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Abstract. We give a short proof of the robustness of the notion of a nonuniform exponen-
tial dichotomy for a sequence of linear operators acting on a Banach space. This means
that any su‰ciently small linear perturbation of a nonuniform exponential dichotomy ex-
hibits the same type of exponential behavior. The method of proof is based on the notion
of admissibility introduced by Perron in the special case of a uniform exponential behavior.
In strong contrast to former proofs, we do not need to construct explicitly projections
on the stable and unstable directions. As an application, we also give a short proof of the
robustness of the notion of a nonuniform exponential trichotomy.
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1. Introduction

Our main aim is to give relatively short proofs of the robustness of the notions of

a nonuniform exponential dichotomy and of a nonuniform exponential trichot-

omy for a nonautonomous dynamics with discrete time generated by a sequence

of linear operators acting on a Banach space. This means that any su‰ciently

small linear perturbation of a nonuniform exponential dichotomy (respectively,

trichotomy) has the same type of exponential behavior. We emphasize that the

sequence of linear operators need not be bounded, which is a considerable im-

provement of former work in [4].
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We formulate briefly the results in the particular case of a (classical) uniform

exponential behavior. We say that a sequence ðAmÞm AZ of invertible linear oper-

ators acting on a Banach space X admits a (uniform) exponential dichotomy if

there exist projections Pm for m a Z such that

Aðm; nÞPn ¼ PmAðm; nÞ

for m; n a Z, where Aðm; nÞ ¼ Am�1 . . .An, and there exist a;D > 0 such that

kAðm; nÞPnkaDe�aðm�nÞ and kAðm; nÞ�1
QmkaDe�aðm�nÞ

for mb n, where Qm ¼ Id� Pm. The following result establishes the robustness of

(uniform) exponential dichotomies and is a particular case of Theorem 3 below.

Theorem 1. If a sequence ðAmÞm AZ of invertible linear operators admits a (uni-

form) exponential dichotomy and supn AZkBnk is su‰ciently small, then the sequence

ðAm þ BmÞm AZ also admits a (uniform) exponential dichotomy.

Moreover, we say that a sequence of invertible linear operators ðAmÞm AZ

admits a (uniform) exponential trichotomy if there exist projections Pm, Qm, Rm

for m a Z such that

Pm þQm þ Rm ¼ Id;

PmQm ¼ 0; PmRm ¼ 0; QmRm ¼ 0;

Aðm; nÞPn ¼ PmAðm; nÞ; Aðm; nÞQn ¼ QmAðm; nÞ

for m; n a Z and there exist a;D > 0 and b a ½0; aÞ such that

kAðm; nÞPnkaDe�aðm�nÞ; kAðm; nÞ�1
QmkaDe�aðm�nÞ

and

kAðm; nÞRnkaDebðm�nÞ; kAðm; nÞ�1
RmkaDebðm�nÞ

for mb n. The following result establishes the robustness of (uniform) exponen-

tial trichotomies and is a particular case of Theorem 4 below.

Theorem 2. If a sequence ðAmÞm AZ of invertible linear operators admits a (uniform)

exponential trichotomy and supn AZkBnk is su‰ciently small, then the sequence

ðAm þ BmÞm AZ also admits a (uniform) exponential trichotomy.

Due to the central role played by the exponential behavior in a large part

of the theory of dynamical systems, it is important to understand whether this

behavior persists under su‰ciently small perturbations and so it is not surprising
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that the study of robustness has a long history. The problem was discussed by

Massera and Schä¤er [8], Coppel [6] and in the case of Banach spaces by

Dalec’kiı̆ and Kreı̆n [7], with di¤erent approaches and successive generalizations.

For more recent works we refer the reader to [5], [9], [11], [12] and the references

therein. Moreover, we refer to [2], [3] for the study of robustness in the general

setting of a nonuniform exponential behavior, respectively for dichotomies and

trichotomies.

We emphasize that the approach in the last two works is di¤erent from the

present one. Namely, while in [2], [3] we construct explicitly projections on the

stable and unstable directions of the perturbation, as fixed points of appropriate

operators, here the projections are obtained immediately after knowing that

suitable stable and unstable spaces having respectively bounded forward and

backward orbits form a direct sum. Overall, this is a considerable shortening of

the former approach. Our method of proof is based on the notion of admissibility

considered by Perron in [10] in the special case of a uniform exponential behavior.

In particular, the stable and unstable subspaces are obtained fairly explicitly de-

pending only on the boundedness respectively of forward and backward orbits.

We recall that the notion of admissibility refers to the existence of bounded solu-

tions for any bounded nonlinear perturbation of the original cocycle. This allows

us to construct an invertible operator from the set of bounded perturbations to

the set of bounded solutions and thus to conclude that under su‰ciently small per-

turbations a similar operator exists for the perturbed cocycle.

A principal motivation for weakening the notion of a uniform exponential

behavior is given by ergodic theory. Namely, consider a flow ðftÞt AR defined by

an autonomous equation x 0 ¼ f ðxÞ in Rn and assume that it preserves a finite

measure m. This means that

m
�
ftðAÞ

�
¼ mðAÞ

for any measurable set AHRn and any t a R. One can show that the trajectory of

m-almost every point x with nonzero Lyapunov exponents has a linear variational

equation

v 0 ¼ AxðtÞv; with AxðtÞ ¼ dftx f ;

that admits a nonuniform exponential dichotomy. We refer the reader to [1] for a

detailed discussion of the ubiquity of nonuniform exponential behavior.

2. Robustness of dichotomies

In this section we establish the robustness of the notion of a nonuniform exponen-

tial dichotomy. This means that any su‰ciently small linear perturbation of a
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nonuniform exponential dichotomy has the same exponential behavior as the

original dichotomy. The method of proof is based on the notion of admissibility

introduced by Perron in the special case of a uniform exponential behavior. This

referred originally to the characterization of a uniform exponential dichotomy

in terms of the existence of unique bounded solutions for any time-dependent

bounded perturbation of the linear dynamics.

Given a sequence ðAmÞm AZ of invertible linear operators acting on a Banach

space X , we define

Aðm; nÞ ¼
Am�1 . . .An if m > n;

Id if m ¼ n;

A�1
m . . .A�1

n�1 if m < n

8<
:

for each m; n a Z. We say that the sequence ðAmÞm AZ admits a nonuniform expo-

nential dichotomy if there exist projections Pm for m a Z such that

Aðm; nÞPn ¼ PmAðm; nÞ

for m; n a Z and there exist constants a;D > 0 and eb 0 with e < 2a such that

kAðm; nÞPnkaDe�aðm�nÞþejnj ð1Þ

and

kAðn;mÞQmkaDe�aðm�nÞþejmj ð2Þ

for mb n, where Qm ¼ Id� Pm. The condition e < 2a ensures that the exponen-

tial rates of the stable and unstable subspaces ImPn and ImQn are separated.

Now we consider a nonautonomous linear perturbation of a nonuniform expo-

nential dichotomy. Namely, given another sequence ðBmÞm AZ of linear operators

such that Am þ Bm is invertible for each m, let

Fðm; nÞ ¼
ðAm�1 þ Bm�1Þ . . . ðAn þ BnÞ if m > n;

Id if m ¼ n;

ðAm þ BmÞ�1 . . . ðAn�1 þ Bn�1Þ�1 if m < n

8<
:

for each m; n a Z.

The following result establishes the robustness of the nonuniform exponential

dichotomies.

Theorem 3. If a sequence ðAmÞm AZ of invertible linear operators admits a nonuni-

form exponential dichotomy, and e and supn AZðkBnkeejnjÞ are su‰ciently small, then

the sequence ðAm þ BmÞm AZ also admits a nonuniform exponential dichotomy.
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Proof. We separate the proof into steps.

Step 1. Construction of auxiliary norms. We first introduce appropriate Lyapunov

norms that allow us to control the nonuniform behavior of the exponential

dichotomy. Write

Bðm; nÞ ¼ Aðm; nÞPn and Cðm; nÞ ¼ Aðm; nÞQn:

For each v a X and n a Z, we consider the norm

kvk�
n ¼ kvks

n þ kvku
n ;

where

kvks
n ¼ supfkBðk; nÞvkeaðk�nÞ : kb ng

and

kvku
n ¼ supfkCðk; nÞvke�aðk�nÞ : ka ng:

It follows readily from (1) and (2) that the suprema are finite.

Lemma 1. For each v a X and n a Z we have

kvka kvk�
n a 2Deejnjkvk: ð3Þ

Proof of the lemma. Clearly,

kvks
n þ kvku

n b kPnvk þ kQnvkb kvk:

On the other hand, by (1) and (2), we have

kvks
naDeejnjkvk and kvku

n aDeejnjkvk:

This yields the second inequality in (3). r

Step 2. Admissibility property. Now we establish an appropriate version of the

admissibility property that is expressed in terms of the Lyapunov norms. It tells

us that there exists a unique bounded solution for any time-dependent bounded

perturbation of the linear dynamics.

Consider the vector space

L ¼
n
f ¼

�
f ðnÞ

�
n AZ

: sup
n AZ

k f ðnÞk�
n < l

o
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endowed with the norm

k f k� ¼ sup
n AZ

k f ðnÞk�
n :

One can easily verify that L is a Banach space. Given f a L, we define a se-

quence xf by

xf ðnÞ ¼
Xn

p¼�l

Bðn; pÞ f ðpÞ �
Xl
p¼nþ1

Cðn; pÞ f ðpÞ

for n a Z.

Lemma 2. For each f a L:

1. xf is a well-defined sequence in L and

kxf k�
a

1þ e�a

1� e�a
k f k�:

2. we have

xf ðnþ 1Þ ¼ Anxf ðnÞ þ f ðnþ 1Þ; n a Z: ð4Þ

Proof of the lemma. We first note that

kBðn; pÞk� :¼ sup
xA0

kBðn; pÞxk�
n

kxk�
p

a eaðp�nÞ

for nb p. Indeed,

kBðn; pÞxk�
n ¼ supfkBðk; nÞBðn; pÞxkeaðk�nÞ : kb ng

¼ supfkBðk; pÞxkeaðk�nÞ : kb ng

a eaðp�nÞfkBðk; pÞxkeaðk�pÞ : kb pg

¼ eaðp�nÞkxk�
p :

Therefore,

Xn

p¼�l

kBðn; pÞ f ðpÞk�
n a

Xn

p¼�l

kBðn; pÞk�k f ðpÞk�
p

a k f k� Xn

p¼�l

eaðp�nÞ ¼ k f k�

1� e�a
: ð5Þ

282 L. Barreira and C. Valls



Furthermore, for na p we have

kCðn; pÞk� :¼ sup
xA0

kCðn; pÞxk�
n

kxk�
p

a e�aðp�nÞ

since

kCðn; pÞxk�
n ¼ supfkCðk; nÞCðn; pÞxke�aðk�nÞ : ka ng

¼ supfkCðk; pÞxke�aðk�nÞ : ka ng

a e�aðp�nÞfkCðk; pÞxke�aðk�pÞ : ka pg

¼ e�aðp�nÞkxk�
p :

Hence,

Xl
p¼nþ1

kCðn; pÞ f ðpÞk�
n a

Xl
p¼nþ1

kDðn; pÞk�k f ðpÞk�
p

a k f k� Xl
p¼nþ1

e�aðp�nÞ ¼ k f k�

ea � 1
:

Together with (5) this implies that xf is well defined and that

kxf ðnÞk�
n a

Xn

p¼�l

kBðn; pÞ f ðpÞk�
n þ

Xl
p¼nþ1

kCðn; pÞ f ðpÞk�
n

a
1þ e�a

1� e�a
k f k�:

On the other hand, we have

xf ðnþ 1Þ ¼
Xnþ1

p¼�l

Bðnþ 1; pÞ f ðpÞ �
Xl

p¼nþ2

Cðnþ 1; pÞ f ðpÞ

¼
Xn

p¼�l

AnBðn; pÞ f ðpÞ þ Pnþ1 f ðnþ 1Þ

�
Xl
p¼nþ1

AnCðn; pÞ f ðpÞ þQnþ1 f ðnþ 1Þ

¼ Anxf ðnÞ þ f ðnþ 1Þ

for n a Z and so identity (4) holds. r

283Dichotomies and trichotomies for di¤erence equations



The first property in Lemma 2 allows one to define a bounded linear operator

M : L ! L by Mð f Þ ¼ xf . Clearly,

kMka 1þ e�a

1� e�a
:

Lemma 3. The operator M is invertible.

Proof of the lemma. If xf ¼ 0, then it follows from (4) that

f ðnþ 1Þ ¼ xf ðnþ 1Þ � Anxf ðnÞ ¼ 0

for n a Z and so f ¼ 0. This shows that M is one-to-one.

Now take g a L and consider the sequence f : Z ! X defined by

f ðnÞ ¼ gðnÞ � An�1gðn� 1Þ:

For each n a Z we have

k f ðnÞk�
n a kgðnÞk�

n þ kAn�1gðn� 1Þk�
n

a kgðnÞk�
n þ supfkBðk; nÞAn�1gðn� 1Þkeaðk�nÞ : kb ng

þ supfkCðk; nÞAn�1gðn� 1Þke�aðk�nÞ : ka ng

a kgðnÞk�
n þ e�a supfkBðk; n� 1Þgðn� 1Þkeaðk�nþ1Þ : kb ng

þ ea supfkCðk; n� 1Þgðn� 1Þke�aðk�nþ1Þ : ka ng

a kgðnÞk�
n þ e�a supfkBðk; n� 1Þgðn� 1Þkeaðk�nþ1Þ : kb ng

þ eakQn�1gðn� 1Þk

þ ea supfkCðk; n� 1Þgðn� 1Þke�aðk�nþ1Þ : ka n� 1g
a kgðnÞk�

n þ eakQn�1gðn� 1Þk�
n�1

þ e�a supfkBðk; n� 1Þgðn� 1Þkeaðk�nþ1Þ : kb n� 1g

þ ea supfkCðk; n� 1Þgðn� 1Þke�aðk�nþ1Þ : ka n� 1g
a kgðnÞk�

n þ eakgðn� 1Þk�
n�1 þ eakgðn� 1Þk�

n�1: ð6Þ

Therefore,

k f k�
a ð1þ 2eaÞkgk� < þl ð7Þ

and hence f a L. Moreover, by construction we have g ¼ Mð f Þ and so the

operator M is onto. r
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It follows from the proof of Lemma 3 that the inverseM�1 :L!L is given by

ðM�1gÞðnÞ ¼ gðnÞ � An�1gðn� 1Þ; n a Z: ð8Þ

Moreover, by (7) the operator M�1 is bounded.

Step 3. Admissibility for the perturbation. The next step is to establish a corre-

sponding admissibility property for the perturbed linear dynamics. It is obtained

by showing that the corresponding candidate for an invertible bounded linear op-

erator is a small perturbation of the invertible operator for the original dynamics.

We define a linear operator L on L by

LðgÞðnÞ ¼ gðnÞ � ðAn�1 þ Bn�1Þgðn� 1Þ; n a Z:

Lemma 4. If

b :¼ sup
n AZ

ðkBnkeejnþ1jÞ < 1

2DkMk ;

then L : L ! L is an invertible bounded linear operator.

Proof of the lemma. We first show that LðgÞ a L for each g a L. By (6) and (8),

for each n a Z we have

kLðgÞðnÞk�
n a kðM�1gÞðnÞk�

n þ kBn�1gðn� 1Þk�
n

a kgðnÞk�
n þ 2eakgðn� 1Þk�

n�1 þ 2DeejnjkBn�1gðn� 1Þk
a kgðnÞk�

n þ ð2ea þ 2DbÞkgðn� 1Þk�
n�1:

Taking the supremum over n a Z yields that

kLðgÞk�
a ð1þ 2ea þ 2DbÞkgk� < þl

and so LðgÞ a L. This also shows that L is bounded. Moreover, since

ðM�1 � LÞðgÞðnÞ ¼ Bn�1gðn� 1Þ;

we have

kðM�1 � LÞðgÞðnÞk�
n a kBn�1gðn� 1Þk�

n a 2Dbkgðn� 1Þk�
n�1

and so

kId� LMka kM�1 � Lk � kMka 2DbkMk < 1: ð9Þ
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Hence LM is invertible and since L ¼ ðLMÞM�1, we conclude that L is also

invertible. r

Step 4. Construction of invariant subspaces. Now we start obtaining the structural

elements of the exponential dichotomy for the perturbed dynamics. We first con-

struct candidates for the stable and unstable subspaces. Their definition is very

simple minded: we consider the subspaces formed by those vectors having respec-

tively a bounded forward orbit and a bounded backward orbit.

For each ðn; xÞ a Z� X , we define sequences sn;x; un;x : Z ! X by

sn;xðkÞ ¼
Fðk; nÞx; kb n;

0; k < n

�

and

un;xðkÞ ¼
0; k > n;

Fðk; nÞx; ka n:

�

Moreover, for each n a Z, let

En ¼ fx a X : sn;x a Lg

and

Fn ¼ fx a X : un;x a Lg:

One can easily verify that En and Fn are vector spaces. Now we establish their

invariance under the dynamics.

Lemma 5. For each n a Z we have

ðAn þ BnÞEn ¼ Enþ1 and ðAn þ BnÞFn ¼ Fnþ1: ð10Þ

Proof of the lemma. Since

snþ1; ðAnþBnÞxðkÞ ¼
Fðk; nÞx; kb nþ 1;

0; k < nþ 1;

�

we have

ksn;xk� ¼ maxfkxk�
n ; ksnþ1; ðAnþBnÞxk

�g:

Therefore, sn;x a L if and only if snþ1; ðAnþBnÞx a L, that is, x a En if and only if

ðAn þ BnÞx a Enþ1. This yields the first identity in (10).
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For the second identity, we first note that

unþ1; ðAnþBnÞxðkÞ ¼
0; k > nþ 1;

Fðk; nÞx; ka nþ 1

�

and hence,

kunþ1; ðAnþBnÞxk
� ¼ maxfkðAn þ BnÞxk�

nþ1; kun;xk
�g:

Therefore, un;x a L if and only if unþ1; ðAnþBnÞx a L, that is, x a Fn if and only if

ðAn þ BnÞx a Fnþ1, which yields the second identity in (10). r

Moreover, the spaces En and Fn form a direct sum.

Lemma 6. For each n a Z we have X ¼ EnaFn.

Proof of the lemma. Take x a EnBFn and consider the sequence g : Z ! X de-

fined by

gðkÞ ¼ sn;xðkÞ; kb n;

un;xðkÞ; ka n:

�

We note that sn;xðnÞ ¼ un;xðnÞ ¼ x. Since

kgk�
a ksn;xk� þ kun;xk� < þl;

we have g a L. Moreover, g is a solution of the equation

xmþ1 ¼ ðAm þ BmÞxm þ fmþ1; m a Z

with f ¼ 0, that is, LðgÞ ¼ 0. It follows from Lemma 4 that g ¼ 0 and hence

x ¼ 0. This shows that EnBFn ¼ f0g.
Now take n a Z and x a X . We consider the sequence dn;x : Z ! X defined by

dn;xðmÞ ¼
x; m ¼ n;

0; otherwise:

�
ð11Þ

Clearly, dn;x a L and so there exists a unique g a L such that LðgÞ ¼ dn;x.

We note that gðmÞ ¼ Fðm; nÞgðnÞ for all mb n. Since g a L, this shows that

sn;gðnÞ a L and hence gðnÞ a En. Now we observe that

un;x�gðnÞðkÞ ¼
0; k > n;

x� gðnÞ; k ¼ n;

�gðkÞ; k < n:

8<
:
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Again since g a L, this shows that x� gðnÞ a Fn. Therefore,

x ¼ gðnÞ þ
�
x� gðnÞ

�
a En þ Fn;

which completes the proof of the lemma. r

Now let Pn and Qn be the projections associated to the decomposition

X ¼ EnaFn. Given n a Z and x a X , we have

ðAn þ BnÞx ¼ ðAn þ BnÞPnxþ ðAn þ BnÞQnx ð12Þ

and

ðAn þ BnÞx ¼ Pnþ1ðAn þ BnÞxþQnþ1ðAn þ BnÞx ð13Þ

On the other hand, by Lemma 5,

ðAn þ BnÞPnx a Enþ1 and ðAn þ BnÞQnx a Fnþ1:

Hence, it follows from (12) and (13) that

ðAn þ BnÞPn ¼ Pnþ1ðAn þ BnÞ ð14Þ

and

ðAn þ BnÞQn ¼ Qnþ1ðAn þ BnÞ ð15Þ

for n a Z (notice that identities (14) and (15) are in fact equivalent).

Step 5. Estimates on the stable direction. Now we obtain an exponential bound

along the stable direction. We first show that the dynamics in uniformly bounded

on the initial time (recall that the space En is defined in terms of the boundedness

of a sequence starting at time zero).

Lemma 7. For each n a Z, x a En and mb n we have

kFðm; nÞxk�
maKkxk�

n ;

where K ¼ kMk=ð1� 2DbkMkÞ.

Proof of the lemma. Take n a Z and x a En. Since x a En, we have dn;x a L (see

(11)) and one can easily verify that sn;x ¼ L�1ðdn;xÞ. On the other hand,

L ¼ ½ðLM � IdÞ þ Id�M�1
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and thus,

L�1 ¼ M
Xl
k¼0

ð�1ÞkðLM � IdÞk:

It follows from (9) that

kL�1ka kMk
Xl
k¼0

kLM � Idkk
a

kMk
1� 2DbkMk ¼ K : ð16Þ

Therefore, for mb n we have

kFðm; nÞxk�
ma ksn;xk� ¼ kL�1ðdn;xÞk�

a kL�1k � kdn;xk�
aKkxk�

n ;

which yields the desired inequality. r

The following result yields an exponential bound along the stable direction.

Lemma 8. There exist constants C; l > 0 such that

kFðm; nÞxk�
maCe�lðm�nÞkxk�

n

for n a Z, x a En and mb n.

Proof of the lemma. Given n a Z, p a N and x a En, we define a sequence

f : Z ! X by

f ðmÞ ¼ Fðm; nÞx; nam < nþ p;

0; otherwise:

�

By Lemma 7, for each mb n we have

k f ðmÞk�
ma kFðm; nÞxk�

maKkxk�
n ð17Þ

and thus k f k�
aKkxk�

n . On the other hand,

L�1ð f ÞðmÞ ¼
0; m < n;

ðm� nþ 1ÞFðm; nÞx; nam < nþ p;

pFðm; nÞx; mb nþ p

8<
:
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(since x a En). By Lemma 5, we have Fðl; nÞx a El for lbm. Hence, using

Lemma 7, we obtain

pðpþ 1Þ
2

kFðnþ p; nÞxk�
nþp ¼

��� Xnþp�1

l¼n

ðl � nþ 1ÞFðnþ p; nÞx
����

nþp

a
Xnþp�1

l¼n

ðl � nþ 1ÞkFðnþ p; nÞxk�
nþp

¼
Xnþp�1

l¼n

ðl � nþ 1ÞkFðnþ p; lÞFðl; nÞxk�
nþp

aK
Xnþp�1

l¼n

ðl � nþ 1ÞkFðl; nÞxk�
l

¼ K
Xnþp�1

l¼n

kL�1ð f ÞðlÞk�
l aKpkL�1ð f Þk�:

It follows from (16) and (17) that

pðpþ 1Þ
2

kFðnþ p; nÞxk�
nþpaK 2pk f k�

aK 3pkxk�
n :

Therefore,

kFðnþ p; nÞk� ¼ sup
xA0

kFðnþ p; nÞxk�
nþp

kxk�
n

a
2K 3

pþ 1
:

Now we take p0 a N su‰ciently large so that

s :¼ 2K 3

p0 þ 1
< 1: ð18Þ

Given m; n a N with mb n, let r ¼ ½ðm� nÞ=p0� where ½�� denotes the integer part.
Then

Fðm; nÞ ¼ Fðm;mþ p0rÞFðnþ p0r; nÞ;

and by Lemma 7 we have

kFðm; nÞk�
aKkFðnþ p0r; nÞk�

aKsraKsðm�nÞ=p0�1

a ðK=sÞeðm�nÞð1=p0Þ log s ¼ Ce�lðm�nÞ;
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where

C ¼ K=s and l ¼ �ð1=p0Þ log s > 0:

This completes the proof of the lemma. r

Step 6. Estimates on the unstable direction. We also obtain an exponential bound

along the unstable direction. The approach is analogous: we first show that the

dynamics in uniformly bounded on the initial time.

Lemma 9. For each n a Z, x a Fn and mb n we have

kFðm; nÞxk�
mb

kxk�
n

K
:

Proof of the lemma. Take n a Z and x a Fn. We have um�1;y ¼ L�1ðdm; zÞ for each
mb n, where

y ¼ Fðm� 1; nÞx and z ¼ �Fðm; nÞx

(since x a Fn). Moreover, since um�1;yðnÞ ¼ x we have kum�1;yk�
b kxk�

n . There-

fore, by (16),

kxk�
n a kum�1;yk� ¼ kL�1ðdm�1;yÞk�

aKkFðm; nÞxk�
m

for mb n. This completes the proof of the lemma. r

The following result yields an exponential bound along the unstable direction.

Lemma 10. For every n a Z, x a Fn and ma n we have

kFðm; nÞxk�
maCe�lðn�mÞkxk�

n :

Proof of the lemma. Given n a Z, p a N and x a Fn, we define a sequence

f : Z ! X by

f ðmÞ ¼ Fðm; nÞx; n� p < ma n;

0; otherwise:

�

It follows from Lemma 9 that

k f ðmÞk�
ma kFðm; nÞxk�

maKkxk�
n
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for ma n (since Fðm; nÞx a Fm) and thus,

k f k�
aKkxk�

n : ð19Þ

On the other hand,

pðpþ 1Þ
2

kFðn� p; nÞxk�
n�p ¼

��� Xn�1

l¼n�p

ðl � nÞFðn� p; nÞx
����

n�p

a
Xn�1

l¼n�p

ðl � nÞkFðn� p; nÞxk�
n�p

¼
Xn�1

l¼n�p

ðl � nÞkFðn� p; lÞFðl; nÞxk�
n�p:

Since

L�1ð f ÞðmÞ ¼
0; mb n;

ðm� nÞFðm; nÞx; n� pam < n;

�pFðm; nÞx; m < n� p

8<
:

(because x a Fn), we obtain

pðpþ 1Þ
2

kFðn� p; nÞxk�
n�paK

Xn�1

l¼n�p

ðl � nÞkFðl; nÞxk�
l

¼ K
Xn�1

l¼n�p

kL�1ð f ÞðlÞk�
l aKpkL�1ð f Þk�:

Moreover, by (16) we have kL�1ð f Þk�
aKk f k�, and hence, by (19),

pðpþ 1Þ
2

kFðn� p; nÞxk�
n�paK 2pk f k�

aK 3pkxk�
n :

Therefore,

kFðn� p; nÞk�
a

2K 3

pþ 1
:

Given m; n a N with ma n, let r ¼ ½ðn�mÞ=p0� with p0 as in (18). Then

Fðm; nÞ ¼ Fðm;m� p0rÞFðn� p0r; nÞ
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and hence,

kFðm; nÞk�
aKkFðn� p0r; nÞk�

aKsraKsðn�mÞ=p0�1

¼ ðK=sÞeðn�mÞð1=p0Þ log s ¼ Ce�lðn�mÞ:

This completes the proof of the lemma. r

Step 7. Existence of an exponential dichotomy. Finally, we show that the per-

turbed linear dynamics admits a nonuniform exponential dichotomy having En

and Fn respectively has the stable and unstable subspaces. This amounts to

obtaining exponential bounds along the stable and unstable directions in terms

of the original norm (we recall that the bounds were obtained in terms of the

Lyapunov norms) and to estimate the norms of the projections Pn and Qn.

For x a En it follows from Lemma 8 that

kFðm; nÞxk�
maCe�lðm�nÞkxk�

n ; mb n:

By (3) we obtain

kFðm; nÞxka kFðm; nÞxk�
maCe�lðm�nÞkxk�

n

a 2CDe�lðm�nÞþejnjkxk ð20Þ

for mb n. Similarly, for x a Fn it follows from Lemma 10 that

kFðm; nÞxk�
maCe�lðm�nÞkxk�

n ; ma n

and proceeding as in (20) we get

kFðm; nÞxka kFðm; nÞxk�
maCe�lðn�mÞkxk�

n

a 2CDe�lðn�mÞþejnjkxk ð21Þ

for ma n. Finally, we estimate the norms of the projections Pn and Qn. Using

the notation in the proof of Lemma 6, given x a X we have Pnx ¼ gðnÞ, where
g ¼ L�1ð f Þ with f ¼ dn;x. Therefore,

kPnk ¼ sup
xA0

kgðnÞk
kxk ¼ sup

xA0

kL�1ð f ÞðnÞk
kxk :

Using (3) we obtain
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kL�1ð f ÞðnÞka kL�1ð f ÞðnÞk�
n a kL�1ð f Þk�

a kL�1k � k f k� ¼ kL�1k � kxk�
n

a 2DeejnjkL�1k � kxk

and hence,

kPnka 2DeejnjkL�1k: ð22Þ

Therefore, we also obtain

kQnka kId� Pnka 1þ kPnk

a maxf1; 2DkL�1kgeejnj: ð23Þ

It follows from (20) and (21) together with (22) and (23) that

kFðm; nÞPnka 4CD2kL�1ke�lðm�nÞþ2ejnj

for mb n and

kFðm; nÞQnka 2 maxf1; 2DkL�1kgCDe�lðn�mÞþ2ejnj

for ma n. Therefore, provided that e is su‰ciently small the sequence

ðAm þ BmÞm AZ admits a nonuniform exponential dichotomy. r

3. Robustness of trichotomies

In this section we obtain a corresponding robustness result for the notion of a

nonuniform exponential trichotomy. This means that any su‰ciently small linear

perturbation of a nonuniform exponential trichotomy has the same exponential

behavior as the original trichotomy. The result is obtained by applying Theorem

3 to appropriate shifts of the perturbed dynamics: essentially, a nonuniform expo-

nential trichotomy is obtained from intersecting two nonuniform exponential

dichotomies that are obtained from shifting the original dynamics to the right

and to the left (see (27)).

We say that a sequence of invertible linear operators ðAmÞm AZ admits a nonuni-

form exponential trichotomy if there exist projections Pm, Qm, Rm for m a Z such

that

Pm þQm þ Rm ¼ Id;

PmQm ¼ 0; PmRm ¼ 0; QmRm ¼ 0
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and

Aðm; nÞPn ¼ PmAðm; nÞ;
Aðm; nÞQn ¼ QmAðm; nÞ;
Aðm; nÞRn ¼ RmAðm; nÞ

for m; n a Z and there exist constants a;D > 0 and b; eb 0 with e < a� b such

that

kBðm; nÞkaDe�aðm�nÞþejnj;

kCðn;mÞkaDe�aðm�nÞþejmj;

kDðm; nÞkaDebðm�nÞþejnj

and

kDðn;mÞkaDebðm�nÞþejmj

for mb n, where

Bðm; nÞ ¼ Aðm; nÞPn; Cðm; nÞ ¼ Aðm; nÞQn; Dðm; nÞ ¼ Aðm; nÞRn:

The following result establishes the robustness of the nonuniform exponential

trichotomies.

Theorem 4. If a sequence ðAmÞm AZ of invertible linear operators admits a nonuni-

form exponential trichotomy, and e and supn AZðkBnkeejnjÞ are su‰ciently small, then

the sequence ðAm þ BmÞm AZ also admits a nonuniform exponential trichotomy.

Proof. Let k ¼ ðaþ bÞ=2. Since the sequence ðAmÞm AZ admits a nonuniform

exponential trichotomy, the sequence ðekAmÞm AZ admits a nonuniform exponen-

tial dichotomy with projections

P1;m ¼ Pm and Q1;m ¼ Qm þ Rm

for m a Z. Provided that c :¼ supn AZðkBnkeejnjÞ is su‰ciently small, it follows

from Theorem 3 that the sequence
�
ekðAm þ BmÞ

�
m AZ

admits a nonuniform

exponential dichotomy, say with projections P̂P1;m and Q̂Q1;m. In particular,

the subspaces

ÊE1;m ¼ P̂P1;mðXÞ and F̂F1;m ¼ Q̂Q1;mðXÞ
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satisfy

ÊE1;ma F̂F1;m ¼ X : ð24Þ

Similarly, the sequence ðe�kAmÞm AZ admits a nonuniform exponential di-

chotomy with projections

P2;m ¼ Pm þ Rm and Q2;m ¼ Qm

for m a Z. Provided that c is su‰ciently small, it follows from Theorem 3 that

the sequence
�
e�kðAm þ BmÞ

�
m AZ

admits a nonuniform exponential dichot-

omy, say with projections P̂P2;m and Q̂Q2;m. In particular, the subspaces

ÊE2;m ¼ P̂P2;mðXÞ and F̂F2;m ¼ Q̂Q2;mðXÞ

satisfy

ÊE2;ma F̂F2;m ¼ X : ð25Þ

We also consider the maps

Fkðm; nÞ ¼ ekðm�nÞFðm; nÞ and F�kðm; nÞ ¼ e�kðm�nÞFðm; nÞ: ð26Þ

Lemma 11. For every n a Z we have

ÊE1;n H ÊE2;n and F̂F2;n H F̂F1;n:

Proof of the lemma. Let

mðxÞ ¼ lim sup
m!þl

1

m
logkFkðm; nÞxk:

If there exists x a ÊE1;nnÊE2;n, then we write x ¼ yþ z with y a ÊE2;n and z a F̂F2;n.

Since x a ÊE1;n, by (20) we have

kFkðm; nÞxka 2CDe�l1ðm�nÞþejnjkxk

for some l1 > 0 and hence mðxÞa�l1. Moreover, we have zA 0 (otherwise

x ¼ y a ÊE2;n which is false by hypothesis). Hence,

mðxÞ ¼ maxfmðyÞ; mðzÞg ¼ mðzÞ

¼ lim sup
m!þl

1

m
logkFkðm; nÞzk:
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Since z a F̂F2;n, for mb n we have

kFkðm; nÞzk ¼ e2kðm�nÞkF�kðm; nÞzk

b
1

2CD
kzkeð2kþl2Þðm�nÞ�ejmj

for some l2 > 0 and hence,

mðxÞb l2 þ 2k� e:

But this contradicts to the inequality mðxÞa�l1 since

e < a� b < aþ b ¼ 2k:

Therefore, ÊE1;n H ÊE2;n. One can show in a similar manner that F̂F2;n H F̂F1;n for

each n a Z. r

Lemma 12. For every n a Z we have

ðÊE2;nB F̂F1;nÞa ÊE1;na F̂F2;n ¼ X : ð27Þ

Proof of the lemma. It follows from (24) that

ðÊE2;nB ÊE1;nÞa ðÊE2;nB F̂F1;nÞ ¼ ÊE2;n:

But in view of Lemma 11 we have ÊE2;nB ÊE1;n ¼ ÊE1;n and hence,

ÊE1;na ðÊE2;nB F̂F1;nÞ ¼ ÊE2;n:

The desired statement follows now immediately from (25). r

Lemma 13. For each m a Z we have

P̂P1;mQ̂Q2;m ¼ Q̂Q2;mP̂P1;m ¼ 0:

Proof of the lemma. By Lemma 11, for each x a X we have

Q̂Q2;mx a F̂F2;m H F̂F1;m

and hence,

P̂P1;mQ̂Q2;mx a P̂P1;mF̂F1;m ¼ P̂P1;m Im Q̂Q1;m ¼ f0g:
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Similarly, again by Lemma 11, for each x a X we have

P̂P1;mx a ÊE1;m H ÊE2;m

and hence,

Q̂Q2;mP̂P1;mx a Q̂Q2;mÊE2;m ¼ Q̂Q2;m Im P̂P2;m ¼ f0g:

This completes the proof of the lemma. r

We proceed with the proof of the theorem. Let

P̂Pm ¼ P̂P1;m; Q̂Qm ¼ Q̂Q2;m and R̂Rm ¼ Id� P̂P1;m � Q̂Q2;m:

We also consider the subspaces

ÊEm ¼ P̂PmðXÞ; F̂Fm ¼ Q̂QmðXÞ and ĜGm ¼ R̂RmðXÞ:

In view of (14) and (15) we have respectively

Fkðm; nÞP̂Pn ¼ P̂PmFkðm; nÞ and F�kðm; nÞQ̂Qn ¼ Q̂QmF�kðm; nÞ;

which by (26) yields that

Fðm; nÞP̂Pn ¼ P̂PmFðm; nÞ and Fðm; nÞQ̂Qn ¼ Q̂QmFðm; nÞ:

This readily implies that

Fðm; nÞR̂Rn ¼ R̂RmFðn;mÞ:

Furthermore, the operators P̂Pm and Q̂Qm are projections and by Lemma 13 we have

R̂R2
m ¼ ðId� P̂P1;m � Q̂Q2;mÞ

2

¼ Id� 2P̂P1;m � 2Q̂Q2;m þ P̂P2
1;m þ Q̂Q2

2;m þ P̂P1;mQ̂Q2;m þ Q̂Q2;mP̂P1;m

¼ Id� P̂P1;m � Q̂Q2;m ¼ R̂Rm:

By (23) we have

kR̂Rmk ¼ kId� P̂P1;m � Q̂Q2;mk

a 1þ 2maxf1; 2DkL�1kgeejmj

a ð1þ 2maxf1; 2DkL�1kgÞeejmj: ð28Þ
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By (20), since P̂Pm ¼ P̂P1;m, for every mb n we have

kFðm; nÞP̂Pnk ¼ ke�kðm�nÞFkðm; nÞ j Im P̂Pnk � kP̂Pnk

¼ K1e
�kðm�nÞe�l1ðm�nÞþ2ejnj

¼ K1e
�ðl1þkÞðm�nÞþ2ejnj

for some constant K1 > 0. Similarly, since Q̂Qm ¼ Q̂Q2;m, for every mb n we have

kFðm; nÞ�1
Q̂Qmk ¼ ke�kðm�nÞF�kðm; nÞ�1 j Im Q̂Qmk � kQ̂Qmk

aK2e
�kðm�nÞe�l2ðm�nÞþ2ejmj

aK2e
�ðl2þkÞðm�nÞþ2ejmj

for some constant K2 > 0. Furthermore, for every mb n we have

kFðm; nÞR̂Rnka kFðm; nÞ j ĜGnk � kR̂Rnk

¼ kFðm; nÞ j ðÊE2;nB F̂F1;nÞk � kR̂Rnk

a kFðm; nÞ j ÊE2;nk � kR̂Rnk

¼ ekðm�nÞkF�kðm; nÞ j ÊE2;nk � kR̂Rnk ð29Þ

and analogously, for every mb n,

kFðm; nÞ�1
R̂Rmka kFðm; nÞ�1 j F̂F1;mk � kR̂Rmk

¼ ekðm�nÞkFkðm; nÞ�1 j F̂F1;mk � kR̂Rmk: ð30Þ

By (28), it follows from (29) that for every mb n,

kFðm; nÞR̂Rnka ð1þ 2maxf1; 2DkL�1kgÞK2e
ðk�l2Þðm�nÞþ2ejnj

and it follows from (30) that for every mb n,

kFðm; nÞ�1
R̂Rnka ð1þ 2maxf1; 2DkL�1kgÞK1e

ðk�l1Þðm�nÞþ2ejnj:

Taking

a 0 ¼ minfl1; l2g þ k and b 0 ¼ �minfl1; l2g þ k;

we obtain

a 0 � b 0 ¼ 2minfl1; l2g > e
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provided that e is su‰ciently small and so the sequence ðAm þ BmÞm AZ admits

a nonuniform exponential trichotomy. This completes the proof of the theorem.

r
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