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Abstract. We give a short proof of the robustness of the notion of a nonuniform exponen-
tial dichotomy for a sequence of linear operators acting on a Banach space. This means
that any sufficiently small linear perturbation of a nonuniform exponential dichotomy ex-
hibits the same type of exponential behavior. The method of proof is based on the notion
of admissibility introduced by Perron in the special case of a uniform exponential behavior.
In strong contrast to former proofs, we do not need to construct explicitly projections
on the stable and unstable directions. As an application, we also give a short proof of the
robustness of the notion of a nonuniform exponential trichotomy.
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1. Introduction

Our main aim is to give relatively short proofs of the robustness of the notions of
a nonuniform exponential dichotomy and of a nonuniform exponential trichot-
omy for a nonautonomous dynamics with discrete time generated by a sequence
of linear operators acting on a Banach space. This means that any sufficiently
small linear perturbation of a nonuniform exponential dichotomy (respectively,
trichotomy) has the same type of exponential behavior. We emphasize that the
sequence of linear operators need not be bounded, which is a considerable im-
provement of former work in [4].
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We formulate briefly the results in the particular case of a (classical) uniform
exponential behavior. We say that a sequence (4,,),,., of invertible linear oper-
ators acting on a Banach space X admits a (uniform) exponential dichotomy if
there exist projections P, for m € Z such that

sz(m, n)Pn = P,W;j(m7 n)
for m,n € Z, where .«/(m,n) = A,,_1 ... A,, and there exist @, D > 0 such that
.7 (m,n)Py|| < De= " and |/ (m,n)"" Q|| < De "=

for m > n, where Q,, = Id — P,,. The following result establishes the robustness of
(uniform) exponential dichotomies and is a particular case of Theorem 3 below.

Theorem 1. If a sequence (Ay),,., of invertible linear operators admits a (uni-
Sform) exponential dichotomy and sup, . ;|| By|| is sufficiently small, then the sequence
(A + Bw),, 7 also admits a (uniform) exponential dichotomy.

Moreover, we say that a sequence of invertible linear operators (4),,.
admits a (uniform) exponential trichotomy if there exist projections P, O, Ry
for m € Z such that

Pm + Qm + Rm = Id,
PQO = 07 PmRm = 07 QmRm = 07
of (m,n)P, = Pyt (m,n), o (m,n)Q, = Quot(m,n)

for m,n € Z and there exist ¢, D > 0 and b € [0, a) such that
H&i(m, I’I)PnH < De*a(mfn)7 ||JZ/(WI, n)—l Qm” < De—m=n)
and
||,52/(m,n)Rn|| < Deb(mfn), Hﬂ(m’n)flRmH < Debm=n)

for m > n. The following result establishes the robustness of (uniform) exponen-
tial trichotomies and is a particular case of Theorem 4 below.

Theorem 2. If a sequence (A,,),,., of invertible linear operators admits a (uniform)
exponential trichotomy and sup,.,||B,|| is sufficiently small, then the sequence
(A + Bn),,. 7 also admits a (uniform) exponential trichotomy.

Due to the central role played by the exponential behavior in a large part
of the theory of dynamical systems, it is important to understand whether this
behavior persists under sufficiently small perturbations and so it is not surprising
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that the study of robustness has a long history. The problem was discussed by
Massera and Schiffer [8], Coppel [6] and in the case of Banach spaces by
Dalec’kii and Krein [7], with different approaches and successive generalizations.
For more recent works we refer the reader to [5], [9], [11], [12] and the references
therein. Moreover, we refer to [2], [3] for the study of robustness in the general
setting of a nonuniform exponential behavior, respectively for dichotomies and
trichotomies.

We emphasize that the approach in the last two works is different from the
present one. Namely, while in [2], [3] we construct explicitly projections on the
stable and unstable directions of the perturbation, as fixed points of appropriate
operators, here the projections are obtained immediately after knowing that
suitable stable and unstable spaces having respectively bounded forward and
backward orbits form a direct sum. Overall, this is a considerable shortening of
the former approach. Our method of proof is based on the notion of admissibility
considered by Perron in [10] in the special case of a uniform exponential behavior.
In particular, the stable and unstable subspaces are obtained fairly explicitly de-
pending only on the boundedness respectively of forward and backward orbits.
We recall that the notion of admissibility refers to the existence of bounded solu-
tions for any bounded nonlinear perturbation of the original cocycle. This allows
us to construct an invertible operator from the set of bounded perturbations to
the set of bounded solutions and thus to conclude that under sufficiently small per-
turbations a similar operator exists for the perturbed cocycle.

A principal motivation for weakening the notion of a uniform exponential
behavior is given by ergodic theory. Namely, consider a flow (¢,),  defined by
an autonomous equation x’ = f(x) in R” and assume that it preserves a finite
measure 4. This means that

p((4)) = u(4)

for any measurable set A = R” and any ¢ € R. One can show that the trajectory of
u-almost every point x with nonzero Lyapunov exponents has a linear variational
equation

v =A (),  with A(t) =dy.f,

that admits a nonuniform exponential dichotomy. We refer the reader to [1] for a
detailed discussion of the ubiquity of nonuniform exponential behavior.

2. Robustness of dichotomies

In this section we establish the robustness of the notion of a nonuniform exponen-
tial dichotomy. This means that any sufficiently small linear perturbation of a
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nonuniform exponential dichotomy has the same exponential behavior as the
original dichotomy. The method of proof is based on the notion of admissibility
introduced by Perron in the special case of a uniform exponential behavior. This
referred originally to the characterization of a uniform exponential dichotomy
in terms of the existence of unique bounded solutions for any time-dependent
bounded perturbation of the linear dynamics.

Given a sequence (4,,),,., of invertible linear operators acting on a Banach
space X, we define

Apy... Ay, ifm>n,
o (m,n) =< Id if m=n,
A A ifm<n

for each m,n € Z. We say that the sequence (A4,,),,., admits a nonuniform expo-
nential dichotomy if there exist projections P, for m € Z such that

oL (m,n)P, = Py.of (m,n)
for m,n € Z and there exist constants @, D > 0 and ¢ > 0 with ¢ < 2a such that
.2 (m, n) P,|| < De~m=m+eln| (1)
and
|/ (n,m) Q]| < De—lm=n)+elm| 2)

for m > n, where Q,, = Id — P,,. The condition ¢ < 2a ensures that the exponen-
tial rates of the stable and unstable subspaces Im P, and Im Q, are separated.

Now we consider a nonautonomous linear perturbation of a nonuniform expo-
nential dichotomy. Namely, given another sequence (B,,),,., of linear operators
such that 4,, + B,, is invertible for each m, let

me

(Am,1 + Bmfl) . (An + Bn) if m > n,
F(mn) =< Id if m=n,
(Ap+Bn) . (Apey + Booy) ' ifm<n

for each m,n € Z.
The following result establishes the robustness of the nonuniform exponential
dichotomies.

Theorem 3. If a sequence (A,,),,., of invertible linear operators admits a nonuni-
form exponential dichotomy, and ¢ and sup, (|| B,||e?") are sufficiently small, then
the sequence (A, + By,),,., also admits a nonuniform exponential dichotomy.
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Proof. We separate the proof into steps.

Step 1. Construction of auxiliary norms. We first introduce appropriate Lyapunov
norms that allow us to control the nonuniform behavior of the exponential
dichotomy. Write

B(m,n) = o/ (m,n)P, and E(m,n) = (m,n)Q,.
For each v € X and n € Z, we consider the norm
ol = llolly + [loll,,
where
o]l = sup{[|Z(k, n)olle““ ™ : k = n}
and
o]l = sup{[|%(k, mpvlje=**" : k < n}.
It follows readily from (1) and (2) that the suprema are finite.
Lemma 1. For each v € X and n € Z we have
o]l < [lo]l, < 2De™ o] 3)
Proof of the lemma. Clearly,
[[olly + llelly = [1Pwvll + [ Quoll = (o]l
On the other hand, by (1) and (2), we have
o]l < De™|jo]|  and ol < Del|jo].
This yields the second inequality in (3). O

Step 2. Admissibility property. Now we establish an appropriate version of the
admissibility property that is expressed in terms of the Lyapunov norms. It tells
us that there exists a unique bounded solution for any time-dependent bounded
perturbation of the linear dynamics.

Consider the vector space

@ = {1 = (f0), ez sup (] < o0}
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endowed with the norm
IA11" = sup [l £ (m)]],-
neZ

One can easily verify that % is a Banach space. Given f € %, we define a se-
quence xy by

v =3 B pf)— Y € p)f(p)

forneZ.

Lemma 2. For each f € &:

1. xy is a well-defined sequence in & and

14+e¢
] —e@

e[l <

VAl

2. we have
xp(n+1)=Apxr(n)+ f(n+1), nelZ (4)

Proof of the lemma. We first note that

||<%’(I’l, p)an < ea(p—n)

1%, p)|” = sup L)
I

for n > p. Indeed,
|%(n, p)x||, = sup{||¢@(k,n)%(n,p)x”e”(k_") ck>n}
— sup{l12(k, p)xlle" &k = n}
< | B(k, p)x|le“* P < k > p}

= ||l

Therefore,

IA

SNV I SR NI Nl:

p=—o0 p=—0o0

”fH* Z edp—n) — ”f” (5)

e [ —e¢

IA
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Furthermore, for n < p we have
% *
||(g(n,p)||* — sup” (n,p)x”n < efa(pfn)
w20 |lxll
since
@(n, p)x||, = sup{[|€(k,n)%(n, p)xlle"*™" : k <n}
= sup{[| % (k, p)xfle " k < n}
< e )%k, p)xlle ") k < p}

= e~ |x] ;.

Hence,

o0

S Emp) P < D 120 ) IF ()],
p=n+1 p=n+1
< |f||* - —a(p—n) _ |Lf|‘* )
| p:nZHe ed —1

Together with (5) this implies that x; is well defined and that

n

()l < > 198, p)S (D), + Z 1% (n, p)S (D)l

p=—00 p=n+1
l+e@ N

< .

< =/

On the other hand, we have

n+1 o0
Ynt1)= > Bn+1.pf(p)= ) n+1.p)f(p)

= " 4B D)D)+ Pan S+ )

p=—

- Zw: A, €(n,p)f(p) + Quir f(n+1)

p=n+1
= A,,Xf(n) +f(l’l + 1)

for n € Z and so identity (4) holds. O
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The first property in Lemma 2 allows one to define a bounded linear operator

M:% — Zby M(f)=xs. Clearly,

1 +e¢
l—ea’

M| <

Lemma 3. The operator M is invertible.

Proof of the lemma. 1f x; = 0, then it follows from (4) that
S+ 1) =x(n+1) = Apxy(n) =0

for n € Z and so f = 0. This shows that M is one-to-one.
Now take g € % and consider the sequence f : Z — X defined by

J(n) =g(n) = Ay ag(n—1).

For each n € Z we have

1/ @)y < llgm)lly + I An-19(n — )],

< llg(m)ll, + sup{[|Z(k,n)Adn_1g(n = 1)[|e”*™") : k = n}
+ sup{[|€ (k,n) A, 1g(n — D]je™ " ke < n}

< llg()ll, + e sup{[|Z(k,n — 1)g(n = 1)[|e“® " : k = n}
+ e sup{||€(k,n — 1)g(n — 1)||e" &+ < n}

< llg(m)|l, + e “sup{[|Z(k,n — 1)g(n— 1)[|e““ "V : k > n}
+eQn1g(n—1)]
+ e“sup{||€(k,n — 1)g(n —1)||e ** "D k <n—1}

< llgmll, +e“|Qu-19(n — D,
+ e “sup{||B(k,n — )g(n — D)|e®® ) k> n—1}
+ e sup{||€(k,n — 1)g(n — 1)||e ** D k <n—1}

<Ilgmll, +e“llgtn = Dll,—y +e“llgln = D]l

Therefore,

A1 < (1+2e)lgll” < +o0

(6)

(7)

and hence f € ¥. Moreover, by construction we have g = M(f) and so the

operator M is onto.

O
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It follows from the proof of Lemma 3 that the inverse M ~! : ¥ — # is given by
(M~'g)(n) = g(n) = Ayrg(n —1), neZ (8)

Moreover, by (7) the operator M ~! is bounded.

Step 3. Admissibility for the perturbation. The next step is to establish a corre-

sponding admissibility property for the perturbed linear dynamics. It is obtained

by showing that the corresponding candidate for an invertible bounded linear op-

erator is a small perturbation of the invertible operator for the original dynamics.
We define a linear operator L on & by

L(g)(n) = g(n) = (Ap-1 + By-1)g(n = 1),  ne.

Lemma 4. If

1
b :=sup (|| B[le?" ) < —r,
b (B ) < 3par]

then L : & — & is an invertible bounded linear operator.

Proof of the lemma. We first show that L(g) € & for each g € #. By (6) and (8),
for each n € Z we have

1) (m)lly < (M~ g)()lly + | Bu-1g(n = D],
< lg(mlly +2¢%llg(n = V)l +2De|| B,_1g(n — 1))
< llgmll, + (2¢* +2Db)|g(n = 1),

Taking the supremum over n € Z yields that
L™ < (1+2e“+2Db)|lg|" <+
and so L(g) € &. This also shows that L is bounded. Moreover, since
(M~" = L)(g)(n) = Byag(n — 1),
we have
(M~ = LY(g) ()l < 1Bumrg(n = D)y < 2Dbllg(n — D),
and so

d — LM|| < [|M~" = L] - M| < 2Db||M|| < 1. ©)
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Hence LM is invertible and since L = (LM)M ™', we conclude that L is also
invertible. 0

Step 4. Construction of invariant subspaces. Now we start obtaining the structural
elements of the exponential dichotomy for the perturbed dynamics. We first con-
struct candidates for the stable and unstable subspaces. Their definition is very
simple minded: we consider the subspaces formed by those vectors having respec-
tively a bounded forward orbit and a bounded backward orbit.

For each (n,x) € Z x X, we define sequences s, x, Un, v : Z — X by

F(k,n)x, k> n,
nx‘k -
$n.x(K) {0, k<n

and

0, k> n,
F(k,n)x, k<n.

un.x(k> = {
Moreover, for each n € Z, let
E,={xeX:s, €%}
and

Fo={xeX:u, e L}

One can easily verify that E, and F, are vector spaces. Now we establish their
invariance under the dynamics.

Lemma 5. For each n € Z we have
(An + Bn)En = En+1 and (An + Bn)Fn = Fn+1~ (10)
Proof of the lemma. Since

F(k,n)x, k>n+1,

n (k) =
S+1,(A,,+Bn)«( ) {O7 k<n+1,

we have

s, <[ = max{||x[l,, [1Su+1, (4, +8,)x] "}

Therefore, s, € & if and only if 5,1 (4,45,)x € <, that is, x € E, if and only if
(A, + By)x € E,;1. This yields the first identity in (10).
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For the second identity, we first note that

0, k>n+1,
it artsx K =\ e k<t
and hence,

41, 4,48l = max{[|(An + Bu) X[l [laen ]}

Therefore, u, , € £ if and only if u, 1 (4,+8,) € Z, that is, x € F, if and only if
(A, + B,)x € F,41, which yields the second identity in (10). O

Moreover, the spaces E, and F,, form a direct sum.
Lemma 6. For each n € Z we have X = E, @ F,.
Proof of the lemma. Take x € E, n F,, and consider the sequence g : Z — X de-
fined by
o= {i0). ke
We note that s, (n) = u, +(n) = x. Since
gll™ < llsnll™ + lletn, ]| < +o00,
we have g € . Moreover, ¢ is a solution of the equation
Xmi1 = (Am + Bu)Xm + fur1, meZ

with f =0, that is, L(g) = 0. It follows from Lemma 4 that g =0 and hence
x = 0. This shows that £, n F,, = {0}.
Now take n € Z and x € X. We consider the sequence J,  : Z — X defined by

X, m=n,

511,x(m) - { 0’ otherwise. (1 1)

Clearly, J, » € ¥ and so there exists a unique g € ¥ such that L(g) =0, y.
We note that g(m) = % (m,n)g(n) for all m >n. Since g € &, this shows that
Sn.g(n) € < and hence g(n) € E,. Now we observe that

0, k > n,

Up,x—g(m) (k) = 4 X — g(n), k=n,
—g(k), k < n.
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Again since g € &, this shows that x — g(n) € F,. Therefore,
x=g(n)+ (x—g(n)) € E, + F,,
which completes the proof of the lemma. OJ

Now let P, and Q, be the projections associated to the decomposition
X=E,®F,. Givenn € Z and x € X, we have

(Ay + By)x = (A, + By)Pyx + (A, + By) Qpx (12)
and
(An + By)x = Pyi1(An + Bu)X + Oni1 (A + By)x (13)
On the other hand, by Lemma 5,
(A, + B,)P.xe E,.y and (A, + B,)Oux € Fyy1.
Hence, it follows from (12) and (13) that
(An + By)Py = Pyy1(An + By) (14)
and
(An + By)On = On+1(An + By) (15)
for n € Z (notice that identities (14) and (15) are in fact equivalent).

Step 5. Estimates on the stable direction. Now we obtain an exponential bound
along the stable direction. We first show that the dynamics in uniformly bounded
on the initial time (recall that the space E, is defined in terms of the boundedness
of a sequence starting at time zero).

Lemma 7. For eachn e 7, x € E, and m > n we have
|7 (m, n)x||,, < K||x|,,
where K = ||M||/(1 — 2Db|| M]|).

Proof of the lemma. Take n € Z and x € E,. Since x € E,, we have 6, « € £ (see
(11)) and one can easily verify that s, . = L~!(d, ). On the other hand,

L=[LM —1d)+1d]M~!
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and thus,

It follows from (9) that

M|

I~ < M) ; LM —1d||* < T=20b[M] K. (16)
Therefore, for m > n we have
177 (m,m)x] |, < Nlsu I = 1271 (00 )17
<L 10l < KlIx],,
which yields the desired inequality. O

The following result yields an exponential bound along the stable direction.
Lemma 8. There exist constants C, A > 0 such that
17 (m, n)x||,, < Ce™"" =] x|

forneZ, x e E, and m > n.

Proof of the lemma. Given ne Z, pe N and x € E,, we define a sequence
f:7Z— X by

F(m,n)x, n<m<n+p,
0, otherwise.

7om ={
By Lemma 7, for each m > n we have
1/ @), < 117 (m, m)x]l,,, < K||x]|, (17)
and thus ||f||" < K||x]|,. On the other hand,
0, m < n,

L7Y(f)(m) =< (m—n+1)F(mn)x, n<m<n+p,
pF (m,n)x, mx=n+p
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(since x € E,). By Lemma 5, we have Z (/,n)x € E; for [ > m. Hence, using
Lemma 7, we obtain

*

plp+1) . "
7||ﬁ(n+p7n)x||n+p:H Z (Il—n+1)Zn+ p,n)x

2 n+p
n+p—1
< > (U=n+ D Fn+pnx,,,
I=n
n+p—1
= > U=n+ )| Fn+p.07 ()],
I=n
n+p—1
<K > (I—n+D|Z(n)x|
I=n
n+p—1
=K Z IL= (DI < KpIL-H NI
It follows from (16) and (17) that
pip+1), . .
POED 5t ponpsiy, < Kl < Kl
Therefore,
|7 (n+p,n)x,., 2K
Fn+ p,n)||" = sup . 2 < )
AR S P il
Now we take py € N sufficiently large so that
2K3
5= < 1. 18
po+1 (18)

Given m,n € N with m > n, let r = [(m — n)/po] where [-] denotes the integer part.
Then

F (m,n) = F (m,m+ por)F (n+ por,n),
and by Lemma 7 we have

|7 (m,n)||* < K|F (n+ por,n)||* < Ks" < Ks"=/po~1
< (K/S)e(m—")(l/m)logs = Ce Hm=n)
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where
C=K/s and 1= —(1/po)logs>0.
This completes the proof of the lemma. O

Step 6. Estimates on the unstable direction. We also obtain an exponential bound
along the unstable direction. The approach is analogous: we first show that the
dynamics in uniformly bounded on the initial time.

Lemma 9. For eachn € Z, x € F, and m > n we have

Proof of the lemma. Taken € Z and x € F,,. We have u,,_1 , = L“((vaz) for each
m > n, where

y=Fm-1,n)x and z=-F(mn)x

(since x € F,,). Moreover, since u,,_1 ,(n) = x we have [[u,,_1 ,||" > ||x||,. There-
fore, by (16),

" =L On1 ) < KNF (m, m)x]l,

X[l < lletm-1.y

for m > n. This completes the proof of the lemma. O

The following result yields an exponential bound along the unstable direction.
Lemma 10. For every n € Z, x € F,, and m < n we have
|7 (m, )], < Ce™ =]

Proof of the lemma. Given ne Z, pe N and x € F,, we define a sequence
f:7Z— X by

F(m,n)x, n—p<m<n,

rm =

0, otherwise.
It follows from Lemma 9 that

Lf ()l < 117 (m, m)x]l,, < K|,
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for m < n (since F (m,n)x € F,) and thus,
A" < K[l (19)

On the other hand,

p(p+1 \ &
PO poal, = || S (- mFn— ponx

I=n—p n=p
n—1
< Y U-mIFe-pn
I=n—p
n—1
= > (=n|Fn—-p,nF(n)x|
I=n—p
Since
0, m>n
L*I(f)(m) = (m=—n)F(m,n)x, n—p<m<n
—pF (m,n)x, m<n—p
(because x € F,), we obtain
pp+1) . - .
— IFn=pmx,, < K}Z (I =n)[|7(1,n)x]],
=n—p
=K Z L= D7 < KplL~H NI
I=n—p

Moreover, by (16) we have |L~!(f)||" < K||f||*, and hence, by (19),

pip+1) . \ .
3 17 (n = p,m)xl,—, < K2p|lf1I" < Kpllx]l,-
Therefore,
2K3
Fn—pn)|" < )
17— pm)l < -2

Given m,n € N with m < n, let r = [(n — m)/po] with py as in (18). Then

F (m,n) = F (m,m — por)F (n — por,n)
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and hence,

17 (m,n)[|” < K||F (n — por,n)||"
< Ks" SKS<n_m)/p0_l

= (K/s)e(”*m)(l/ﬂo)logs — Cp—Hn-m).

This completes the proof of the lemma.
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O

Step 7. Existence of an exponential dichotomy. Finally, we show that the per-
turbed linear dynamics admits a nonuniform exponential dichotomy having E,
and F), respectively has the stable and unstable subspaces. This amounts to
obtaining exponential bounds along the stable and unstable directions in terms
of the original norm (we recall that the bounds were obtained in terms of the

Lyapunov norms) and to estimate the norms of the projections P, and Q,.

For x € E, it follows from Lemma 8 that
|1 (m,n)xl,, < Ce™" " x|y, m=n.
By (3) we obtain

177 (m, m)x|| < || (m, m)x||,, < Ce™"=| ],

m —

< 2CDe™Hm=mFell | |
for m > n. Similarly, for x € F, it follows from Lemma 10 that
177 (m, )xl,, < Ce " x|, m<n
and proceeding as in (20) we get

17 (m, m)x|| < 1|7 (m, m)x]|,, < Ce™" ™| ]

< 2CD€7/1(n7m)+£‘n‘ ”xH

(1)

for m < n. Finally, we estimate the norms of the projections P, and Q,. Using
the notation in the proof of Lemma 6, given x € X we have P,x = g(n), where

g = L7(f) with /' =5, .. Therefore,

12 = sup 90 _ g IEZ DGO
x20  |1X]| x#£0 [Ix]]

Using (3) we obtain
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L= (Al < IL7H ) )y < 1L NI
<L A = 1L el
< 2De ML - |Ix]

and hence,
| P, <2De || L7 (22)
Therefore, we also obtain

red|

IA

”Id - Pn” <1+ ”PnH
max{1,2D|| L~ }e". (23)

A

It follows from (20) and (21) together with (22) and (23) that
|7 (m,n)P,|| < 4CD?||L™"||e~Am—m+2el
for m > n and
|7 (m,n) 0, <2 max{1,2D||L™"||} CDe *tn="+2|

for m <n. Therefore, provided that ¢ is sufficiently small the sequence
(A + By),, ., admits a nonuniform exponential dichotomy. O

3. Robustness of trichotomies

In this section we obtain a corresponding robustness result for the notion of a
nonuniform exponential trichotomy. This means that any sufficiently small linear
perturbation of a nonuniform exponential trichotomy has the same exponential
behavior as the original trichotomy. The result is obtained by applying Theorem
3 to appropriate shifts of the perturbed dynamics: essentially, a nonuniform expo-
nential trichotomy is obtained from intersecting two nonuniform exponential
dichotomies that are obtained from shifting the original dynamics to the right
and to the left (see (27)).

We say that a sequence of invertible linear operators (4,,),,., admits a nonuni-
form exponential trichotomy if there exist projections P, Q,,, R,, for m € Z such
that

Pm + Qm + Rm = Id,
PQO = 07 PmRm = 0, QmRm =0
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and

o (m,n)P, = P/ (m,n),
&/(m, n)Qn = thsz{(m,n),
o/ (m,n)R, = R,/ (m,n)

for m,n € Z and there exist constants a, D > 0 and b,e > 0 with ¢ < a — b such
that

||%’(m,n)|| < De—a(m—n)-%—e\rﬂ7
%(n,m)” < Defa(mfn)+s|m|,

||,@(Wl,l’l)H < Deb(ﬂ‘lfl‘l)+8‘l‘l|

and
||@(nam)” < Deb(n1—n)+c\m|

for m > n, where
B(m,n) = o (m,n)P,, Em,n) = (mn)Q,,  Z(m,n) =/ (mn)R,.

The following result establishes the robustness of the nonuniform exponential
trichotomies.

Theorem 4. If a sequence (A,),,., of invertible linear operators admits a nonuni-
form exponential trichotomy, and ¢ and sup,, ., (|| B,||e?"™) are sufficiently small, then
the sequence (A, + By,),,., also admits a nonuniform exponential trichotomy.

Proof. Let k = (a+b)/2. Since the sequence (A4,),,., admits a nonuniform
exponential trichotomy, the sequence (¢*4,,),,., admits a nonuniform exponen-
tial dichotomy with projections

Pl,m = Pm and Ql,m = Qm + Rm

for m € Z. Provided that ¢ := sup,.;(||B,/|e?") is sufficiently small, it follows
from Theorem 3 that the sequence (e*(A +P"1));nez admits a nonuniform
exponential dichotomy, say with projections P;, and Q,,. In particular,
the subspaces

El,m - Pl,m(X) and Fl,m = Ql,m(X)
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satisfy
El,m @Fl,m =X. (24)

Similarly, the sequence (e *A4,),,., admits a nonuniform exponential di-
chotomy with projections

P2,m =P, + Ry, and Q2,m - Qm

for m e Z. Provided that c is sufficiently small, it follows from Theorem 3 that
the sequence (e (4, + By)), ., admits a nonuniform exponential dichot-
omy, say with projections P, ,, and Q, ,,. In particular, the subspaces

Eym=Pyw(X) and  Fpp=0,,(X)
satisfy
En®F,,=X. (25)
We also consider the maps
Fe(m,n) = """ MNF (m,n)  and  F_.(m,n) =e "N F(m,n).  (26)
Lemma 11. For every n € Z we have
E],n CEA'z,,, and FZ,n Cﬁ'],n.

Proof of the lemma. Let

. 1
w(x) = limsup — log|| % (m,n)x||.
m—+o M

If there exists x € Elvn\Ez,,,, then we write x = y + z with y € Ez,,, and z € Fz,,,.
Since x € Ej ,, by (20) we have

1F(m, m)x]| < 2CDe A=<l x|

for some 4; > 0 and hence u(x) < —A4;. Moreover, we have z # 0 (otherwise
X = y € E,, which is false by hypothesis). Hence,

w(x) = max{u(y), u(z)} = u(z)

. 1
= lim sup — log|| % (m,n)z||.
m—+oo M
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Since z € F5 ,,, for m > n we have

1Z(m,n)z)| = 0| T, )z

(2K+42) (m—n)—e|m|

for some A, > 0 and hence,
wx) =2+ 2k — e
But this contradicts to the inequality u(x) < —4; since
e<a—b<a+b=2k

Therefore, E; , = E>,. One can show in a similar manner that F> , < F , for
eachn e Z. O

Lemma 12. For every n € Z we have
(E2,11mF1,n)®El,n®ﬁ2,n =X. (27)

Proof of the lemma. 1t follows from (24) that

(E2,11 N El,n) @ (EZ,n mﬁl,n) = E2.n~

But in view of Lemma 11 we have Ez,n ~E, ,=E ,and hence,

E,® (Ey,nF,)=E,
The desired statement follows now immediately from (25). O
Lemma 13. For each m € 7 we have
Pl,mQ2,m = QZ,mPl,m =0.
Proof of the lemma. By Lemma 11, for each x € X we have
Qz,mx € Fz,m < Fl.m
and hence,

Pl,mQZ,mx € IA)IJnFl,n1 = Pl,m Im QLm = {0}
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Similarly, again by Lemma 11, for each x € X we have
Piax€Er,, cEp
and hence,
Qz,mf)l,mx € Qz,;nE2,n1 = Qz,m ImpZ.m = {0}.
This completes the proof of the lemma. O

We proceed with the proof of the theorem. Let

P, = pl,ma Qm = Q27m and Rm =1d - Pl,m - Qzam'

We also consider the subspaces

E,=P,(X), FE,=0,X) and G,=R,(X).
In view of (14) and (15) we have respectively
F(m,n)P, = P, Z(m,n) and  F_.(m,n)Q, = 0, F_.(m,n),
which by (26) yields that
F(m,n)P, = P,7(m,n) and Z(m,n)Q, = 0,7 (m,n).

This readily implies that

Furthermore, the operators P,, and Q,, are projections and by Lemma 13 we have

m
ﬁ)%z - (Id - Pl,m - QZ,m)z
=1d - 2P1,m - 2Q2m + Plz,m + Qg,m + Pl,mQZ,m + QZ,mPl-,m
=1Id - Pl,m - Q27m - IAQm-
By (23) we have

||km|| - ||Id - Pl.m - Q2,m||
<1+ 2max{1,2D|[L7"|}e""!
< (1+2max{1,2D|L~"|})e"!. (28)
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By (20), since P,, = Py, for every m > n we have

177 (m, ) o| = |~ Foe(m, ) | Tm Py | - || Py
_ Kle—)((m—n)e—/ll (m—n)+2¢n|

= Kje~ (A1) (m—n)+2¢|n|
for some constant K; > (0. Similarly, since Qm = le for every m > n we have

-1 A —x(m— -1 A A
||‘97(m7n) Qm” = ||€ K(m ”)3?_}((,,,,17”) ‘Im Qm” ’ ”Qm”
< Kze—K(m—n)e—/lz(n1—n)+2£|m|

< Kze—(/lz-Hc) (m—n)+2¢|m|

for some constant K, > 0. Furthermore, for every m > n we have

177 (m, )Ryl < |7 (m,m) | G| - || R
= || (m,n) (E" AFL) |- Rl
< |7 (m,n) | Ex.al| - || Rul
= | Fe(m,n) | Exull - IRl (29)

and analogously, for every m > n,

.7 (m,n) ' Ryu|| < 1|7 (m,n) ™ | Fyl| - || R
= ) T, n) ™ Eyll - Rl (30)

By (28), it follows from (29) that for every m > n,
|7 (m,n)R, || < (1 + 2max{1,2D||L7!||})Kyel*—#)m=n+2lnl
and it follows from (30) that for every m > n,
|7 (m,n) "' Ry || < (1 + 2max{1,2D||L~" || })KyelA)m=mt2e,
Taking
a' =min{l;, b} +x and b = -min{i, b} +r,
we obtain

a —b = Zmin{/h,iz} >¢&
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provided that ¢ is sufficiently small and so the sequence (A4,, + B),,., admits
a nonuniform exponential trichotomy. This completes the proof of the theorem.

OJ
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