now on we assume Dþ 1 > 0. By a density argument

D½q�b�1 if q a C: ð18Þ

Next we compute the variations of D. Given f a L2
\ and l a R, define

DðlÞ ¼ D½ pn þ lf �:

This is a smooth function and

D 0ð0Þ ¼ �b

ðT

0

wðtÞ
�
sin pnðtÞ

�
f ðtÞ dt
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with

wðtÞ ¼ �
ffiffiffi
3

p

2
sin2 t�

ffiffiffi
3

p

2
cos2 t ¼ �

ffiffiffi
3

p

2
:

For this computation we refer to [5]. In particular, for the choice f ðtÞ ¼ sin pnðtÞ,

D 0ð0Þ ¼ b

ffiffiffi
3

p

2

ðT

0

sin2 pnðtÞ dt > 0:

Hence DðlÞ < �1 for l negative and small. This is incompatible with (18) because

pn þ l sin pn belongs to C when jlj is small. 9

5. The second construction

In this section we assume that T ¼ 2p and b > 1
4 . The key for this construction

will be the notion of hyperbolicity. Let us first consider the linear equation (17).

This equation is called hyperbolic if the Floquet multipliers satisfy 0 < jm1j <
1 < jm2j. In terms of the discriminant D ¼ D½a� this is equivalent to jDj > 2.

Given a nonlinear equation and a periodic solution cðtÞ, we say that c is

hyperbolic if the linearized equation satisfies the above condition. We recall that

hyperbolic solutions are unstable in the Lyapunov sense. Next we present exam-

ples for the linear and nonlinear cases.

Given e a 0; 12
� �

, we consider the even and 2p-periodic function

ae a LlðR=TZÞ defined by

aeðtÞ ¼
�
1
2 þ e

�2
; jtj < p

2�
1
2 � e

�2
; p

2 < jtj < p:

(

This function is piecewise constant and the associated Hill’s equation

€yyþ aeðtÞy ¼ 0 can be integrated explicitly. After some computations that can be

found in chapter 5 of the book [1], it can be checked that the discriminant satisfies

D½ae� < �2

if e > 0 is small enough. The equation €yy� aeðtÞy ¼ 0 is hyperbolic for any

e a 0; 12
� �

. This can also be checked by direct integration. In this case

D½�ae� > 2:

Next we consider the nonlinear equation

€yyþ aeðtÞ sin y ¼ 0: ð19Þ
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The sequence ae converges to the constant 1
4 in a strong sense,

lim
e#0

ae �
1

4

����
����
LlðR=TZÞ

¼ 0:

We are in the conditions of the third example after Proposition 3.2 and so, for

small e, the equation (19) has exactly two periodic solutions with period T ¼ 2p.

These solutions are y ¼ 0 and y ¼ p. The above discussion on linear equations

implies that these two solutions are hyperbolic. Up to this point the construction

is essentially the same as in the last section of [4]. From now on we fix a number e

positive and small. In addition to the previous conditions we also assume that it

satisfies

b >
1

2
þ e

� �2

:

This new condition is employed to find numbers ye in 0; p2
	 �

with

b cos ye¼ 1

2
e e

� �2

:

Next we take uniform partitions of the intervals 0; p2
� 	

and p
2 ; p

� 	
,

t0 ¼ 0 < t1 ¼
p

2n
< t2 ¼

2p

2n
< � � � < tn ¼

p

2
;

t�0 ¼ p

2
< t�1 ¼ p

2
þ p

2n
< t�2 ¼ p

2
þ 2p

2n
< � � � < t�n ¼ p:

Let Hn be the odd periodic function in LlðR=TZÞ defined by

HnðtÞ ¼
ð�1Þkyþ; if t a �tk; tkþ1½
ð�1Þky�; if t a �t�k ; t�kþ1½:

(

We observe that b cosHnðtÞ ¼ aeðtÞ almost everywhere and b sinHn * 0 in the

weak� sense. The equation

€yyþ b sin
�
yþHnðtÞ

�
¼ b sinHnðtÞ ð20Þ

converges to (19) in the sense of Proposition 3.2. Since the equation (19) is simple

we deduce that for large n the equation (20) has exactly two periodic solutions

with period T ¼ 2p. We label them as y1 ¼ 0 and y2;nðtÞ. In view of the remark
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at the end of Section 3 we know that y2;nðtÞ converges to p uniformly. The linea-

rization at y1 ¼ 0 is precisely (19) and we know that this equation is hyperbolic.

The linearization at y2;nðtÞ is

€xxþ b cos
�
y2;nðtÞ þHnðtÞ

�
x ¼ 0:

It is easily checked that b cos
�
y2;nðtÞ þHnðtÞ

�
þ aeðtÞ converges to 0 uniformly.

The properties of continuity of the discriminant functional imply that the discrim-

inant of the above equation converges to D½�ae� > 2. From now on we fix n large

enough so that (20) has exactly two periodic solutions of period 2p. Moreover

both of them are hyperbolic. Once again we have used Proposition 3.2.

Our next step will be to expand HnðtÞ in Fourier series

HnðtÞP
Xl
k¼1

gk sin kt:

For large N the trigonometric polynomial

KNðtÞ ¼
XN
k¼1

gk sin kt

is such that the equation

€yyþ b sin
�
yþ KNðtÞ

�
¼ b sinKNðtÞ

has exactly two T-periodic solutions, both of them hyperbolic. The change of

variables x ¼ yþ KNðtÞ leads to an equation of the type (1). In view of the second

example after Proposition 3.2 we can conclude that this is the searched equation

for the proof of Theorem 1.2.

6. Proof of Lemma 3.3

We divide the proof in five steps.

6.1. A remark on uniform convergence. Let L be a compact metric space.

Convergent sequences in L will be denoted by ln ! ll, where ll is the limit.

Given a sequence of functions

Xn : ½0;T � �L ! R2; ðt; lÞ 7! Xnðt; lÞ; n ¼ 1; 2; . . . ;l;
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we say that there is c-convergence if the following property holds: for each

ln ! ll,

Xnðt; lnÞ ! Xlðt; llÞ

uniformly in t a ½0;T �.
This notion is related to the so-called continuous convergence (see [2]). We

will employ the notation Xn xXl.

Lemma 6.1. In the previous setting assume that Xn xXl and Xl is continuous.

Then Xn converges to Xl uniformly in ½0;T � �L.

Proof. By contradiction assume the existence of a number d > 0 and sequences tn
and ln such that

jXsðnÞðtn; lnÞ � Xlðtn; lnÞjb d

for some integer sðnÞb 1 with sðnÞ ! l. After extracting a subsequence we can

assume that ln ! ll. Then

jXsðnÞðtn; lnÞ � Xlðtn; lnÞj
a jXsðnÞðtn; lnÞ � Xlðtn; llÞj þ jXlðtn; llÞ � Xlðtn; lnÞj:

The assumption on c-convergence and the uniform continuity of Xl imply that

the two terms in the sum tend to zero. This is incompatible with the existence of

the number d. 9

6.2. Convergence of the solution. We prove that the solution of equation (11)

converges to the solution of (9) in the following sense,

ynðt; y0; v0Þ ! yðt; y0; v0Þ; _yynðt; y0; v0Þ ! _yyðt; y0; v0Þ

uniformly in t a ½0;T �, ðy0; v0Þ a K , where K is a compact subset of R2.

To prove this assertion we take L ¼ K with l ¼ ðy0; v0Þ and prove that there is

c-convergence of Xn ¼ ðyn; _yynÞ towards Xl ¼ ðy; _yÞ. By continuous dependence

with respect to initial conditions we know that Xl is continuous and so Lemma

6.1 will imply that Xn converges to Xl in the uniform sense. Let us take a

sequence ln ¼ ðy0n; v0nÞ a K converging to ll ¼ ðy0l; v0lÞ. We abbreviate the

notation to

ynðtÞ ¼ yðt; y0n; v0nÞ:
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We must prove that

ynðtÞ ! ylðtÞ; _yynðtÞ ! _yylðtÞ

uniformly in t a ½0;T �. The sequences fang, fbng and fcng are bounded in

LlðR=TZÞ and so the same can be said for the sequence f€yyng in Llð0;TÞ.
From here it is easy to deduce that the sequences fyng and f _yyng are uniformly

bounded and equi-continuous so that Ascoli theorem can be applied. Let fykg
be a subsequence of fyng converging to some y� in C1½0;T �, we will prove that

yl ¼ y�. This is su‰cient to guarantee the convergence of the whole sequence

fyng to yl.

Given a test function j a Cl½0;T �, jð0Þ ¼ jðTÞ ¼ 0, we deduce from (11) that

�
ðT

0

_yyk _jjþ
ðT

0

fak sin yk þ bk cos yk � ckgj ¼ 0:

The sequence sin yk converges uniformly to sin y�, hence ak sin yk * a sin y�. This

type of argument allows a passage to the limit when k ! l, showing that y� is a
solution of (9). This solution must be understood in a weak sense but, since we are

dealing with ordinary equations, it is also a solution in the Carathéodory sense.

The initial conditions satisfied by yl and y� coincide at t ¼ 0 and so y� ¼ yl.

6.3. Linear equations depending on parameters. Consider the Cauchy problem

€zzþ Gðt; lÞz ¼ gðt; lÞ; zð0Þ ¼ w0; _zzð0Þ ¼ w1 ð21Þ

where G; g : ½0;T � �L ! R satisfy the following conditions:

• For each l a L, Gð�; lÞ; gð�; lÞ a Llð0;TÞ

• If ln ! ll then Gð�; lnÞ * Gð�; llÞ, gð�; lnÞ * gð�; llÞ in the weak� sense.

The solution of (21) will be denoted by zðt; lÞ and we claim that it depends

continuously on l. More precisely,

ðt; lÞ a ½0;T � �L 7!
�
zðt; lÞ; _zzðt; lÞ

�
is continuous. The proof of this fact uses again Ascoli theorem and an argument

of uniqueness. We omit the details.

6.4. Successive derivatives of the solution. The derivatives qayn with qa ¼
q jaj

qa1y0q
a2 v0

, jaj ¼ a1 þ a2, can be computed by di¤erentiating the equation (11) with

respect to initial conditions. They satisfy a linear Cauchy problem of the type

€zzþ Gnðt; y0; v0Þz ¼ gnðt; y0; v0Þ; zð0Þ ¼ w0; _zzð0Þ ¼ w1 ð22Þ
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where

Gn ¼ an cos yn � bn sin yn

and gn depends upon an, bn and the derivatives qbyn with jbj < jaj. For instance,

gn ¼ 0, w0 ¼ 0, w1 ¼ 1 if a ¼ ð0; 1Þ or gn ¼ ðan sin yn þ bn cos ynÞqe1ynq
e2yn, w0 ¼

w1 ¼ 0 if a ¼ ð1; 1Þ and e1 ¼ ð1; 0Þ, e2 ¼ ð0; 1Þ.
The same can be said about the solution of (9). To unify the discussion we

employ the notation yl for the solutions of (9). We claim that for each

n ¼ 1; 2; . . . ;l the map

ðt; y0; v0Þ a ½0;T � � R2 7!
�
qaynðt; y0; v0Þ; qa _yynðt; y0; v0Þ

�
a R2

is continuous. This is proved by induction on N ¼ jaj. We assume that the map is

continuous for each b with jbj < N and prove that the same holds for a. We can

apply the previous remark on the linear problem (21) where L is a closed ball in

R2, G ¼ Gn and g ¼ gn. Given a convergent sequence lm ¼ ðy0m; v0mÞ ! ll ¼
ðy0l; v0lÞ, the continuity of yn implies that Gnð�; lmÞ converges, as m ! l, to

Gnð�; llÞ in the weak� sense. The same can be said about gnð�; lmÞ and gnð�; llÞ
but now the inductive assumption has to be invoked.

6.5. Convergence of the derivatives of the solution. To complete the proof

we show that the solution of equation (11) converges to the solution of (9) in the

CN topology on compact sets, that is

qaynðt; y0; v0Þ ! qayðt; y0; v0Þ; qa _yynðt; y0; v0Þ ! qa _yyðt; y0; v0Þ

uniformly in t a ½0;T �, ðy0; v0Þ a K for each jajaN.

Again the proof is by induction on the order of a. We consider the solution

of (22), Znðt; y0; v0Þ ¼
�
znðt; y0; v0Þ; _zznðt; y0; v0Þ

�
and prove that it converges to

Zlðt; y0; v0Þ uniformly on ½0;T � � K . To this end we apply again Lemma 6.1

with L ¼ K . We already know that Zl is continuous and so it remains to prove

that Zn xZl. This is more or less a repetition of previous arguments based on

Ascoli theorem and the uniqueness of the initial value problem.
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