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Abstract. We present an abstract framework for treating the theory of well-posedness of
solutions to abstract parabolic partial di¤erential equations on evolving Hilbert spaces.
This theory is applicable to variational formulations of PDEs on evolving spatial do-
mains including moving hypersurfaces. We formulate an appropriate time derivative
on evolving spaces called the material derivative and define a weak material derivative in
analogy with the usual time derivative in fixed domain problems; our setting is abstract
and not restricted to evolving domains or surfaces. Then we show well-posedness to a
certain class of parabolic PDEs under some assumptions on the parabolic operator and
the data.
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1. Introduction

Partial di¤erential equations on evolving or moving domains are an active area of

research [9], [13], [25], [26], partly because their study leads to interesting analysis

but also because models describing applications such as biological and physical

phenomena can be better formulated on evolving domains (including hypersur-

faces) rather than on stationary domains. For example, see [3], [20] for studies of

pattern formation on evolving surfaces, [21] for the modelling of surfactants in

two-phase flows, [14] for the modelling and numerical simulation of dealloying
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by surface dissolution of a binary alloy (involving a forced mean curavture flow

coupled to a Cahn–Hilliard equation), [15] (and the references therein for applica-

tions) for the analysis of a di¤use interface model for a linear surface PDE, and

[16] for the modelling and simulation of cell motility.

One aspect to consider in the study of such equations is how to formulate the

space of functions that have domains which evolve in time. Taking a disjoint

union of the domains in time to form a non-cylindrical set is standard: see [6],

[33], [26] for example. Of particular interest is [22] where the problem of a semi-

linear heat equation on a time-varying domain is considered; the set-up of the evo-

lution of the domains is comparable to ours and similar function space results are

shown (in the setting of Sobolev spaces). In [5], the authors define Bochner-type

spaces by considering a continuous distribution of domains fGðtÞgt A ½0;T � HRn that

are embedded in a larger domain G. The aim of our work is to accommodate not

only evolving domains but arbitrary evolving spaces. Our method, which follows

that of [31], is somewhat di¤erent to the aforementioned and contains an attach-

ment to standard Bochner spaces in a fundamental way.

A common procedure for showing well-posedness of equations on evolving

domains involves a transformation of the PDE onto a fixed reference domain to

which abstract techniques from functional analysis are applied [24], [27], [2], [31].

For example, in [31], the heat equation

_uuðtÞ � DGðtÞuðtÞ þ uðtÞ‘GðtÞ � wðtÞ ¼ f ðtÞ in H�1
�
GðtÞ

�
ð1:1Þ

on an evolving surface fGðtÞgt A ½0;T � is considered, with w representing the velocity

field. The equation is pulled back onto a reference domain GðsÞ and standard

results on linear parabolic PDEs are applied. A Faedo–Galerkin method (see [4]

for a historical overview of the method) is used in [27] (for a di¤erent PDE), where

the evolving domain is represented by the evolution of a perturbation of the

reference domain and a priori estimates are derived for a linearised problem.

An adapted Galerkin method that uses the pushforward of eigenfunctions of the

Laplace–Beltrami operator on Gð0Þ to form a countable dense subset of H 1
�
GðtÞ

�
is employed in [11] for the advection-di¤usion equation (1.1). We abstract this

approach for one of our results. Well-posedness for the same class of equations

is obtained in [25] by employing a variational formulation on space-time surfaces

and utilising a standard generalisation of the classical Lax–Milgram theorem used

by Lions for parabolic equations. We also employ this Lions–Lax–Milgram

approach in our abstract setting.

As we have seen, there is much literature in which certain equations on

evolving domains are studied, however, to the best of our knowledge, there is no

unifying theory or framework that treats parabolic PDEs on abstract evolving

spaces. The main aim of this paper is to provide this abstract framework. More
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specifically, given a linear time-dependent operator AðtÞ we study well-posedness

of parabolic problems of the form

_uuðtÞ þ AðtÞuðtÞ ¼ f ðtÞ ð1:2Þ

as an equality in V �ðtÞ, with VðtÞHHðtÞ a Hilbert space for each t a ½0;T �. A

main feature of our work is the definition of an appropriate time derivative on

evolving spaces in an abstract setting. When the said spaces are simply Lp spaces

on curved or flat surfaces in Rn that evolve in time, it is commonplace to take the

material derivative

_uuðtÞ ¼ utðtÞ þ ‘uðtÞ � wðtÞ

from continuum mechanics as the natural time derivative. But when we have

arbitrary spaces that may have no relationship whatsoever with Rn it is not at all

clear what the _uuðtÞ in (1.2) should mean. We will deal with this issue and define

a material derivative and a weak material derivative for the abstract case. Our

framework relies on the existence of a family of (pushforward) maps ft for

t a ½0;T � that allow us to map the initial spaces Vð0Þ and Hð0Þ to the spaces

VðtÞ and HðtÞ. A particular realisation of these maps ft in the case of, for exam-

ple, the heat equation (1.1) takes into account the evolution of the surfaces GðtÞ
and hence ft will be a flow map defined by the velocity field w. Although one

motivation behind this work is the analysis of equations on moving domains and

hypersurfaces, the framework can also be useful for problems on fixed domains

where, for example, HðtÞ and VðtÞ may be weighted Lebesgue–Sobolev spaces

with time-dependent weights.

Our belief is that the abstract procedure presented in this work is a clean and

elegant approach to problems on moving domains. In addition, the theory and

concepts presented here can be used as a foundation in extensions such as general-

isations to the Banach space setting and the study of nonlinear problems. We also

anticipate that our framework will benefit those working in numerical analysis

since curved, flat, and evolving surfaces can all be treated with the same abstract

procedure.

In a forthcoming paper [1], we will demonstrate the applicability of this ab-

stract framework to the case of moving or evolving hypersurfaces. Four di¤erent

examples of parabolic equations on moving hypersurfaces will be studied, and the

well-posedness will be proved using the results we shall give here.

1.1. Outline. In §2, we start by setting up the function spaces and definitions

required for the analysis and indeed the statement of equations of the form (1.2).

We state our assumptions on the evolution of the spaces and define abstract strong

and weak material derivatives (in analogy with the usual derivative and weak

derivative utilised in fixed domain problems).
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In §3 we precisely formulate the problem (1.2) that we consider and list the

assumptions we make on A. Statements of the main theorems of existence,

uniqueness, and regularity of solutions are given. The proof of one of these

theorems is presented in §4. There, we make use of the generalised Lax–Milgram

theorem. In §5 we formulate an adapted abstract Galerkin method similar to one

described in [11] and use it to prove a regularity result.

1.2. Notation and conventions. Here and below we fix T a ð0;lÞ. When we

write expressions such as fð�Þuð�Þ, our intention usually (but not always) is that

both of the dots ð�Þ denote the same argument; for example, fð�Þuð�Þ will come

to mean the map t 7! ftuðtÞ. The notation X � will denote the dual space of a

Hilbert space X and X � will be equipped with the usual induced norm k f kX � ¼
supx AXnf0g3 f ; x4X �;X=kxkX . We may reuse the same constants in calculations

multiple times if their exact value is not relevant. Integrals will usually be written

as
Ð
S
f ðsÞ instead of

Ð
S
f ðsÞ ds unless to avoid ambiguity. Finally, we shall make

use of standard notation for Bochner spaces; for example, see [19], §5.9.

2. Function spaces

As we mentioned above, in order to properly understand and express the equation

(1.2), we need to devise appropriate spaces of functions. First, we begin with re-

calling some standard results regarding Sobolev–Bochner spaces from parabolic

theory for the reader’s convenience; a good reference for this is [10], §XVIII.

2.1. Standard Sobolev–Bochner space theory. Let V and H be Hilbert spaces

and let VHHHV� be a Gelfand triple (i.e., all embeddings are continuous and

dense and H is identified with its dual via the Riesz representation theorem).

Recall that u a L2ð0;T ;VÞ is said to have a weak derivative u 0 a L2ð0;T ;V�Þ if
there exists w a L2ð0;T ;V�Þ such that

ðT
0

z 0ðtÞ
�
uðtÞ; v

�
H

¼ �
ðT
0

zðtÞ3wðtÞ; v4V�;V for all z a Dð0;TÞ and v a V; ð2:1Þ

and one writes w ¼ u 0. By Dð0;TÞ we refer to the space of infinitely di¤erentiable

functions with compact support in ð0;TÞ. We shall also make use of Dð½0;T �;VÞ;
this is the space of V-valued infinitely di¤erentiable functions compactly

supported in the closed interval ½0;T �. A helpful characterisation of this

space, from Lemma 25.1 in [32], §IV.25, is that Dð½0;T �;VÞ is the restriction

D
�
ð�l;lÞ;V

�
j½0;T � (the restriction to ½0;T � of infinitely di¤erentiable V-valued

functions with compact support).
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Lemma 2.1. The space

WðV;V�Þ ¼ fu a L2ð0;T ;VÞ j u 0 a L2ð0;T ;V�Þg

with inner product

ðu; vÞWðV;V�Þ ¼
ðT
0

�
uðtÞ; vðtÞ

�
V
þ
ðT
0

�
u 0ðtÞ; v 0ðtÞ

�
V�

is a Hilbert space. Furthermore,

1. The embedding WðV;V�ÞHCð½0;T �;HÞ is continuous.
2. The embedding Dð½0;T �;VÞHWðV;V�Þ is dense.
3. For u; v a WðV;V�Þ, the map t 7!

�
uðtÞ; vðtÞ

�
H

is absolutely continuous on

½0;T � and

d

dt

�
uðtÞ; vðtÞ

�
H

¼ 3u 0ðtÞ; vðtÞ4V�;V þ 3uðtÞ; v 0ðtÞ4V;V �

for almost every t a ½0;T �, hence the integration by parts formula

�
uðTÞ; vðTÞ

�
H

�
�
uð0Þ; vð0Þ

�
H

¼
ðT
0

3u 0ðtÞ; vðtÞ4V�;V þ
ðT
0

3uðtÞ; v 0ðtÞ4V;V�

holds.

Proof. The density result is Theorem 2.1 in [23], §1.2. For the rest, consult Prop-

osition 1.2 and Corollary 1.1 in [30], §III.1. r

We can characterise the weak derivative in terms of vector-valued test func-

tions. This is useful because it more closely resembles the weak material derivative

that we shall define later on.

Theorem 2.2 (Alternative characterisation of the weak derivative). The weak

derivative condition (2.1) is equivalent to

ðT
0

�
uðtÞ;c 0ðtÞ

�
H

¼ �
ðT
0

3u 0ðtÞ;cðtÞ4V �;V for all c a D
�
ð0;TÞ;V

�
:

We finish this subsection with some words on measurability.

Definition 2.3 (Weak measurability). Let X be a Hilbert space. A function

f : ½0;T � ! X is weakly measurable if for every x a X , the map t 7!
�
f ðtÞ; x

�
X
is

measurable on ½0;T �.
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Strong (or Bochner) measurability implies weak measurability. If the Hilbert

space X turns out to be separable, then both notions of measurability are

equivalent thanks to Pettis’ theorem [28], §1.5, Theorem 1.34.

2.2. Evolving spaces. Now we shall define Bochner-type function spaces to treat

evolving spaces. We start with some notation and concepts on the evolution itself.

We informally identify a family of Hilbert spaces fXðtÞgt A ½0;T � with the symbol

X , and given a family of maps ft : X0 ! XðtÞ we define the following notion of

compatibility of the pair
�
X ; ðftÞt A ½0;T �

�
.

Definition 2.4 (Compatibility). We say that a pair
�
X ; ðftÞt A ½0;T �

�
is compatible

if all of the following conditions hold.

For each t a ½0;T �, XðtÞ is a real separable Hilbert space (with X0 :¼ Xð0Þ)
and the map

ft : X0 ! XðtÞ

is a linear homeomorphism such that f0 is the identity. We denote by

f�t : XðtÞ ! X0 the inverse of ft. Furthermore, we will assume that there exists

a constant CX independent of t a ½0;T � such that

kftukXðtÞaCXkukX0
Eu a X0

kf�tukX0
aCXkukXðtÞ Eu a XðtÞ:

Finally, we assume that the map

t 7! kftukXðtÞ Eu a X0

is continuous.

We often write the pair as ðX ; fð�ÞÞ for convenience. We call ft and f�t the

pushforward and pullback maps respectively. In the following we will assume com-

patibility of ðX ; fð�ÞÞ. As a consequence of these assumptions, we have that the

dual operator of ft, denoted f�
t : X �ðtÞ ! X �

0 , is itself a linear homeomorphism,

as is its inverse f�
�t : X

�
0 ! X �ðtÞ, and they satisfy

kf�
t f kX �

0
aCXk f kX �ðtÞ Ef a X �ðtÞ

kf�
�t f kX �ðtÞaCXk f kX �

0
Ef a X �

0 :

By separability of X0, it also follows that the map

t 7! kf�
�t f kX �ðtÞ Ef a X �

0

is measurable.
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Remark 2.5. If we define Uðt; sÞ : XðsÞ ! XðtÞ by Uðt; sÞ :¼ ftf�s for s; t a
½0;T �, it can be readily seen from Uðt; rÞUðr; sÞ ¼ ftf�rfrf�s ¼ ftf�s ¼ Uðt; sÞ
that the family of operators Uðt; sÞ is a two-parameter semigroup.

Remark 2.6. Note that the above implies the equivalence of norms

C�1
X kukX0

a kftukXðtÞaCXkukX0
Eu a X0;

C�1
X k f kX �ðtÞa kf�

t f kX �
0
aCXk f kX �ðtÞ Ef a X �ðtÞ:

We now define appropriate time-dependent function spaces to handle functions

defined on evolving spaces. Our spaces are generalisations of those defined in [31].

Definition 2.7 (The spaces L2
X and L2

X �). Define the spaces

L2
X ¼

n
u : ½0;T � ! 6

t A ½0;T �
XðtÞ � ftg; t 7!

�
uðtÞ; t

�
j f�ð�Þuð�Þ a L2ð0;T ;X0Þ

o

L2
X � ¼

n
f : ½0;T � ! 6

t A ½0;T �
X �ðtÞ � ftg; t 7!

�
f ðtÞ; t

�
j f�

ð�Þ f ð�Þ a L2ð0;T ;X �
0 Þ
o
:

More precisely, these spaces consist of equivalence classes of functions agreeing

almost everywhere in ½0;T �, just like ordinary Bochner spaces.

We first show that these spaces are inner product spaces, and later we prove

that they are in fact Hilbert spaces. For u a L2
X , we will make an abuse of nota-

tion and identify uðtÞ ¼
�
uðtÞ; t

�
with uðtÞ (and likewise for f a L2

X � ).

Theorem 2.8. The spaces L2
X and L2

X � are inner product spaces with the inner

products

ðu; vÞL2
X
¼
ðT
0

�
uðtÞ; vðtÞ

�
XðtÞ dt

ð f ; gÞL2
X �

¼
ðT
0

�
f ðtÞ; gðtÞ

�
X �ðtÞ dt:

ð2:2Þ

Proof. It is easy to verify that the expressions in (2.2) define inner products if

the integrals on the right hand sides are well-defined, which we now check. For

the L2
X case, it su‰ces to show that kuðtÞk2XðtÞ is integrable for every u a L2

X . So

let u a L2
X . Then ~uu :¼ f�ð�Þuð�Þ a L2ð0;T ;X0Þ. Define F : ½0;T � � X0 ! R by

F ðt; xÞ ¼ kftxkXðtÞ. By assumption, t 7! F ðt; xÞ is measurable for all x a X0, and

if xn ! x in X0, then by the reverse triangle inequality,

jF ðt; xnÞ � Fðt; xÞja kftðxn � xÞkXðtÞaCXkxn � xkX0
! 0;
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so x 7! F ðt; xÞ is continuous. Thus F is a Carathéodory function. Due to the

condition jFðt; xÞjaCXkxkX0
, by Remark 3.4.5 of [17], the Nemytskii operator

NF defined by ðNFxÞðtÞ :¼ F
�
t; xðtÞ

�
maps L2ð0;T ;X0Þ ! L2ð0;TÞ, so that

kNF ~uuk2L2ð0;TÞ ¼
ðT
0

kuðtÞk2XðtÞ < l:

This proves the theorem for L2
X . The process is the same for the case of L2

X �

except we replace f�t and ft with the dual maps f�
t and f�

�t. r

Lemma 2.9. Let u a L2
X and f a L2

X � . Then there exist simple measurable func-

tions un a L2ð0;T ;X0Þ and fn a L2ð0;T ;X �
0 Þ such that for almost every t a ½0;T �,

ftunðtÞ ! uðtÞ in XðtÞ
f�
�t fnðtÞ ! f ðtÞ in X �ðtÞ

as n ! l.

This lemma can be proved by using the density of simple measurable functions

in L2ð0;T ;X0Þ. The following result is required to show that the above spaces are

complete.

Lemma 2.10 (Isomorphism with standard Bochner spaces). The maps

u 7! fð�Þuð�Þ from L2ð0;T ;X0Þ to L2
X

f 7! f�
�ð�Þ f ð�Þ from L2ð0;T ;X �

0 Þ to L2
X �

are both isomorphisms between the respective spaces.

For the proof of the L2
X case, one makes an argument similar to that in the

proof of Theorem 2.8 and shows that given an arbitrary u a L2ð0;T ;X0Þ, the
map t 7! kftuðtÞk

2
XðtÞ is indeed measurable (and then it follows that kfð�Þuð�ÞkL2

X

is finite). That the spaces are isomorphic follows from the above (which shows

that there is a map from L2ð0;T ;X0Þ to L2
X ) and the definition of L2

X . The

isomorphism is T : L2ð0;T ;X0Þ ! L2
X where

Tu ¼ fð�Þuð�Þ and T�1v ¼ f�ð�Þvð�Þ:

It is easy to check that T is linear and bijective. The proof for the L2
X � case uses

the same readjustments as before.

The next lemma, which is a consequence of the uniform bounds on ft and f�
t ,

will be in constant use throughout this work.
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Lemma 2.11. The equivalence of norms

1

CX

kukL2
X
a kf�ð�Þuð�ÞkL2ð0;T ;X0ÞaCXkukL2

X
Eu a L2

X

1

CX

k f kL2
X �

a kf�
ð�Þ f ð�ÞkL2ð0;T ;X �

0
Þ aCXk f kL2

X �
Ef a L2

X �

holds.

Corollary 2.12. The spaces L2
X and L2

X � are separable Hilbert spaces.

Proof. Since L2
X and L2ð0;T ;X0Þ are isomorphic and the latter space is complete,

so too is L2
X by the equivalence of norms result in the previous lemma. The

separability also follows from the previous lemma. r

We now investigate the relationship between the dual space of L2
X and the

space L2
X � . We in fact prove that these spaces can be identified; this requires

the following preliminary lemmas.

Lemma 2.13. For f a L2
X � and u a L2

X , the map

t 7! 3 f ðtÞ; uðtÞ4X �ðtÞ;XðtÞ

is integrable on ½0;T �.

Proof. By considering the Carathéodory map F : ½0;T � � X �
0 � X0 ! R defined

by F ðt; x�; xÞ ¼ 3f�
�tx

�; ftx4X �ðtÞ;XðtÞ and using Remark 3.4.2 of [17], given

f a L2
X � and u a L2

X , we have with ~ff :¼ f�
ð�Þ f ð�Þ and ~uu :¼ f�ð�Þuð�Þ that t 7!

3f�
�t

~ff ðtÞ; ft~uuðtÞ4X �ðtÞ;XðtÞ ¼ 3 f ðtÞ; uðtÞ4X �ðtÞ;XðtÞ is measurable, since t 7! ~ff ðtÞ and
t 7! ~uuðtÞ are measurable. That the integral is finite is trivial. r

Lemma 2.14. Suppose that f ðtÞ a X �ðtÞ for almost every t a ½0;T � withðT
0

k f ðtÞk2X �ðtÞ < l;

and that for every u a L2
X , the map t 7! 3 f ðtÞ; uðtÞ4X �ðtÞ;XðtÞ is measurable. Then

f a L2
X � .

Proof. We have 3 f ðtÞ; uðtÞ4X �ðtÞ;XðtÞ ¼ 3f�
t f ðtÞ; f�tuðtÞ4X �

0
;X0

, and the left hand

side is measurable, hence the map

t 7! 3f�
t f ðtÞ; f�tuðtÞ4X �

0
;X0

is measurable on ½0;T � for every u a L2
X .
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Given w a X0, the element uð�Þ :¼ fð�Þw a L2
X , so we have (from Definition 2.3

or Footnote 80 in [29], §1.4, p. 36 for example) that f�
ð�Þ f ð�Þ : ½0;T � ! X �

0

is weakly measurable. Now, as remarked after Definition 2.3, we use Pettis’

theorem to conclude that f�
ð�Þ f ð�Þ is indeed strongly measurable. Hence we

can compute

kf�
ð�Þ f ð�Þk

2
L2ð0;T ;X �

0
Þ ¼

ðT
0

kf�
t f ðtÞk

2
X �
0
aC2

X

ðT
0

k f ðtÞk2X �ðtÞ < l;

so f�
ð�Þ f ð�Þ a L2ð0;T ;X �

0 Þ, giving f a L2
X � . r

Lemma 2.15 (Identification of ðL2
X Þ

� and L2
X �). The spaces ðL2

X Þ
�
and L2

X � are

isometrically isomorphic. Hence, we may identify ðL2
X Þ

�CL2
X � , and the duality

pairing of f a L2
X � with u a L2

X is

3 f ; u4L2
X � ;L

2
X
¼
ðT
0

3 f ðtÞ; uðtÞ4X �ðtÞ;XðtÞ dt:

Proof. Define the linear map J : L2
X � ! ðL2

X Þ
� by

3Jf ; �4ðL2
X
Þ�;L2

X
¼
ðT
0

3 f ðtÞ; ð�ÞðtÞ4X �ðtÞ;XðtÞ dt:

This is well-defined due to Lemma 2.13. We must check that J is an isometric

isomorphism.

Suppose that F a ðL2
X Þ

�. We first need to show that there exists a unique

f a L2
X � such that Jf ¼ F . To do this, we use the Riesz map R : ðL2

X Þ
� ! L2

X

to write

3F ; u4ðL2
X
Þ�;L2

X
¼ ðRF ; uÞL2

X
¼
ðT
0

�
RFðtÞ; uðtÞ

�
XðtÞ; ð2:3Þ

and then with S�1
t : XðtÞ ! X �ðtÞ denoting the inverse Riesz map on XðtÞ, we

get �
RFðtÞ; uðtÞ

�
XðtÞ ¼

�
S�1

t

�
RFðtÞ

�
; uðtÞ

�
X �ðtÞ;XðtÞ

for almost all t a ½0;T �. Now, from (2.3), the right hand side of this equality must

be integrable. Hence

t 7!
�
S�1

t

�
RF ðtÞ

�
; uðtÞ

�
X �ðtÞ;XðtÞ
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is measurable for every u a L2
X . Now, the question is whether S�1

ð�Þ
�
RF ð�Þ

�
a L2

X � .

Clearly S�1
t

�
RF ðtÞ

�
a X �ðtÞ, and by the isometry of the Riesz maps,

ðT
0

��S�1
t

�
RFðtÞ

���2
X �ðtÞ ¼

ðT
0

kRF ðtÞk2XðtÞ ¼ kRFk2L2
X
¼ kFk2ðL2

X
Þ� ð2:4Þ

which is finite. Therefore, we obtain S�1
ð�Þ
�
RFð�Þ

�
a L2

X � by Lemma 2.14. So

J
�
S�1

ð�Þ RFð�Þ
�
¼ F .

For uniqueness, suppose that Jf ¼ 0. Then

3Jf ; u4ðL2
X
Þ�;L2

X
¼
ðT
0

3 f ðtÞ; uðtÞ4X �ðtÞ;XðtÞ

¼
ðT
0

3f�
t f ðtÞ; f�tuðtÞ4X �

0
;X0

¼ 3f�
ð�Þ f ð�Þ; ûu4L2ð0;T ;X �

0
Þ;L2ð0;T ;X0Þ; ðwith ûu ¼ f�ð�Þuð�ÞÞ

which holds for all ûu a L2ð0;T ;X0Þ. This implies that f ¼ 0.

To see that J is an isometry, we define J�1 : ðL2
X Þ

� ! L2
X � by J�1F ¼

S�1
ð�Þ RF ð�Þ and use (2.4) to conclude. r

Although we have no notion of continuity in time for a function u a L2
X , we

can nevertheless make the following definition.

Definition 2.16 (Spaces of pushed-forward continuously di¤erentiable functions).

Define

Ck
X ¼ fx a L2

X j f�ð�Þxð�Þ a Ckð½0;T �;X0Þg for k a f0; 1; . . .g

DX ð0;TÞ ¼
�
h a L2

X j f�ð�Þhð�Þ a D
�
ð0;TÞ;X0

��
DX ½0;T � ¼ fh a L2

X j f�ð�Þhð�Þ a Dð½0;T �;X0Þg:

Since D
�
ð0;TÞ;X0

�
HDð½0;T �;X0Þ, we have

DX ð0;TÞHDX ½0;T �HCk
X :

2.3. Evolving Hilbert space structure. In the preceding, we set up a Hilbert

space L2
X and its dual L2

X � based on an arbitrary family of separable Hilbert spaces

fXðtÞgt A ½0;T � and a suitable family of maps fftgt A ½0;T �. We now lay the ground-

work for posing PDEs on evolving spaces. For each t a ½0;T �, let VðtÞ and

HðtÞ be (real) separable Hilbert spaces with V0 :¼ Vð0Þ and H0 :¼ Hð0Þ such

that V0 HH0 is a continuous and dense embedding. Identifying H0 with its dual

space H �
0 , it follows that H0 HV �

0 is also continuous and dense. In other words,
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V0 HH0 HV �
0 is a Gelfand or evolution triple of Hilbert spaces (i.e., a Hilbert

triple) [28], §7.2.

Assumptions 2.17. We will assume compatibility in the sense of Definition 2.4 for

the family fHðtÞgt A ½0;T � and a family of linear homeomorphisms fftgt A ½0;T �; that
is, we assume ðH; fð�ÞÞ is a compatible pair. In addition, we also assume that

ðV ; fð�ÞjV0
Þ is compatible. We will simply write ft instead of ftjV0

, and we will

denote the dual operator of ft : V0 ! VðtÞ by f�
t : V �ðtÞ ! V �

0 ; we are not inter-

ested in the dual of ft : H0 ! HðtÞ.

It then follows that for each t a ½0;T �, VðtÞHHðtÞ is continuously and densely

embedded. Let us summarise the meaning and consequences of Assumptions 2.17

for the convenience of the reader.

(1) For each t a ½0;T �, there exists a linear homeomorphism

ft : H0 ! HðtÞ

such that f0 is the identity.

(2) The restriction ftjV0
(which we will denote by ft) is also a linear homeomor-

phism from V0 to VðtÞ.
(3) There exist constants CH and CV independent of t a ½0;T � such that

kftukHðtÞaCHkukH0
Eu a H0;

kftukVðtÞaCVkukV0
Eu a V0:

(4) We will only be interested in the dual operator of ft : V0 ! VðtÞ, denoted by

f�
t : V �ðtÞ ! V �

0 , which satisfies

kf�
t f kV �

0
aCVk f kV �ðtÞ Ef a V �ðtÞ:

(5) The inverses of ft and f�
t will be denoted by f�t and f�

�t respectively, and

these are uniformly bounded:

kf�tukH0
a ~CCHkukHðtÞ Eu a HðtÞ;

kf�tukV0
a ~CCVkukVðtÞ Eu a VðtÞ;

kf�
�t f kV �ðtÞa

~CCVk f kV �
0

Ef a V �
0 :

(6) The maps

t 7! kftukHðtÞ Eu a H0

t 7! kftukVðtÞ Eu a V0
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are continuous, and the map

t 7! kf�
�t f kV �ðtÞ Ef a V �

0

is measurable.

Our work in §2.2 tells us that the spaces L2
H , L

2
V , and L2

V � are Hilbert spaces with

the inner product given by the formula (2.2).

Remark 2.18. These homeomorphisms ft are similar to Arbitrary Lagrangian

Eulerian (ALE) maps that are ubiquitous in applications on moving domains.

See [2] for an account of the ALE framework and a comparable set-up.

By the density of L2ð0;T ;V0Þ in L2ð0;T ;H0Þ, we obtain the next result.

Lemma 2.19. The embedding L2
V HL2

H is continuous and dense.

Identifying L2
H with L2

H � in the natural manner, we have that L2
V HL2

H HL2
V �

is a Hilbert triple. We make use of the formula

3 f ; u4L2
V � ;L

2
V
¼ ð f ; uÞL2

H
whenever f a L2

H and u a L2
V :

2.4. Abstract strong and weak material derivatives. Suppose fGðtÞgt A ½0;T � is a
family of (su‰ciently smooth) hypersurfaces evolving with velocity field w, and

that for each t a ½0;T �, uðtÞ is a su‰ciently smooth function defined on GðtÞ.
Then the appropriate time derivative of u takes into account the movement of

the spatial points too, and this time derivative is known as the (strong) material

derivative, which we can write informally as

_uuðt; xÞ ¼ d

dt
u
�
t; xðtÞ

�
¼ utðt; xÞ þ ‘uðt; xÞ � wðt; xÞ: ð2:5Þ

This is well-studied: see [7] or [8], §1.2 for the flat case. Our aim is to generalise

this material derivative to arbitrary functions and arbitrary evolving spaces (and

not just merely evolving surfaces).

Definition 2.20 (Strong material derivative). For x a C1
X define the strong mate-

rial derivative _xx a C0
X by

_xxðtÞ :¼ ft
d

dt

�
f�txðtÞ

�� 	
: ð2:6Þ

This definition is generalised from [31]. So we see that the space C1
X is the

space of functions with a strong material derivative, justifying the notation. In
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the evolving surface case, we show in [1], §4 that this abstract formula agrees with

(2.5). The following remark observes that the pushforward of elements of X0 into

XðtÞ have zero material derivative.

Remark 2.21. Observe that given h a X0,

_ðfthÞðfthÞ ¼ 0

and that for x a C1
X

_xx ¼ 0 () bh a X0 such that xðtÞ ¼ fth:

It may be the case that solutions to the PDE (1.2)

_uuðtÞ þ AðtÞuðtÞ ¼ f ðtÞ

may not exist if we ask for u a C1
V , that is, they may not possess strong material

derivatives. We can relax this and ask for _uu to exist in a weaker sense, just like

one does for the usual time derivative in parabolic problems on fixed domains.

Heuristically, what should such a weak material derivative satisfy? Taking a clue

from Lemma 2.1, we expect

d

dt

�
uðtÞ; vðtÞ

�
HðtÞ ¼ 3 _uuðtÞ; vðtÞ4V �ðtÞ;VðtÞ þ 3 _vvðtÞ; uðtÞ4V �ðtÞ;VðtÞ þ extra term

where we envisage an extra term because the Hilbert space associated with the

inner product depends on t itself, and certainly we should require the integration

by parts formula ðT
0

d

dt

�
uðtÞ; hðtÞ

�
HðtÞ ¼ 0 Eh a DV ð0;TÞ:

The identification of this extra term and a definition of the weak material deriva-

tive is what the rest of this section is devoted to.

Definition 2.22 (Relationship between the inner product on HðtÞ and the space

H0). For all t a ½0;T �, define the bounded bilinear form b̂bðt; �; �Þ : H0 �H0 ! R

by

b̂bðt; u0; v0Þ ¼ ðftu0; ftv0ÞHðtÞ Eu0; v0 a H0:

This gives us a way of pulling back the inner product on HðtÞ onto a bilinear

form on H0 by the formula ðu; vÞHðtÞ ¼ b̂bðt; f�tu; f�tvÞ. It is also clear that

b̂bð0; �; �Þ ¼ ð� ; �ÞH0
by definition. In fact, one can see for each t a ½0;T � that

b̂bðt; �; �Þ is an inner product on H0 (and it is norm-equivalent with the norm on
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H0); thanks to the Riesz representation theorem, there exists for each t a ½0;T � a
bounded linear operator Tt : H0 ! H0 such that

b̂bðt; u0; v0Þ ¼ ðTtu0; v0ÞH0
¼ ðu0;Ttv0ÞH0

: ð2:7Þ

Remark 2.23. It is not di‰cult to see that Tt CfA
t ft, where fA

t : HðtÞ ! H0

denotes the Hilbert-adjoint of ft : H0 ! HðtÞ.

Assumptions 2.24. We shall assume the following for all u0; v0 a H0:

yðt; u0Þ :¼
d

dt
kftu0k

2
HðtÞ exists classically ð2:8Þ

u0 7! yðt; u0Þ is continuous ð2:9Þ
jyðt; u0 þ v0Þ � yðt; u0 � v0ÞjaCku0kH0

kv0kH0
ð2:10Þ

where the constant C is independent of t a ½0;T �.

We are now able to define l̂lðt; �; �Þ : H0 �H0 ! R by

l̂lðt; u0; v0Þ :¼
d

dt
b̂bðt; u0; v0Þ ¼

1

4

�
yðt; u0 þ v0Þ � yðt; u0 � v0Þ

�
: ð2:11Þ

Denoting by L̂LðtÞ the operator

3L̂LðtÞu0; v04 :¼ l̂lðt; u0; v0Þ; ð2:12Þ

it follows by (2.10) that L̂LðtÞ : H0 ! H �
0 .

Definition 2.25 (The bilinear form lðt; �; �Þ). For u; v a HðtÞ, define the bilinear

form lðt; �; �Þ : HðtÞ �HðtÞ ! R by

lðt; u; vÞ ¼ l̂lðt; f�tu; f�tvÞ:

Lemma 2.26. For all u; v a L2
H, the map t 7! l

�
t; uðtÞ; vðtÞ

�
is measurable and

lðt; �; �Þ : HðtÞ �HðtÞ ! R is bounded independently of t:

jlðt; u; vÞjaCkukHðtÞkvkHðtÞ:

Proof. If u; v a L2
H , then by (2.11),

l
�
t; uðtÞ; vðtÞ

�
¼ l̂l
�
t; f�tuðtÞ; f�tvðtÞ

�
¼ 1

4

�
y
�
t; f�tuðtÞ þ f�tvðtÞ

�
� y
�
t; f�tuðtÞ � f�tvðtÞ

��
;
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and it follows that t 7! l
�
t; uðtÞ; vðtÞ

�
is measurable because t 7! y

�
t; f�twðtÞ

�
is

measurable for w a L2
H . This in turn can be seen by noticing that y : ½0;T � �

H0 ! R is a Carathéodory function: the map t 7! yðt; xÞ is measurable and by

assumption (2.9) the map x 7! yðt; xÞ is continuous; thus by Remark 3.4.2 of [17]

the desired measurability is achieved. The bound on lðt; �; �Þ is a consequence of

the assumption (2.10). r

Lemma 2.27. For s1; s2 a C1ð½0;T �;H0Þ, the map t 7! b̂b
�
t; s1ðtÞ; s2ðtÞ

�
is di¤eren-

tiable in the classical sense and

d

dt
b̂b
�
t; s1ðtÞ; s2ðtÞ

�
¼ b̂b
�
t; s 0

1ðtÞ; s2ðtÞ
�
þ b̂b
�
t; s1ðtÞ; s 0

2ðtÞ
�
þ l̂l
�
t; s1ðtÞ; s2ðtÞ

�
:

This follows simply by using the definition of the derivative as a limit.

Definition 2.28 (Weak material derivative). For u a L2
V , if there exists a function

g a L2
V � such that

ðT
0

3gðtÞ; hðtÞ4V �ðtÞ;VðtÞ ¼ �
ðT
0

�
uðtÞ; _hhðtÞ

�
HðtÞ �

ðT
0

l
�
t; uðtÞ; hðtÞ

�

holds for all h a DV ð0;TÞ, then we say that g is the weak material derivative of u,

and we write

_uu ¼ g or q�u ¼ g:

This concept of a weak material derivative is indeed well-defined: if it exists, it

is unique, and every strong material derivative is also a weak material derivative.

It is easy to prove these facts: for uniqueness, assume there exist two material de-

rivatives for the same function and then linearity and the density of D
�
ð0;TÞ;V0

�
(the space of test functions) in L2ð0;T ;V0Þ gives the result. To show that a strong

material derivative is also a weak material derivative, one can use Lemma 2.27

and the relations between b̂bðt; �; �Þ, l̂lðt; �; �Þ, and lðt; �; �Þ.

2.5. Solution space. We can now consider the spaces that solutions of our PDEs

will lie in.

Definition 2.29 (The space W ðV ;V �Þ). Define the solution space

W ðV ;V �Þ ¼ fu a L2
V j _uu a L2

V �g
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and endow it with the inner product

ðu; vÞWðV ;V �Þ ¼
ðT
0

�
uðtÞ; vðtÞ

�
VðtÞ þ

ðT
0

�
_uuðtÞ; _vvðtÞ

�
V �ðtÞ:

In order to prove existence theorems, we need some properties of the space

W ðV ;V �Þ which turns out to be deeply linked with the following standard

Sobolev–Bochner space.

Definition 2.30 (The space WðV0;V
�
0 Þ). Define

WðV0;V
�
0 Þ ¼ fv a L2ð0;T ;V0Þ j v 0 a L2ð0;T ;V �

0 Þg

to be the space WðV;V�Þ introduced in §2.1 with V ¼ V0 and H ¼ H0.

It is convenient to introduce the following notion of evolving space equivalence.

Assumption and Definition 2.31. We assume that there is an evolving space

equivalence between W ðV ;V �Þ and WðV0;V
�
0 Þ. By this we mean that

v a WðV ;V �Þ if and only if f�ð�Þvð�Þ a WðV0;V
�
0 Þ;

and the equivalence of norms

C1kf�ð�Þvð�ÞkWðV0;V
�
0
Þa kvkW ðV ;V �ÞaC2kf�ð�Þvð�ÞkWðV0;V

�
0
Þ

holds.

Corollary 2.32. The space W ðV ;V �Þ is a Hilbert space.

We now show that Assumption 2.31 holds under certain conditions. See also

the remark following the proof of the theorem.

Theorem 2.33. Suppose that

u a WðV0;V
�
0 Þ if and only if Tð�Þuð�Þ a WðV0;V

�
0 Þ ðT1Þ

and that there exist operators

ŜSðtÞ : V �
0 ! V �

0 and D̂DðtÞ : V0 ! V �
0

such that for u a WðV0;V
�
0 Þ,�

TtuðtÞ
� 0 ¼ ŜSðtÞu 0ðtÞ þ L̂LðtÞuðtÞ þ D̂DðtÞuðtÞ ðT2Þ
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and

ŜSð�Þu 0ð�Þ a L2ð0;T ;V �
0 Þ and D̂Dð�Þuð�Þ a L2ð0;T ;V �

0 Þ:

Suppose also that ŜSðtÞ and D̂DðtÞ are bounded independently of t a ½0;T �, and that

ŜSðtÞ has an inverse ŜSðtÞ�1 : V �
0 ! V �

0 which also is bounded independently of

t a ½0;T �. Then W ðV ;V �Þ is equivalent to WðV0;V
�
0 Þ in the sense of Definition

2.31.

Proof. First, suppose u a WðV0;V
�
0 Þ. Clearly fð�Þuð�Þ a L2

V and we need only to

show that q�
�
fð�Þuð�Þ

�
a L2

V � exists. Let h a DV ð0;TÞ and consider

ðT
0

�
ftuðtÞ; _hhðtÞ

�
HðtÞ ¼

ðT
0

�
TtuðtÞ;

�
f�thðtÞ

� 0�
H0

ðrewriting the integrand using b̂bðt; �; �Þ and ð2:7ÞÞ

¼ �
ðT
0

3ŜSðtÞu 0ðtÞ þ L̂LðtÞuðtÞ þ D̂DðtÞuðtÞ; f�thðtÞ4V �
0
;V0

ðby ðT1Þ and ðT2ÞÞ

¼ �
ðT
0

�
f�
�t

�
ŜSðtÞu 0ðtÞ þ D̂DðtÞuðtÞ

�
; hðtÞ

�
V �ðtÞ;VðtÞ

�
ðT
0

l
�
t; ftuðtÞ; hðtÞ

�
: ð2:13Þ

This shows that q�
�
fð�Þuð�Þ

�
exists.

Conversely, let u a W ðV ;V �Þ. We need to show the existence of
�
f�ð�Þuð�Þ

� 0
in

L2ð0;T ;V �
0 Þ. We start with the weak material derivative condition:ðT
0

3 _uuðtÞ; hðtÞ4V �ðtÞ;VðtÞ ¼ �
ðT
0

�
uðtÞ; _hhðtÞ

�
HðtÞ �

ðT
0

l
�
t; uðtÞ; hðtÞ

�
for test functions h a DV ð0;TÞ. Pulling back leads toðT

0

3f�
t _uuðtÞ; f�thðtÞ4V �

0
;V0

¼ �
ðT
0

b̂b
�
t; f�tuðtÞ;

�
f�thðtÞ

� 0�

þ
ðT
0

l̂l
�
t; f�tuðtÞ; f�thðtÞ

�
:

Using (2.7) and (2.12) and rearranging:

ðT
0

�
Ttf�tuðtÞ;

�
f�thðtÞ

� 0�
H0

¼ �
ðT
0

3f�
t _uuðtÞ þ L̂LðtÞf�tuðtÞ; f�thðtÞ4V �

0
;V0

: ð2:14Þ
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It follows that Tð�Þf�ð�Þuð�Þ has a weak derivative, and hence by (T1) as does

f�ð�Þuð�Þ. This proves the bijection between WðV0;V
�
0 Þ and WðV ;V �Þ.

For the equivalence of norms, let u a W ðV ;V �Þ. From (2.13), we see that

_uuðtÞ ¼ f�
�t

�
ŜSðtÞ

�
f�tuðtÞ

� 0 þ D̂DðtÞf�tuðtÞ
�

which we can bound thanks to the boundedness of ŜSðtÞ and D̂DðtÞ:

k _uuðtÞkVðtÞaC
����f�tuðtÞ

� 0��
V �

0

þ kf�tuðtÞkV0

�
:

So we have achieved kukWðV ;V �ÞaC2kf�ð�Þuð�ÞkWðV0;V
�
0
Þ. For the reverse in-

equality, we use (T2) and (2.14) to find�
f�tuðtÞ

� 0 ¼ ŜSðtÞ�1�
f�
t _uuðtÞ � D̂DðtÞf�tuðtÞ

�
:

From this we obtain a bound of the form���f�tuðtÞ
� 0��

V �
0

aC
�
k _uuðtÞkV �ðtÞ þ kuðtÞkVðtÞ

�
which implies the result. r

Remark 2.34. If we knew that Ttv0 a V0 for every v0 a V0, then the assumption

(T2) would follow from (T1) with 3ŜSðtÞ f ; v4V �
0
;V0

:¼ 3 f ;Ttv4V �
0
;V0

and D̂DðtÞC 0.

We are able to specify initial conditions of solutions to PDEs via the follow-

ing lemma, which is an easy consequence of the continuity of the embedding

WðV0;V
�
0 ÞHC0ð½0;T �;H0Þ.

Lemma 2.35. The embedding W ðV ;V �ÞHC0
H holds, hence for any u a WðV ;V �Þ

the evaluation t 7! uðtÞ is well-defined for every t a ½0;T �. Furthermore, we have the

inequality

max
t A ½0;T �

kuðtÞkHðtÞaCkukWðV ;V �Þ Eu a W ðV ;V �Þ:

This lemma allows us to define the subspace

W0ðV ;V �Þ ¼ fu a W ðV ;V �Þ j uð0Þ ¼ 0g:

Definition 2.36 (The space W ðV ;HÞ). Define the space

W ðV ;HÞ ¼ fu a L2
V j _uu a L2

Hg:

In order to obtain a regularity result, we need to make the following natural

assumption, which will also tell us that W ðV ;HÞ is a Hilbert space.
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Assumption 2.37. We assume that there is an evolving space equivalence between

W ðV ;HÞ and WðV0;H0Þ.

Let us note that this assumption follows if, for example, the assumption (T1)

is changed in the natural way and the maps ŜSðtÞ and D̂DðtÞ of Theorem 2.33

satisfy ŜSðtÞ : H0 ! H0 and D̂DðtÞ : V0 ! H0, with both maps and ŜSðtÞ�1 being

bounded independently of t a ½0;T �, and if ŜSð�Þu 0ð�Þ, D̂Dð�Þuð�Þ a L2ð0;T ;H0Þ for

u a WðV0;H0Þ.

Some density results With the help of the density result in Lemma 2.1, it is easy

to prove the following lemma.

Lemma 2.38. The space DV ½0;T � in dense in W ðV ;V �Þ.

The next few results are necessary to prove Lemma 3.5, which turns out to be

vital for one of our existence proofs.

Lemma 2.39. For every h a DV ð0;TÞ, there exists a sequence fhngHDV ð0;TÞ
of the form

hnðtÞ ¼
Xn
j¼1

zjðtÞftwj where zj a Dð0;TÞ and wj a V0;

such that hn ! h in W ðV ;V �Þ.

Proof. It su‰ces to show that for every c a D
�
ð0;TÞ;V0

�
, there exists a sequence

fcngHD
�
ð0;TÞ;V0

�
of the form

cnðtÞ ¼
Xn
j¼1

zjðtÞwj where zj a Dð0;TÞ and wj a V0;

such that cn ! c in WðV0;V
�
0 Þ.

Let wj be an orthonormal basis for V0. Given c a D
�
ð0;TÞ;V0

�
, define

cnðtÞ ¼
Xn
j¼1

�
cðtÞ;wj

�
V0
wj;

i.e., zjðtÞ ¼
�
cðtÞ;wj

�
V0
. It is clear that zj vanishes at the boundary (since c does),

and z
ðmÞ
j ðtÞ ¼

�
cðmÞðtÞ;wj

�
V0

also implies that zj a Dð0;TÞ. What remains to be

checked is that cn ! c in WðV0;V
�
0 Þ. We have the pointwise convergence
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cnðtÞ ! cðtÞ in V0 because wj is a basis, and there is also the uniform bound

kcnðtÞkV0
a kcðtÞkV0

. So by the dominated convergence theorem,

cn ! c in L2ð0;T ;V0Þ:

The same reasoning applied to c 0
n allows us to conclude. r

Transport theorem Like in part (3) of Lemma 2.1, we want to di¤erentiate the

inner product on HðtÞ. Writing Lemma 2.27 in di¤erent notation, we obtain for

u; v a C1
H the transport theorem for C1

H functions:

d

dt

�
uðtÞ; vðtÞ

�
HðtÞ ¼

�
_uuðtÞ; vðtÞ

�
HðtÞ þ

�
uðtÞ; _vvðtÞ

�
HðtÞ þ l

�
t; uðtÞ; vðtÞ

�
:

We can obtain a formula for general functions u; v a W ðV ;V �Þ by means of a

density argument.

Theorem 2.40 (Transport theorem). For all u; v a W ðV ;V �Þ, the map

t 7!
�
uðtÞ; vðtÞ

�
HðtÞ

is absolutely continuous on ½0;T � and

d

dt

�
uðtÞ; vðtÞ

�
HðtÞ ¼ 3 _uuðtÞ; vðtÞ4V �ðtÞ;VðtÞ þ 3 _vvðtÞ; uðtÞ4V �ðtÞ;VðtÞ þ l

�
t; uðtÞ; vðtÞ

�

for almost every t a ½0;T �.

Proof. Given u a W ðV ;V �Þ, by Lemma 2.38, there exists a sequence um a
DV ½0;T � converging to u in WðV ;V �Þ. By the transport theorem for C1

H func-

tions, the um satisfy

d

dt
kumðtÞk2HðtÞ ¼ 2

�
_uumðtÞ; umðtÞ

�
HðtÞ þ l

�
t; umðtÞ; umðtÞ

�
:

This statement written in terms of weak derivatives is that for any z a Dð0;TÞ, it
holds that

�
ðT
0

kumðtÞk2HðtÞz
0ðtÞ

¼
ðT
0

�
23 _uumðtÞ; umðtÞ4V �ðtÞ;VðtÞ þ l

�
t; umðtÞ; umðtÞ

��
zðtÞ: ð2:15Þ
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Now we must pass to the limit in this equation. For the left hand side, because

um ! u in L2
H , we have by the reverse triangle inequality

ðT
0

j kumðtÞkHðtÞ � kuðtÞkHðtÞj
2
a

ðT
0

kumðtÞ � uðtÞk2HðtÞ ! 0;

i.e., kumð�ÞkHð�Þ ! kuð�ÞkHð�Þ in L2ð0;TÞ, which implies that

kumð�Þk2Hð�Þ ! kuð�Þk2Hð�Þ in L1ð0;TÞ:

Clearly, the functional F : L1ð0;TÞ ! R, defined

FðyÞ ¼
ðT
0

yðtÞz 0ðtÞ;

is an element of L1ð0;TÞ� because z 0ðtÞ is bounded. Therefore, we have conver-

gence of the left hand side of (2.15):

�
ðT
0

kumðtÞk2HðtÞz
0ðtÞ ! �

ðT
0

kuðtÞk2HðtÞz
0ðtÞ:

To deal with the terms on the right hand side of (2.15), we require the estimates

j3 _uumðtÞ; umðtÞ4V �ðtÞ;VðtÞ � 3 _uuðtÞ; uðtÞ4V �ðtÞ;VðtÞj

a k _uumðtÞkV �ðtÞkumðtÞ � uðtÞkVðtÞ þ k _uumðtÞ � _uuðtÞkV �ðtÞkuðtÞkVðtÞ

and 

l�t; umðtÞ; umðtÞ�� l
�
t; uðtÞ; uðtÞ

�


aC1

�
kumðtÞkHðtÞkumðtÞ � uðtÞkHðtÞ þ kumðtÞ � uðtÞkHðtÞkuðtÞkHðtÞ

�
:

With these, it is easy to show that




 ðT
0

�
23 _uumðtÞ; umðtÞ4V �ðtÞ;VðtÞ þ l

�
t; umðtÞ; umðtÞ

��
zðtÞ

�
ðT
0

�
23 _uuðtÞ; uðtÞ4V �ðtÞ;VðtÞ þ l

�
t; uðtÞ; uðtÞ

��
zðtÞ



! 0:

In other words, as m ! l, the equation (2.15) becomes

�
ðT
0

kuðtÞk2HðtÞz
0ðtÞ ¼

ðT
0

�
23 _uuðtÞ; uðtÞ4V �ðtÞ;VðtÞ þ l

�
t; uðtÞ; uðtÞ

��
zðtÞ; ð2:16Þ

22 A. Alphonse, C. M. Elliott, and B. Stinner



which is precisely the statement

d

dt
kuðtÞk2HðtÞ ¼ 23 _uuðtÞ; uðtÞ4V �ðtÞ;VðtÞ þ l

�
t; uðtÞ; uðtÞ

�
in the sense of distributions. From this, it follows that

d

dt

�
uðtÞ; vðtÞ

�
HðtÞ ¼ 3 _uuðtÞ; vðtÞ4V �ðtÞ;VðtÞ

þ 3 _vvðtÞ; uðtÞ4V �ðtÞ;VðtÞ þ l
�
t; uðtÞ; vðtÞ

�
ð2:17Þ

holds in the weak sense. So we have shown the transport theorem in the

weak sense. However, because the right hand side of the above is in L1ð0;TÞ
(since the right hand side of (2.16) holds for every z a Dð0;TÞ) and because�
uðtÞ; vðtÞ

�
HðtÞ a L1ð0;TÞ, it follows that

�
uðtÞ; vðtÞ

�
HðtÞ is a.e. equal to an abso-

lutely continuous function, with (classical) derivative a.e., and therefore (2.17)

exists in the classical sense. r

We shall use the following corollary frequently without referencing in future

sections.

Corollary 2.41 (Integration by parts). For all u; v a W ðV ;V �Þ, the integration by

parts formula�
uðTÞ; vðTÞ

�
HðTÞ �

�
uð0Þ; vð0Þ

�
H0

¼
ðT
0

3 _uuðtÞ; vðtÞ4V �ðtÞ;VðtÞ þ 3 _vvðtÞ; uðtÞ4V �ðtÞ;VðtÞ þ l
�
t; uðtÞ; vðtÞ

�
dt

holds.

3. Formulation of the problem and statement of results

3.1. Precise formulation of the PDE. Having built up the essential function

spaces and results, we are now in a position to formulate PDEs on evolving

spaces. We continue with the framework and notation of §2; we reiterate in

particular Assumptions 2.17, 2.24, and 2.31 (which relate respectively to the

compatibility of the evolving Hilbert spaces, a well-defined material derivative,

and the evolving space equivalence). We are interested in the existence and

uniqueness of solutions u a W ðV ;V �Þ to equations of the form

L _uuþ AuþLu ¼ f in L2
V �

uð0Þ ¼ u0 in H0;
ðPÞ
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where we identify

ðL _uuÞðtÞ ¼ LðtÞ _uuðtÞ
ðAuÞðtÞ ¼ AðtÞuðtÞ
ðLuÞðtÞ ¼ LðtÞuðtÞ;

with LðtÞ and AðtÞ being linear operators that satisfy the minimal assumptions

given below, and

LðtÞ : HðtÞ ! H �ðtÞ is defined by 3LðtÞv;w4H �ðtÞ;HðtÞ :¼ lðt; v;wÞ;

with lðt; �; �Þ the bilinear form in the definition of the weak material derivative

(Definition 2.25). Note that LðtÞ is symmetric in the sense that 3LðtÞv;w4H �ðtÞ;HðtÞ
¼ 3LðtÞw; v4H �ðtÞ;HðtÞ.

Remark 3.1. We showed in Lemma 2.35 that specifying the initial condition as

in (P) is well-defined.

Assumptions 3.2 (Assumptions on LðtÞ). In the following, all constants Ci are

positive and independent of t a ½0;T �.
We shall assume that for all g a L2

V � ,

Lg a L2
V � and C1kgkL2

V �
a kLgkL2

V �
aC2kgkL2

V �
: ðL1Þ

We suppose that the restriction LjL2
H

satisfies LjL2
H
: L2

H ! L2
H , we identify

ðLjL2
H
hÞðtÞ ¼: LHðtÞhðtÞ, and we suppose that

LHðtÞ : HðtÞ ! HðtÞ is symmetric; and

LHðtÞ : VðtÞ ! VðtÞ:

We simply write L and LðtÞ for the above restrictions. Furthermore, for almost

every t a ½0;T �, we assume

3LðtÞg; v4V �ðtÞ;VðtÞ ¼ 3g;LðtÞv4V �ðtÞ;VðtÞ Eg a V �ðtÞ; Ev a VðtÞ ðL2Þ

kLðtÞhkHðtÞaC3khkHðtÞ Eh a HðtÞ ðL3Þ�
LðtÞh; h

�
HðtÞbC4khk2HðtÞ Eh a HðtÞ ðL4Þ

Lv a L2
V Ev a L2

V ðL5Þ
v a WðV ;V �Þ () Lv a W ðV ;V �Þ; ðL6Þ
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and we suppose the existence of a (linear symmetric) map _LL : L2
V ! L2

V � (and we

identify ð _LLvÞðtÞ ¼: _LLðtÞvðtÞ) satisfying

q�ðLvÞ ¼ _LLvþ L _vv a L2
V � Ev a W ðV ;V �Þ ðL7Þ

k _LLðtÞvkV �ðtÞaC5kvkHðtÞ Ev a VðtÞ: ðL8Þ

Assumptions 3.3 (Assumptions on AðtÞ). Suppose that the map

t 7! 3AðtÞvðtÞ;wðtÞ4V �ðtÞ;VðtÞ Ev;w a L2
V

is measurable, and that there exist positive constants C1, C2 and C3 independent

of t such that the following holds for almost every t a ½0;T �:

3AðtÞv; v4V �ðtÞ;VðtÞbC1kvk2VðtÞ � C2kvk2HðtÞ Ev a VðtÞ ðA1Þ

j3AðtÞv;w4V �ðtÞ;VðtÞjaC3kvkVðtÞkwkVðtÞ Ev;w a VðtÞ: ðA2Þ

Observe that we have generalised the PDE (1.2) by introducing the operator L.

The standard equation

_uuþ AuþLu ¼ f

is a special case of (P) when L ¼ Id. Our demands in Assumptions 3.2 are (of

course) automatically met in this case. Also, there is no loss of generality by

considering the equation (P) instead of the more natural equation L _uuþ Au ¼ f .

We include the operator L purely because it is convenient in applications (such

as those in [1]).

Implicit in (P) is the claim that Au and Lu are elements of L2
V � . The fact

Au a L2
V � follows by the weak (and thus strong) measurability of t 7! f�

t AðtÞuðtÞ
and the boundedness of AðtÞ, and similarly one obtains the result Lu a L2

V � . Let

us mention an important consequence of the transport theorem (Theorem 2.40)

and assumptions (L2), (L6) and (L7).

Lemma 3.4. For every v;w a W ðV ;V �Þ, the map t 7!
�
LðtÞvðtÞ;wðtÞ

�
HðtÞ is abso-

lutely continuous with derivative

d

dt

�
LðtÞvðtÞ;wðtÞ

�
HðtÞ ¼ 3LðtÞ _vvðtÞ;wðtÞ4V �ðtÞ;VðtÞ þ 3LðtÞ _wwðtÞ; vðtÞ4V �ðtÞ;VðtÞ

þ 3MðtÞvðtÞ;wðtÞ4V �ðtÞ;VðtÞ ð3:1Þ

almost everywhere, where MðtÞ : VðtÞ ! V �ðtÞ is the operator

3MðtÞv;w4V �ðtÞ;VðtÞ :¼ 3 _LLðtÞv;w4V �ðtÞ;VðtÞ þ 3LðtÞLðtÞv;w4V �ðtÞ;VðtÞ
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which generates the bounded bilinear form mðt; �; �Þ : VðtÞ � VðtÞ ! R:

mðt; v;wÞ :¼ 3MðtÞv;w4V �ðtÞ;VðtÞ:

To conclude this preliminary subsection we state and prove the following

lemma which is used in §5.4.

Lemma 3.5. Let u a L2
V and g a L2

V � . Then

_uu a L2
V � exists and L _uu ¼ g

if and only if

d

dt

�
LðtÞuðtÞ; ftv0

�
HðtÞ ¼ 3gðtÞ þMðtÞuðtÞ; ftv04V �ðtÞ;VðtÞ for all v0 a V0 ð3:2Þ

in the weak sense.

Proof of Lemma 3.5. If u a W ðV ;V �Þ and L _uu ¼ g, then (3.2) follows easily by uti-

lising q�ðftv0Þ ¼ 0 and the previous lemma. For the converse, first, we see from

Lemma 2.39 that given any h a DV ð0;TÞ, there exist functions hn a DV ð0;TÞ of
the form

hnðtÞ ¼
X
j

zjðtÞftwj

with zj a Dð0;TÞ and wj a V0 such that kh� hnkWðV ;V �Þ ! 0. Now, (3.2) states

that ðT
0

�
LðtÞuðtÞ; z 0ðtÞftv0

�
HðtÞ ¼ �

ðT
0

3gðtÞ þMðtÞuðtÞ; zðtÞftv04V �ðtÞ;VðtÞ

holds for all z a Dð0;TÞ and all v0 a V0. In particular, we may pick z ¼ zj and

v0 ¼ wj and sum up over j to obtain

ðT
0

�
LðtÞuðtÞ; _hhnðtÞ

�
HðtÞ ¼ �

ðT
0

3gðtÞ þMðtÞuðtÞ; hnðtÞ4V �ðtÞ;VðtÞ:

Passing to the limit and using the convergence above, we find

ðT
0

�
LðtÞuðtÞ; _hhðtÞ

�
HðtÞ ¼ �

ðT
0

3gðtÞ þMðtÞuðtÞ; hðtÞ4V �ðtÞ;VðtÞ

¼ �
ðT
0

3gðtÞ þ _LLðtÞuðtÞ þLðtÞLðtÞuðtÞ; hðtÞ4V �ðtÞ;VðtÞ

26 A. Alphonse, C. M. Elliott, and B. Stinner



for arbitrary h a DV ð0;TÞ, i.e., we have the existence of q�ðLuÞ ¼ gþ _LLu a L2
V �

which, thanks to assumptions (L6) and (L7) implies that L _uu ¼ g. r

3.2. Well-posedness and regularity. We begin with a well-posedness theorem

which is proved in §4. A sketch of a second proof will be presented in §5.4 where

we utilise a Galerkin method.

Theorem 3.6 (Well-posedness of (P)). Under the assumptions in Assumptions 3.2

and 3.3, for f a L2
V � and u0 a H0, there is a unique solution u a W ðV ;V �Þ satisfy-

ing (P) such that

kukWðV ;V �ÞaCðku0kH0
þ k f kL2

V �
Þ:

Now, suppose we now know that f a L2
H and u0 a V0. Can we expect the

same regularity on the solution u as holds in the case of stationary spaces? It turns

out that we can obtain _uu a L2
H under some additional assumptions, including some

on the di¤erentiability of AðtÞ.
Before we list these assumptions, let us just note that if we define bilinear forms

lðt; �; �Þ : V �ðtÞ � VðtÞ ! R and aðt; �; �Þ : VðtÞ � VðtÞ ! R to satisfy

lðt; g;wÞ :¼ 3LðtÞg;w4V �ðtÞ;VðtÞ

aðt; v;wÞ :¼ 3AðtÞv;w4V �ðtÞ;VðtÞ;

then the problem (P) is in fact equivalent to

l
�
t; _uuðtÞ; v

�
þ a
�
t; uðtÞ; v

�
þ l
�
t; uðtÞ; v

�
¼ 3 f ðtÞ; v4V �ðtÞ;VðtÞ

uð0Þ ¼ u0
ð3:3Þ

for all v a VðtÞ and for almost every t a ½0;T � (the null set is independent of v).

Similarly, if f a L2
H and _uu a L2

H , then (P) is equivalent to

l
�
t; _uuðtÞ; v

�
þ a
�
t; uðtÞ; v

�
þ l
�
t; uðtÞ; v

�
¼
�
f ðtÞ; v

�
HðtÞ

uð0Þ ¼ u0
ðPOÞ

for all v a VðtÞ and for almost every t a ½0;T �, where now lðt; �; �Þ : HðtÞ �HðtÞ !
R is lðt; �; �Þ ¼

�
LðtÞ�; �

�
HðtÞ. It is this form of the problem that turns out to be

more convenient to work with to show regularity. To see the equivalence, for

one side, we may take the duality pairing of (P) with v ¼ xfð�Þv0 where v0 a V0

and x a Dð0;TÞ; then an argument involving the separability of V0 gives (PO).
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The converse follows by the density of simple measurable functions in L2
V (see

Lemma 2.9).

Since V0 is separable, we may find a basis fw0j g, by which we mean that for all

N a N, the set fw0j g
N
j¼1 is linearly independent and finite linear combinations of w0j

are dense in V0.

Assumption 3.7. We assume that there exists a basis fw0j gj AN of V0 and a se-

quence fu0NgN AN with u0N a spanfw01 ; . . . ; w0Ng for each N, such that

u0N ! u0 in V0 ðB1Þ
ku0NkH0

aC1ku0kH0
ðB2Þ

ku0NkV0
aC2ku0kV0

ðB3Þ

where C1 and C2 do not depend on N or u0.

Remark 3.8. Such a basis as required by the last assumption always exists if

V0 HH0 is compact thanks to Hilbert–Schmidt theory. In fact, in such a case

we can find a basis w0j which is orthonormal in H0 and orthogonal in V0.

Let ACð½0;T �Þ be the space of absolutely continuous functions from ½0;T �
into R.

Definition 3.9. We define the space

~CC1
V ¼

n
u j uðtÞ ¼

Xm
j¼1

ajðtÞw t
j ; m a N; aj a ACð½0;T �Þ and a 0

j a L2ð0;TÞ
o
:

Note that ~CC1
V HC0

V and ~CC1
V HW ðV ;VÞ.

Remark 3.10. Note that if u a ~CC1
V with uðtÞ ¼

Pm
j¼1 ajðtÞw t

j as in the definition

then _uuðtÞ ¼
Pm

j¼1 a
0
j ðtÞw t

j . We skip the proof which is straightforward: just use

the definition of the weak material derivative and perform some manipulations.

We could not have calculated the strong material derivative of u via the formula

(2.6) because the pullback

f�ð�Þuð�Þ ¼
Xn
j¼1

ajð�Þw0j

is not necessarily in C1ð½0;T �;V0Þ since the aj are not necessarily C1.
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Assumptions 3.11 (Further assumptions on aðt; �; �Þ). Suppose that aðt; �; �Þ has

the form

aðt; �; �Þ ¼ asðt; �; �Þ þ anðt; �; �Þ

where

asðt; �; �Þ : VðtÞ � VðtÞ ! R

anðt; �; �Þ : VðtÞ �HðtÞ ! R

are bilinear forms (we allow the possibility anC 0) such that the map

t 7! as
�
t; yðtÞ; yðtÞ

�
is absolutely continuous on ½0;T � for all y a ~CC1

V : ðA3Þ

Suppose also that there exist positive constants C1, C2 and C3 independent of t

such that for almost every t a ½0;T �,

janðt; v;wÞjaC1kvkVðtÞkwkHðtÞ Ev a VðtÞ;w a HðtÞ ðA4Þ

jasðt; v;wÞjaC2kvkVðtÞkwkVðtÞ Ev;w a VðtÞ ðA5Þ

asðt; v; vÞb 0 Ev a VðtÞ ðA6Þ
d

dt
as
�
t; yðtÞ; yðtÞ

�
¼ 2as

�
t; yðtÞ; _yyðtÞ

�
þ r
�
t; yðtÞ

�
Ey a ~CC1

V ; ðA7Þ

where the d
dt
here is the classical derivative, and rðt; �Þ : VðtÞ ! R satisfies

jrðt; vÞjaC3kvk2VðtÞ Ev a VðtÞ: ðA8Þ

Remark 3.12. Note that we require only one part of the bilinear form aðt; �; �Þ
to be di¤erentiable; however, any potentially non-di¤erentiable terms require the

stronger boundedness condition (A4).

As alluded to above, it is permissible to take anC 0 so that aC as. In this case,

we are in the same situation as in Assumptions 3.3 except with the addition of

(A3), (A6), (A7), and (A8).

We have the following regularity result proved in §5.

Theorem 3.13 (Regularity of the solution to (P)). Under the assumptions in

Assumptions 3.2, 3.3, 3.7, and 3.11, if f a L2
H and u0 a V0, the unique solution u

of (P) from Theorem 3.6 satisfies the regularity u a W ðV ;HÞ and the estimate

kukWðV ;HÞaCðku0kV0
þ k f kL2

H
Þ:
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4. Proof of well-posedness

We use a generalisation of the Lax–Milgram theorem sometimes called the

Banach–Nečas–Babuška theorem [18], §2.1.3 to establish existence.

Theorem 4.1 (Banach–Nečas–Babuška). Let X be a Banach space and let Y be a

reflexive Banach space. Suppose dð� ; �Þ : X � Y ! R is a bounded bilinear form

and f a Y �. Then there is a unique solution x a X to the problem

dðx; yÞ ¼ 3 f ; y4Y �;Y for all y a Y

satisfying

kxkX aCk f kY � ð4:1Þ

if and only if

(1) There exists a > 0 such that

inf
x AX

sup
y AY

dðx; yÞ
kxkXkykY

b a: ð‘‘inf-sup condition’’Þ

(2) For arbitrary y a Y, if

dðx; yÞ ¼ 0 holds for all x a X ;

then y ¼ 0.

Moreover, the estimate (4.1) holds with the constant C ¼ 1
a
.

Recall the equation (P):

L _uuþ AuþLu ¼ f in L2
V �

uð0Þ ¼ u0

where f a L2
V � and u0 a H0. By considering a suitable initial value problem on a

fixed domain we know that there is a function y a WðV0;V
�
0 Þ with yð0Þ ¼ u0 and

kykWðV0;V
�
0
ÞaCku0kH0

:

Then the function ~yyð�Þ ¼ fð�Þyð�Þ is such that ~yy a WðV ;V �Þ with ~yyð0Þ ¼ u0.

So then we can transform (P) into a PDE with zero initial condition if we set

w ¼ u� ~yy:

L _wwþ AwþLw ¼ ~ff

wð0Þ ¼ 0
ðP0Þ

30 A. Alphonse, C. M. Elliott, and B. Stinner



where ~ff :¼ f � Lq�~yy� A~yy�L~yy a L2
V � . It is clear that well-posedness of (P0)

translates into well-posedness of (P). The idea is to apply Theorem 4.1 to the

problem (P0) with X ¼ W0ðV ;V �Þ, Y ¼ L2
V , and the bilinear form

dðu; vÞ ¼ 3L _uu; v4L2
V � ;L

2
V
þ 3Au; v4L2

V � ;L
2
V
þ 3Lu; v4L2

V � ;L
2
V
:

Remark 4.2. The space W0ðV ;V �Þ is indeed a Hilbert space because by Lemma

2.35, it is a closed linear subspace of WðV ;V �Þ.

The arguments in the next two lemmas follow §4 in [25]. See also [18], §6.1.2.

Lemma 4.3. For all w a W0ðV ;V �Þ, there exists a function vw a L2
V such that

3L _ww; vw4L2
V � ;L

2
V
þ 3Aw; vw4L2

V � ;L
2
V
þ 3Lw; vw4L2

V � ;L
2
V
bCkwkWðV ;V �ÞkvwkL2

V
:

Proof. This proof requires two estimates.

First estimate Let w a W0ðV ;V �Þ and set wgðtÞ ¼ e�gtwðtÞ. Note that

wg a W0ðV ;V �Þ too with _wwgðtÞ ¼ e�gt _wwðtÞ � gwgðtÞ, so

3LðtÞ _wwgðtÞ;wðtÞ4V �ðtÞ;VðtÞ ¼ 3LðtÞ _wwðtÞ � gLðtÞwðtÞ;wgðtÞ4V �ðtÞ;VðtÞ:

Rearranging, integrating, and then using (3.1):

3L _ww;wg4L2
V � ;L

2
V
¼ 1

2
ð3L _ww;wg4L2

V � ;L
2
V
þ 3L _wwg;w4L2

V � ;L
2
V
Þ þ 1

2
gðLw;wgÞL2

H

¼ 1

2

ðT
0

d

dt

�
LðtÞwðtÞ;wgðtÞ

�
HðtÞ �

1

2
3Mw;wg4L2

V � ;L
2
V
þ 1

2
gðLw;wgÞL2

H

b� 1

2
3Mw;wg4L2

V � ;L
2
V
þ 1

2
gðLw;wgÞL2

H
ð4:2Þ

as
�
LðTÞwðTÞ;wgðTÞ

�
HðTÞb 0 by (L4). Hence

3L _ww;wg4L2
V � ;L

2
V
þ 3Aw;wg4L2

V � ;L
2
V
þ 3Lw;wg4L2

V � ;L
2
V

b3Aw;wg4L2
V � ;L

2
V
þ 3Lw;wg4L2

V � ;L
2
V
� 1

2
3Mw;wg4L2

V � ;L
2
V
þ 1

2
gðLw;wgÞL2

H

b

ðT
0

e�gt
�
C1kwðtÞk2VðtÞ � C2kwðtÞk2HðtÞ

�
� 1

2

ðT
0

C3e
�gtkwðtÞk2HðtÞ

þ gC4

2

ðT
0

e�gtkwðtÞk2HðtÞ

ðby the coercivity of AðtÞ and LðtÞ and the boundedness of LðtÞ and MðtÞ

¼ C1

ðT
0

e�gtkwðtÞk2VðtÞ þ
gC4 � C3 � 2C2

2

ðT
0

e�gtkwðtÞk2HðtÞ

b e�gTC1kwk2L2
V

ðE1Þ
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with the final inequality holding if we choose g such that gC4 > C3 þ 2C2. Note

that we used Young’s inequality in conjunction with the boundedness of MðtÞ
above.

Second estimate Now, by the Riesz representation theorem, there exists z a L2
V

such that

3L _ww; v4L2
V � ;L

2
V
¼ ðz; vÞL2

V
for all v a L2

V ð4:3Þ

with kzkL2
V
¼ kL _wwkL2

V �
. We have

3L _wwþ AwþLw; z4L2
V � ;L

2
V
b kzk2L2

V
� C5

ðT
0

kwðtÞkVðtÞkzðtÞkVðtÞ

ðby ð4:3Þ and the bounds on A and LÞ

bC6kzk2L2
V
� C7kwk2L2

V
ðusing Young’s inequalityÞ

¼ C6kL _wwk2L2
V �

� C7kwk2L2
V
: ðE2Þ

Combining the estimates Estimate (E2) gives us control of L _ww at the expense of

w, but the latter is controlled by estimate (E1). So let us put vw :¼ zþ mwg where

m > 0 is a constant to be determined and consider:

3L _ww; vw4L2
V � ;L

2
V
þ 3Aw; vw4L2

V � ;L
2
V
þ 3Lw; vw4L2

V � ;L
2
V

bC6kL _wwk2L2
V �

� C7kwk2L2
V
þ me�gTC1kwk2L2

V

bC6kL _wwk2L2
V �

þ C8kwk2L2
V

ðif m is large enoughÞ

bC9kwk2W ðV ;V �Þ

thanks to (L1). Finally, because

kvwkL2
V
a kzkL2

V
þ mkwgkL2

V

¼ kL _wwkL2
V �

þ m
� ðT

0

je�gtj2kwðtÞk2VðtÞ

�1=2
a kL _wwkL2

V �
þ mkwkL2

V

aC10kwkWðV ;V �Þ ðby ðL1ÞÞ

we end up with

3L _ww; vw4L2
V � ;L

2
V
þ 3Aw; vw4L2

V � ;L
2
V
þ 3Lw; vw4L2

V � ;L
2
V
bCkwkWðV ;V �ÞkvwkL2

V
: r
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Lemma 4.4. If given arbitrary v a L2
V , the equality

3L _ww; v4L2
V � ;L

2
V
þ 3Aw; v4L2

V � ;L
2
V
þ 3Lw; v4L2

V � ;L
2
V
¼ 0 ð4:4Þ

holds for all w a W0ðV ;V �Þ, then necessarily v ¼ 0.

Proof. Define the operator ~AAðtÞ : VðtÞ ! V �ðtÞ by

3 ~AAðtÞvðtÞ; hðtÞ4V �ðtÞ;VðtÞ :¼ 3AðtÞhðtÞ; vðtÞ4V �ðtÞ;VðtÞ

and identify ð ~AAvÞðtÞ ¼ ~AAðtÞvðtÞ. Take w ¼ h a DV in (4.4) and rearrange to give

ðL _hh; vÞL2
H
¼ ðLv; _hhÞL2

H
¼ �3 ~AAv; h4L2

V � ;L
2
V
� 3Lv; h4L2

V � ;L
2
V

¼ �3 ~AAv�LLvþLv; h4L2
V � ;L

2
V
� 3LLv; h4L2

V � ;L
2
V

where we used the symmetric property of LðtÞ. (We could not simply have used

A in place of ~AA above because aðt; �; �Þ may not be symmetric.) This tells us

that q�ðLvÞ ¼ ~AAv�LLvþLv a L2
V � , and so Lv a WðV ;V �Þ (we already have

Lv a L2
V from (L5)). So

3q�ðLvÞ; h4L2
V � ;L

2
V
¼ 3ð ~AA�LLþLÞv; h4L2

V � ;L
2
V

Eh a DV :

By the density of D
�
ð0;TÞ;V0

�
HL2ð0;T ;V0Þ, we have the density of DV HL2

V ,

which implies

3q�ðLvÞ;w4L2
V � ;L

2
V
¼ 3ð ~AA�LLþLÞv;w4L2

V � ;L
2
V

Ew a L2
V : ð4:5Þ

If in particular w a W0ðV ;V �Þ, then we can use (4.4) on the right hand side of

(4.5) to give

3L _ww; v4L2
V � ;L

2
V
þ 3q�ðLvÞ;w4L2

V � ;L
2
V

þ 3Lw;Lv4L2
V � ;L

2
V
¼ 0 Ew a W0ðV ;V �Þ: ð4:6Þ

Using
�
LðtÞwðtÞ; vðtÞ

�
HðtÞ ¼

�
LðtÞvðtÞ;wðtÞ

�
HðtÞ, we have

d

dt

�
LðtÞwðtÞ; vðtÞ

�
HðtÞ ¼

�
q�
�
LðtÞvðtÞ

�
;wðtÞ

�
V �ðtÞ;VðtÞ þ 3 _wwðtÞ;LðtÞvðtÞ4V �ðtÞ;VðtÞ

þ 3LðtÞwðtÞ;LðtÞvðtÞ4H �ðtÞ;HðtÞ
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to which an application of (L2) shows us that (4.6) is exactly

ðT
0

d

dt

�
LðtÞwðtÞ; vðtÞ

�
HðtÞ ¼

�
LðTÞwðTÞ; vðTÞ

�
HðTÞ ¼ 0

for all w a W0ðV ;V �Þ. Thus we have shown that vðTÞ ¼ 0.

Let 0 > g a R and set wðtÞ ¼ vgðtÞ ¼ e�gtvðtÞ in (4.5) to obtain

0 ¼ 3q�ðLvÞ; vg4L2
V � ;L

2
V
� 3ð ~AA�LLþLÞv; vg4L2

V � ;L
2
V
: ð4:7Þ

We showed that Lv a W ðV ;V �Þ earlier; by (L6), v a WðV ;V �Þ too, and so we

can apply (L7) to the first term on the right hand side of (4.7):

3q�ðLvÞ; vg4L2
V � ;L

2
V
¼ 3 _LLv; vg4L2

V � ;L
2
V
þ 3L _vv; vg4L2

V � ;L
2
V

¼ 3 _LLv; vg4L2
V � ;L

2
V
þ 1

2
ð3L _vv; vg4L2

V � ;L
2
V
þ 3L _vvg; v4L2

V � ;L
2
V
Þ

þ 1

2
gðLv; vgÞL2

H
ðfollows like the equation ð4:2ÞÞ

a
1

2
3 _LLv; vg4L2

V � ;L
2
V
� 1

2
3Lvg;Lv4L2

V � ;L
2
V
þ 1

2
gðLv; vgÞL2

H
:

ðsince vðTÞ ¼ 0 and by coercivity of Lð0ÞÞ

Note that (L8) together with Young’s inequality implies

3 _LLðtÞvðtÞ; vðtÞ4V �ðtÞ;VðtÞa k _LLðtÞvðtÞkV �ðtÞkvðtÞkVðtÞaC5kvðtÞkHðtÞkvðtÞkVðtÞ

aCekvðtÞk2HðtÞ þ ekvðtÞk2VðtÞ:

Using this and the previous inequality, (4.7) becomes

0a3 _LLv; vg4L2
V � ;L

2
V
þ 3Lvg;Lv4L2

V � ;L
2
V
þ gðLv; vgÞL2

H
� 23ð ~AAþLÞv; vg4L2

V � ;L
2
V

¼
ðT
0

e�gt3 _LLðtÞvðtÞ; vðtÞ4V �ðtÞ;VðtÞ þ
ðT
0

e�gtl
�
t;LðtÞvðtÞ; vðtÞ

�

þ
ðT
0

ge�gt
�
LðtÞvðtÞ; vðtÞ

�
HðtÞ � 2

ðT
0

e�gt
��

~AAðtÞ þLðtÞ
�
vðtÞ; vðtÞ

�
V �ðtÞ;VðtÞ

a ðC1 þ gC2Þ
ðT
0

e�gtkvðtÞk2HðtÞ � 2Ca

ðT
0

e�gtkvðtÞk2VðtÞ

using the bound on lðt; �; �Þ and the assumptions (L3), (L4) and (A1) (coercivity).

If we pick g ¼ � C1

C2
, it follows that v ¼ 0 in L2

V . r
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Proof of Theorem 3.6. The inf-sup condition (which is an easy consequence of

Lemma 4.3) in combination with Lemma 4.4 furnishes the requirements of the

Banach–Nečas–Babuška theorem (Theorem 4.1) thus yielding the existence and

uniqueness of a solution w a W0ðV ;V �Þ to

L _wwþ AwþLw ¼ ~ff

wð0Þ ¼ 0

where ~ff a L2
V � is arbitrary. Hence, we have well-posedness of (P0) with the

estimate

kwkWðV ;V �ÞaCk ~ff kL2
V �
:

From this well-posedness result, we also obtain unique solvability of (P) by setting

u ¼ wþ ~yy (note that w depends on ~yy), with the solution u a W ðV ;V �Þ satisfying

kukWðV ;V �ÞaCðk f kL2
V �

þ ku0kH0
Þ: r

5. Galerkin approximation

In this section we abstract the pushed-forward Galerkin method used in [11] for

the advection-di¤usion equation on an evolving hypersurface.

5.1. Finite-dimensional spaces. Let fw0j gj AN be the basis of V0 described in

Assumption 3.7. We can turn this into a basis of VðtÞ with the help of the

continuous map ft.

Lemma 5.1. With w t
j :¼ ftðw0j Þ for each j a N, the set fw t

j gj AN is a countable basis

of VðtÞ.

The next result is an extremely useful property of the basis functions following

from Remark 2.21 (see [11] for the finite element analogue).

Lemma 5.2 (Transport property of basis functions). The basis fw t
j gj AN satisfies

the transport property

_ww t
j ¼ 0:

We now construct the approximation spaces in which the discrete solutions lie.

Definition 5.3 (Approximation spaces). For each N a N and each t a ½0;T �,
define

VNðtÞ ¼ spanfw t
1; . . . ; w

t
NgHVðtÞ:
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Clearly VNðtÞHVNþ1ðtÞ and 6
j ANVjðtÞ is dense in VðtÞ. Define

L2
VN

¼
n
u a L2

V j uðtÞ ¼
XN
j¼1

ajðtÞw t
j where aj : ½0;T � ! R

o
:

Similarly, L2
VN

HL2
VNþ1

, and we shall state a density result below which follows

from the density of the embedding 6
j AN L2

�
0;T ;Vjð0Þ

�
HL2ð0;T ;V0Þ and from

the fact that L2
�
0;T ;Vjð0Þ

�
HL2

�
0;T ;Vjþ1ð0Þ

�
.

Lemma 5.4. The space 6
j AN L2

Vj
is dense in L2

V .

Remark 5.5. If u a L2
VN

and uðtÞ ¼
PN

j¼1 ajðtÞw t
j has coe‰cients aj a C1ð½0;T �Þ,

then u a C1
V with strong material derivative _uuðtÞ ¼

PN
j¼1 a

0
j ðtÞw t

j , and _uu a L2
VN

.

Our Galerkin ansatz (see below) has coe‰cients in a slightly less convenient

space.

Galerkin ansatz. Later on, we construct finite-dimensional solutions which have

the form

uNðtÞ ¼
XN
j¼1

uN
j ðtÞw t

j a VNðtÞ

where the uN
j : ½0;T � ! R turn out to be absolutely continuous coe‰cient func-

tions with _uuN
j a L2ð0;TÞ, i.e., uN a ~CC1

V . It holds that uN a L2
V and by definition,

uN a L2
VN

. By Remark 3.10, the material derivative of uN is _uuN a L2
VN

with

_uuNðtÞ ¼
PN

j¼1 _uuN
j ðtÞw t

j .

Definition 5.6 (Projection operators). For each t a ½0;T �, define a projection

operator Pt
N : HðtÞ ! VNðtÞ by the formula

ðPt
Nu� u; vNÞHðtÞ ¼ 0 for all vN a VNðtÞ:

It follows that ðPt
NÞ

2 ¼ Pt
N ,

kPt
NukHðtÞa kukHðtÞ

and

Pt
Nu ! u in HðtÞ ð5:1Þ

for all u a HðtÞ.
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Remark 5.7. We could have relaxed the definition of the spaces VNðtÞ and

instead have asked for a family of finite-dimensional spaces fVNð0ÞgN AN such

that for all N a N,

(i) VNð0ÞHV0

(ii) dimðVNÞ ¼ N

(iii) 6
i ANVið0Þ is dense in V0

(iv) For every v a V0, there exists a sequence fvNgN AN with vN a VNð0Þ such that

kvN � vkV0
! 0.

Furthermore, we can define the spaces VNðtÞ :¼ ft
�
VNð0Þ

�
. The continuity of the

map ft implies that these spaces share the same properties (with respect to VðtÞ)
as the VNð0Þ given above; in particular the density result

6
N AN

VNðtÞ is dense in VðtÞ

is true. Note that the basis of VNðtÞ does not necessarily have to be a subset of

the basis of VNþ1ðtÞ; this is the situation in finite element analysis, for example,

so this relaxation can be useful for the purposes of numerical analysis. See [11],

[12].

5.2. Galerkin approximation of (P). We now proceed with the regularity result.

With f a L2
H and u0 a V0, the finite-dimensional approximation is to find a unique

uN a L2
VN

with _uuN a L2
VN

satisfying

l
�
t; _uuNðtÞ; w t

j

�
þ a
�
t; uNðtÞ; w t

j

�
þ l
�
t; uNðtÞ; w t

j

�
¼
�
f ðtÞ; w t

j

�
HðtÞ

uNð0Þ ¼ u0N
ð5:2Þ

for all j a f1; . . . ;Ng and for almost every t a ½0;T � (cf. the equation (PO)). Here,

u0N is as in Assumption 3.7.

Theorem 5.8 (Well-posedness of solutions to the finite-dimensional problem).

Under the hypotheses of Theorem 3.13, there exists a unique uN a L2
VN

with _uuN a L2
VN

satisfying the finite-dimensional problem (5.2). With uNðtÞ ¼
PN

i¼1 u
N
i ðtÞw t

i , the co-

e‰cient functions satisfy

uN
i a ACð½0;T �Þ

_uuN
i a L2ð0;TÞ:

for all i a f1; . . . ;Ng.
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Proof. Substitute uNðtÞ ¼
PN

i¼1 u
N
i ðtÞw t

i into (5.2) to yield

XN
i¼1

_uuN
i ðtÞlijðtÞ þ uN

i ðtÞ
�
aijðtÞ þ cijðtÞ

�
¼ fjðtÞ ð5:3Þ

with lijðtÞ ¼ lðt; w t
i ; w

t
j Þ, aijðtÞ ¼ aðt; w t

i ; w
t
j Þ, lijðtÞ ¼ lðt; w t

i ; w
t
j Þ and fjðtÞ ¼�

f ðtÞ; w t
j

�
HðtÞ. Defining the vectors

�
uNðtÞ

�
i
¼ uN

i ðtÞ and
�
FðtÞ

�
i
¼ fiðtÞ, and

matrices
�
LðtÞ

�
ij
¼ ljiðtÞ,

�
AðtÞ

�
ij
¼ ajiðtÞ, and

�
LðtÞ

�
ij
¼ ljiðtÞ, we can write (5.3)

in matrix-vector form as

LðtÞ _uuNðtÞ þ
�
AðtÞ þ LðtÞ

�
uNðtÞ ¼ FðtÞ:

Elementary considerations show that LðtÞ�1 exists with Lð�Þ�1 a Llð0;T ;RN�NÞ,
so we can rearrange the system to

_uuNðtÞ þ LðtÞ�1�AðtÞ þ LðtÞ
�
uNðtÞ ¼ LðtÞ�1FðtÞ: ð5:4Þ

Note that Fð�Þ a L2ð0;T ;RNÞ and Að�Þ þ Lð�Þ a Llð0;T ;RN�NÞ. So the coe‰-

cients of (5.4) are all measurable in time, and we can apply standard theory that

guarantees the existence and uniqueness of uN
j a ACð½0;T �Þ with _uuN

j a L2ð0;TÞ,
and thus the existence and uniqueness of uN . The function uN a ~CC1

V is a solu-

tion in the sense that the derivative _uuN exists almost everywhere and the ODE

is satisfied almost everywhere. r

The Galerkin approximation is equivalent to the discrete equation

l
�
t; _uuNðtÞ; vNðtÞ

�
þ a
�
t; uNðtÞ; vNðtÞ

�
þ l
�
t; uNðtÞ; vNðtÞ

�
¼
�
f ðtÞ; vNðtÞ

�
HðtÞ ðPdOÞ

for all vN a L2
VN

. We look for a priori estimates on uN and _uuN in appropriate

norms.

Lemma 5.9 (A priori estimate on uN ). Under the hypotheses of Theorem 3.13,

the following estimate holds:

kuNkL2
V
aCðku0kH0

þ k f kL2
V �
Þ:

Remark 5.10. This a priori estimate is still valid under the hypotheses of Theorem

3.6 if we pick uNð0Þ di¤erently. See §5.4 for more.

For convenience, we shall sometimes omit the argument ðtÞ in expressions like

uNðtÞ. It should be clear from the context the instances in which we are referring

to an element of HðtÞ as opposed to an element of L2
H .
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Proof of Lemma 5.9. Picking vN ¼ uN in ðPdOÞ gives

lðt; _uuN ; uNÞ þ aðt; uN ; uNÞ þ lðt; uN ; uNÞ ¼ ð f ; uNÞHðtÞ;

which we integrate in time and apply the transport identity (3.1) to yield

ðT
0

1

2

d

dt
lðt; uN ; uNÞ þ aðt; uN ; uNÞ þ lðt; uN ; uNÞ �

1

2
mðt; uN ; uNÞ ¼

ðT
0

ð f ; uNÞHðtÞ:

Using the boundedness (L3) and coercivity (L4) of lðt; �; �Þ leads to

Cc

2
kuNðTÞk2HðTÞ þ

ðT
0

aðt; uN ; uNÞ þ
ðT
0

lðt; uN ; uNÞ �
1

2

ðT
0

mðt; uN ; uNÞ

a

ðT
0

3 f ; uN4V �ðtÞ;VðtÞ þ
Cb

2
kuNð0Þk2H0

;

to which we use (A1) (the coercivity of aðt; �; �Þ), the boundedness of lðt; �; �Þ and
mðt; �; �Þ, and Young’s inequality with e > 0:

Cc

2
kuNðTÞk2HðTÞ þ

C1

2
kuNk2L2

V
a

C2

2
kuNk2L2

H
þ 1

2e
k f k2L2

V �
þ e

2
kuNk2L2

V

þ Cb

2
kuNð0Þk2H0

:

That is,

CckuNðTÞk2HðTÞ þ ðC1 � eÞkuNk2L2
V
a

1

e
k f k2L2

V �
þ C2kuNk2L2

H
þ CbkuNð0Þk2H0

; ð5:5Þ

and if e is picked small enough, we can discard the second term on the left hand

side and then an application of Gronwall’s inequality yields

kuNðtÞk2HðtÞaC4ðk f k2L2
V �

þ kuNð0Þk2H0
Þ:

Using this on (5.5) and utilising (B2) produces the desired estimate. r

Lemma 5.11 (A priori estimate on _uuN ). Under the hypotheses of Theorem 3.13, the

following estimate holds:

k _uuNkL2
H
aCðku0kV0

þ k f kL2
H
Þ:

Proof. In ðPdOÞ, pick vN ¼ _uuN and use (L4) to get

C1k _uuNk2HðtÞ þ asðt; uN ; _uuNÞ þ anðt; uN ; _uuNÞ þ lðt; uN ; _uuNÞa ð f ; _uuNÞHðtÞ: ð5:6Þ
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Then using assumption (A7), (5.6) is

C1k _uuNk2HðtÞ þ
1

2

d

dt
asðt; uN ; uNÞa ð f ; _uuNÞHðtÞ þ

1

2
rðt; uNÞ � anðt; uN ; _uuNÞ

� lðt; uN ; _uuNÞ:

Integrating this yields

C1

ðT
0

k _uuNk2HðtÞ þ
1

2
as
�
T ; uNðTÞ; uNðTÞ

�

a

ðT
0

ð f ; _uuNÞHðtÞ þ
1

2

ðT
0

rðt; uNÞ �
ðT
0

anðt; uN ; _uuNÞ �
ðT
0

lðt; uN ; _uuNÞ

þ 1

2
as
�
0; uNð0Þ; uNð0Þ

�
:

where we used (A3). With (A6) (positivity of asðt; �; �Þ), the bound (A5) on

asð0; �; �Þ, the bound (A8) on rðt; �Þ, the bound (A4) on anðt; �; �Þ, the bound on

lðt; �; �Þ and Young’s inequality with e > 0 and d > 0, we get

C1k _uuNk2L2
H
a

1

2d
k f k2L2

H
þ C2 þ

C3

2e

� 	
kuNk2L2

V
þ ðdþ C3eÞ

2
k _uuNk2L2

H
þ C4kuNð0Þk2V0

a
1

2d
k f k2L2

H
þ C5 C2 þ

C3

2e

� 	
ðkuNð0Þk2H0

þ k f k2L2
H
Þ

þ ðdþ C3eÞ
2

k _uuNk2L2
H
þ C4kuNð0Þk2V0

ðby the first a priori boundÞ

¼ 1

2d
þ C5 C2 þ

C3

2e

� 	 !
k f k2L2

H
þ C5 C2 þ

C3

2e

� 	
kuNð0Þk2H0

þ ðdþ C3eÞ
2

k _uuNk2L2
H
þ C4kuNð0Þk2V0

:

If e and d are small, we can obtain the estimate by using the assumption (B3).

r

5.3. Proof of regularity. By the estimates above, we obtain the convergence

uN * u in L2
V

_uuN * w in L2
H

ð5:7Þ

for some u a L2
V and w a L2

H and for a subsequence which we have relabelled.

Now we show that in fact, w ¼ _uu.
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Lemma 5.12. In the context of the above convergence results, w ¼ _uu.

Proof. By definition

ðT
0

3 _uuNðtÞ; hðtÞ4V �ðtÞ;VðtÞ ¼ �
ðT
0

�
uNðtÞ; _hhðtÞ

�
HðtÞ �

ðT
0

l
�
t; uNðtÞ; hðtÞ

�
ð5:8Þ

holds for all h a DV ð0;TÞ. Since 3�; h4L2
V � ;L

2
V
, ð�; _hhÞL2

H
, and 3Lð�Þ; h4L2

V � ;L
2
V
are all

elements of L2
V � , using (5.7), we can pass to the limit in (5.8) to obtain

ðT
0

3wðtÞ; hðtÞ4V �ðtÞ;VðtÞ ¼ �
ðT
0

�
uðtÞ; _hhðtÞ

�
HðtÞ �

ðT
0

l
�
t; uðtÞ; hðtÞ

�
;

i.e., w ¼ _uu. r

Proof of Theorem 3.13. Given v a L2
V , by density, there is a sequence fvMg with

vM a L2
VM

for each M such that

vMðtÞ ¼
XM
j¼1

aM
j ðtÞw t

j and kvM � vkL2
V
! 0:

For j ¼ 1; . . . ;N, consider the equation (5.2):

l
�
t; _uuNðtÞ; w t

j

�
þ a
�
t; uNðtÞ; w t

j

�
þ l
�
t; uNðtÞ; w t

j

�
¼
�
f ðtÞ; w t

j

�
HðtÞ:

If MaN, then vM a L2
VN

and we multiply the above by aM
j ðtÞ and sum up to get

l
�
t; _uuNðtÞ; vMðtÞ

�
þ a
�
t; uNðtÞ; vMðtÞ

�
þ l
�
t; uNðtÞ; vMðtÞ

�
¼
�
f ðtÞ; vMðtÞ

�
HðtÞ:

By the bounds on the respective bilinear forms, we see that 3Lð�Þ; vM4L2
V � ;L

2
V
,

3Að�Þ; vM4L2
V � ;L

2
V
, and 3Lð�Þ; vM4L2

V � ;L
2
V
are elements of L2

V � , so we obtain after

integrating the above equation and taking the limit as N ! l the equation

ðT
0

l
�
t; _uuðtÞ; vMðtÞ

�
þ a
�
t; uðtÞ; vMðtÞ

�
þ l
�
t; uðtÞ; vMðtÞ

�
¼
ðT
0

�
f ðtÞ; vMðtÞ

�
HðtÞ:

Now note that as a function of vM , each term in the above equation is an element

of L2
V � again because of the bounds on lðt; �; �Þ, aðt; �; �Þ and lðt; �; �Þ. So we send

M ! l, bearing in mind that vM strongly converges to v in L2
V :ðT

0

l
�
t; _uuðtÞ; vðtÞ

�
þ a
�
t; uðtÞ; vðtÞ

�
þ l
�
t; uðtÞ; vðtÞ

�
¼
ðT
0

�
f ðtÞ; vðtÞ

�
HðtÞ:
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Hence u a W ðV ;HÞ is a solution. Let us now check the initial condition. Let

w a V0, take z a C1½0;T � with zðTÞ ¼ 0, and set vðtÞ ¼ zðtÞftw; we see that

v a L2
V . Since w a V0, there exist coe‰cients aj with w ¼

Pl
j¼1 ajw

0
j , so

vðtÞ ¼ zðtÞ
Xl
j¼1

ajw
t
j : ð5:9Þ

The sequence fvNgN AN defined by

vNðtÞ ¼ zðtÞ
XN
j¼1

ajw
t
j ð5:10Þ

is such that vN a L2
VN

and satisfies kvN � vkL2
V
! 0 by definition of w as an infinite

sum. Similarly, we can show that _vvN ! _vv in L2
V . Using the identity (3.1) with v

chosen as in (5.9), we see that

�l
�
0; uð0Þ; vð0Þ

�
þ
ðT
0

a
�
t; uðtÞ; vðtÞ

�
þ l
�
t; uðtÞ; vðtÞ

�

¼
ðT
0

�
f ðtÞ; vðtÞ

�
HðtÞ þ l

�
t; uðtÞ; _vvðtÞ

�
þm

�
t; uðtÞ; vðtÞ

�
: ð5:11Þ

Similarly, with vN chosen as in (5.10) in the Galerkin equation ðPdOÞ, to which we

again apply (3.1) and integrate to obtain

�l
�
0; uNð0Þ; vNð0Þ

�
þ
ðT
0

a
�
t; uNðtÞ; vNðtÞ

�
þ l
�
t; uNðtÞ; vNðtÞ

�

¼
ðT
0

�
f ðtÞ; vNðtÞ

�
HðtÞ þ l

�
t; uNðtÞ; _vvNðtÞ

�
þm

�
t; uNðtÞ; vNðtÞ

�
:

Using uN * u, vN ! v, _vvN ! _vv, and (B1), we may pass to the limit in this equa-

tion and a comparison of the result to (5.11) will tell us that

l
�
0; u0 � uð0Þ; zð0Þw

�
¼ 0:

The arbitrariness of w a V0 and the density of V0 in H0 yield the result.

The stability estimate follows directly from the estimates in Lemmas 5.9 and

5.11. That the solution is unique follows by a straightforward adaptation of the

standard technique. r
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5.4. Second sketch proof of existence.

Sketch proof of Theorem 3.6. We can take the Galerkin approximation of (3.3)

and instead of picking the initial data of uN to be u0N we pick uNð0Þ ¼ P0
Nðu0Þ,

where P0
N is the projection operator in Definition 5.6. We still obtain the uniform

bound of Lemma 5.9, which implies that

uN * u in L2
V ð5:12Þ

for some u a L2
V . An equation similar to ðPdOÞ will hold, in which we pick

vNðtÞ ¼ w t
j , where j a f0; . . . ;Ng, and multiplying by z a C1½0;T � with zðTÞ ¼ 0,

we get

lðt; _uuN ; zwjÞ þ aðt; uN ; zwjÞ þ lðt; uN ; zwjÞ ¼ 3 f ; zwj4V �ðtÞ;VðtÞ;

and then integrating, using the transport formula (3.1), and passing to the limit

with the help of (5.12) and (5.1):

�
ðT
0

l
�
t; uðtÞ; z 0ðtÞw t

j

�
þ a
�
t; uðtÞ; zðtÞw t

j

�
þ l
�
t; uðtÞ; zðtÞw t

j

�
�m

�
t; uðtÞ; zðtÞw t

j

�

¼
ðT
0

3 f ðtÞ; zðtÞw t
j4V �ðtÞ;VðtÞ þ l

�
0; u0; zð0Þw0j

�
: ð5:13Þ

Now, we can write an arbitrary element of V0 as v ¼
Pl

i¼1 ajw
0
j . By definition, the

sequence vn ¼
Pn

i¼1 ajw
0
j converges to v in V0. It follows that ftvn ! ftv in VðtÞ.

Letting zð0Þ ¼ 0, multiplying (5.13) by aj and summing over j gives us

ðT
0

z 0ðtÞl
�
t; uðtÞ; ftvn

�

¼ �
ðT
0

zðtÞ3 f ðtÞ � AðtÞuðtÞ �LðtÞuðtÞ þMðtÞuðtÞ; ftvn4V �ðtÞ;VðtÞ: ð5:14Þ

It is not di‰cult to see that the dominated convergence theorem applies and we

can pass to the limit in (5.14) to obtain

ðT
0

z 0ðtÞl
�
t; uðtÞ; ftv

�

¼ �
ðT
0

zðtÞ3 f ðtÞ � AðtÞuðtÞ �LðtÞuðtÞ þMðtÞuðtÞ; ftv4V �ðtÞ;VðtÞ:
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If we further let z a Dð0;TÞ, this is precisely the statement

d

dt
l
�
t; uðtÞ; ftv

�
¼ 3 f ðtÞ � AðtÞuðtÞ �LðtÞuðtÞ þMðtÞuðtÞ; ftv4V �ðtÞ;VðtÞ

in the weak sense. This is true for every v a V0, and because f � Au�Lu a L2
V � ,

by Lemma 3.5, L _uuþ AþLu ¼ f holds as an equality in L2
V � with u a W ðV ;V �Þ.

r
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