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Abstract. We prove interpolation estimates between Morrey—Campanato spaces and
Sobolev spaces. These estimates give in particular concentration-compactness inequalities
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1. Introduction

The subcritical Sobolev embedding states that if 1 < p <g, é>%—% and u
belongs to the Sobolev space W7(RY), then u € LI(R") and
p/
(J ") qst \Dul? + [ul”. (1)
RN RN

Because the norms in W?(RY) and LY(R") are invariant under translation, this
continuous embedding of W?(R") into LY(R") is not compact, that is, bounded
sets in W17(R") need not be precompact in LI(R").
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This noncompactness is an obstacle to prove that the optimal constant in the
estimate (1.1) is achieved. One of the key observations in the concentration-
compactness method of P.-L. Lions which allows to overcome this problem [14]
is that the elements of any bounded sequence that does not converge to 0 in
LY(RY) can be translated in space so that the sequence of translations does
not converge to 0 in L/ (RY). This fact can be deduced from the inequality
([14], Lemma I.1; [21], Lemma 2.3; [33], Lemma 1.21):

1=p/
J ul* < (" sup J ul?) "J |Dul” + Ju]”. (1.2)
RY By (x) RY

xeRY

When p e (1,N)and g = p* = NN—fp is the associated critical Sobolev exponent,
the limiting inequality for (1.1) is the critical Sobolev inequality

1-p/N
(J | NP/ V- ")) "o CJ \Dul”. (1.3)
RV RV

This latter inequality is invariant under both translations and dilations. In par-
ticular, there are bounded sequences that do not converge to 0 in L?/(N-)(RY)
and every translation of which also converges to 0 in L/ (R"Y). However, for
every bounded sequence (u,),.n in W!'?(R") that does not converge to 0 in
LN?/(N=P)(RN) ] there exist sequences (x,),.n in RY and (r,),.n in (0, 00) such
that if

va(y) = r\NV PP (x4 1Y),

then the rescaled sequence (v,),.y does not converge to 0 in L{ (R™) [15]. This
follows from the inequality for every u € W7 (R")

/)
J w7 < ¢ sup lj )" J |Dul?, (1.4)
RY ) B,(x) RY

xeRY
>0

which follows by Holder’s inequality from the interpolation estimate ([24],
Theorem 1.2)

(N—
JR ju| NP/ V=1) < C||u|\1’/{{m /f/l(R )JRN |Du|”, (1.5)

where the Morrey norm is defined by

1/q
lell s vy = sup -+ (][ |u|q) :
B, (x)

xeRN
r>0
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The inequalities (1.2) and (1.4) seem at first hand quite different: the first is
translation-invariant whereas the second is dilation- and translation-invariant. A
first question that we address in this paper is to determine the relationship between
the inequalities (1.2) and (1.4). We answer this question by proving a family of
inequalities of which both (1.2) and (1.4) are direct consequences: if ¢ > p > 1
and if 2 € [0, p/(q — p)), then for every function u € W'P(RV) n.# ) (RY),

[, 117 = CO Pl )7 [ oD+ 1 (16)

where the localized Morrey norm is defined as [31] (see also [3], [4])

1/q
u_;_l:supr(} uq) |
[4ll g2 gy B,<x>| |

xeRY
r€(0,p]
the estimate (1.2) follows by the classical Holder inequality from (1.6) with 1 = %
and p = 1, whereas (1.5) is obtained by letting p — oo in (1.6) with 4 = Nep
Our proof of (1.6) is based on pointwise integral estimates of a function and
the classical maximal function theorem. It covers higher-order derivatives (Theo-
rem 2.1) and fractional derivatives (Theorem 4.1). Our proof also provides an
independent proof of the classical Sobolev and Gagliardo—Nirenberg inequalities.
Finally, the statements of Theorems 2.1 and 4.1 also allow to prove an inter-
polation inequality between Sobolev spaces and functions of bounded mean oscil-
lation: assuming that s>/€eN, if s¢N, and p>1, then for every
ue Ws?(RY) n BMO(RY), one has u € W’ *//(R") and
1Dl ey < Clilgngtyam 413 (17)
and if p>1 and se N, then for every ue W?(R")n BMO(RN), one has
Du e L//(RY) and

1 / /
1Dt e ey < Clidlgypey o 1Dl v, (1.8)

These inequalities were known when s € N or p = 2 [12], [20], [29].

2. Statement of the result

In order to state our results we recall the definition of the Campanato semi-norm*

2], [27]

'We warn the reader of the variety of conventions for the parameters ¢, 4 and k in the definition of
the Campanato semi-norm.
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|u|q 0 = sup r* inf , f |u— P|,
yeRY  Pe2(RY) JB,(x)
>0

where 2;_;(R") denotes the space of polynomials on R" of degree at most k — 1.
We define the localized Campanato semi-norm

q _ A : q
|u|$q_,1(RN> = sup r /’mf . ][ |u— P|?.
k.p xeRY  PeZa(RY) JB(x)
re(0,p]

Under the convention that Z_;(R") = {0}, we observe that

\u|yq,,¢ RY) = ||u\|u/{,,,;. (R
It is clear from the definition of f‘”(RN ) that if / <k, then for every
ue 3‘1’ (RM),

L

conversely ([2], Theorem 6.2),

Ul o vy < C(|u| ) f |u—P|");
iz 2 xeRY  Pe2,(RY) JB,(x)
that is, we only need to look at differences with low-degree polynomials only at the
scale p.
We now state our main interpolation estimate.

Theorem 2.1 (Interpolation estlmate) Let NeN,keN,and/ €{0,...,k—1},
l<p<qg<owand—( <1< ko Zq. There exists a constant C such that for every

p>0,ifue Wkr(RY)n f/lp”( M), then D’u e LY(RN) and
JRNp/q|Dfu|q <C(p A|u|yl/ ))q pJRN(pkp|Dku|ﬁ +p/p|Dfu|p).

We first discuss the relationship between the estimate of Theorem 2.1 and sim-
ilar estimates. If » > 1, by the definition of the inhomogeneous Campanato space
L /f( RY) and by the classical Holder inequality, for every u e W5?(RY)n
OSP,I’ ;(RN ), the inequality can be weakened to

pUD Ul < Clp~ul o) | (P ID*ul” + p?|D ul").  (2.1)
RN ’p RN
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If A < N, by the classical Holder inequality and by monotonicity of the integral

) AN
gy < sup () 22)

xeRV

so that Theorem 2.1 gives in particular the estimate in the case where /¢ < kp and
%> max(N(22),1)

kp—C(q
(4=p)(2/N)
J rp/q|D/u|q < C( sup ][ |u|N/)')
R* xeRY JB,(x)
<[ Dk 5 10 ). (2.3)
In particular, if % - % < i < % and if we set 1 = %, we obtain the inequality
q g\~ kp| k1P p
|ul” < C( sup Jul ) (P |D%ul” + [ul”). (24)
RV xeRY JB,(x) RV

This inequality yields (1.2) in particular; the estimate (2.4) can be proved in the
wider range p > 1 by the Gagliardo—Nirenberg interpolation inequality applied
to balls and then by integration over balls; this argument is well-known for k = 1
and p > 1 ([14], Lemma I.1; [21], Lemma 2.3; [33], Lemma 1.21).

The inequality (2.3) implies a subscale of the Gagliardo—Nirenberg interpola-

tion inequalities [8], [22]: if /g < kp and t =& > max(N k;:’;q, 1), then

1 (g=p)/t , /
J ,p"‘f\Dfur]sC(—NJ ') J ("D ul” + p7|D "), (2.5)
RV P IRy RY

We have in particular, if % -£ < é < %, the classical Sobolev inequality
1 1 q/p
— q o kpink, 1P P
Pl JRN jul* < C(pN JRN(” [D"ul” + |ul )) : (2.6)

If /g < kp and 4 = 0, we have the interpolation inequality

| o< cluls | oDk p D ). 2)

RN

If 7e{l,...,k—1} and 2 =0, the latter inequality can be improved by the
isomorphism between Campanato spaces and functions of bounded mean
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oscillation (BMO) ([2], p. 159; [26]; [27], Theorem 4.3), the estimate of Theorem
2.1:if /q < kp, then

where the local bounded mean oscillation semi-norm is defined by

|u|BMO (RY) = Sup f } (z)| dzdy. (2.9)

xeRY

0<r<p
We remark also, that when 4 € (—7,0) is not an integer, the inhomogeneous
Campanato semi-norm is a Holder semi-norm ([2], Theorem 4.1; [10]; [27],
Theorem 4.4).

As the proof of Theorem 2.1 does not depend on any Sobolev or Gagliardo—
Nirenberg inequality, the proof of Theorem 2.1 provides an alternative method to
prove these inequalities based essentially on the Sobolev integral representation
and the maximal function theorem.

In the homogeneous case 1 = (kp — /q)/(q¢ — p), if we let p — oo, Theorem 2.1
implies an interpolation result between Morrey spaces and Sobolev spaces

J |D u|? < Clu|* " |D"ul?. (2.10)
RY

1, (kp—(q)/ (g~ N
32(1 9)/(¢ m<R\)JRN

In particular, when kp < N and }1 =< — % in (2.10), we obtain the generalization

of (1.5)

1
)4

J |D/u|NP/(N*( ) < C|lul| kl /\r/{) /(N (k*/)p)J |Dku|p (2.11)
RN AMENIPE(RY) RV
which was known for / =1 and p = 2 or k = 2 ([24], Theorems 1.1 and 1.2).

If kp = g/, then the inequality (2.10) becomes, by the equivalence between
the Campanato space & }’O(IRN ) and the space of functions with bounded mean
oscillation BMO(R™),

kp/t (k/t=1)p
J ID"u|®" < Clu |B]\/AO >JR~ \D*ul”, (2.12)

where the bounded mean oscillation semi-norm is defined by

|”|BMO rRY) = Sup ][ } u(z)|dzdy.

xeRVY
r>0
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The latter semi-norm is clearly equivalent to the classical semi-norm of F. John
and L. Nirenberg [11]
u— ][ u’
B,(x)

Estimate (2.12) is also the limit when p — oo of (2.8). This estimate was proved
by embeddings in the Besov scale space ([20], Theorem 1.4) and by duality be-
tween BMO(R”) and the real Hardy space ' (R") ([29], Theorem 1.2). Simi-
larly, when (/g — kp)/(p — q) is positive and not an integer, we recover from
(2.10) interpolation estimates with Holder continuous functions [22]

|u|BMO RY) = SUp
xeRY JB.(x)
>0

J |D/u|q < C|u|q e ")(RN)J . |Dku|1’; (213)
RN R’

the latter inequality still holds for integer (/¢ — kp)/(q — p) if one takes the semi-
norm in the corresponding homogeneous Zygmund space.

When k = 1, the inequality (2.10) also follows from the stronger interpolation
inequality ([13], Theorem 1)

[l < g L | 1000 .14)

by continuous embeddings of the Morrey class .#'?/(4=?)(R") into the Besov
space BP/\" P (RN) ([13], §2.3; [24], Lemma 3.4) (see also [34], Corollary 3.3,
Proposition 2.4 and Corollary 2.2) the latter approach covers specifically the case
=115], [6], [7]- (For p =2 and g =4 see also [20] Theorem 2.6.)
If ¢> p(1+%), the Lorentz space LN@=7)/k»):.=(RY) is continuously em-
bedded in .2!*/(4=P)(R") and thus the estimate (2.10) implies

J 7 < Cllull 7 Dkuf?. (2.15)
RN

LW/ p)/kp, © (RV) J[R{N

If p € [1,%), the inequality (2.15) can also be deduced from the embedding of the
Sobolev space W*?(R") into the Lorentz space LN?/(N=k).r(RNY ([1]; [23]; [25],
Théoréme 7.1; [30]) and by interpolation between Lorentz spaces. These inequal-
ities imply the weaker inequality [9]:

q q-=p k1P
JRN ud SC'”'BMRMJRN D%l (2.16)
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by the homogeneous embedding of B[’{ L (RY)in L74(R"Y) which is a consequence
of the embeddings of Besov spaces into Lebesgue spaces and interpolation
theorems [32].

3. Proof of the estimate

The proof of Theorem 2.1 will use a pointwise estimate on the value of a function
by its derivatives.

Lemma 3.1 (Pointwise estimate of the value of a function). There exists a
constant C > 0 such that for every u € Wll’ck(lR{N), for almost every x € R and
for every R > 0,

, D¥u(y
R/|D’u(x)| < C(J %d}ﬂr][ \u|)
Br(0) [x — | Bi(x)

When /7 = 0 this estimate is a direct consequence of the Sobolev integral repre-
sentation formula ([17], Theorem 1.1.10/1). It has appeared as an intermediate
step of pointwise interpolation for derivatives ([18], (15)). We provide here for
the sake of completeness a complete argument following that is a combination of
these proofs ([17], Theorem 1.1.10/1; [18], Theorem 1).

Proof of lemma 3.1. We fix n € C¥(By) such that IBI n = 1 and we define for every
x e RY and wy,...,w; € RY, the function g : (0, 0) — R for each r € (0, c0) by

g(r) = JB D/u(x +rz)[wi, ..., wn(z)dz = JB.( )D/u(y) wi,...,wn.(y —x)dy,

where for every r > 0 the function 7, : RY — R is defined for each z € RY by
1n,(z) = n(z/r)/rN. The function g is k — j times continuously differentiable and
for every j € {0,...,k—/} and r € (0, «0),

g (r) = J D' u(x +r2)[wi, ... w2, ..., 2n(z) dz
By

1
_F/JB( )D/U(y)[WI,...,W/,y—x,...,y_X}”y(y_X)dy-
By integration by parts, for every je {0,...,k—/}, there exists a function
n’/ € C¥/(By;Lin’(R")) such that

JB D' u(2)[wy, ... wsz, ..., Z)p(z)dz = (—l)jJB v(2)n! (2)[wr, ..., w/]dz,
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and hence
gV (r) = J D' u(x +r2)[wi, ... w2, ..., 2n(z) dz
B

_ J o
Tt B u(y)nl(y —x)[wi,...,w/dy

where for every r > 0, the function #/ € C¥~/(B;Lin’(R")) is defined for each
ze RY by nl(z) = n/(z/r)/r".
If x is a Lebesgue point of the function D’u, then

lim g(r) = u(x).

r—0

1,k
oc

D* 1
Ba(@ JBa(x) X — Y| Bar(a) Br ||

hence for almost every x € RY,

Moreover, since u € W, (R"), for almost every x € R" and for every R > 0,

J D u(y)|

v dy < .
Br(x) |[X — V|

By the integral version of the Taylor expansion of the function ¢ at the point R,
we write

D/u(x) Wi, ..., wy]
kt 1, 0)) _pV R,k k-1
IR [0

= llm g V) = - _ dr
5 9 = J! o (k=1
ko<1 ‘

= FJ u(nt (v = ), w/)dy
Jj=0 Bg(x)

R
+J Dku(y)[wl,...,w/,x—y,...,x—y]nr(y—x)dy

mdr. (3.1)

By Fubini’s theorem,
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R
1
Dfu())wi, ... oW, x— .. x — (Y —x)dy ———dr
ijw (¥)Iw1 /X =Y yin(y )y%—DV

1

ZMJ'B( )Dku(y)[wl,...,w;,x— Vyeoyx— Y|H(y — x)dydr,

where for r > 0 and z € R we set H,(z) = H(z/r)/r" and

H@):Jm”“”da

o Y

Since for every r > 0 and z € R", |H,(z)| < C|z|™" and |7/(x)| < Cr~V, we con-
clude that

Dku y
RqDﬂ4m|gc(f “4+J Ai——gégqg. 0
B,(v) Br(x) |x — y

Proof of Theorem 2.1. For almost every x € R", for every R >0 and every
Pe 2, (RY), we bound by the pointwise estimate (Lemma 3.1), since D’P = 0
on RY,

R'|D u(x)] = R’|D’ (u — P)(x)|

D¥(u—P
sc(J |(“§&W%y+f ju—P|)
Br(0) |x— ]| Br(x)

Dk
~ <] i—ﬂ¥%@+f u— ).
Br(0) | X — ¥ Br(x)

We observe that by Fubini’s theorem

|Dk”(y)| JR IJ k k—1
————dy=(N—-k — D%ul ) r*" dr
JB =1 ) 0 (VN Br(x)‘ |)

w0 [x =y V7

We fix f > 0. Hence, if R < p, in view of our previous computation and by defi-
nition of the maximal function and the Morrey-Campanato norm,

ple/u(x)‘ < Cp/Jrﬂ(Rk_/_ﬂeﬂquUD(x) +R_'1_/_ﬁ|“|g/{;(RN))' (3.2)
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If |u|3,1 vy < M (|D*ul)(x)p*+*, we take
ket
M (|D*ul)(x)

/1Y / (A-t+P) ) (AAk) | (k—t—B) ) (k+2
p/IDu(x)] < Cp’*P (car (D ul) ()
,,

and we obtain

paes k), - !
< C(pkﬂ(IDkuD(x))( +P)/ (0t >(p z|u|$/1._;(RN )(k =)/ (k+2) (3.3)

)

Otherwise, we observe that by (3.2) with R = p,

p/ID (0] < Cp~lul s

and thusif —A—/<p<k—/

/ It k), ) —~(—B)/ (%
P10 u(x)| < C(p/ 1D ux))) P (0 ]y ) P (34)

(RY)

Hence, we have in both cases in view of (3.3) and (3.4)

, c Py v Ik

p/|D u(x)| < C(p* A (ID*ul)(x) + p’ | D u(x)|)
—A k—{— J+k

X (™l ) . (3.5)

If we take f = k+))
S > 0 and thus, smce /1 > / we have f > —1 — /. Moreover p < ¢ 1mp11es that
B <k — /. We obtain thus

/)41/ JRN |D/”|q < C(p7}'|u|y/1‘_ﬂ,:(RN))q_P JRN (/)keﬂﬂDkuD +p/|D/u|)p.

By the maximal function theorem ([28], Theorem I.1), we deduce the desired
estimate. 0

Remark 3.1. The estimate (3.5) is a variant of the local pointwise interpolation
estimate by maximal functions ([18], Remark 3)

PP u(ex)| < (M (1D ul) () + " Myl () (i ()

where the localized maximal function operator .#, is defined by

M, (f)x) = sup ][ N

re(0,p] JB,(x
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4. The fractional case
In this section we study a fractional counterpart of Theorem 2.1.

Theorem 4.1 (Interpolation estimate of the function). Let N € N, k € N, and
/e0,....k—1}L,1<p<qg< 0, 0<o<1and {<)<M. There ex-
ists a constant C such that for every p >0, if ue W*or(RV) n 31 A(RN) then
D’u e LYRY) and

p/q|D/u|q = C(pi/lluly‘v’- RY )qu
" L (®Y)

k k P
" (PP(ICM)J J |D*u(x) — D u(y)| dxdy +J p/plD/ulp).
RN JgN ‘ _ y| RV

N+ap

In contrast with Theorem 2.1, the case p = 1 is covered. Theorem 4.1 has the
same consequences as its counterpart Theorem 2.1. We mention here some of the
most striking consequences.

In the homogeneous case 4 = %, we obtain the fractional counterpart of
(2.10): if
/ - |D*u(x) — D*u(y)|”
JRN D u|? < C(|u|j/l:/(y(kJrn)P*/!/)/(q*p)(RN))q r JRN L dxdy. (4.1)

In particular, if p(k + o) < N, then

g a 2 - a
J |u|NP/ —(k+o)p) C(|u|$l.1\'/p—(k+a)(RN))(k+ )p*/(N—(k+0)p)
RN ‘p

Dk _ Dk P
xJ |D%u(x) Nj(y ) dxdy. (4.2)
RV |x — p|"*

The estimate (4.1) was known for p = 2 ([24], Theorem 1.1).
We also have the interpolation inequality for 7 > 1,

: ,, ,, D*u(x) — D*u(y)|?
[ L I
R RY |x =)

this inequality is a consequence of interpolation inequalities between Besov spaces
[16].

Lemma 4.2. There exists a constant C > 0 such that for every u € Wl1 k([RN ), for
every x € RY and every R > 0,

1D u(x)| < C(J |Dku(J’_) ygjil(xﬂ dy + LR(X)M)'

Bg(x) |x




Sobolev—Morrey—Campanato interpolation inequalities 171

This inequality implies by Holder’s inequality the fractional interpolation esti-
mate ([18], (32); [19], Appendix)

Y

/ 1~/ (k+o |D¥u(y) — D*u(x)|” \//p(k+o)
1D u(x)| < C(Mul(x)) """ )(J , NTop )
RV x—yl
the inequality of the lemma appears in fact in the proof of the latter inequality
([18], (32)). We give a proof of the lemma for the sake of completeness.

Proof of lemma 4.2. The proof begins as the proof of Lemma 3.1. Instead of (3.1),
we write

D u(x)[wy,...,w,] = lim g(r)

r—0

Next, we have

1 gW(r) —g®(R) .
e = R

R
:—J J (Dku(x+rz)[w1,...,wk,z,...,z]—Dku(x)[wl,...,wk,z,...,z]
0 Ja

+ D*u(x)[wy, ... w2z, ..., 2] —Dku(x—i-RZ)[wl,...7wk,z,...,Z])

and we conclude by changes of variable and Fubini’s theorem. O

Proof of Theorem 4.1. For almost every x € RY, for every R > 0 and every
P e 2, 1(R"), we bound by the pointwise estimate (Lemma 3.1), since D’P = 0,

D* — Dk
R’|D u(x)| < c( [Dhu(y) = D7)l g L P|).
By —y[VF Br(x)
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We fix f > 0. By Hélder’s inequality and by definition of the Campanato norm,

if R<p,

p/ID u(x)| < Cp/ P(RET D, (D) () + R a5 ),

where we use the notation

|Dku(y) — Dku(x)| )1/17
RY =y V7 '

Doy (04 u)(0) = ( |

If|u|g1, <DJ,,(D" )(x) K+t we take

_ 1/(k+a+2)
R B |u|$/]..ﬂ/.(RN) 7
Dy p(DFu)(x) ’

and we obtain

p'|D u(x)|

AP GAkt0) | (et )/ (ko2
< Cp/ P (Dy p(DFu) (x)) Iy 8 (Rﬂ%( o
lip

/ Atk _ o—(— o
< C(pkﬁ»UDU’p(Dku)(x))(“F +8)/(A+ +J)(p )~|u|g/1’;(RN’))(k+ /=P)/ (k+ +/1).

Otherwise, we observe that by (4.4) with R = p,
P ID U] < Cpul )
and thusif A -/ <f<k+o—/
p/|D/u(x)\ < C(p/lD/u(x)I) (/l+/+/3)/(/1+k+rr)(pf/1|u|$/].;(w))(k+g—/—/3)/(/l+k+o).

Hence, we have in both cases, in view of (4.5) and (4.6),

Al+P) ) (A+k+o
p'ID/u(x)| < C(p"*7 Dy p(DFu) (x) + p/ D ux) ) /)

— k+o—(— Ak+o
% (,0 A|H|$/I‘./)/‘.(RN))( +o—(—p)/(A+k+ )

We take f = H%m — ¢ and we conclude with

4 Jw Dl < CCp 4'”'%‘;&@“»)617% (P47 Dy, p (D) (x) + p’ |D"u])".

R N

(4.4)

(4.6)

O
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The above proof allows to recover in particular the unpublished elementary
proof of fractional Sobolev embeddings of H. Brezis.
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