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Abstract. Let (M,g) be a smooth, compact Riemannian manifold of dimension N > 3.
We consider the almost critical problem

(P) —Aju+ % Scal,u = uN/WN2% in M u>0  in M,
where A, denotes the Laplace-Beltrami operator, Scal, is the scalar curvature of g and
¢ € R is a small parameter. It is known that problem (P,) does not have any blowing-up
solutions when ¢ " 0, at least for N < 24 or in the locally conformally flat case, and this is
not true anymore when ¢\, 0. Indeed, we prove that, if N > 7 and the manifold is not
locally conformally flat, then problem (P,) does have a family of solutions which blow-up
at a maximum point of the function ¢ — [Weyl,(¢)], as ¢ \, 0. Here Weyl, denotes the
Weyl curvature tensor of g.
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1. Introduction

Let (M, g) be a smooth, compact Riemannian N-manifold, N > 3. We consider
the almost critical problem

N —

2
M)

Scal,u =xu®> "' inM, wu>0 inM, (1)
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where A, :=div, V is the Laplace-Beltrami operator, Scal, is the scalar curva-
ture of (M,g), k€ R and ¢ € R is a small parameter. Here 2* := % is the
critical exponent for the embedding of the Riemannian Sobolev space H ;(M )
into Lebesgue space L (M).

When ¢ = 0 equation (1) reads as the Yamabe problem. The constant x can be
restricted to the values —1, +1 or 0 depending on whether the Yamabe invariant of

(M, g)

Y, (M) = inf (Volg(M)@*N)/NJ

Scaly dvy )
M

has negative sign, positive sign or vanishes, respectively. Here [g] = {¢g: ¢ €
C*(M), ¢ > 0} is the conformal class of g and Vol;(M) is the volume of the man-
ifold (M, g). In particular, if u is a solution of the Yamabe equation (1),—¢, then
the metric § = u*V-?g is conformally equivalent to g and has constant Scalar
curvature k. The Yamabe problem, raised by H. Yamabe [23] in *60, was firstly
solved by Trudinger [22] when Y, (M) < 0. In this case, the solution is unique,
up to a normalization. In general, a solution of the Yamabe problem can be
found by a direct constrained minimization method. As shown by Aubin [2], the
inequality

Yy (M) < Yy, ("), (2)

where (SV, go) is the round sphere, is the key ingredient to show compactness of
minimizing sequences, which is a non-trivial fact in view of the non-compactness
of the Sobolev embedding H,} (M) — L; (M). If (M,g) is not conformally equiv-
alent to (S%,go) (which has already constant Scalar curvature) with Y, (M) > 0,
the Yamabe equation has been solved via (2) by Aubin [2] in the non-locally con-
formally flat case with N > 6, by exploiting the non-vanishing of the Weyl curva-
ture tensor Weyl, of (M,g) in the construction of local test functions, and by
Schoen [17] when either N = 3,4,5 or (M,g) # (S",go) is locally conformally
flat, by exploiting the Positive Mass Theorem by Schoen-Yau [19], [20] in the
construction of global test functions.

In this paper, we study the case when the manifold (M, g) has positive Yamabe
invariant, i.e. Y,(M) > 0, and the problem (1) is almost critical, i.e. ¢ # 0 is small.
In particular, we are interested in the existence of blowing-up solution to (1) as
& — 0. We say that a family of solutions (u,), of equation (1) blows-up at a point
&y e M if there exists a family of points (&), in M such that & — & and
u(¢,) — +oo0 as ¢ — 0. The question on whether solutions of equations like (1)
with ¢ — 0 blow-up or not has been extensively studied in recent years. Schoen
[18] proved that blow-up cannot occur when the manifold is locally conformally



Blowing-up solutions for the Yamabe equation 251

flat and not conformally equivalent to (S",go) provided ¢ /0. More precisely,
Schoen proved that sequences of solutions (u,),.n of (1) with exponents
2% — 1 + & with g <0 and ¢ — 0, are pre-compact in C**(M), o € (0,1), and
the non-locally conformally flat case was left open. Known as the Compactness
conjecture, it has been finally proved by Khuri-Marques—Schoen [9] when
N < 24. Unexpectedly, compactness of Yamabe metrics (¢ = 0) has revealed to
be false in general in dimensions N > 25 by Brendle [4] and Brendle-Marques
[5]. Previous contributions where the compactness of Yamabe metrics is proved
in lower dimensions are by Li—Zhu [14] (N = 3), Druet [6] (N < 5), Marques [15]
(N <7), and Li-Zhang [11], [12], [13] (N < 11).

In the present paper, we prove that if the exponent in (1) approaches the
critical exponent from above, i.e. ¢ \, 0, then compactness is not true anymore.
More precisely, we prove the following result.

Theorem 1.1. Let (M, g) be a smooth, compact, non-locally conformally flat, Rie-
mannian manifold with N > 7 and Y,(M) > 0. Then for ¢ > 0 small, equation (1)
has a solution u, such that the family (u,), blows-up, up to a sub-sequence, as ¢ — 0
at some point &y so that [Weyl (o), = rgréa}gfﬁ (Weyl, (<)l

Theorem 1.1 is an immediate consequence of the following more general
result:

Theorem 1.2. Assume that there exists a C'-stable critical set 9 of & —
|Weyl, ()], such that inf{{Weyl,(&)|, : ¢ € Z} > 0. Then for & > 0 small, equation
(1) has a solution u, such that the family (u;), blows up, up to a sub-sequence, at
some &y € 9 as ¢ — 0.

According to Li [10], given a C'-function ® on M, we say that a compact set
9 < M of critical points of ® is a C'-stable critical set of ® if, for any compact
neighborhood U of & in M and for any sequence of C'-functions ®, on M such
that [|®, — ®[¢c1(y) — 0 as ¢ — 0, there exists ¢, € U critical point of @, if ¢ is
small enough. We remark that a set of strict local maximum/minimum points
or a set of non degenerate critical points are C'-stable.

We prove the existence of blowing-up solutions by the well known Lyapunov-
Schmidt reduction. The main point is to produce a suitable ansatz for the
solutions we are looking for. This is done in Section 2. A similar idea has been
already used by Esposito—Pistoia—Vétois in [7], [8]. In Section 3, we reduce the
problem to a finite dimensional one, we study the critical points of the corre-
sponding finite dimensional functional, i.e. the reduced energy, and we prove
Theorem 1.2. A key step is the asymptotic expansion of the reduced energy, which
is performed in Section 4.
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2. Setting of the problem

2.1. Notations. Since Y, (M) >0, the conformal laplacian %, :=—A,+
P Scaly, By - 21) is coercive and we can provide the Sobolev space H q] (M)
with the inner product

{u,vy = J Vu, Vo, dvy + J P Scal, uvdvy,
M M

where dv, is the volume element of the manifold. We let || - || be the norm induced
by <-,->. Moreover, for any function « in L?(M), we denote the L?-norm of u
by [ul, = (fy [ul” dv) .

We let i*: L2V/WT2 (M) — H)!(M) be the adjoint operator of the embed-
ding i:Hg (M) — L>N/WN=2)(M), ie. for any w in L>N/(N+2) (M), the function
u=i"(w)in H l(M ) is the unique solution of the equation %u =w in M. By
the continuity of the embedding of H}(M) into L*N/(V=2)(M), we get

[ (W)l < Clwlon 2y orequivalently lul| < ClLulyy ny) (3)

for some positive constant C which only depends on N. In order to study the
supercritical case, it is also useful to recall that by standard elliptic estimates

(see for example [16]) given a real number s > 225, ie. 55 > ) +2, for any
w e LN/(N+29 (M) the function i*(w) € L*(M) and satisfies
[I"(W)ly < Clwlyg/vias)  orequivalently  |ul, < ClLulyy ving,  (4)

for some positive constant C which only depends on N. Therefore, if ¢ is small
enough, we set s, :=2* + 5 ¢ and we let H, := H (M) n L*(M) be the Banach
space equipped with the norm |jul|, := |Ju| + |u| Taking into account that

N’X—ES = 5273 and also that (3) and (4) hold, we can rewrite problem (1) as

u:i*[ff(u)i? ue H, (5)

where we set f;(u) := u™, p =22 and u. := max{0,u}.

2.2. The bubbles. The main ingredient in the construction of the solution to
problem (1) are the standard bubbles

—(N— X—Yy
U/hy(x) =H W 2>/2U<T)7 > 07 Ve RN? (6)
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where

1
Ulx) =y —————— oy = [N(N —2)| N2/,
( ) N (1 N |x|2)(N_2)/2 N [ ( )}

As it is well known (see [1], [21]), they are all the positive solutions of the equation
—Au=u” in RV,

Unfortunately, the standard bubble is not a good approximation of the solu-
tion we are looking for, so we have to improve the approximation in the follow-
ing way. It is well known (see [3]) that any solutions of the linear equation
—Av = pU?~'vin RY is a linear combination of the functions

N-2 N-2 1-|x
0/ _ +. N —2 _
200 = VU + 25U = S s ()
and
. X
Zi(x)=0;U(x)=—(N —2)ay —————, fori=1,...,N. 8
() (x) ( )N(1+|X|Z)N/2 <)

Straightforward computations show that

(i) the function

o (Ix* +3)
2N(N +2)(N = 2)(1 + |x|H)N?*

w(x) = —

solves

1

2
12010 )

—Aw—pUrtw=U-(Z" inRY, (:= J U(x)Z°x)dx  (10)
RN

(ii) the function

oy (20 (x* +3) = (N + 2)xex(|x]* +3))

) = T NN L )V — 21+ ) UU
solves
—Avy — pU oy = x10,U — (3 Z°  in RY,
Cie = %J X0, U (x)Z°(x) dx (12)
1201 L2 gy Y
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(ii1) the function
Zabif (%) = o (2(0updy — 20aidsy — 2040m) (|x|* + 3)
+ (N + 2)(0uiXpXj + 0gjXpX;i + OpiXaXj 4 OpjXaX;i
+ OupXiXj — 25,~jxaxb)(|x|2 +3)
+2(N 4+ 2)(N = 2)xaxpx%) /(12N (N 4+ 2)(N = 2)(1 + [x|)V?),  (13)
solves

-1 2 0 : mN
—Azgpij —pUP™ zgpyy = xaxb(?,.jU — CabiiZ in RY,
1

1Z°

gabij = 2
i)

J B xax;,éisz(x)ZO(x) dx. (14)

Here the notation d,; stands for the Kronecker symbols. Defining the function
V as

1 *
V= _gRiahj(f)Zab;’j - alrfs(f)vkl — By Scalg(f)w + (" Zy,

where

. 1 1
= —ZJ (— R,jabj(f)zabjj + 6;Ffs(é)vk; + ﬂN SC&L,(@W) Zydx,
1Zoll5 Jry \3

then ¥ is a solution to (see (10), (12) and (14))

1
AV —pUP Y = — 3 Riap(&)xaxp0;U — 0T K (E)x10,U — By Scaly (&)U
+9Z°  inRY,
where
1
7 =3 Rabip(E)any + Oy (&) + Py Scaly(£)C. (15)

Remark 2.1. In [8] a similar construction is performed. Thanks to some symme-
tries properties, it is shown there that y = 0 and the function V" can be reduced to a
simpler expression. The computations here are more direct and might be useful
in other contexts where such symmetry properties might not be available. In par-
ticular, we aim to emphasize the fact that the condition y = 0 is helpful but not
really necessary in the construction.
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Finally, we point out that the function

Viy(x) == /f(N_Z)/ZV<x;y>, with >0 and y e RY (16)

solves

ﬂz[_A Viey = PU,f,;l Vi)

1
= —ngb](é)(X — y)a(x — y)ba;U‘u,y - (311";(5)()6 - y)lak (]ﬂ-,}’
— By Scaly(&)Uyy +yZ5,  in RY, (17)

where Z9 | (x) := pu~ (V21270 (%)

2.3. The ansatz. We let ryp be a positive real number less than the injectivity
radius of M, and y be a smooth cutoff function such that 0 < y <1 in R, y =1
in [—ry/2,ry/2], and y = 0 out of [—rg,r9]. For any point ¢ in M and for any
positive real number x, we define the functions %, ¢ and ¥, : on M by

Uye(2) = 1 (dy(2, ) Unlexp '(2),  Vue(z) = x(dy(2.€)) Va(exps ' (2),  (18)

where d, is the geodesic distance on M with respect to the metric g and the func-
tions U, := Uy, and V), := V), are defined in (6) and (16), respectively.
We look for solutions of equation (1) or equivalently of (5) of the form

u(2) = Wpe2) + 9u(2), Wi = Uy + 107 . (19)
Here the concentration point ¢ belongs to M and the concentration parameter u
satisfies
u=dye withd>O0. (20)
The remainder term ¢, is an higher order term which belongs to the following
space.

For any point ¢ in M and for any positive real number yx, we introduce the
functions

ffﬂ’g(z) = x(dy(z, f))Z/i(equ?l(z)) fori=0,...,N,

where Z!(x) := u~W"2/2Z!(x/u) are defined in (7) and (8). We then define the
projections I, s and Hj’ ¢ of the Sobolev space Hgl(M) onto the respective
subspaces

K, := Span{i*(&ﬁgé), e i*(Zﬁ'é)}
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and
Kjff{qﬁeH( ) : ¢, i"(Z,:)>=0,i=0,...,N}.

Therefore, equation (5) turns out to be equivalent to the system

uf{ue_l [ ( )]}=
where u, is given in (19).
3. The finite dimensional reduction
3.1. The error estimate. Let
Eﬂ»f = ,u g{W [ﬁ(%f)]} (22)

Lemma 3.1. Let N >7. If u is as in (20), then for any real numbers a and b
satisfying 0 < a < b, there exists a positive constant C, j, such that for ¢ small, for
any point & in M, and any real number d in [a, b), there holds

IEpcll, < Cape™.
forn > 2.

Proof. First of all, by (3) and (4), taking into account that IT,, 5[' (y Q’;lo )] =0, we
have

1Eucll, < c(1We = I UWue) + 22 M + [ Wie = i Lfi(We) + 92, Al,,)
< | Ly(Wwe) = fe(We) — yg(?5|2N/(N+2)
+ el Ly (W) = [ We) = 12 el s, v
—C(\qu(W &)=y go — fely,¢) —ﬂzﬂ(@/ﬂ,é)m,dzz\//wu)
oWy + 12V ) — foly o) — 1) (U, 7 el N+2))
+ (| % (We) _Vgﬂﬁg—ﬂ(%u, ) = 12 () Vi élns, (v+2s)
A el Uye + 12V ) — Lo Uye) — 11, )V e, (v 125 -

We have used here that |TT .ul, < |ul; + [T, cul, < |ul, + C|[T,cul < |ul, +
Cllull, C >0, forall u € Hl(M) since | - |S and || - || are equivalent norms on the
finite-dimensional subspace K, e. Moreover, it is possible to show that the con-
stant C > 0 can be choosen uniformly in ¢, £ and 0.
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It is useful to point out that

x| U]+ 320U )] + X 1o;U(x)] < e o FeRY ()
(1+|x]%)
and, by (9), (11) and (13), also that
1
V()] + [x] 0V ()] + |x]* 67V (x)] < ¢ xe RN, (24)

for some constant c.
Now, by standard properties of the exponential map, in geodesic normal coor-
dinates, there hold

—Agu=—Au— (g7 — 5’7)6,»2]-u + gijrgak% (25)
g7(x) = 67 (x) — %Rmﬁj(é)x“xﬂ + 0>, (26)
and
g"(x)TE(x) = AT k(&)x" + O(|x]) (27)
as x — ¢.

In normal coordinates using (25), (26) and (27) and by the choice of y in (15),
we get

Loy +/‘2"/ﬂ7é) = Je(Uye) — ﬂzfal(%ﬂ.é)"fu,é - Vfﬂ(?g
= X(—Ag U, + By Scal, U, — ,uzAg Vi + By Scal, s Vi
- fc(U,u) - /‘zfg/(U,u) V,u - VZ/?) + 7 (x) + VZ(X)

=1 (AU, — fo(U,))
=0

1
[ OV+ RUIT) =120+ R U, + ATA (N, + Sl ()T,

=0 because of (17)
— 2(f(U) = fo(UW) — 1271 (U) = S (U]
+ 1 O(IX |05 Ul + 1x|*10 Uyl + x| Uy)
+ 27 O(XPP 103Vl + x| [0Vl + Vi) + 71(x) + ra(x), (28)
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where (setting y(x) = x(|x|))

ri(x) == =Ugy — 2VU,, V>, — (77 = 1) £:(Uy) (29)
ra(x) == —12(Vlgy + 2V V0, Voo ] — 12 (" = 0. (U) Ve (30)

We only estimate the |- |,y /(v -norm, since the estimate of the |- |y, vy
norm follows in the same way. First, by (20) we deduce

’X(fs(Uu) - fO(Uu)) |2N/(N+2)
< c|(d,((N,z)/z)se,((N—Z)/S)slnsUs — I)UP‘LZN/(J\HZ)(RN) = 0(8|11’18|) (31)

and

(£ (U) = £5(U) Vﬂ’zN/(N+2)
< |f/(Uy) - fb/(Uﬂ)|N/2| Vilon jv—2)

< c|((p + e)d~(N-22ee~(N=2)Semme e _ ) o= )= Oleline])  (32)

’LN/Z(RN
Moreover, by (23) we deduce

3 X o(w’?) if N=1,
101105 Ul + 1XI*10x Ul + x| U Loy jve2) = § O3 inp™®) if N =8, (33)
o(u) if N>=9

and by (24) we deduce

O(uN=972) if 7<N <9,
|O(|x|2|6§-V,,| + X 0k Vil + Vi) lawovay = § O(2ling?) if N =10, (34)
o(u?) if N>11.

We also remark that r;(x) = 0 if |x| < ry for each i = 1,2,3. Therefore, by (23)-
(24) we get

Irillon vy + 172 llon vy = O(uN=272), (35)
Inserting (31)—(35) into (28), by the choice of x in (20) we deduce that

| Ly (U + 177 3.8) = Lol e) = 101, U ) Ve = 72, con jov o)
= 0("%|Ine”®). (36)
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Since p + & < 1 for ¢ small and N > 7, we have the validity of
(a+b)I" —a —(p+e)a’* b = 0(|b|"™) (37)
for all ¢ > 0 and b € R, yielding to

|fe(%ﬂé+ﬂ2"/ ) A ;tq) ﬂzfxl(%ﬂ,é)%,ﬂzwwﬁ)

2
<l fl 2N/ N+2))(p+e)

— 02 N=6)/2)), (38)

By choosing 2 < 7 < min{3,2p}, the claim follows by collecting all the previous
estimates in view of (20). O

3.2. The remainder term ¢. For ¢ small, for any g > 0 and any point ¢ in M, we

introduce the linear map L, ¢ : Kﬂ c— K, L ¢ defined by

Lye(9) =T oAb — i*[f) (W1.0)¢]}- (39)

Lemma 3.2. If u is as in (20), then for any real numbers a and b satisfying
0 < a < b, there exists a positive constant C, j, such that for e small, for any point
&in M, any real number d in [a,b), and any function ¢ in K-, there holds

"0,E
1L (Dl = Canli .-
Proof. We argue exactly as in Lemma 3.1 of [16]. O

Proposition 3.1. Let N > 7. If w is as in (20), then for any real numbers a and b
satisfying 0 < a < b, there exists a positive constant C,  such that for e small, for
any point & in M, and for any real number d in [a, b], the first equation in the system
(21) admits a unique solution ¢, , ; in Kﬂ & which is continuously differentiable with
respect to & and d, such that

16, el < Cape™* (40)

for some n > 2.

Proof. We use a standard contraction mapping argument. For ¢ small, for any
¢eMandany u>0let T, : K, . — K be defined by

Tue(@) = Ly (Nue(d) = B
where L, ¢ is defined in (39), E, ¢ is defined in (22) and

Nue(p) =T A (W e + 8) = fo(Wie) = 1 (We)g]}-
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By (37) we deduce that
N (D), < cllpll™

in view of 225 (p +¢) < s,. Similarly, since

(a+ bl)f’f —(a+ bz)f’f —(p+e)a”t by — by)
= O(|by — ba|"** + |bo|"** " by — ba])

for all ¢ > 0 and by, b, € R, we get that

1N e(d2) = Noe(di)ll, < cligy = dillZ + 102127 Iy = -

Notice that #,, ¢ > 0 by taking Jy sufficiently small. Using Lemmas 3.1 and 3.2, it
is easy to show that, if ¢ is small enough, T, ¢ is a contraction mapping from the
ball {¢ € K/jé : ||¢ll, < Ce*} into itself, provided C is large enough. The proof is
concluded. O

3.3. The reduced problem. Let J,: H, — R be defined by

pte+l dv
g-

2 1
‘]F(u) = EJM |Vgu| d\/g +§JMﬁN SCalg uz dVg - p_+8+ 1 JM +

Its critical points are the solutions of equation (1). We also define the reduced
energy J, : (0,+00) x M — R by

je(d7 é) = Ja(%,u,g’ _'_“2”/75 + ¢s,/1,§)a

where %, ¢ and 7, ¢ are given in (18) and where ¢, , - is given by Proposition 3.1.

Proposition 3.2. (i) If (d.,¢,) € [a,b] x M is a critical point of the function J,,
then Uy, ¢, + 127 ¢, + Be ¢, is a solution of (1).

(1) If wis as in (20), then for any real numbers a and b satisfying 0 < a < b, there
holds

Jo(d, &) = ey +dye+eyelne + ¢ [—aN|Weylg(f)\jd4 + byInd] +o(e), (41)

0(d,<)

C-uniformly with respect to & in M and to d in [a,b]. Here ay, ..., ey are
constants which only depend on N, with ay,by > 0.
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Proof. (i) follows arguing exactly as in Proposition 2.2 of [16]. The C’-estimate in
(i) is proved in Section 4. The C!-estimate follows using similar arguments as in
Section 4 of [16]. ]

3.4. Proof of Theorem 1.2. Let & be the C!-stable critical set of the function
& — [Weyl,(¢)], such that [Weyl (¢)], # 0 for any & € &. Then, for any & e 9
there exists a unique d(¢) € [a,b], for some uniform 0 < a < b, such that
049(d,¢) = 0. It is not difficult to check that the set & := {(d(¢),&) | e 2} is
a Cl-stable critical set of the function ®. Therefore, by (ii) of Proposition 3.2,
if ¢ is small enough there exists &, € & such that dist(¢,, Z) — 0 as ¢ — 0 and
(d(&,),&,) is a critical point of J,. Hence, by (i) of Proposition 3.2, we deduce
that u, = Uy ¢, + 127 e, + 4, u.¢, is a solution of (1) which blows-up, up to a
sub-sequence, at some &, € & as ¢ — 0. Finally, since . is coercive, the positivity
of u, follows by the maximum principle.

4. The expansion of the reduced energy

The proof of (41) follows immediately by putting together estimates (45)—(47) and
(58)—(60).
It is useful to introduce some notations. Set

4

Ky = |— .
N(N = 2)/™

For any positive real numbers p and ¢ such that p — g > 1, we let

J +00 rd +00 s2q+l

In particular, there hold

g1 1
Ak By R B { L ey U (43)

Al =
p 14 p+l1 pqul p+1

p+1

As it is easily checked, we get

IN/2 B Naoy o ZKA?N
N 2NHN = 2)on-1 o3 (N —2) 0y 1

(44)
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Step 1 We prove that
Ty + 10V e + $e) = Je(Uye + 127 .6) + OE"?). (45)
Proof. 1t holds
Ty + 127 e+ 4y.)

= JS(%MC.“ + ﬂzyl‘hf)

1 1
+ EJM |Vg¢y,5|2dvg +§JMﬁN Scal, ¢,€,g’d"y

+ M[%(%f + 1PV e = [l Ue) — 1 (U e) V) e dvy
- M[fe(%cf + 1PV e = [l U e) — 17 Uy e) V) e Ay

- M[Fe(%ﬂ,é +/124/u,é + ¢ﬂ,cf) - Fs(%ﬂ,é + /“2%1-,5)

— JelWUyc + /‘2%,5)%,5] dvg,

where F,(u) := p+ll+€ ul 7" and f,(u) = F!(u). By (40) we get

1 1
EJ \Z ﬂ$¢|2dvg+§J By Scaly ¢, - dvy = O(e"/?).
M M

If y is defined as in (15), by (36), (40) and |, 3’;25%75 =0 we get

| e+ 10950) = ) = 21 0,5l

<Ly Uye + 127 306) = FoUe) = 1, (U &) Ve = 72,0 e lan i)
X |¢u,é|2N/(N—2) = 0(8”/2)'

By (38) and (40) we get

‘ JM elle + 12V ) = Lo ) = 101, (W) )y vy

< el filly e + 12V 30) — fo Uy ) — ﬂzﬂ/(%u,é)"/ﬂ,ébzv/(mz)|¢,l,§\2N/(N—2)
=0(e"?).

Finally, by a Taylor expansion of F, we get
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|| (B + 12054 80 = O+ 08930 = 1+ 107,08, )

—1
< CJ\M(l%ALé +ﬂ2a//4;§|p+g |¢,u7§| + |¢ll,§|p+£)|¢,u,§| dv.l]
1 1
< ([ Uy e+ 127l 1Bl oo + |buclbiils) = O@E"?)

in view of [1)’ Pt p 41+ ¢ < s, for ¢ small and (40). Collecting all the previous
estimates we get (45) O

Step 2 We prove that
T+ 18730) = D0,0) = || (B, = Rt ),
+] {ng%@ — o)
M
1
31 0,975 sy,
+0("). (46)
Proof. 1t holds
J(%uf‘f'ﬂ"/ &) =Jo(Uye)

+uj Ly — foly )]V +ﬂJ ol2) — £, )7

1 1
+ 5/14 JM“Vg"%ﬂﬂz - ﬁ)/(%u-,i)%f:] dvg + 5#4 JM P Scaly "/uzg dv,

1
3t | 0.0 — £
—j [ s+ 127 02) — Ful )
M
- O e~ L |

= Jo(H0) jM[m o) — Fol, )] dv,

1
+JM{/12[$0%#75 = fo(%y,¢)] +§ﬂ4[$a%1 — Jo Uy o)V ]}"/,ucdva

+0("?)



264 P. Esposito and A. Pistoia

because by (31) we get

2| e~ f v,
< Cﬂ2|f0(%ﬂ,é) _fe(%u,f)|2N/(N+2)|"//1,§|2N/(N72) = 0(83/2|1n5|)

and by (32) we get

< C/"4| (fo,(%u.,f) - -f!(%ﬂ,f))yl‘hdz]\//(NJrz)|,V.l‘l»f|2N/(N72) = 0(82|1n8‘)'

Moreover, since

JM {Fs(%f + W e) = Fo o) — o Uy )1V e — 5

1

—ﬂ(@zu,au%q
1

- JM JO [f‘l(%/‘vé + wznflhé) - fx(%,u,é) - ﬁ;/(%ﬂyé)tﬂzﬁhé]ﬂzﬁ’i dt

by (37) we deduce

I,

. 1 .
F(Uye + 12 ) — Fo( Uy e) — [l U o)1 e — 5/’3'(%5)#4"Vu2,5 dvy

< CJM |u2%6’5|p+1+£ dVg _ O('u4N/(N72)7((N76)/2)8) — 0(8N/(N72)).

Collecting all the previous estimates we get (46). O

Step 3 We prove that

Jo(Uye) = 1+ (—c2|Weyl, (€)| + es|Ey(&)|7 — caScaly (&)*)ut + O(1%)  (47)

where
Ky Ky
Cl i=—m——, Cy =
N 24N (N — 4)(N - 6)
KNON — KN(N =2 -
. VN - 7) o KWV

TI8N(N—2)(N—4)(N—6)’ T INAN-—1)(N—4)(N—-6)

Here Weyl, is the Weyl curvature of g and E, = Ric, — Scal, g is the traceless part
of the Ricci curvature of g.
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Proof. There hold

1

1
wy_ V-1 —Ag(f)r2 + O(r“), (49)

Scal, do, = Scal, (&) —
J@B{(r) g g g( ) 2N

and

1 1
—— =1-— 1 244 4 5
C()N,IFN71 J&B,\;(r) ng 6N Sca g(é)r + g(é)}" =+ O(V )’ (50)

as r — 0, uniformly with respect to &, where dg, is the volume element of 0Bs(r),
@, is the volume of the unit (N — 1)-sphere, and where

Ay(&) = A, Scal, (&) +% Scal, (&)* (51)

and

5 18A, Scaly (&) + 8|Ricy (¢)|> — 3|Rm,(&)|7 + 5 Scal,y(¢)°

52
g 360N (N +2) (52)

The orthogonal decomposition of Riemann curvature is given by
R, (&)2 = [Weyl, (&) +——— [E, (&) 2 Seal, (&) 53
Ry ()} = [Weyl, ()} + 575 B @)y + gy =y Seale (@ (59

Moreover, we get
. 2 2 1 2

[Ricy () = [Eq(&)ly + 5 Sealy(<)™. (54)

By (43) and (50), we compute

J |VU/4~,§|5dUg
M

2(N 2)2J~r(l/2ﬂ 2 J do, dr 1+ O v 2)
=0 — — o, dr +0(u"~
N o 1+ opw !
ro/2p N+1
2 2 r
=oy(N =2 wN—lJ D
v ) o (1 +r2)N

X <1 — % Scal, (&) u*r? 4+ A, (E)utr* + O(,usi’s)> dr +O(u™?)
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a (N — 2)2 (/2007 N/2
=———F——0yN-1] ~
(I+7r)

g <1 - % Sealy (E)4’r + Ag(E)u'r* + 0(ﬂ5r5/2)> dr +0(u™?)

:f_a)z\] 1IN/
~ (1_N7+280a1 (&) 2+w1‘1 (&)t +0( 5)) (55)
6NN —4) " TN gy (N—6) T 8

where A4,(&) is as in (52) and I[(]V/Z is as in (44). By (43) and (49), we compute

ro/2u 1
Scal, U2 . dv, = o} 2J 7J Scal, do, dr + O(uN =2
JM w¢ W = N 0 (l—s—rz)N*2 B:(r) N ( )

ro/2u erl

2 2
= OyWN-1 T N
N : Jo (14 r2)N 2

X (Scalg(é) - %Ag(f)ﬂzrz + O(,u4r4)> dr+O(u™72)

o2 5 J<ro/2u>2 F(N=2)/2
2

= — _—
N 0 (14r)N2

X <Scalg(é) - %Ag(é)ﬂzr + O(,u4r2)> dr +O(u"=?)

1
= oy (15 sl (€) — 1AW + 00 )

N 2)60]\/ 1] N/2
N —4)

oy (N = 1)(
B N(

2 (Scalg(é) - ﬁ/\g(g) 12+ 0 ﬂ5)> (56)

By (43) and (50), we compute



Blowing-up solutions for the Yamabe equation

J ’ . Jro/Zﬂ 1 J do, dr + O N)
U,:dvy = — o,dr +O(u
v ST o )Y s

ro/2u erl
= 2*(0 1J

= - -

N YN N

0o (1+r)

X <1 - % Scaly(E)u?r? + Ag(E)putr* + 0(u5r5)> dr+0(u")

o2 . J(m/zmz F(N=2)/2
= WnN-1
2 0 (1+nr)"

1
X <1 ~EN Scal, (&)pPr + A, (E)utr? + O(u5r5/2)> dr +0(u™)

N

062* _ 1 N/2
= oy <1,§N 212 _ WIN/ Scal, (&)’

1P + O ) i

_oy(N — 2) oy I !
2 6(N —2)

N(N +2)
m/‘lg(fﬂﬁ + O(ﬂ5)> dr

Scal, (&)
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(57)

as u — 0, uniformly with respect to &, where A4,(¢) is as in (52) and Iji,v 2 is as
in (44). Finally, estimate (47) follows from (55), (56), (57) by means of (53), (54).

Step 4 We prove that
J (Fo(Uy,e) — Fo(Uy, ) dvy = cse — ceelne — degelnd + o(e|lnel)
M

where

1 1
- + InU

(p+1)?* p+1

C5 1= I Up-"_1
RY
Proof. By the mean value theorem we deduce
| 0 - Ry as,

1 1
_ \pt1 N
= JM(%/@C) [p 1t 8(%11,4) ot 1] dvy

R -N
L g =— KN
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_ J Up+1 |: 1 es(f(N72)/21nu+ln U) 1 :| + O(,uN)
{Iyl=ro/2u

p+1l+e p+1
1 1 -2
:eJ urtl| — 5+ (—N Inu+ In U)
RY (p+1)” p+1 2

+ 0(?[lne|*) + O(u™),

and so we can get (58) in view of [y UP*! = Ky, as it follows by (43)-(44).

|
Step 5 We prove that
1 .
| {1, = fi 1+ 312005 - R,
1
:§ﬂ4 JRN(AV+1)U”’1V)V+O(/45). (59)

Proof. Since U, : ~ u'N=2/2 and p>v; : ~ uV=2/2 away from ¢ (along with a
similar control on the derivatives), by (25)—(27) we get

1
| {1 - 0+ 3105~ R,
_ J { 12 [~A Uy + By Scal, Uy, — U]
B(O,ro/2)
1 _ _
+ 51 [=AgVyu+ By Sealy V, — pU! Vu]} Valgl"? + 0(u"?)
1
— ,ﬂJ / {5 Riapj(&)x“x 05U, + 0T (E)x" 0, Uy, + By Scaly (¢) Uﬂ] Vv,
B(O,r() 2)
+ i J ) VulO(|x* 105 U] + X160k Uyl + x| U,)
ro
I )
+§ﬂ4J [—AV, — pUL' V] Vgl
B(0,r/2)
bt IOV + Y+ V)
B(0,r9/2)

| s pur Y o
B(O,r()/z)
= 'H—J 2[AV + pUP' VIV + O |In p])

R

in view of (23)—(24) since ¥, does solve (17). O
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Step 6 We prove that
JRN[—AV —pUP' VIV = ¢1]E4(&)]7 — cs Scaly (€)°,

where (see (48))

- (2N — K" _ s
TTONN DN -6
B (N =2)(N-T)Ky"
~ 36N2(N —1)(N —4)(N —6)

Ccg -
Proof. We have
J (—AV —pUP ')V
RY

1 .
= J . (_Riabj(g)xaxbaél] + O TE(E)x0, U +
-

N-2
3 4N-1)

1 ,
X <§ Ri’a’b’j’(é)za’b’i’j’ + 61/1—“5\,,(5)171/1{/ + Scalg(é)w)

N -2
4(N —1)
Therefore, it follows that

J (—=AV —pUP 'YV
RN

1

= & Riaj(O)Riraryjr (E) J

9 v XaX},aizj Uza’b’i’j’

R
1
+ g alrfs(é)Ri’a’b’j’(é) J

L N=2
(N —1)

1 ! !
+ 5 R (&)0rTE, (&) J xaxbafj Uvep + 0K (&0, TE (&) J
RN ’

. X10k Uzgrprivjs
R

Scalg(f)Ri'u’b/_/f(f)J Uzawiry
.

3 "

N -2 ,
4(N — 1) 1 Irk’" 11
+4(N— 1) Scaly (€)dr Ty (€) JRN Uvyers
+N7_2
12(N - 1)

N -2
-1

Seal, (ORugy(€) | x5 U

2
+ Scal, (€)0,TK (&) JRN N i A Scal, (&) J

16(N —1)* R

Scal, (&) U)

269

(60)

X0 Uvyorpr
v

Uw.
¥
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Since alrjg(:) = %Rsk‘,.l(f) for all k,/,s=1,...,n and Ru;(&) = —Rip (&)
—Ruij(&) for all a, b,i, j=1,...,n, we get

1

R Ry (©) |

2
v xuxba,‘j Uza’b’i’j’
R

1
+§6;F§‘S(C)Ri/a/b/j/(5)J X10k Uzarprivyt
RN
N-2
9

XaXbZa'b'i'j!
R (14 |2

anRiin (E)Rirarpj (€) J

p+1

e O TR (O R (E) — AR (EVR o
o ]()SN(N + 2) [(szalb(é)Rl a'ali (é) 4R1abj(é)Ra a'b'h (é)

4
» 3
— 4R uip (E)Ryrarivar (€)) J[RN %

XaXpXp (x| + 3)
RV (L+ X))V

+ (N + 2)Ria[b(é)Ra’a’b’j’(é) J
xaxbx;,/x,-r(|x|2 +3)
rY (L)Y

xaxbxa/xj/(|x|2 +3)
RY L+ )Y

+ (N + 2R (R v (&) j

+ (N + Z)Rmib(f)Ri/a/i'j’(f)J

XaXpXir X (|x]° 4 3)
, 2N
Y (14 [x]7)

(N + 2Run () Ryarpn (&) j

xaxbxj/xjr(|x|2 +3)
RY (14 6"

(N + 2Ry (&) Ry (€) J

XaXpXarXp (|X]7 + 3)
RV (L+[x)Y

— 2(N + 2)Ruin (&) Ryrarprir (€) J

X XpXa! Xp1 X1 X0
2N +2)(N = DRun( Ry (§) | | T S|

Y (14"
_ %Riaib(é)l{faww(@ | %}:2}3)
O Ru R O J.. x"”’ﬁ”’_’:ﬂ'ﬂf}'? !
— #;_'_2) Rigia(&) Rirarirar (£) J[Ri” %
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p+1
36N2 N+2 (ZZRlalb latb +H¢Za Rtala Rigrirg é)
x* (x> +3)
3R ORa@) [ T
ocp+1 X2 X4-‘r3
S Scalg(é)zj x|~ (Ix] : N)
I8N2(N +2) rY (14 |x]%)
p+l1 4 2
oy : 2 2 [x|"(|x]" +3)
~ sevei s CIRie (@)} + Sealy (@) | SipinEa
R (@2J %2 (N = 2)|x|* = 3(N +2)|x]* + 6N)
36N3(N +2) 777 Jpy (1+ x>

1 4012
N X" (1x]" + 3)

x 2
N m| oy J‘[RN (1+ |x|2)N

Similarly, we get

R (&) J . Uzapij

= 12N(N T 2)( — 2) iaai aabb iaia RV (1 + |x|2)Nfl
2
+ (N + Z)Raabj(é) J W + (N + Z)Riaba(é) JRA' %

xixa(|x|* + 3)
rY (14 |x)"!

xaxp(|x]2 4 3)
rY (14 )N

W«L(N*Fz) iabb (é)J

xi(|x|* + 3)
rY (14 X))

LN z)R,»a,»x@j

+ (N + Z)Riaaj(é)J 2(N + 2) iab. l(é)J

+2(N 4 2)(N = 2)R;u(¢) J M}

mY (1+ 33"

ot Ix|*+3
== Rigia PPN A
2N(N +2)(N —2) ©) JRN (14 |x)H)N!
o (1] + 3)
AN -2 Riaial?) JR (14 |x])N!
ot (N = 2)x[* —3(N+2)|x| + 6N
- Scal
W a2 SO Rk
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We also compute

31F§(5)J Uvy

RN
aerl |X|4 +3
= 2 — Rsks‘k(é) J T o N-1
3N(N +2)(N -2) rY (14 |x|%)

oht! x*(1x* +3)
— ml{yk%(f) JRN |(1|+(|XW
A (N =2)x|* = 3(N + 2| + 6N
~ 6N2(N +2)(N —2) Scal, (©) JRN (1+|x]H)N!

and

1
3 Iabj (é)al (é) J anbal-zj UUkl
RN ;

+ Ol (E)rT () J Xy O Uvgy
RY

_ 2(N — 2) XaXpUki
= — T OCNRiaib(f)Rsksl(é) JRN W
p+l1 4
xy XaXp(]X|" +3)
= — v o R Rk N v
IN(N +2) (C)Rskok(C) JRN (1+[xHY
p+1 2
Un Xaxpxixy(|x|” 4+ 3)
+—Riai Rs RY J
18N b(é) k l(é) RN (1 + |X|2)N
p+l1 2 4
xy X7 (]x[" +3)
= - Riaia Rs S
SN2+ 2) (&) Rutst (&) JRN I+ Y
p+1
oAy A
18N2(N =+ 2) (2 ;) Rlﬂlb sasb + ;{Rmm sksk
+ 3Riuia(€)R (f)) |x|4(|x|2+3)
laia -sasa RN (1 + |x|2) N
p+l 2 4
Y e
IN2(N +2) ‘ rY (14 |x]%)
Pl 40102
%y : 2 2 Ix|" (]x[* +3)
——2— (2|Ric, 1, ALA T2
gty ) GRSy (@) | FERS
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p+l1

o o[ XN =2)[x]* = 3(N +2)|x]” + 6N)
SR TE R (1 )
ot 2o PN +3)
e el e

Moreover, we get

lRmbj(f)J xaxba; Uw + 51FS]§(§)J X0, Uw
3 RN RN
N —

2

=-35 OCNRiaia(f)J

p+1

()
RV (1+ |x|2)N/2
& (0l +3)
“aworry SO ],

and

J U — a][Crl J |X|4 +3
RN AN(N +2)(N =2) Jav (1 + |xHV

It follows from the above estimates that

JRN(—AV—pUl’lV)V
I T J (1 + 3)
I8N2(N +2) ey (14 |xHY
p+l1

) 2N — _
ST Scal, (&) [(N 2)(N 4)J

|

rY (14 6"

4

+3(N2—8N+8)J Lﬂv
= (14 x]7)

|X|2 2 1
—3N(7N—10)J ———+9N J —_—
rY (1+ |x*)Y R“’(1+IXI2)N}

_ oL oy (B, (£) 2N/ 4 3 (822
36N2(N +2) 0\ lely N
p+l1

Uy ON-1 2 (N+4)/2
—————— Scal, (&)°[(N — 2)(N —4)1

+3(N2—8N+8)I]£,N+2)/2—3N(7N— 10)1]{}7/2+9N21]£7N_2)/2]
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2N — Tk oy
~ T Ay B

(¥ =2 = ) o
CT2N3(N - 1)(N —4)(N —6)

_ (2N = T)K"
T ON(N —2)(N — 4)(N — 6) B, ()]
(N —2)(N = )Ky"V

36NN - 1)(N —4)(N — 6)

1)/ Scal, (¢)*

Scal, (&) 2,

which proves (60).
We have used the following important fact:

1
J , (g Riaj (€)Xax03 U + 0T 5(E)x,0c U + By Scaly (&) U) Z
R/\/

(N -2)* xXaxp(1 = |x]%)

I S A » S
— 3 OCNRzazb(é) ,[[RN (1 4 |x|2)N

(N-2)° 1 - |x?
TR AR e

(N —2)* (N —4)|x|* = 4(N = 1)|x|* + 3N
= W]\f_l)alz\’ SCalg(é) JRN (1 + ‘x|2)N

_ (N=2?
TBNN 1)V

x (N =412 —a(v — 1) 438127
=0. 0

_|_

WN -1 Scalg (é)
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