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Abstract. We present an abstract framework for treating the theory of well-posedness of
solutions to abstract parabolic partial differential equations on evolving Hilbert spaces.
This theory is applicable to variational formulations of PDEs on evolving spatial do-
mains including moving hypersurfaces. We formulate an appropriate time derivative
on evolving spaces called the material derivative and define a weak material derivative in
analogy with the usual time derivative in fixed domain problems; our setting is abstract
and not restricted to evolving domains or surfaces. Then we show well-posedness to a
certain class of parabolic PDEs under some assumptions on the parabolic operator and
the data.
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1. Introduction

Partial differential equations on evolving or moving domains are an active area of
research [9], [13], [25], [26], partly because their study leads to interesting analysis
but also because models describing applications such as biological and physical
phenomena can be better formulated on evolving domains (including hypersur-
faces) rather than on stationary domains. For example, see [3], [20] for studies of
pattern formation on evolving surfaces, [21] for the modelling of surfactants in
two-phase flows, [14] for the modelling and numerical simulation of dealloying
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by surface dissolution of a binary alloy (involving a forced mean curavture flow
coupled to a Cahn-Hilliard equation), [15] (and the references therein for applica-
tions) for the analysis of a diffuse interface model for a linear surface PDE, and
[16] for the modelling and simulation of cell motility.

One aspect to consider in the study of such equations is how to formulate the
space of functions that have domains which evolve in time. Taking a disjoint
union of the domains in time to form a non-cylindrical set is standard: see [6],
[33], [26] for example. Of particular interest is [22] where the problem of a semi-
linear heat equation on a time-varying domain is considered; the set-up of the evo-
lution of the domains is comparable to ours and similar function space results are
shown (in the setting of Sobolev spaces). In [5], the authors define Bochner-type
spaces by considering a continuous distribution of domains {I'(1)},.(, 7y = R" that
are embedded in a larger domain I'. The aim of our work is to accommodate not
only evolving domains but arbitrary evolving spaces. Our method, which follows
that of [31], is somewhat different to the aforementioned and contains an attach-
ment to standard Bochner spaces in a fundamental way.

A common procedure for showing well-posedness of equations on evolving
domains involves a transformation of the PDE onto a fixed reference domain to
which abstract techniques from functional analysis are applied [24], [27], [2], [31].
For example, in [31], the heat equation

u(t) — Aryu(t) +u(t)Vry -w(r) = (1) in H! (C(2)) (1.1)

on an evolving surface {I'(1)},| 7 is considered, with w representing the velocity
field. The equation is pulled back onto a reference domain I'(s) and standard
results on linear parabolic PDEs are applied. A Faedo—Galerkin method (see [4]
for a historical overview of the method) is used in [27] (for a different PDE), where
the evolving domain is represented by the evolution of a perturbation of the
reference domain and a priori estimates are derived for a linearised problem.
An adapted Galerkin method that uses the pushforward of eigenfunctions of the
Laplace—Beltrami operator on I'(0) to form a countable dense subset of H'(I'(7))
is employed in [11] for the advection-diffusion equation (1.1). We abstract this
approach for one of our results. Well-posedness for the same class of equations
is obtained in [25] by employing a variational formulation on space-time surfaces
and utilising a standard generalisation of the classical Lax—Milgram theorem used
by Lions for parabolic equations. We also employ this Lions—Lax—Milgram
approach in our abstract setting.

As we have seen, there is much literature in which certain equations on
evolving domains are studied, however, to the best of our knowledge, there is no
unifying theory or framework that treats parabolic PDEs on abstract evolving
spaces. The main aim of this paper is to provide this abstract framework. More
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specifically, given a linear time-dependent operator A(7) we study well-posedness
of parabolic problems of the form

(1) + A(u(t) = /(1) (1.2)

as an equality in V*(¢), with V(f) = H(¢) a Hilbert space for each 1 € [0,7]. A
main feature of our work is the definition of an appropriate time derivative on
evolving spaces in an abstract setting. When the said spaces are simply L? spaces
on curved or flat surfaces in R” that evolve in time, it is commonplace to take the
material derivative

u(t) = u,(t) + Vu(t) - w(z)

from continuum mechanics as the natural time derivative. But when we have
arbitrary spaces that may have no relationship whatsoever with R” it is not at all
clear what the #(¢) in (1.2) should mean. We will deal with this issue and define
a material derivative and a weak material derivative for the abstract case. Our
framework relies on the existence of a family of (pushforward) maps ¢, for
t € [0, T] that allow us to map the initial spaces V'(0) and H(0) to the spaces
V(t) and H(t). A particular realisation of these maps ¢, in the case of, for exam-
ple, the heat equation (1.1) takes into account the evolution of the surfaces I'(z)
and hence ¢, will be a flow map defined by the velocity field w. Although one
motivation behind this work is the analysis of equations on moving domains and
hypersurfaces, the framework can also be useful for problems on fixed domains
where, for example, H(z) and V' (¢) may be weighted Lebesgue—Sobolev spaces
with time-dependent weights.

Our belief is that the abstract procedure presented in this work is a clean and
elegant approach to problems on moving domains. In addition, the theory and
concepts presented here can be used as a foundation in extensions such as general-
isations to the Banach space setting and the study of nonlinear problems. We also
anticipate that our framework will benefit those working in numerical analysis
since curved, flat, and evolving surfaces can all be treated with the same abstract
procedure.

In a forthcoming paper [1], we will demonstrate the applicability of this ab-
stract framework to the case of moving or evolving hypersurfaces. Four different
examples of parabolic equations on moving hypersurfaces will be studied, and the
well-posedness will be proved using the results we shall give here.

1.1. Outline. In §2, we start by setting up the function spaces and definitions
required for the analysis and indeed the statement of equations of the form (1.2).
We state our assumptions on the evolution of the spaces and define abstract strong
and weak material derivatives (in analogy with the usual derivative and weak
derivative utilised in fixed domain problems).
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In §3 we precisely formulate the problem (1.2) that we consider and list the
assumptions we make on A. Statements of the main theorems of existence,
uniqueness, and regularity of solutions are given. The proof of one of these
theorems is presented in §4. There, we make use of the generalised Lax—Milgram
theorem. In §5 we formulate an adapted abstract Galerkin method similar to one
described in [11] and use it to prove a regularity result.

1.2. Notation and conventions. Here and below we fix 7 € (0, 0). When we
write expressions such as ¢ u(-), our intention usually (but not always) is that
both of the dots (-) denote the same argument; for example, ¢ u(-) will come
to mean the map ¢ — ¢u(f). The notation X* will denote the dual space of a
Hilbert space X and X* will be equipped with the usual induced norm || f]|y. =
supye (0} <fs XD x+ x/||Xlly- We may reuse the same constants in calculations
multiple times if their exact value is not relevant. Integrals will usually be written
as [ f(s) instead of [¢ f(s)ds unless to avoid ambiguity. Finally, we shall make
use of standard notation for Bochner spaces; for example, see [19], §5.9.

2. Function spaces

As we mentioned above, in order to properly understand and express the equation
(1.2), we need to devise appropriate spaces of functions. First, we begin with re-
calling some standard results regarding Sobolev—Bochner spaces from parabolic
theory for the reader’s convenience; a good reference for this is [10], §XVIIIL.

2.1. Standard Sobolev—Bochner space theory. Let 7" and # be Hilbert spaces
and let ¥~ = # < 7" be a Gelfand triple (i.e., all embeddings are continuous and
dense and s is identified with its dual via the Riesz representation theorem).
Recall that u € L*(0, T;7") is said to have a weak derivative u' € L*(0, T; %) if
there exists w € L>(0, T; 7"*) such that

T

Jo () (u(r),v), = — Jo L) w(t),vyy+ 4 forall{e 2(0,T)andve v, (2.1)

and one writes w = u’. By 2(0, T') we refer to the space of infinitely differentiable
functions with compact support in (0, 7). We shall also make use of Z([0, T]; 7");
this is the space of 7 -valued infinitely differentiable functions compactly
supported in the closed interval [0,7]. A helpful characterisation of this
space, from Lemma 25.1 in [32], §IV.25, is that ([0, T]; ") is the restriction
P ((—o0,0);77)| .7 (the restriction to [0, T of infinitely differentiable 7"-valued
functions with compact support).
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Lemma 2.1. The space
WV, 1) ={ue L*0,T;7) |u' € L*(0,T;7"")}

with inner product

is a Hilbert space. Furthermore,
1. The embedding W (v, V") = C([0, T|; #) is continuous.
2. The embedding 2([0, T|; ") <= W (v, 7"") is dense.

3. For u,ve W (', 7""), the map t — (u(1),v(t)),, is absolutely continuous on
[0, T and

—(u(1),0(2)),, = <U'(0),0(0) >4+ + (), 0" (1) )y -

Sor almost every t € [0, T, hence the integration by parts formula

(u(T), U(T))/ — (u(0), U(O))/f = Jo ' (1), 0(t)yye 4 + Jo Cu(t), 0" () 4+

holds.

Proof. The density result is Theorem 2.1 in [23], §1.2. For the rest, consult Prop-
osition 1.2 and Corollary 1.1 in [30], §ITI.1. O

We can characterise the weak derivative in terms of vector-valued test func-
tions. This is useful because it more closely resembles the weak material derivative
that we shall define later on.

Theorem 2.2 (Alternative characterisation of the weak derivative). The weak
derivative condition (2.1) is equivalent to

Jo (u(t),lp/(t))jf = — Jo ' (O, (t)>y+ 4 forall e 2((0,7);7).

We finish this subsection with some words on measurability.

Definition 2.3 (Weak measurability). Let X be a Hilbert space. A function
f 10, T] — X is weakly measurable if for every x € X, the map ¢ — (f(t),x)X is
measurable on [0, 7.
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Strong (or Bochner) measurability implies weak measurability. If the Hilbert
space X turns out to be separable, then both notions of measurability are
equivalent thanks to Pettis’ theorem [28], §1.5, Theorem 1.34.

2.2. Evolving spaces. Now we shall define Bochner-type function spaces to treat
evolving spaces. We start with some notation and concepts on the evolution itself.
We informally identify a family of Hilbert spaces {X(1)},.(y 7 with the symbol
X, and given a family of maps ¢, : Xo — X (#) we define the following notion of
compatibility of the pair (X, (¢,),cp 77)-

Definition 2.4 (Compatibility). We say that a pair (X, (¢z)ze[o.T]) is compatible
if all of the following conditions hold.

For each t € [0, T], X(¢) is a real separable Hilbert space (with X, := X (0))
and the map

¢t:XO_’X([)

is a linear homeomorphism such that ¢, is the identity. We denote by
#_,: X(t) — Xy the inverse of ¢,. Furthermore, we will assume that there exists
a constant Cy independent of ¢ € [0, T'] such that

@l () < Cxllully, Yu e X
||¢—t”||x(, < CX””HX(,) Yu e X(1).

Finally, we assume that the map

L ||¢t”HX(r) Vu e Xo

is continuous.

We often write the pair as (X, ¢,) for convenience. We call ¢, and ¢_, the
pushforward and pullback maps respectively. In the following we will assume com-
patibility of (X, ¢<,)). As a consequence of these assumptions, we have that the
dual operator of ¢,, denoted ¢, : X*(z) — X, is itself a linear homeomorphism,
as is its inverse ¢, : Xj — X *(¢), and they satisfy

||¢I*f| X < CX||f| X+ (1) Vf € X*(Z)
||¢jzf||X*(r) < Cx||f] Xy Vf e Xy.

By separability of Xj, it also follows that the map

L ||¢izf||)(*(z) Vf € XO*

is measurable.
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Remark 2.5. If we define U(z,s): X(s) — X(¢) by U(t,s):=¢,¢_, for s,t€
[0, 77, it can be readily seen from U(t,r)U(r,s) = ¢,¢_.¢,¢p_, = ¢,p_, = U(t,s)
that the family of operators U(z, s) is a two-parameter semigroup.

Remark 2.6. Note that the above implies the equivalence of norms

Cy'llully, < Il < Cxllully, Vu € Xo,

Ce' lf -y < 167 f e < Cxllf Nl ¥F € X7(0).

We now define appropriate time-dependent function spaces to handle functions
defined on evolving spaces. Our spaces are generalisations of those defined in [31].

Definition 2.7 (The spaces L and L%.). Define the spaces

g ={u:0.71— U X0 x {100 @(0),0) | 4_yi() € L2(0, T3 Xo) }
tel0,7]

Lo={r:0.71— U X0 x {tht— (70,0 14,7() € L0, T; X5) .

tel0,T]

More precisely, these spaces consist of equivalence classes of functions agreeing
almost everywhere in [0, T, just like ordinary Bochner spaces.

We first show that these spaces are inner product spaces, and later we prove
that they are in fact Hilbert spaces. For u € L%, we will make an abuse of nota-
tion and identify u() = (i(r), 1) with @(¢) (and likewise for f € L%.).

Theorem 2.8. The spaces L3 and L%. are inner product spaces with the inner
products

(u,v) : = T(u(t),v(z)) , i
’ JO " (2.2)

bz, = |, (70,010 . .

Proof. 1t is easy to verify that the expressions in (2.2) define inner products if
the integrals on the right hand sides are well-defined, which we now check. For
the L% case, it suffices to show that Hu(t)||§(<z) is integrable for every u € L. So
let ue Ly. Then u:=¢_ ju(-) € L*(0,T;X,). Define F:[0,T] x Xo — R by
F(t,x) = [|¢,x[| (. By assumption, ¢ — F(z,x) is measurable for all x € X, and
if x, — x in X, then by the reverse triangle inequality,

[E(t, x0) = F(6,X)] < [|@e(xn = X)) < Cxllxw = xl[x, = 0,
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so x — F(t,x) is continuous. Thus F is a Carathéodory function. Due to the
condition |F(#,x)| < Cx/||x[|y,, by Remark 3.4.5 of [17], the Nemytskii operator
Ny defined by (Npx)(t) := F(t,x(1)) maps L*(0,T;X,) — L*(0,T), so that

T
~12 2
Nl 0 7y = j Ju(®) 2 < o0-

This proves the theorem for L%. The process is the same for the case of L%.
except we replace ¢_, and ¢, with the dual maps ¢, and ¢~ ,. O

Lemma 2.9. Let ue L% and f € L%.. Then there exist simple measurable func-
tions u, € L*(0,T; Xo) and f, € L*(0, T; X;) such that for almost every t € [0, T,

Py (t) — u(t)  in X(1)
¢ Ju(0) = f(1)  in X7(1)

as n — oo.

This lemma can be proved by using the density of simple measurable functions
in L2(0, T; Xo). The following result is required to show that the above spaces are
complete.

Lemma 2.10 (Isomorphism with standard Bochner spaces). The maps

w gou(-)  from L*(0,T; Xo) to L
[ ¢ () from L*(0,T; Xg) to L.

are both isomorphisms between the respective spaces.

For the proof of the L% case, one makes an argument similar to that in the
proof of Theorem 2.8 and shows that given an arbitrary u € L?(0, T; Xp), the
map ¢ — \|¢,u(t)||§((,) is indeed measurable (and then it follows that ||¢(,)M(')||L)z(
is finite). That the spaces are isomorphic follows from the above (which shows
that there is a map from L*(0,7;Xp) to L%) and the definition of L%. The
isomorphism is 7 : L?(0, T; X,) — L% where

Tu = ¢.u(-) and T v= ¢_yo(-).

It is easy to check that 7 is linear and bijective. The proof for the L%. case uses
the same readjustments as before.

The next lemma, which is a consequence of the uniform bounds on ¢, and ¢;,
will be in constant use throughout this work.
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Lemma 2.11. The equivalence of norms
1
o ey <19 uCllzo 7o) < Cxllull - Ve Ly

| . .
CfXHf”L; <ty S Olli2.rixgy < Cxllifllz, ¥ € L.
holds.
Corollary 2.12. The spaces L% and L%. are separable Hilbert spaces.

Proof. Since L% and L?(0, T'; X,) are isomorphic and the latter space is complete,
so too is L% by the equivalence of norms result in the previous lemma. The
separability also follows from the previous lemma. O

We now investigate the relationship between the dual space of L% and the
space L%.. We in fact prove that these spaces can be identified; this requires
the following preliminary lemmas.

Lemma 2.13. For f € L}. and u € L3, the map
[ <f([)7u(t>>X*(I),X(t)
is integrable on [0, T).

Proof. By considering the Carathéodory map F : [0, 7] x X; x Xo — R defined
by F(t,x*,x) = {$" X", $X)>x(1),x(y and using Remark 3.4.2 of [17], given
feLy and ue Ly, we have with f:=¢( f(-) and &:=¢_u(-) that ¢
P2 (@), ta(1) D x (1), x(0) = <SF(8),u(t)Dx-(0), x() is measurable, since ¢+ f(¢) and
t — u(t) are measurable. That the integral is finite is trivial. O

Lemma 2.14. Suppose that f(t) € X*(t) for almost every t € [0, T| with

2
X*(1) < 0,

jOT 1)

and that for every u € L%, the map t — S (@), u(®)yx (), x(r) is measurable. Then
fel?.

Proof. We have {f(1),u(t))x- ), x() = <¢;‘f(t),¢,ru(t)>xo*7xo, and the left hand
side is measurable, hence the map

t= g (1), pou(t))xe x,

0’

is measurable on [0, 7] for every u € L?.
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Given w € Xo, the element u(-) := ¢ w € L%, so we have (from Definition 2.3
or Footnote 80 in [29], §1.4, p. 36 for example) that ¢, f():[0,7] — X{
is weakly measurable. Now, as remarked after Definition 2.3, we use Pettis’
theorem to conclude that qﬁ(*, f (-) is indeed strongly measurable. Hence we
can compute

T T
190 Ol 7y = |, 197015, < & [ s

2
X*(1) < 00,

s0 ¢(\f(-) € L*(0, T; X)), giving f € Ly... O

Lemma 2.15 (Identification of (L) and L%.). The spaces (L%)" and L%. are
isometrically isomorphic. Hence, we may identify (L})" = L%., and the duality
pairing of f € L. withu e L% is

T
gz = || SO0 w-g1x00

Proof. Define the linear map ¢ : L3, — (Li,)* by

T
I Dwy e = Jo L@y @)D x4, x 0 At

This is well-defined due to Lemma 2.13. We must check that ¢ is an isometric
isomorphism.

Suppose that F e (L%)". We first need to show that there exists a unique
f € L%. such that #f = F. To do this, we use the Riesz map #: (L})" — L%
to write

T
Pz = AP = | (AFO.0) 2.3)

and then with ! : X(¢) — X*(¢) denoting the inverse Riesz map on X (7), we
get

(’%F(t)7u(t))X(t) = <°Vfl(%F(O)a”(t»x*(z)?)((z)

for almost all 7 € [0, T]. Now, from (2.3), the right hand side of this equality must
be integrable. Hence

te (ST RE () u(0)) . v
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is measurable for every u € L}. Now, the question is whether V(f)l (#F () € L.
Clearly &, ' (#F (1)) € X*(1), and by the isometry of the Riesz maps,

T T
_ 2
J 1t @EO g = | 12PO1 = 121 =181 @4

which is finite. Therefore, we obtain &' (#F(-)) € Ly. by Lemma 2.14. So
I (G RE() = F.
For uniqueness, suppose that #f = 0. Then

T
I w2y 2 = Jo (@), ult) ) x1), x(0)

T
= |, <109 w0050
= @) S ()i, T;X7),L2(0,T; X)) (with @t = ¢_(yu("))

which holds for all # € L*(0, T; X;). This implies that f = 0.
To see that ¢ is an isometry, we define # ' : (L3)" — L%, by JF =
Sﬂ(_’)lﬂF (+) and use (2.4) to conclude. 0

Although we have no notion of continuity in time for a function u € L}, we
can nevertheless make the following definition.

Definition 2.16 (Spaces of pushed-forward continuously differentiable functions).
Define

Ch={&eL}|$ () e CH(0, T Xo)}  fork € {0,1,...}
Zx(0,T) = {n e Ly |¢_n() € 2((0,T); Xo)}
Ix[0,T) = {ne Ly |4_yn(-) € 2([0, T]; Xo)}.

Since Z((0,7); Xo) = 2([0, T]; X,), we have
Zx(0,T) = Zx[0,T] = C¥.

2.3. Evolving Hilbert space structure. In the preceding, we set up a Hilbert
space L3 and its dual L. based on an arbitrary family of separable Hilbert spaces
{X(0)},cp0,7) and a suitable family of maps {¢,},.( 71 We now lay the ground-
work for posing PDEs on evolving spaces. For each 7€ [0, 7], let V() and
H(f) be (real) separable Hilbert spaces with 7 := V(0) and H, := H(0) such
that Vy = Hy is a continuous and dense embedding. Identifying Hy with its dual
space H{, it follows that Hy, < V/; is also continuous and dense. In other words,
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Vo < Hy  V; is a Gelfand or evolution triple of Hilbert spaces (i.e., a Hilbert
triple) [28], §7.2.

Assumptions 2.17. We will assume compatibility in the sense of Definition 2.4 for
the family {H(#)},.( 71 and a family of linear homeomorphisms {¢,}, o 7; that
is, we assume (H,¢)) is a compatible pair. In addition, we also assume that
(V,4¢)ly,) is compatible. We will simply write ¢, instead of ¢,[,,, and we will
denote the dual operator of ¢, : Vo — V() by ¢ : V*(¢) — V/; we are not inter-
ested in the dual of ¢, : Hy — H(?).

It then follows that for each ¢ € [0, T'], V' (¢) = H(t) is continuously and densely
embedded. Let us summarise the meaning and consequences of Assumptions 2.17
for the convenience of the reader.

(1) For each ¢ € [0, T, there exists a linear homeomorphism
¢, Ho — H(1)

such that ¢, is the identity.

(2) The restriction ¢,|;, (which we will denote by ¢,) is also a linear homeomor-
phism from ¥V} to V(z).

(3) There exist constants C; and Cp independent of ¢ € [0, T| such that
Il iy < Crllully,  Yu € Ho,
[aullyy < Crllully, — Yue V.

(4) We will only be interested in the dual operator of ¢, : ¥y — V (), denoted by
¢, = V*(t) — V;, which satisfies

16711y < Coll Al ¥ € V(0.

(5) The inverses of ¢, and ¢, will be denoted by ¢_, and ¢*, respectively, and
these are uniformly bounded:

N6l y, < Corllull gy Yo € H1),
||¢7tuHV0 = éV”””V(t) Vu e V(t))
162 SNy < Collfllye W € V5

(6) The maps
L ||¢tu||H(t) Vu € Hy
L ||¢tu||V(t) Vue Vo
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are continuous, and the map

t— 42,11

V(1) Vf € VO*

is measurable.

Our work in §2.2 tells us that the spaces L%, L?, and L. are Hilbert spaces with
the inner product given by the formula (2.2).

Remark 2.18. These homeomorphisms ¢, are similar to Arbitrary Lagrangian
Eulerian (ALE) maps that are ubiquitous in applications on moving domains.
See [2] for an account of the ALE framework and a comparable set-up.

By the density of L>(0, T; V) in L*(0, T'; Hy), we obtain the next result.
Lemma 2.19. The embedding L} < L% is continuous and dense.

Identifying L2 with L?. in the natural manner, we have that L2, = L2, = L3,
is a Hilbert triple. We make use of the formula

w2 = (f’“)Lé whenever f € L7 and u € L.

2.4. Abstract strong and weak material derivatives. Suppose {I'(¢)}, 7y 1s a
family of (sufficiently smooth) hypersurfaces evolving with velocity field w, and
that for each 7€ [0, T], u(¢) is a sufficiently smooth function defined on I'(7).
Then the appropriate time derivative of u takes into account the movement of
the spatial points too, and this time derivative is known as the (strong) material
derivative, which we can write informally as

u(t,x) = %u([, x(2)) = w1, x) + Vu(t, x) - w(t, x). (2.5)

This is well-studied: see [7] or [8], §1.2 for the flat case. Our aim is to generalise
this material derivative to arbitrary functions and arbitrary evolving spaces (and
not just merely evolving surfaces).

Definition 2.20 (Strong material derivative). For ¢ e Cl define the strong mate-
rial derivative & € CY, by

0 = (G 0-) ). (26)

This definition is generalised from [31]. So we see that the space C} is the
space of functions with a strong material derivative, justifying the notation. In
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the evolving surface case, we show in [1], §4 that this abstract formula agrees with
(2.5). The following remark observes that the pushforward of elements of Xj into
X (¢) have zero material derivative.

Remark 2.21. Observe that given 7 € X,

(¢t’7) =0
and that for ¢ € C}

=0 <= 35 € X, such that E(t) =¢m.
It may be the case that solutions to the PDE (1.2)
u(t) + A(u(r) = f(1)

may not exist if we ask for u € C},, that is, they may not possess strong material
derivatives. We can relax this and ask for # to exist in a weaker sense, just like
one does for the usual time derivative in parabolic problems on fixed domains.
Heuristically, what should such a weak material derivative satisfy? Taking a clue
from Lemma 2.1, we expect

d
7 (u(t), v(0)) gy = <a(0), () >0y, ) + <O, u(t) ) -1, v(ry + eXtra term

where we envisage an extra term because the Hilbert space associated with the
inner product depends on ¢ itself, and certainly we should require the integration
by parts formula

T
d
| G@On0)yy =0 ez,
The identification of this extra term and a definition of the weak material deriva-
tive is what the rest of this section is devoted to.

Definition 2.22 (Relationship between the inner product on H(#) and the space
H,). For all ¢ € [0, T], define the bounded bilinear form b(¢;-,-) : Hy x Hy — R
by

b(t;uo, vo) = (P10, $v0) sy Vi, vo € Ho.

This gives us a way of pulling back the inner product on H(¢) onto a bilinear
form on Hy by the formula (u,v)y, =b(t;¢_u,¢_p). It is also clear that
b(0;-,-) = (-,-)py, by definition. In fact, one can see for each 7€ [0, 7] that
b(t;-,-) is an inner product on Hj (and it is norm-equivalent with the norm on
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H,); thanks to the Riesz representation theorem, there exists for each 7 € [0, 7] a
bounded linear operator T; : Hy — H, such that

b(t;u, vo) = (Titto, vo) 7, = (to, T100) gy, - (2.7)

Remark 2.23. It is not difficult to see that 7, = ¢;'¢,, where ¢ : H(t) — Hy
denotes the Hilbert-adjoint of ¢, : Hy — H(1).

Assumptions 2.24. We shall assume the following for all ug, vy € Ho:

0(t,up) := %H@uo\ﬁ,(,) exists classically (2.8)
ug — 0(t,up)  is continuous (2.9)
0(t,u0 + vo) — O(t, 1o — vo)| < Clluo|| g, lvollz, (2.10)

where the constant C is independent of ¢ € [0, T7.

We are now able to define i(l; )+ Hy x Hy — R by

d ~
ﬂ(l; U, U()) = Eb(t; Uy, vg) = (0([, uy + Uo) - 9(t, Uy — Uo)). (211)

Bl —

Denoting by A(¢) the operator
(A (0o, v0> = A(t; g, v9), (2.12)
it follows by (2.10) that A(z) : Hy — H;.

Definition 2.25 (The bilinear form A(z;-,-)). For u,v € H(t), define the bilinear
form A(¢;-,-) : H(t) x H(t) — R by

At u0) = A(t; §_u, §_0).

Lemma 2.26. For all u,v € L3, the map t— A(t;u(t),v(t)) is measurable and
At;-,-) : H(t) x H(t) — R is bounded independently of t:

|48 4, 0)] < Cllull gy 10l -

Proof. 1f u,v e L%, then by (2.11),

At u(t), v(r)) =

(136 u(1), 6_0(1))
(01,8 0) + 6_(0) = 01, (1) — §_0(1))),

=
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and it follows that ¢ — A(#;u(),v()) is measurable because 7 — 0(t,¢_w(1)) is
measurable for w e L. This in turn can be seen by noticing that 6 : [0, T] x
Hy — R is a Carathéodory function: the map ¢+ 0(¢,x) is measurable and by
assumption (2.9) the map x — 6(z, x) is continuous; thus by Remark 3.4.2 of [17]
the desired measurability is achieved. The bound on A(# -, ) is a consequence of
the assumption (2.10). 0

Lemma 2.27. For a1,0> € C'((0, T); Hy), the map t — b(t; 51 (1), 02(1)) is differen-
tiable in the classical sense and

| &

b(t;01(1),02(0)) = b(t;01 (1), 02(2)) + b(£;01(2), 35(2)) + A(t;51(2), 32(1) ).

U

t
This follows simply by using the definition of the derivative as a limit.

Definition 2.28 (Weak material derivative). For u € L}, if there exists a function
g € L%. such that

T T

(0 710) gy = | 2500000

0

T
J g@)sn(O) >y, vy = —J
0

0

holds for all # € (0, T), then we say that g is the weak material derivative of u,
and we write

u=g or Ju=y.

This concept of a weak material derivative is indeed well-defined: if it exists, it
is unique, and every strong material derivative is also a weak material derivative.
It is easy to prove these facts: for uniqueness, assume there exist two material de-
rivatives for the same function and then linearity and the density of & ((O, T); Vo)
(the space of test functions) in L2(0, T'; V) gives the result. To show that a strong
material derivative is also a weak material derivative, one can use Lemma 2.27
and the relations between B(l; ), i(l; -,+), and A(t; -, ).

2.5. Solution space. We can now consider the spaces that solutions of our PDEs
will lie in.

Definition 2.29 (The space W (V, V*)). Define the solution space

WV, V)={uelLi|uel}.}
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and endow it with the inner product

T T

(u(1), v(1)) vy T J

0

(u,0) W, v+ = J

0

(u(t),ij(t))w(t).

In order to prove existence theorems, we need some properties of the space
W(V,V*) which turns out to be deeply linked with the following standard
Sobolev—Bochner space.

Definition 2.30 (The space # (Vy, V;)). Define
W (Vo, V§) = {ve L*(0,T; Vo) |v' € L*(0,T; V§)}
to be the space # (7", 7"") introduced in §2.1 with ¥~ = V and # = H.
It is convenient to introduce the following notion of evolving space equivalence.

Assumption and Definition 2.31. We assume that there is an evolving space
equivalence between W(V, V*) and % (Vy, V). By this we mean that

ve W(V, V") ifandonlyif  ¢_.u(-) e # (Vo, Vy),
and the equivalence of norms

C1H¢—(~)U(')HW"(VO‘VO*) = ||U||W(V,V*) = C2||¢—(~)U(')||“t/f’(V0, )
holds.
Corollary 2.32. The space W(V,V*) is a Hilbert space.

We now show that Assumption 2.31 holds under certain conditions. See also
the remark following the proof of the theorem.

Theorem 2.33. Suppose that
ue W (Vo,Vy) if and only if  Tiyu(-) € W' (Vo, Vi) (T1)
and that there exist operators
S@t): Vi —Vy and D(t): Vo — V§
such that for ue W (Vo, V),

(Tu(0))" = S(0)ud' (1) + A()u(t) + D(t)u(1) (T2)
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and
S(Ou'(-) e LX0,T;V§) and  D()u(-) e L*(0, T; V).

Suppose also that S (1) and D(t) are bounded independently of t € [0, T), and that
S(1) has an inverse S(1)”" : Vy — Vi which also is bounded independently of
t€[0,T]. Then W(V,V*) is equivalent to W (Vy, V) in the sense of Definition
2.31.

Proof. First, suppose u € #'(Vy, Vy). Clearly ¢ yu(-) € L? and we need only to
show that ¢° (¢(,)u(-)) e L?. exists. Letn € Zy(0,T) and consider

!

|, @ao) ) 0y = | . (0 m))

0
(rewriting the integrand using b(z; -, ) and (2.7))

== (S0 (1) + Aeyu(t) + D(O)u(t), b_1(0)>v: v,
(by (T1) and (T2))
T
o (6% (SO (1) + D(Ou(D) 1)) -9, v
~ At gou(t),n(1)). (2.13)

This shows that ° (¢ u(-)) exists.
Conversely, letu € W(V,V*). We need to show the existence of (¢,<,)u(-))/ in
L?(0,T; V). We start with the weak material derivative condition:

T

(0 710)) gy~ | 2(500900)

0

T T
J (), n(O)>y, vy = —J
0

0

for test functions # € 2 (0, T). Pulling back leads to
T T )
|, <ori s mw>r;v == | g w0, 0 n))

+] dag .4 m00).
0
Using (2.7) and (2.12) and rearranging:

J (Tp_u(t), ($_m(D)') . = — jo it + A _u(t). b_n()>y; v, (2.14)

0
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It follows that T(y¢_  u(-) has a weak derivative, and hence by (T1) as does
¢_(yu(-). This proves the bijection between # (Vy, Vi) and W(V, V™).
For the equivalence of norms, let u € W (V, V*). From (2.13), we see that

a(t) = ¢7,(S(1) (¢ u(6))" + D(1)p_u(1)
which we can bound thanks to the boundedness of S(¢) and D(¢):
il < C(#- @)l + ¢ au(@)lly,)-

So we have achieved |[ul|y ) < C2||¢,(,)u(-)||,,,/-(V0‘VJ). For the reverse in-
equality, we use (T2) and (2.14) to find

(¢_ () = S(t)" (¢;0(t) — D(1)p_u(1)).
From this we obtain a bound of the form
||(¢7tu(t))/||yo* < C([[a(@)l -y + Nlu(@)l )
which implies the result. |

Remark 2.34. If we knew that T 1o € Vo for every vy € V, then the as§umption
(T2) would follow from (T1) with {S(7)f, vy vy =S Ty y, and D(t) =0.

We are able to specify initial conditions of solutions to PDEs via the follow-
ing lemma, which is an easy consequence of the continuity of the embedding
W (Vo, Vi) = C°([0, T); Hy).

Lemma 2.35. The embedding W (V,V*) = CY holds, hence for any u e W(V,V*)
the evaluation t — u(t) is well-defined for every t € [0, T|. Furthermore, we have the
inequality

tgﬁ?’;] gy < Cllullyy, vy Yue W, V).

This lemma allows us to define the subspace
Wo(V,V*)y={ue WV, V") u(0) = 0}.
Definition 2.36 (The space W (V, H)). Define the space
W(V,H)={uelL}|ueL}}.

In order to obtain a regularity result, we need to make the following natural
assumption, which will also tell us that W (V, H) is a Hilbert space.
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Assumption 2.37. We assume that there is an evolving space equivalence between
W(V,H) and % (Vy, Hp).

Let us note that this assumption follows if, for example, the assumption (T1)
is changed in the natural way and the maps S’(t) and D(z) of Theorem 2.33
satisfy S(7) : Hy — Hy and D(¢) : Vo — Ho, with both maps and S(r)”" being
bounded independently of 7 € [0, 7], and if S(-)u'(-), D(-)u(-) € L*(0, T; Hy) for
ue W( V()7 H()).

Some density results With the help of the density result in Lemma 2.1, it is easy
to prove the following lemma.

Lemma 2.38. The space Zy[0, T) in dense in W(V, V*).

The next few results are necessary to prove Lemma 3.5, which turns out to be
vital for one of our existence proofs.

Lemma 2.39. For every n€ 9y(0,T), there exists a sequence {n,} = Zy(0,T)
of the form

n,(t) = Z{i(t)gbtwj where {; € 2(0,T) and w; € V5,
J=1

such that n, — nin W(V,V*).

Proof. It suffices to show that for every y € Z((0, T); V), there exists a sequence
{¥,} = 2((0,T); Vp) of the form

W, (1) = Zéj(t)wj where {; € (0, T) and w; € V5,
J=1

such that v, — W in W (Vo, V).
Let w; be an orthonormal basis for V. Given y € 2((0,T); Vy), define

n

(1) = Z(l//(t)v Wj) Wi

=1

ie., §(0) = (¥(1),w) y,- Itis clear that {; vanishes at the boundary (since y does),

0
and C}’”)(t) = (lp(”’>(t), w;) y, also implies that {; € 2(0, T). What remains to be
checked is that ¥, — ¢ in #'(Vy, V). We have the pointwise convergence
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V,(t) — (1) in V, because w; is a basis, and there is also the uniform bound
1, (D, < [¥(D)ly,- So by the dominated convergence theorem,

Y, =¥ in L2(0,T; Vo).
The same reasoning applied to i/, allows us to conclude. O

Transport theorem Like in part (3) of Lemma 2.1, we want to differentiate the
inner product on H(¢). Writing Lemma 2.27 in different notation, we obtain for
u,v € C}; the transport theorem for C}, functions:

%(u(t% 0(0) iy = (1), 0(0)) 1 + (1), 5(0) gy + 2(5u(0), (1))

We can obtain a formula for general functions u,v € W (V,V*) by means of a
density argument.

Theorem 2.40 (Transport theorem). For all u,v € W(V,V*), the map
t— (u(z),u(z))H(t>

is absolutely continuous on [0, T] and

7 (u(r), U(f))H<,) = (1), 0(0) >y (o). vy + <O, u() >y, vy + At u(t), 0(1))

for almost every t € [0, T).

Proof. Given ue W(V,V*), by Lemma 2.38, there exists a sequence u, €
Zv[0, T converging to u in W(V,V*). By the transport theorem for C}, func-
tions, the u,, satisfy

) = 200, 1))y + 40520 (0), 10 0)

This statement written in terms of weak derivatives is that for any { € 2(0, T), it
holds that

T 2 /
—jo (D110 C' ()

T
= J (2t (2), (1) >+ (1), vy + AL 1 (), (1)) ) £ (2). (2.15)

0
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Now we must pass to the limit in this equation. For the left hand side, because
u, — uin L%, we have by the reverse triangle inequality

T T
JO (Dl — Nl > < L ot (6) = u(0)| ) — O,

e [[um ()l ey = ()l in L2(0, T), which implies that
letm(I7r0) = () 7y in L0, T).

Clearly, the functional F : L'(0, T) — R, defined

is an element of L'(0, T)* because {'(¢) is bounded. Therefore, we have conver-
gence of the left hand side of (2.15):

‘L ot ()] 2 (2) — ‘L PO

To deal with the terms on the right hand side of (2.15), we require the estimates
|<1’.lm(t); um(t)>V*(1‘), V(o — <u(t)a u(l‘)>V*(1)7 V(f)‘
< et ()N - ) 1 (8) = (@) ||y 4y + ki (2) = d(O) [y [l ] )
and
|4 (85 (1), (1)) — A(6;u(2), u(1))|
< Co (llam ()] ) ot (£) = (O 110y + Nt (2) = ()| o) 1) ] 1)) -
With these, it is easy to show that

|, @010, 10 + 4t 00) 0 ()00

0

_ J (24(0), u(t) -, v+ 2(60), (1)) (0] — 0

0

In other words, as m — oo, the equation (2.15) becomes

—JO ||u(l)||§1<t)<§’(f)=J (2<a(t), u(t)) (. vy + A u(0), u(0)) ) (1), (2.16)

0



An abstract framework for parabolic PDEs on evolving spaces 23

which is precisely the statement

d ,
Ol z) = 260,40y, v+ 2( (1), u(0))

in the sense of distributions. From this, it follows that

@ u(0).00)) ) = <0, 00,11

+ <O(2), u() Dy 1), v(s) + At u(1),v(1)) (2.17)

holds in the weak sense. So we have shown the transport theorem in the
weak sense. However, because the right hand side of the above is in L'(0, T)
(since the right hand side of (2.16) holds for every { € 2(0,T)) and because
(u(t)m(t))H(t) e L'(0,T), it follows that (u(l),u(t))H(t) is a.e. equal to an abso-
lutely continuous function, with (classical) derivative a.e., and therefore (2.17)
exists in the classical sense. |

We shall use the following corollary frequently without referencing in future
sections.

Corollary 2.41 (Integration by parts). For all u,v € W(V, V™), the integration by
parts formula

holds.

3. Formulation of the problem and statement of results

3.1. Precise formulation of the PDE. Having built up the essential function
spaces and results, we are now in a position to formulate PDEs on evolving
spaces. We continue with the framework and notation of §2; we reiterate in
particular Assumptions 2.17, 2.24, and 2.31 (which relate respectively to the
compatibility of the evolving Hilbert spaces, a well-defined material derivative,
and the evolving space equivalence). We are interested in the existence and
uniqueness of solutions u € W(V, V*) to equations of the form

Li+Au+Au=f inL3.

M(O) = Uy in Ho, (P)
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where we identify

with L(z) and A(¢) being linear operators that satisfy the minimal assumptions
given below, and

A(t): H(t) — H*(t) s defined by — {A()v, WD), niy = A0, w),

with A(¢;-,-) the bilinear form in the definition of the weak material derivative
(Definition 2.25). Note that A(7) is symmetric in the sense that <A(2)o, W) (), ()

= <A(I)W, U>H*([),H(1)'

Remark 3.1. We showed in Lemma 2.35 that specifying the initial condition as
in (P) is well-defined.

Assumptions 3.2 (Assumptions on L(¢)). In the following, all constants C; are
positive and independent of € [0, 7.
We shall assume that for all g € L%h,

LgeL}. and Gl < Lol <G (L1)

We suppose that the restriction L] L2 satisfies L| 2 L2, — L2, we identify
(L|L2 h)(t) =: Ly(t)h(t), and we suppose that

Ly(t): H(t) — H(t) is symmetric, and
Ly(t): V(t)— V(1).

We simply write L and L(¢) for the above restrictions. Furthermore, for almost
every ¢ € [0, T|, we assume

L2
L3

CL(0)g, 0>, v() = <G LYy vy Yg € V1), Yo e V(1)
HL(t)hHH(/) < C3Hh||H(t) Vh € H(l‘)

(L2)

(L3)

(L()h 1) g = Callhll, Vh e H(1) (L4)
(LS)

(L6)

L5
L6

Lve L3 Yve L?
ve W(V,V*) <<= Lve W(V, V"),
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and we suppose the existence of a (linear symmetric) map L : L3 — L%, (and we
identify (Lv)(¢) =: L(t)v(t)) satisfying

*(Lv)y=Lv+Loe L} Yvoe W(V,V¥) (L7)

IL(@)oll -0y < Cslloll g Yo e V(). (L8)

Assumptions 3.3 (Assumptions on A4(z)). Suppose that the map
t= CAV(), w(O) Dy vy Yo,we L}

is measurable, and that there exist positive constants C;, C; and C; independent
of ¢ such that the following holds for almost every ¢ € [0, T7:

AV, 0Dy, () 2 C1||U||%/(z) - C2||U||3-1(t) Vo e V(1) (A1)
Ao, WD vy, v | < Gllolly Wil Yo,w e V(1). (A2)

Observe that we have generalised the PDE (1.2) by introducing the operator L.
The standard equation

u+Au+Au=f

is a special case of (P) when L =1d. Our demands in Assumptions 3.2 are (of
course) automatically met in this case. Also, there is no loss of generality by
considering the equation (P) instead of the more natural equation Lit + Au = f.
We include the operator A purely because it is convenient in applications (such
as those in [1]).

Implicit in (P) is the claim that Au and Au are elements of L?.. The fact
Au € L3 follows by the weak (and thus strong) measurability of 7 — ¢ A (¢)u(7)
and the boundedness of A(7), and similarly one obtains the result Au € L3,... Let
us mention an important consequence of the transport theorem (Theorem 2.40)
and assumptions (L2), (L6) and (L7).

Lemma 3.4. For every v,w € W(V, V"), the map t — (L(1)v(z), W(l‘))H(t) is abso-
lutely continuous with derivative

%(L(I)U(f)a W(f))H(t) = (L(6)6(2), w(B) Dy (s, (o) + LLOW(E), 0(8) Dy 1), v(0)

+ M) o(2), (D) >y, v (3.1)

almost everywhere, where M(t) : V(1) — V*(¢) is the operator

M), Wy, () 7= LW ), iy + KA L0, WY (), v ()
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which generates the bounded bilinear form m(t;-,-) : V(t) x V(1) — R:

m(t;0,w) == M (v, Wy, v ()

To conclude this preliminary subsection we state and prove the following
lemma which is used in §5.4.

Lemma 3.5. Letue L} and g e L}.. Then
ue L%/* existsand Lu=g¢g
if and only if

d

7 (L(t)u(t)’¢tUO)H(t) =g(t) + M()u(t), d00> v+, vy Sorallvge Vo (3.2)

in the weak sense.

Proof of Lemma 3.5. Ifu e W(V,V*)and Lu = g, then (3.2) follows easily by uti-
lising 0°(¢,v9) = 0 and the previous lemma. For the converse, first, we see from
Lemma 2.39 that given any n € 2(0, T'), there exist functions #, € Z(0,T) of
the form

OB WAL

with {; € 2(0,T) and w; € Vg such that |7 — 1,y ) — 0. Now, (3.2) states
that

J (L@Ou(0), ' ()4 ,00) iy = — JO g(1) + M()u(t), L) 00> v+ (1), v (o)

0

holds for all { € 2(0,T) and all vy € Vy. In particular, we may pick { = {; and
vo = w; and sum up over j to obtain

J (L<t)u<t)7’7n([))1-1(l) = - 4[() <g<t) + M(t)u(t)vnn(t)>V*(t), V(t)-

0

Passing to the limit and using the convergence above, we find

J, @O0, = = | o)+ 0000001000

0

T
——L<mn+men+AMmemmo»mMm
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for arbitrary € Z(0, T), i.e., we have the existence of 0°(Lu) = g+ Lu € L?.
which, thanks to assumptions (L6) and (L7) implies that Li = g. O

3.2. Well-posedness and regularity. We begin with a well-posedness theorem
which is proved in §4. A sketch of a second proof will be presented in §5.4 where
we utilise a Galerkin method.

Theorem 3.6 (Well-posedness of (P)). Under the assumptions in Assumptions 3.2
and 3.3, for f € L}. and uy € Hy, there is a unique solution u e W (V,V*) satisfy-
ing (P) such that

[ull v,y < CUluoll g, + £ 1]22,)-

Now, suppose we now know that f e L% and uy € V5. Can we expect the
same regularity on the solution u as holds in the case of stationary spaces? It turns
out that we can obtain # € L% under some additional assumptions, including some
on the differentiability of A(z).

Before we list these assumptions, let us just note that if we define bilinear forms
(t;-,): V(1) x V(1) — Rand a(t;-,-) : V(1) x V() — R to satisfy

I(t; g, w) = {L(OG, W)y, v
a(t;v,w) := CA@)L, WDy (1), v (1)

then the problem (P) is in fact equivalent to

I(1;0(1),v) + a(t;u(r),v) + A(tu(r), v) = S (1), 0>y v (3.3)
u(0) = up '
for all v € V(¢) and for almost every ¢ € [0, 7] (the null set is independent of v).
Similarly, if f € L% and & € L3, then (P) is equivalent to

I(t;u(1),v) + a(t;u(t),v) + A(t;u(t),v ):(f(t),v)H(t)

P’

u(0) = up "
for all v € V'(¢) and for almost every ¢ € [0, 7|, where now /(t;-,-) : H(t) x H(t) —
Ris /(;-,-) = (L(1), -)H(,). It is this form of the problem that turns out to be
more convenient to work with to show regularity. To see the equivalence, for
one side, we may take the duality pairing of (P) with v = éqﬁ(A)vo where vy € V)
and ¢ € 2(0,T); then an argument involving the separability of V), gives (P’).
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The converse follows by the density of simple measurable functions in L2 (see
Lemma 2.9).

Since V) is separable we may find a basis { Ve 91, by which we mean that for all
N € N, the set { yo} . 1s linearly independent and finite linear combinations of ,(
are dense in V5.

Assumption 3.7. We assume that there exists a basis { jen Of Vo and a se-

quence {uoy }y o With ugy € span{y?,...,x%} for each N such that
Uony — Up in V() (Bl)
luonll 7, < Cilluoll (B2)
luonlly, < Calluolly, (B3)

where C; and C; do not depend on N or uy.

Remark 3.8. Such a basis as required by the last assumption always exists if
Vo < Hy is compact thanks to Hilbert—Schmidt theory. In fact, in such a case
we can find a basis ;(j‘? which is orthonormal in Hy and orthogonal in V5.

Let AC(]0,T]) be the space of absolutely continuous functions from [0, T
into R.

Definition 3.9. We define the space

m

Cl = {u|u(t) = Zocj(t)xj’, meN, o e AC([0,T]) and o € L?(0, T)}

Note that C}, = C) and C}, ¢ W (V, V).

then a(t) = 32", oj()x/. We skip the proof which is straightforward: just use

the definition of the weak material derivative and perform some manipulations.
We could not have calculated the strong material derivative of u via the formula

(2.6) because the pullback

Remark 3.10. Note that if u € C}, with u(t) = > 9()yf as in the definition

=3 ()

is not necessarily in C'([0, T]; V) since the o; are not necessarily C'.
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Assumptions 3.11 (Further assumptions on «(z;-,-)). Suppose that a(z;-,-) has
the form

Cl(l; Yy ) = a‘\'(l; "y ) + an([; y )
where

as(l; ) ) : V(t)

V(l) — R
an([; ) ) : V(t) - R

X
x H(1)
are bilinear forms (we allow the possibility a,, = 0) such that the map

t+— as(t; (1), p(t))  is absolutely continuous on [0, 7] for all y € C},. (A3)

Suppose also that there exist positive constants C;, C, and C; independent of ¢
such that for almost every ¢ € [0, T,

lan(2;0,w)| < Cillvlly Wl g Vve V(t),we H(t) (A4)
las(t; v, w)| < Col[v][ g W] ) Vo, we V(1) (AS)
as(t;v,0) >0 Yve V(1) (A6)

d . ~
(6200, 7)) = 2a5(: y(0), 3(0) +r(6; (1) Vye Cy, (A7)

where the £ here is the classical derivative, and r(¢;-) : V' (¢) — R satisfies
2
r(tv)| < Gsllvllyyy  Voe V(o). (A8)

Remark 3.12. Note that we require only one part of the bilinear form a(z; -, )
to be differentiable; however, any potentially non-differentiable terms require the
stronger boundedness condition (A4).

As alluded to above, it is permissible to take a, = 0 so that a = a,. In this case,
we are in the same situation as in Assumptions 3.3 except with the addition of
(A3), (A6), (A7), and (AS).

We have the following regularity result proved in §5.

Theorem 3.13 (Regularity of the solution to (P)). Under the assumptions in
Assumptions 3.2, 3.3, 3.7, and 3.11, if f € L%{ and uy € Vy, the unique solution u
of (P) from Theorem 3.6 satisfies the regularity u € W(V, H) and the estimate

||”||W(V,H) =< C(H“O”Vo + ||f||L§I)
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4. Proof of well-posedness

We use a generalisation of the Lax—Milgram theorem sometimes called the
Banach—Necas—Babuska theorem [18], §2.1.3 to establish existence.

Theorem 4.1 (Banach—Necas—Babuska). Let X be a Banach space and let Y be a
reflexive Banach space. Suppose d(-,-) : X x Y — R is a bounded bilinear form
and [ € Y*. Then there is a unique solution x € X to the problem

d(x,y) =</, )y y Jorall yeY

satisfying
[xllxy < CllA1ly- (4.1)
if and only if
(1) There exists o > 0 such that
. d(x, . .
inf sup _dxy) >0 (“inf-sup condition™)

xeX yey [xlxllylly =

(2) For arbitrary y € Y, if

d(x,y) =0 holds forall x € X,

then y = 0.
Moreover, the estimate (4.1) holds with the constant C = 1.
Recall the equation (P):

Li+Au+Au=f inL3,
u(0) = uy

where f € L. and uy € Hy. By considering a suitable initial value problem on a
fixed domain we know that there is a function y € % (Vy, V) with y(0) = 1 and

HyH“ﬂ/"(VO,VO*) < Clluol| g, -

Then the function y(-) =4 y(-) is such that ye W(V, V") with 3(0) = u.
So then we can transform (P) into a PDE with zero initial condition if we set

w=u-—y

Lw+Aw+Aw=f

w(0) =0 (Po)
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where f:= f — Ldj — Ay — Ay € L2.. Tt is clear that well-posedness of (Py)
translates into well-posedness of (P). The idea is to apply Theorem 4.1 to the
problem (Py) with X = Wy(V,V*), Y = L%, and the bilinear form

d(u,v) = (L vyp 2+ CAu, 02 o+ <Auv)p2 o

Remark 4.2. The space Wy(V, V*) is indeed a Hilbert space because by Lemma
2.35, it is a closed linear subspace of W (V, V*).

The arguments in the next two lemmas follow §4 in [25]. See also [18], §6.1.2.

Lemma 4.3. For all w e Wy(V, V™), there exists a function v,, € L3, such that

{Lw, Uw>L§,*,L%, + (4w, UW>L$/*,L%, + <AW7UW>L3,*,L§ = CHWHW(V, V) UWHLf,-

Proof. This proof requires two estimates.

First estimate Let we Wy(V,V*) and set w,(f) =e "w(z). Note that
w, € Wo(V, V*) too with w, (1) = e 7'Ww(t) — yw,(¢), so

LWy (), w() Dy (1), vy = SLO)W(E) = yL(OW(E), Wy (1) Dy -0), v (1)

Rearranging, integrating, and then using (3.1):
. 1 . . 1
LW, wydpa 2 = 3 ({Lw, wyor, 2 + LDy, W>L12/*‘L%/) + zy(Lw, Wy)LZ

1(Td 1 1
ZEL E(L([)W([)va(t))mz) —§<Mw,wy>L§HL%/ +§ (Lw, Wy)L;,

1
2 —_
2
as (L(T)w(T), WV(T))H(T) > 0 by (L4). Hence
Lo, wyppe o + AW Wy e o 4 AW Wy e o

1
{Mw, WV>L%,*,L%, + Ey(Lw, W"/)sz (4.2)

1 1
> (Aw, WV>L2V*7L;2/ + {Aw, wy>lelez/ — §<MW’ WV>L$/*7L%/ + Ey(Lw, wy)leJ

o Lt
> jo e (ClwOIT = ClIwDlk) —gL Cae " Iw(6) 1y
yCa [T 2
+ 52 el

(by the coercivity of A(r) and L(¢) and the boundedness of A(7) and M (1)

T T
. 2 7Cy — G =20 _ 2
=C JO e Mw(O)ly t— L€ " w (O Nz

> e Ci|wl7 (E1)
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with the final inequality holding if we choose y such that yCq > C3 +2C,. Note
that we used Young’s inequality in conjunction with the boundedness of M(¢)
above.

Second estimate Now, by the Riesz representation theorem, there exists z € L2,
such that

{Lw, U>L%,*,L$, = (Z, U)LzV forallve L%/ (43)

with ||z||L¥2/ = ||LWHL2V*. We have

T
. 2
UW+AW+AW94M@ZWMV—QL|MMWMMMW@

(by (4.3) and the bounds on 4 and A)

2
> CollzI13; — Collw]

i%/ (using Young’s inequality)

= CollLwllz:, — Crllwllz - (E2)

Combining the estimates Estimate (E2) gives us control of L at the expense of
w, but the latter is controlled by estimate (E1). So let us put v,, := z + uw, where
1> 0 1s a constant to be determined and consider:

(Lw, UW>L3/*,L%, + (4w, vw>L12/*,L§, + <Aw, Uw>Lf/¥,L%,
> Co||LWH124§,¥ - C7||W|’i§, +#€_yTC1||W||i§,
> C6||LWHif/* + C8||WH12‘%/ (if 4 is large enough)
2
> Col[wllyy .y

thanks to (L1). Finally, because

lowllzz < llzllz2 4 wllwsll 2

T 1/2
—t)2 2
e P} )

< | Lowll 2, + plwlzz

< Ciolwllw v, v (by (L1))

— il + |
0

we end up with

<LW71)w>L2WL§/ + (4w, Uw>L2V*,L%/ + <AW,Uw>LfM,L§, = C”WHW(V‘V*) UWHLZV- [
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Lemma 4.4. If given arbitrary v € L3, the equality

<Lw,v>LzV*7L$/ + (Aw,v)LmezV + <Aw,v>LzVMle/ =0 (4.4)
holds for all w e Wo(V, V™), then necessarily v = 0.
Proof. Define the operator A(t) : V(1) — V*(t) by

CA@)o(6),n(0) >y, w0y = <A@, 0O Yy, v
and identify (Av)(f) = A(t)v(t). Take w =#5 € Zy in (4.4) and rearrange to give

(L7, 0)2 = (Loai) 2 = —<Av, s 12— <Avd s
= —<A~v — ALv+ A””7>L2V*,L$, - <AL0777>L§*,L,2,

where we used the symmetric property of L(z). (We could not simply have used
A in place of A4 above because a(t;-,-) may not be symmetric.) This tells us

that 0°(Lv) = Av — ALv+ Ave L}., and so Lve W(V,V*) (we already have
Lv € L} from (L5)). So

<a.(LU))77>Lf/*,L%, ={((Ad-AL+ A)Ua’7>Lf/*,Lf, VneZy.

By the density of Z((0,T); Vo) <= L*(0, T; V), we have the density of 2 = L},
which implies

(O (Lo),wypa 1y = (A= AL+ Ao,wypz 12 YweLj. (4.5)

If in particular w € Wy(V, V), then we can use (4.4) on the right hand side of
(4.5) to give

(L, U>L'2/X,Lf, + <0*(Lv), W>L%/*,L2V
+<{Aw, Loppa 12 =0 Vwe Wo(V, V™). (4.6)

Using (L(6)w(1),v(1)) ., = (L(1)v(2), w(t))Hm, we have

1 (LOw(0),0()) = (3 (L) WD) )y + IO, LOVDD v, 110
+ AW (), L()o(0) ) (1), (s
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to which an application of (L2) shows us that (4.6) is exactly

L %(L(t)w(z),v(t))mz) = (L(T)w(T),0(T) gy = 0

for all w e Wy(V, V*). Thus we have shown that v(7) =
Let 0 >y € R and set w(¢) = v,(t) = e ""v(¢) in (4.5) to obtam

0= 0" (Lv),v,0p2, 13 = (A= AL+ A)o,v,01 12 (4.7)

We showed that Lv € W(V, V*) earlier; by (L6), v e W(V, V™) too, and so we
can apply (L7) to the first term on the right hand side of (4.7):

<5.(LU), U;’>L$/*,Lf, = <LU7 Uy>L§/*,LI2/ + <L, U})>L2 L2
= <LU, Uy>L2 L" + (<LU Uy>L2 LZ + <LU/, U>L2 LZ )
1
+ Ey(Lv, UV)L?: (follows like the equation (4.2))

1
S0,

(since v(T') = 0 and by coercivity of L(0))

1 . 1
< §<LU7 Uy>L%,*7L2V - §<AU}/3LU>L$,*,LZV +

Note that (L8) together with Young’s inequality implies

L), 0>y, vy < ILEOVON o 0O ) < CsloO ol 10
< Cillo(0)lI7) + ello@)]3,

Using this and the previous inequality, (4.7) becomes
0 < (Lv, vz, 12 + AV, Lodpe 2 +y(Lo,vy) 2 — 2{(A+ A)v, VDL, 1

= J e " CL(0)o(2), (D) >y i) +J e 7 A(t; L(tyo(r), v(1))

0 0
+L e (L()0(0), 0(0) 1 _2L e (A0 + AW o0y i

T

T
< (C1 4 7C) j e o0) |3 — 2Ca j (o),

using the bound on A“(t, ,+) and the assumptions (L3), (L4) and (A1) (coercivity).
If we pick y = — &, it follows that v = 0 in L?.. O
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Proof of Theorem 3.6. The inf-sup condition (which is an easy consequence of
Lemma 4.3) in combination with Lemma 4.4 furnishes the requirements of the
Banach—Necas—Babuska theorem (Theorem 4.1) thus yielding the existence and
uniqueness of a solution w € Wy(V, V*) to

Lw+ Aw+Aw=f
w(0) =0

where f € L?. is arbitrary. Hence, we have well-posedness of (Pg) with the
estimate

Illwv, vy < CllF Lz, -

From this well-posedness result, we also obtain unique solvability of (P) by setting
u=w+ p (note that w depends on y), with the solution u € W (V, V*) satisfying

[l v, vy < CUL M2, + ol ,)- O

5. Galerkin approximation

In this section we abstract the pushed-forward Galerkin method used in [11] for
the advection-diffusion equation on an evolving hypersurface.

5.1. Finite-dimensional spaces. Let {7/},  be the basis of ¥ described in
Assumption 3.7. We can turn this into a basis of V' (¢) with the help of the
continuous map ¢,.

Lemma 5.1. With y| := ¢,(x)) for each j € N, the set {x}};. is a countable basis
of V(1). * ‘

The next result is an extremely useful property of the basis functions following
from Remark 2.21 (see [11] for the finite element analogue).

Lemma 5.2 (Transport property of basis functions). The basis {y}}; .y satisfies
the transport property

7 =0.
We now construct the approximation spaces in which the discrete solutions lie.

Definition 5.3 (Approximation spaces). For each N € N and each 7€ [0, 7],
define

Vy(t) =span{y{,...,xx} < V(1).
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Clearly Vy(t) = Vyy1(2) and U} o Vi(t) is dense in V' (¢). Define

N
LIZ/N = {u e L |u(t Z xj where o; : [0, T] — R}.

Similarly, L%,N c L%,N_], and we shall state a density result below which follows
from the density of the embedding UjeN L*(0,T;V;(0)) = L*(0,T; V) and from
the fact that L2(0, T V;(0)) = L*(0, T; V41 (0)).

Lemma 5.4. The space | J;_ Ly, is dense in L.

Remark 5.5. If u e L}, and u(r) = ZN %;(1)y; has coeflicients o; € cl([o, 1)),

then u € C}, with strong material derivative u(t) SV o)), and qe L} .

Our Galerkin ansatz (see below) has coefficients in a slightly less convenient
space.

Galerkin ansatz. Later on, we construct finite-dimensional solutions which have
the form

N
Z”}N F € V(1)
Jj=1

where the u] [0, 7] — R turn out to be absolutely continuous coefficient func-
tions with i € L?(0,T), i.e., uy € Cy.. It holds that uy € L}, and by definition,
Uy € L2 By Remark 3. 10 the materlal derivative of uy is uy € LV with

L?N(l)—Zj L (0]

Definition 5.6 (Projection operators). For each ¢ e [0, 7], define a projection
operator Py : H(t) — Vy(¢) by the formula

(Pyu—u,o5)y,y =0 forallvy e Vy(1).
It follows that (P,{,)2 = Py,
PNl ey < Nl e
and
Piu—u in H(?) (5.1)

for all u € H(r).



An abstract framework for parabolic PDEs on evolving spaces 37

Remark 5.7. We could have relaxed the definition of the spaces Vy () and
instead have asked for a family of finite-dimensional spaces {Vy(0)}, .y such
that for all N € N,
i) ¥n(0) = ¥y
(i) dim(Vy) =N
(iii) {J;_y Vi(0) is dense in ¥
)

(iv) For every v € 1, there exists a sequence {vy}y o With vy € Vy(0) such that
llox = vlly, — 0.

Furthermore, we can define the spaces V(1) := ¢,(Vy(0)). The continuity of the
map ¢, implies that these spaces share the same properties (with respect to V(¢))
as the Vy(0) given above; in particular the density result

\J Vn(r) isdensein V(z)
NeN

is true. Note that the basis of Vy(#) does not necessarily have to be a subset of
the basis of Vy,(¢); this is the situation in finite element analysis, for example,
so this relaxation can be useful for the purposes of numerical analysis. See [11],
[12].

5.2. Galerkin approximation of (P). We now proceed with the regularity result.
With f € L% and ug € Vy, the finite-dimensional approximation is to find a unique
uy € Ly, with iy € L}, satisfying

(t;un (), 1) + a(t;un (1), 1) + At un (1), 7)) = (f(t)’)f_;)ﬂ(z)

UN(O) = UON

(5.2)

forall j e {1,..., N} and for almost every ¢ € [0, T| (cf. the equation (P’)). Here,
upy 18 as in Assumption 3.7.

Theorem 5.8 (Well-posedness of solutions to the finite-dimensional problem).
Under the hypotheses of Theorem 3.13, there exists a unique uy € L%/ with iy € L%/N
satisfying the finite-dimensional problem (5.2). With uy(t) = Zle ulN(0)y!, the co-
efficient functions satisfy

u e AC([0, T])

u e L*(0,T).

forallie{l,... ,N}.
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Proof. Substitute uy (1) = EZZ L ul (1) ! into (5.2) to yield

N
> (0l (1) + u) (1) (a5 () + ¢5(2)) = £(2) (53)
pa
with  1;(0) = (6 xf, %)), ag(t) = a(t; xisxf), Ay(t) = A(6xi, %)) and  fi(1) =
(f(t)7xj’)H(t). Defining the vectors (uN(t)), =u](¢) and (F(t)), = fi(¢), and
matrices (L(t)), = Li(1), (A(t)); = a;i(1), and (A(t)), = Z:(r), we can write (5.3)
in matrix-vector form as ‘ ‘

L(t)a™(t) + (A(t) + A(t))u™(t) = F(¢).

Elementary considerations show that L(t) ™" exists with L(-) ™' e L= (0, T; RV*M),
S0 we can rearrange the system to

aN(t) + L(t) " (A(t) + A()uN(t) = L(t)"F(t). (5.4)

Note that F(:) € L*>(0, T;R"Y) and A(:) + A(-) € L*(0, T; RM). So the coeffi-
cients of (5.4) are all measurable in time, and we can apply standard theory that
guarantees the existence and uniqueness of ujN e AC(]0, T]) with L'th e L*(0,7T),
and thus the existence and uniqueness of uy. The function uy € C‘Il/ is a solu-
tion in the sense that the derivative u#y exists almost everywhere and the ODE
is satisfied almost everywhere. O

The Galerkin approximation is equivalent to the discrete equation

1(t;1un (1), o8 (2)) + a(t;un (1), on (2)) + A(Gun (1), on (1)) = (f(z),uN(z))H(t> (Py)

for all vy € L%/N. We look for a priori estimates on uy and #y in appropriate
norms.

Lemma 5.9 (A priori estimate on uy). Under the hypotheses of Theorem 3.13,
the following estimate holds:

lunllzz < C(lluoll gy + 171l z2,)-

Remark 5.10. This a priori estimate is still valid under the hypotheses of Theorem
3.6 if we pick uy(0) differently. See §5.4 for more.

For convenience, we shall sometimes omit the argument () in expressions like
uy(t). Tt should be clear from the context the instances in which we are referring
to an element of H(¢) as opposed to an element of L?.
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Proof of Lemma 5.9. Picking vy = uy in (Pg) gives
[(t;un,uy) + a(t;un, uy) + At uy, un) = (fun) g

which we integrate in time and apply the transport identity (3.1) to yield

1d 1 r
J —I(tuy,uy) + a(t;uy,uy) + At uy, uy) — =m(tuy, uy) = J (fsun)m-
2 dt 2 0

Using the boundedness (L3) and coercivity (L4) of /(z; -, -) leads to

T T

1
}v(l; uy, MN) — EJ m(t;uy, uN)
0

Cc 2 r
5 lun (D)) + . a(tun,uy) +

0

< [ <raurn o+ Ll O,
to which we use (A1) (the coercivity of a(t;-,-)), the boundedness of A(f;-,-) and
m(t;-,-), and Young’s inequality with ¢ > 0:

C 2 C 2 e € 2
TCHuN(T)HH(T) +5 = ||“N||L2 ‘|' ||fHL2 EH”NHLZV

b 2
+ L ux (0)]3

That is,
2 2 | I 2 2
Cellun (T zzzy + (Cr = &)llunliz < If Nz, + Collunlizy + Collun (O, (5-5)

and if ¢ is picked small enough, we can discard the second term on the left hand
side and then an application of Gronwall’s inequality yields

w1y < CallfNZ2, + lluw (0)17,)-
Using this on (5.5) and utilising (B2) produces the desired estimate. O

Lemma 5.11 (A priori estimate on ity ). Under the hypotheses of Theorem 3.13, the
Jfollowing estimate holds:

llan iz < Cllluolly, +11/122)-
Proof. In (Pyg), pick vy = uy and use (L4) to get

il + as(tuy i) + an(tuy i) + At uy, i) < (f i) - (5-6)
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Then using assumption (A7), (5.6) is

. 1d . 1 .
Ci i 31 +5 pas(tunsun) < (f i) g +5r(6un) = an(t;uy, i)
—/l(l; UN,L.IN).

Integrating this yields

T
. 1
€1 iy + 3 (Tsun (7). (7))

T T T

ay(t; uy, un) — J At un, i)
0

) JOT(f’ UN) g (1) +%J r(t;uy) — J

0 0

1
+ EQS(O; uy (0), un (0))
where we used (A3). With (A6) (positivity of a,(z;-,-)), the bound (AS) on
a,(0;-,-), the bound (A8) on r(z;-), the bound (A4) on a,(t;-,-), the bound on
A(t;-,-) and Young’s inequality with ¢ > 0 and J > 0, we get

(0 + Cse)

1 C
. 2 2 3 2 . 2 2
CllinI = 35171 + (€24 32 ) bl + E52 vl + Cllaw O,

IA

1 &
351135 + Co( €2 32 QO + 1113

2¢
0+ C
+ (+2738) Hl'lNH%Iz_[ + C4||uN(O)||%,0 (by the first a priori bound)

1 C3 C3
- (25 +Cs (cz + 2)) I£1IZ; + Cs (Cz +28) e (0) 7,

CERED)

. 2 2
5 llanlizz + Callun (0)][y,-

If & and 0 are small, we can obtain the estimate by using the assumption (B3).

OJ

5.3. Proof of regularity. By the estimates above, we obtain the convergence

uy —u in L?
i (5.7)
iy —w in L%

for some u € L3, and w e L7, and for a subsequence which we have relabelled.
Now we show that in fact, w = 1.
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Lemma 5.12. In the context of the above convergence results, w = .

Proof. By definition

T

J, <im0 = = | @10y = | 2ux000) (59

0 0

holds for all # € (0, T). Since <"'7>Lf/*~,LZV’ ("ﬁ)Lé’ and <A(~),11>L2WL%/ are all
elements of L., using (5.7), we can pass to the limit in (5.8) to obtain

T T

[ OO0 == | @@.0) 5, | He000.000),
0 0 0
e, w=u. O

Proof of Theorem 3.13. Given v € L}, by density, there is a sequence {vy/} with
vy € Lj, for each M such that

oM(t)yl  and oy — vl — 0.

om (1) = ’j

=

Il
_

J

For j=1,..., N, consider the equation (5.2):

I(t; uN(Z)v)ij) —‘ra(Z; uN(t)v)(jZ) +}~(t; uN(Z)v)ij) = (f(t)v)fjl)H(t)'

If M < N, then vy, € L%,N and we multiply the above by cij (z) and sum up to get

15 (1), 0ar (1) + a5y (0), 010 (1)) + 28w (2), 030 (0) = (), 020(0) )

By the bounds on the respective bilinear forms, we see that <{L(-), vy L2.12
<A(-),UM>L'2/*7L12/, and <A(-)7UM>L3/*_’L2V are elements of L3., so we obtain after

integrating the above equation and taking the limit as N — oo the equation

J l(t;it(t%vM(t))+a(t;u(l),vM(t))+i(f%u(l)avM(t)):J (/@) 0 (1)) g

0 0

Now note that as a function of v, each term in the above equation is an element
of L?. again because of the bounds on /(¢;-,-), a(;-,-) and A(f;-,-). So we send
M — oo, bearing in mind that vy, strongly converges to v in L?:

T

J (t;u(0),v(0)) + a(t;u(r),v(1)) + A(t; u(),v(r)) = J

0 0

(F(0.0(0))
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Hence u € W(V, H) is a solution. Let us now check the initial condition. Let
we Vo, take (e C'[0,T] with {(T) =0, and set v(¢) = {(t)$,w; we see that

2 . . . . o o0 0
ve Ly. Since w € Vo, there exist coefficients o; with w =377, o577, so

u(t) = C(t)iocj){;. (5.9)
=

The sequence {vy}y .y defined by

on(2) = (1) Z %% (5.10)
J=1

is such that vy € Lj, and satisfies [[oy — v]| 2 — 0 by definition of w as an infinite
sum. Similarly, we can show that oy — ¢ in L?.. Using the identity (3.1) with v
chosen as in (5.9), we see that

T

—1(0;u(0), v(0)) +J a(tu(t),v(1)) + A(t;u(t), v(1))

0

T
_ J (£(0),0(0)) i+ 1(E5(0), 5(0) +m(tzu(n),o(). (5.11)

0

Similarly, with vy chosen as in (5.10) in the Galerkin equation (Pg), to which we
again apply (3.1) and integrate to obtain

T

~1(0;un(0), vx(0)) + L a(t;un (1), on (1) + A(t;un (1), o8 (1))

- J (£, 03 (0) iy + 165 (1), (1)) + m(tun (1), o ().

0

Using uy — u, vy — v, oy — 0, and (B1), we may pass to the limit in this equa-
tion and a comparison of the result to (5.11) will tell us that

1(0;u9 — u(0),£(0)w) = 0.

The arbitrariness of w € V) and the density of Vj in Hj yield the result.

The stability estimate follows directly from the estimates in Lemmas 5.9 and
5.11. That the solution is unique follows by a straightforward adaptation of the
standard technique. N
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5.4. Second sketch proof of existence.

Sketch proof of Theorem 3.6. We can take the Galerkin approximation of (3.3)
and instead of picking the initial data of uy to be ugy we pick uy(0) = P?v(uo),
where PY is the projection operator in Definition 5.6. We still obtain the uniform
bound of Lemma 5.9, which implies that

uy —u in L} (5.12)

for some u e L?. An equation similar to (Pg) will hold, in which we pick
vn(1) = yf, where j € {0,..., N}, and multiplying by { € C'[0, T] with {(T) =0,
we get

I(tun, Cg) + a(tyun, $g) + At un, $) = <SS v, v

and then integrating, using the transport formula (3.1), and passing to the limit
with the help of (5.12) and (5.1):

- J 1(tu(0), S () + a(tu(0), L(0)]) + A(6u(0), L(0)z]) — m(tu(t),L(0)x))

0

T
= JO WO, 1w, vy + 10510, £(0)7). (5.13)

Now, we can write an arbitrary element of Vyasv =13 ", ocj)(jo. By definition, the

sequence v, = y i, ocj)(jo converges to v in V. It follows that ¢,v, — ¢,v in V(7).

Letting {(0) = 0, multiplying (5.13) by o; and summing over j gives us

JC@WW@ﬁﬁ)

0

=- L CO<f (@) = A(u(r) = Aloyu(z) + M()u(t), v v, v (5:14)

It is not difficult to see that the dominated convergence theorem applies and we
can pass to the limit in (5.14) to obtain

J ¢ 01 (5 u(t), d0)

0

:—LC@Oﬁ%ﬁwww—A@M0+MMW%%®wmww
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If we further let { € 2(0, T), this is precisely the statement

L 1(t5(1), 4,0) = <1 (1)~ A(0) —~ Auld) + M) 60>, 110

in the weak sense. This is true for every v € Vj, and because f — Au — Aue L.,
by Lemma 3.5, Lit + A + Au = f holds as an equality in L2,, withu € W (V, V*).
O
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