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Abstract. Motivated by recent appearance of multivalued structures in categorification,
tropical geometry and other areas, we study basic properties of abstract multisemigroups.
We give many new and old examples and general constructions for multisemigroups.
Special attention is paid to simple and nilpotent multisemigroups. We also show that
‘‘almost all’’ randomly chosen multivalued binary operations define multisemigroups.

1. Introduction and motivation

A multisemigroup is a ‘‘semigroup in which multiplication is multivalued’’. More

precisely, a multisemigroup is a pair ðS; �Þ, where S is a non-empty set and � is a

map (a so-called multivalued operation or multioperation) from S � S to 2S, the

power set of S, such that the following associativity axiom is satisfied: for every

a; b; c a S we have

6
t A b�c

a � t ¼ 6
s A a�b

s � c: ð1:1Þ

Every semigroup is a multisemigroup in an obvious way, however, there are many

natural examples of multisemigroups which are not semigroups.

Our motivation for the present paper comes from the fact observed in [MM2]

that multisemigroups appear naturally in higher representation theory and catego-

rification, see Subsection 3.8 of this paper and also [MM2] for more details.

Definition of multistructures in general goes back at least to the 1934 paper

[Mar] by Marty. Various aspects and properties of multistructures, in particular,

multisemigroups (usually under di¤erent names which will be reviewed in the next

section), were studied by several authors, see for example [Ca], [DO], [Ea], [Ha],

[Ko], [Wa]. We also refer the reader to the recent survey paper [Vi] by Viro, which

mostly deals with multigroups and multirings, for more historical information.

The paper [Vi] shows that some multistructures (mainly multifields) are relevant

to the study of tropical geometry.



In the present paper we make an attempt to establish basic properties of ab-

stract multisemigroups in analogy with those of semigroups. We give many exam-

ples and counterexamples illustrating the scopes of the theory we are developing.

We will see that in many respects semigroups and multisemigroups are similar

but in many other respects they are very di¤erent. Section 2 fixes notation and

vocabulary for multivalued analogues of binary operations and corresponding

structures, including multisemigroups, hypergroups and multigroups. In Section

3 we propose many di¤erent examples and constructions of multisemigroups.

These include both concrete examples of multisemigroups of small cardinality

(Subsections 3.1, 3.2 and 3.15), the multisemigroup of cosets of a group modulo

a subgroup (Subsection 3.3) and various constructions associated to di¤erent kinds

of ideals, variants, subwords etc. (Subsections 3.4, 3.5, 3.6, 3.11, 3.12 and 3.14).

We also mention several multisemigroups related to our motivation: the multise-

migroup associated to a fully additive bicategory (Subsection 3.8) and its disguise

via a positive basis in an associative algebra (Subsection 3.7). We also show that

the underlying set of every Weyl group can be equipped with two very di¤erent

multisemigroups structures: the first one coming from the Kazhdan-Lusztig combi-

natorics (Subsection 3.9) and the other one coming from the standard basis of the

corresponding Hecke algebra for the values of the parameter which guarantee

that this standard basis has necessary positivity properties (Subsection 3.10).

In Section 4 we collect basic notions and properties: Green’s relations, various

types of elements, ideals, homomorphisms, congruences, quotients, representa-

tions by binary relations and connections to dioids, quantales and Boolean

algebras. In Section 5 we study simple multisemigroups (that is multisemigroups

with a unique two-sided ideal) and a special class of simple multisemigroups which

we call strongly simple. A simple multisemigroup is strongly simple provided

that it is a union of its minimal left ideals and it is a union of its minimal right

ideals. Strongly simple multisemigroups can be viewed as analogues of completely

0-simple or 0-bisimple semigroups. For strongly simple multisemigroups we es-

tablish a structure theory similar to the classical structure theory of 0-bisimple

semigroups. However, there are significant di¤erences: The role of idempotent

H-classes is now played by hypergroups (and the latter do not need to have any

idempotents or quasi-idempotents, see an example in Subsection 3.15). There

is only a partial analogue of Green’s lemma, namely minimal right (left) ideals

are no longer connected by bijective translations but by surjective multivalued

translations. We give explicit examples showing that the general case behaves

much more complicated than the case of classical semigroups (see Subsections

5.3, 5.4, 5.5, 5.6 and 5.7).

In Section 6 we establish another essential di¤erence between semigroups

and multisemigroups. Given a set with n elements, one can randomly choose a

binary operation on it and ask what is the probability that it is associative
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(hence defining a semigroup). The answer is that this probability is ‘‘small’’ in

the sense that it tends to 0 when n tends to infinity. For multisemigroups the

picture turns out to be exactly the opposite: when n tends to infinity, then the

probability that a randomly chosen multivalued operation on an n-element set

defines a multisemigroups approaches 1.

Finally, in Section 7 we look closer at nilpotent multisemigroups, characterize

them in terms of the action graphs, extend to finite multisemigroups two classical

characterizations of finite nilpotent semigroups, define and characterize the radical

of a multisemigroup and study maximal (with respect to inclusions) nilpotent

submultisemigroups of strongly simple multisemigroups.
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2. Multistructures and their aliases

2.1. Multisemigroups. Multisemigroups, as defined above, have appeared in

the literature under many di¤erent names. In particular, we have seen the follow-

ing names: hypersemigroups, polysemigroups, semihypergroups and associative

multiplicative systems (the list disregards di¤erent hyphenations of the names).

Following [MM2], we use the name ‘‘multisemigroups’’ as we think that, com-

pared to all other aliases, it describes the essence of the structure best. Note that

the operation � of a multisemigroup ðS; �Þ can also be understood as a binary

relation from S � S to S (satisfying the usual associativity axiom).

An element 1 of a multisemigroup ðS; �Þ is called an identity or unity element

provided that 1 � a ¼ a � 1 ¼ a for all a a S. A standard argument shows that

the identity element is unique, if exists. For any multisemigroup ðS; �Þ and any

element e B S, the set SA feg has the natural structure ðSA feg; �Þ of a multise-

migroup defined, for a; b a SA feg, as follows:

a � b :¼
a � b; a; b a S;

a; b ¼ e;

b; a ¼ e:

8<
:
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The element e is the identity of ðSA feg; �Þ. As usual, we denote by S1 the multi-

semigroup S if the latter has an identity and SA feg defined as above if S does

not have any identity (and we denote this identity by 1 and the operation on

S1 by �).
An element e of a multisemigroup ðS; �Þ is called an idempotent provided that

e � e ¼ e and a quasi-idempotent provided that e a e � e.
Multisemigroups are closely connected to some other di¤erent algebraic

structures. Here we describe two of such connections. A map � : S � S ! 2S,

ða; bÞ 7! a � b, can be extended to a binary operation � : 2S � 2S ! 2S by setting,

for A;B a 2S,

A � B :¼ 6
a AA;b AB

a � b: ð2:1Þ

The equality (1.1) can now be written as a � ðb � cÞ ¼ ða � bÞ � c. In this way, for

a multisemigroup ðS; �Þ, the power set 2S inherits a natural structure of a semi-

group, where the associativity follows directly from (1.1). Thus, a multisemigroup

can be seen as a non-empty set S along with an associative binary operation �
on 2S satisfying (2.1) for any A;BHS. Notice that to show that such a binary

operation � on 2S defines a multisemigroup on S it is enough to show that

a � ðb � cÞ ¼ ða � bÞ � c for all a; b; c a S. From (2.1) it follows that for any

A;Bi a 2S, i a I , we have the following property:

A �
�
6
i

Bi

�
¼ 6

i

ðA � BiÞ and
�
6
i

Bi

�
� A ¼ 6

i

ðBi � AÞ: ð2:2Þ

Recall, see e.g. [Gu], 2.2, that a semiring is a tuple ðR;þ; �; 0; 1Þ where R is a non-

empty set, þ and � are binary operations on R and 0 and 1 are two distinguished

elements of R such that the following conditions are satisfied:

• ðR;þ; 0Þ is a commutative monoid with identity 0;

• ðR; �; 1Þ is a monoid with identity 1;

• r � 0 ¼ 0 � r ¼ 0 for all r a R (i.e. 0 is absorbing with respect to �);

• r � ðsþ tÞ ¼ r � sþ r � t and ðsþ tÞ � r ¼ s � rþ t � r for all r; s; t a R.

A semiring ðR;þ; �; 0; 1Þ for which rþ r ¼ r for all r a R is called an idempotent

semiring or dioid. The previous paragraph implies that any multisemigroup ðS; �Þ
induces a natural dioid structure ð2S 1

;A; �; j; f1gÞ on 2S 1

. If Q is finite, then every

dioid structure ð2Q;A; �; j; 1Þ, where 1 is a singleton, gives, by restriction to ele-

ments of Q, a multisemigroup ðQ; �Þ possessing a unit element.

A notable di¤erence between multisemigroups and dioids is revealed compar-

ing the arbitrary distributivity property for multisemigroup given by (2.2) with the

finite distributivity property for dioids. This discrepancy motivates connection of

multisemigroups with quantales.
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Recall, see [Re], that a sup-lattice is a partially ordered set in which every

subset has a supremum, or a join. A quantale is a sup-lattice equipped with an

associative product ða; bÞ 7! a � b such that the multiplication distributes over

arbitrary suprema, that is for any X HQ and a a Q we have

a �
�
sup
x AX

x
�
¼ sup

x AX
ða � xÞ and

�
sup
x AX

x
�
� a ¼ sup

x AX
ðx � aÞ:

A unital quantale is a quantale possessing a unit element with respect to the product

operation. Unital quantales form a special class of dioids, the so-called complete

dioids.

The discussion above shows that any multisemigroup ðS; �Þ induces a natural

quantale structure on 2S. Being defined on a power set, this quantale is a complete

atomic Boolean algebra where atomic means that every nonzero element lies

above an atom, a minimal nonzero element. Conversely, every quantale structure

on a complete atomic Boolean algebra Q induces a natural structure of a multi-

semigroup on the set S ¼ SðQÞ of atoms of Q. This can be used to identify

multisemigroups and quantale structures on complete atomic Boolean algebras.

2.2. Multigroups and hypergroups. Unlike multisemigroups, whose definition

is more or less uncontroversial despite of many di¤erent aliases, there exist many

di¤erent multistructures considered in the literature as multivalued analogues of

groups. The present paper is not about these structures, so to fix terminology for

the present paper we will just define those of them which we will use later. We

refer the reader to [DO], [Vi], [Wa] and references therein for further details.

Following [Vo], a multisemigroup ðS; �Þ will be called a hypergroup provided

that it satisfies the following reproduction axiom: S � a ¼ a � S ¼ S for any a a S.

Following [Vi], a multisemigroup ðS; �Þ with identity 1 will be called a multi-

group provided that the following two conditions are satisfied:

• for each a a S there are unique b; c a S such that 1 a a � b and 1 a c � a,
moreover, b ¼ c (this unique element will be denoted by a�1);

• for any a; b; c a S we have c a a � b if and only if c�1 a b�1 � a�1.

It is clear that 1�1 ¼ 1 and ða�1Þ�1 ¼ a for any element a of a multigroup S

(cf. [Vi], 3.2).

2.3. Involution. If ðS; �Þ is a multisemigroup, then an involution on S is a trans-

formation ? : S ! S, written s 7! s?, which is involutive, that is ðs?Þ? ¼ s for all

s a S, and satisfies, for all a; b a S, the following equality:

b? � a? ¼ fs? j s a a � bg:

For example, if ðS; �Þ is a multigroup, then a 7! a�1 is an involution.
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3. Some examples of multisemigroups

In this section we collect many examples of multisemigroups, for further examples

of multigroups we refer the reader to [Vi] and references therein.

3.1. The trivial multisemigroups. For any non-empty set S and a subset X HS

setting s �X t :¼ X for all s; t a S defines on S the structure of a multisemigroup.

In particular, we have two trivial multisemigroup structures on S, namely, � :¼ �j
and � :¼ �S. We note that ðS; �Þ is always a hypergroup, but it is not a multigroup

if jSj > 1.

3.2. A two-element multisemigroup. Define the operation � on S :¼ fa; bg
using the following Cayley table:

� a b

a a fa; bg
b a b

It is straightforward to verify that this is a multisemigroup. We note that

x � S ¼ S for any x a S while S � a ¼ aAS (in particular, this is a right hyper-

group but not a hypergroup).

3.3. The coset multisemigroup. Let ðG; �Þ be a group and H a (not necessarily

normal) subgroup of G. Define a multivalued operation � on G as follows:

for every a; b a G we set a � b :¼ HaHb. It is straightforward to verify that

ða � bÞ � c ¼ a � ðb � cÞ ¼ HaHbHc for all a; b; c a G and hence ðG; �Þ is a

multisemigroup.

We can also consider the set HnG of left H-cosets in G. Then for any a; b a G

the set HaHb is a union of cosets and hence we may define

Ha �Hb :¼ fHc j c a G and HcHHaHbg:

This turns ðHnG; �Þ into a multisemigroup and even a hypergroup (but not a

multigroup if H is not normal since an identity would be necessarily H, and H is

normal if and only if, for all a; b a G, HHHaHb implies Hb ¼ Ha�1). If H is a

normal subgroup of G, then the operation � on HnG is, in fact, single-valued and

hence ðHnG; �Þ is a group.

3.4. Inflations of multisemigroups. Let ðS; �Þ be a multisemigroup, X an arbi-

trary set, and f : X ! S a surjective map. For x; y a X define

x �f y :¼ fz a X j f ðzÞ a f ðxÞ � f ðyÞg:
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Then it is straightforward to verify that ðX ; �f Þ is a multisemigroup called the

inflation of S with respect to f . Note that the trivial multisemigroup ðS; �Þ defined
in Subsection 3.1 can be viewed as an inflation of a singleton group.

3.5. Multisemigroups of ideals. Let ðS; �Þ be a semigroup. Define multiopera-

tions �L and �̂�L on S as follows: for a; b a S set

a �L b :¼ S1aS1b and a �̂�L b :¼ S1aBS1b:

Then it is straightforward to verify that both ðS; �LÞ and ðS; �̂�LÞ are multi-

semigroups. Similarly one defines multisemigroups ðS; �RÞ and ðS; �̂�RÞ using right

ideals and multisemigroups ðS; �JÞ and ðS; �̂�JÞ using two-sided ideals. The multi-

semigroups ðS; �̂�LÞ, ðS; �̂�RÞ and ðS; �̂�JÞ are commutative.

3.6. Monogenic associated multisemigroups. Let ðS; �Þ be a semigroup. For

a a S let 3a4 denote the subsemigroup of S consisting of all elements of the form

ai, i > 0 (the so-called ‘‘monogenic subsemigroup’’ generated by a). Define the

multioperation � on S as follows: for a; b a S set

a � b :¼ 3a4B3b4:

Then it is straightforward to verify that ðS; �Þ is a commutative multisemigroup.

3.7. Multisemigroups of positive bases in associative algebras. Let A be an

associative algebra over some subring k of real numbers. Assume that A has a

basis a :¼ fai j i a Sg with non-negative structure constants, that is

aiaj ¼
X
k AS

cki; jak and cki; j b 0 for all i; j; k a S:

Define the multioperation � on S as follows: for i; j a S set

i � j :¼ fk j cki; j > 0g:

Then the associativity of A implies that ðS; �Þ is a multisemigroup.

A similar construction works if instead of a subring of real numbers one

considers, for example, the Boolean algebra B :¼ f0; 1g (with respect to the usual

meet and join operations).

3.8. Multisemigroups of fully additive bicategories. This example is taken

from [MM2], Subsection 3.3. Let C be a small additive bicategory with skele-

tally small, fully additive and Krull-Schmidt categories of morphisms. Let S½C�
be the set of isomorphism classes of indecomposable 1-morphisms in C. For
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an indecomposable 1-morphism F we denote by ½F� its class in S½C�. For

½F�; ½G� a S½C� set

½F� � ½G� :¼ f½H� a S½C� : H is isomorphic to a direct summand of F � Gg:

Then the associativity axiom for C implies that ðS½C�; �Þ is a multisemigroup. Via

decategorification (i.e. taking the split Grothendieck group of C) this example can

be considered as a special case of the previous example.

As a more concrete example of this construction, consider C to be a bicategory

with one object � and such that Cð�; �Þ is the category of all finite dimensional

representations of a semi-simple complex finite dimensional Lie algebra g, with

horizontal composition given by the usual tensor product of g-modules. It is

easy to see that in this case the obtained multisemigroup is, in fact, a multigroup.

In the case of the algebra sl2, isomorphism classes of simple finite dimensional

modules are in a natural bijection with the set N0 of non-negative integers (this

bijection is given by taking the highest weight of a module, see [Maz2], Theorem

1.22). From the classical Clebsch-Gordan rule (see e.g. [Maz2], Theorem 1.39) it

follows that for k; l a N0 the multisemigroup operation is given by the following:

k � l ¼ fm : jk � ljama k þ l;mC k þ l mod 2g:

Remark 1. The concrete example above can be generalized. For g as above

consider the BGG category O and let O be the tensor category which O generates

(see e.g. [Kaa]). The category O is no longer semi-simple but all objects in O

have well-defined composition multiplicities (see e.g. [Kaa]). There is a natural

multisemigroup structure on the set of isomorphism classes of simple objects in O

defined as follows: For two simple objects L and L 0 define ½L� � ½L 0� to be the

set of isomorphism classes of all simple subquotients which appear in the tensor

product of L and L 0.

3.9. The Kazhdan-Lusztig multisemigroup of a Weyl group. Let D be a finite

root system and W the corresponding Weyl group. Let fHw : w a Wg be the

Kazhdan-Lusztig basis of Z½W �, see [KL] or [Maz1], Section 7. By [KL], this basis

has positive structure constants and hence the construction of Subsection 3.7 gives

a multisemigroup structure ðW ; �Þ. Remark that this multisemigroup can be

also obtained by the construction of Subsection 3.8 considering the bicategory of

Soergel bimodules acting on the principal block of category O for the Lie algebra g

associated with D, see [Maz1], Section 8 and [MM1], [MM2] for details. Mapping

w 7! w�1 defines an involution on this multisemigroup (it corresponds to ‘‘taking

the adjoint functor’’ in the categorical picture of Soergel bimodules).

To give an explicit example, let D be of type A2, that is W US3 ¼
fe; s; t; st; ts; stsg, where s2 ¼ t2 ¼ e and sts ¼ tst. Then we have
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He ¼ e; Hs ¼ eþ s; Ht ¼ eþ t; Hst ¼ eþ sþ tþ st;

Hts ¼ eþ sþ tþ ts; Hsts ¼ eþ sþ tþ stþ tsþ sts;

and one easily obtains the following Cayley table for ðS3; �Þ:

� e s t st ts sts

e e s t st ts sts

s s s st st fsts; sg sts

t t ts t fsts; tg ts sts

st st fsts; sg st fsts; stg fsts; sg sts

ts ts ts fsts; tg fsts; tg fsts; tsg sts

sts sts sts sts sts sts sts

3.10. The Boolean Hecke multigroup of a Weyl group. This example is taken

from [Tr] where it is given in di¤erent terms. Let D be a finite root system and W

the corresponding Weyl group. Choose some basis p in D and let SHW be the

corresponding system of simple reflections. Then ðW ;SÞ is a Coxeter system. Let

l : W ! N0 be the corresponding length function. Fix some q a R such that q > 1

and let Hq be the corresponding Hecke algebra (over R), that is the associative

algebra with generators Hs, s a S, satisfying the braid relations for ðW ;SÞ together
with the relations

H 2
s ¼ ðq� 1ÞHs þ qHe; s a S: ð3:1Þ

Note that under our choice of q the latter relation has positive coe‰cients.

For each w a W fix some reduced expression w ¼ s1s2 . . . sk and set Hw :¼
Hs1Hs2 . . .Hsk . Since the Hs’s satisfy braid relations, the element Hw does not

depend on the choice of a reduced expression for w. Then fHw jw a Wg is the

standard basis of Hq.

Lemma 2. All structure constants for the standard basis are non-negative.

Proof. As Hw :¼ Hs1Hs2 . . .Hsk , it is enough to show that for any s a S and x a W

the element HsHx is a linear combination of basis elements with non-negative

coe‰cients. If lðsxÞ > lðxÞ, then we have HsHx ¼ Hsx. In the other case we

have x ¼ sy for some y a W such that lðyÞ < lðxÞ. Then, using (3.1), we have

HsHx ¼ HsHsHy ¼
�
ðq� 1ÞHs þ qHe

�
Hy ¼ ðq� 1ÞHx þ qHy

and the claim follows. r
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From Lemma 2 it follows that the construction of Subsection 3.7 gives a multi-

semigroup structure ðW ; �Þ. This multisemigroup is called the Boolean Hecke

hypermonoid in [Tr]. If D is of type A2, then for W US3 ¼ fe; s; t; st; ts; stsg we

get the following Cayley table:

� e s t st ts sts

e e s t st ts sts

s s fe; sg st ft; stg sts fts; stsg
t t ts fe; tg sts fs; tsg fst; stsg
st st sts fs; stg fts; stsg fe; s; stsg ft; st; ts; stsg
ts ts ft; tsg sts fe; t; stsg fst; stsg fs; st; ts; stsg
sts sts fst; stsg fts; stsg fs; st; ts; stsg ft; st; ts; stsg fe; s; t; st; ts; stsg

Proposition 3. The multisemigroup ðW ; �Þ is, in fact, a multigroup.

Proof. We have to check that both additional conditions from Subsection 2.2 are

satisfied. Let x a W . First we show, by induction on lðxÞ, that e a x � x�1. This

is clear if x ¼ e, so to prove the induction step assume that the claim is true

for some x and that s a S is such that lðsxÞ > lðxÞ. Then, using associativity

and definitions, we have ðsxÞ � ðsxÞ�1 ¼ s � x � x�1 � s. The latter set contains

s � e � s ¼ fe; sg as e a x � x�1 by the inductive assumption.

Now let x; y a W be such that xA y�1. Consider the case lðxÞa lðyÞ, in
particular, yA e (the other case is dealt with by similar arguments). Let us prove,

by induction on lðxÞ, the following three claims:

(i) any w a x � y satisfies lðwÞb lðyÞ � lðxÞ;
(ii) x � y contains some w satisfying lðwÞ ¼ lðyÞ � lðxÞ if and only if y ¼ x�1w;

(iii) e B x � y.

Note that the last claim obviously follows from the first two. The basis x ¼ e of

the induction is obvious. To prove the induction step let s a S be a simple reflec-

tion such that lðxÞ < lðsxÞa lðyÞ. Then we have sx ¼ s � x and hence ðsxÞ � y ¼
s � ðx � yÞ by associativity. By the inductive assumption, any w a x � y satisfies

lðwÞb lðyÞ � lðxÞ. We have s � w ¼ sw if lðswÞ > lðwÞ and s � w ¼ fw; swg
otherwise. In the second case lðswÞb lðyÞ � lðxÞ � 1 ¼ lðyÞ � lðsxÞ which proves

claim (i). This argument also shows that if k is maximal such that x � y con-

tains some w of length lðyÞ � k, then every element in s � ðx � yÞ has length at

least lðyÞ � k � 1. Therefore, for s � ðx � yÞ to contain an element of length

lðyÞ � lðsxÞ, the set x � y must contain an element of length lðyÞ � lðxÞ. By (ii) of
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the inductive assumption, the only element of x � y with this property is xy and

this is possible if and only if lðxyÞ ¼ lðyÞ � lðxÞ. In the latter case s � xy contains

an element of length lðyÞ � lðxÞ � 1 if and only if lðsxyÞ ¼ lðyÞ � lðxÞ � 1 and this

is the case if and only if lðsxyÞ ¼ lðyÞ � lðsxÞ which implies claim (ii). This proves

the first condition from Subsection 2.2.

Mapping Hs 7! Hs extends to an anti-involution on Hq (as the ideal generated

by the defining relations is invariant under this map). This anti-involution maps

Hw to Hw�1 for any w a W and hence mapping w 7! w�1 is an involution on

ðW ; �Þ. This proves the second condition from Subsection 2.2. r

3.11. Double variants of multisemigroups. Let ðS; �Þ and ðS; �Þ be two multise-

migroups with the same underlying set S. Assume further that for any a; b; c a S

we have the following equalities in 2S:

ða � bÞ � c ¼ a � ðb � cÞ and ða � bÞ � c ¼ a � ðb � cÞ: ð3:2Þ

For a; b a S set a � b :¼ ða � bÞA ða � bÞ.

Proposition 4. ðS; �Þ is a multisemigroup.

Proof. For a; b; c a S we have the following:

ða � bÞ � c ¼
�
ða � bÞA ða � bÞ

�
� c

¼
�
ða � bÞ � c

�
A
�
ða � bÞ � c

�
¼
�
ða � bÞ � c

�
A
�
ða � bÞ � c

�
A
�
ða � bÞ � c

�
A
�
ða � bÞ � c

�
¼ð3:2Þ
�
a � ðb � cÞ

�
A
�
a � ðb � cÞ

�
A
�
a � ðb � cÞ

�
A
�
a � ðb � cÞ

�
¼
�
a � ðb � cÞ

�
A
�
a � ðb � cÞ

�
A
�
a � ðb � cÞ

�
A
�
a � ðb � cÞ

�
¼
�
a � ðb � cÞ

�
A
�
a � ðb � cÞ

�
¼ a �

�
ðb � cÞA ðb � cÞ

�
¼ a � ðb � cÞ:

The claim follows. r

A typical situation in which this construction applies is the following multise-

migroup version of the variant (or sandwich) construction for semigroups: Let

ðS;fflÞ be a multisemigroup and X ;Y HS. Then for a; b a S set

a � b :¼ a ffl X ffl b; and a � b :¼ a ffl Y ffl b:

Then both ðS; �Þ and ðS; �Þ are variant multisemigroups of ðS;fflÞ, moreover,

condition (3.2) is obviously satisfied. Thus ðS; �Þ is a new multisemigroup which
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is natural to call a double variant of ðS;fflÞ. It is easy to see that a � b ¼
a ffl ðX AYÞ ffl b. In the case when ðS;fflÞ is a semigroup and jX j ¼ jY j ¼ 1 we

have that ðS; �Þ is a multisemigroup such that 1a ja � bja 2 for all a; b a S.

3.12. Multisemigroup of subwords. Let A be an alphabet and A� the monoid of

all finite words over A. For u; v a A� define ul v to be the set of all scattered

(that is, not necessarily connected) subwords of uv. It is straightforward to verify

that for any u; v;w a A� both ðul vÞlw and ul ðvlwÞ coincide with the set of

all scattered subwords of uvw and hence ðA�; l Þ is a multisemigroup.

3.13. Disconnected unions of multisemigroups. Let ðS; �Þ and ðT ; �Þ be multise-

migroups and assume that SBT ¼ j. Define a multivalued operation � on SAT

as follows: for a; b a SAT set

a � b :¼
a � b; a; b a S;

a � b; a; b a T ;

j; otherwise:

8<
:

It is straightforward to verify that this turns ðSAT ; �Þ into a multisemigroup,

which we call the disconnected union of S and T .

3.14. Reproductive construction. The following general approach to construc-

tion of multisemigroups is inspired by [Vo]. Let ðS; �Þ be a semigroup and

f : S ! 2S a map. For AHS set f ðAÞ :¼ 6
a AA f ðaÞ. For a; b a S define

a � b :¼ f ðaÞ f ðbÞ.

Lemma 5. Assume that for any a; b a S we have f
�
f ðaÞ f ðbÞ

�
¼ f ðaÞ f ðbÞ. Then

ðS; �Þ is a multisemigroup.

The condition f
�
f ðaÞ f ðbÞ

�
¼ f ðaÞ f ðbÞ resembles the reproductive condition

in [Vo].

Proof. Using our assumption, for a; b; c a S we have:

ða � bÞ � c ¼ 6
s A f ðaÞ f ðbÞ

�
f ðsÞ f ðcÞ

�
¼
�

6
s A f ðaÞ f ðbÞ

f ðsÞ
�
f ðcÞ

¼ f
�
f ðaÞ f ðbÞ

�
f ðcÞ ¼ f ðaÞ f ðbÞ f ðcÞ:

Similarly one checks that a � ðb � cÞ ¼ f ðaÞ f ðbÞ f ðcÞ. r

Some of the previous examples can be obtained using the reproductive

construction. For instance, the example in Subsection 3.12 is obtained if we define

f to be the map which sends a word w to the set of all scattered subwords of w; the

58 G. Kudryavtseva and V. Mazorchuk



first example in Subsection 3.3 is obtained if we define f to be the map which

sends a to Ha; and the first example in Subsection 3.5 is obtained if we define f

to be the map which sends a to S1a.

3.15. A hypergroup without quasi-idempotents. Let S be a set satisfying

jSjb 3. For a; b a S we define

a � b :¼ S; aA b;

Snfag; a ¼ b:

�

Then ja � bj > 1 for any a; b a S, which implies ða � bÞ � c ¼ a � ðb � cÞ ¼ S for all

a; b; c a S. Thus ðS; �Þ is a multisemigroup. Obviously, S is a hypergroup and it

does not contain any quasi-idempotent.

4. Elementary properties of multisemigroups

In this section we provide multisemigroup analogues of some basic notions from

semigroup theory as well as record some basic properties of multisemigroups.

4.1. Ideals and Green’s relations. Let ðS; �Þ be a multisemigroup. A subset

I HS is called a left ideal (resp. right ideal, two-sided ideal ) provided that for any

a a I and s a S we have s � aH I (resp. a � sH I ; a � s; s � aH I ). For example,

for every a a S the set S1 � a is the smallest left ideal containing a, called the

principal left ideal generated by a. Similarly one has the principal right ideal

a � S1 and the principal two-sided ideal S1 � a � S1. We define the left pre-order

aL, the right pre-order aR and the two-sided pre-order aJ on S as follows: for

a; b a S set baL a if and only if S1 � bHS1 � a, baR a if and only if b � S1 H
a � S1, and baJ a if and only if S1 � b � S1 HS1 � a � S1.

Following [Gr], we define an equivalence relation L on S as the equivalence

relation induced byaL, i.e. aL b if and only if aaL b and baL a. Similarly we

define relations R and J (see also [Ha], [MM2]). We set H :¼ LBR and denote

by D the minimal equivalence relation containing both L and R. The relations

L, R, J, H and D are called Green’s relations. Obviously, DHJ. Note that

the equality L �R ¼ R �L (where � denotes the usual product of binary rela-

tions) which holds for any semigroup fails for multisemigroups in general, see

Subsection 5.5. For an element a a S we denote by La the L-class of S con-

taining a. We define Ra, Ha, Ja and Da similarly.

Example 6. Let ðS; �Þ be a semigroup and ðS; �LÞ be the corresponding multise-

migroup of left ideals defined in Subsection 3.5. For a a S we have S1a ¼
S1 �L a and hence the L-classes in ðS; �Þ and in ðS; �LÞ coincide. Any two-sided
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ideal of ðS; �Þ is, in particular, a left ideal, which implies that the J-classes in ðS; �Þ
and in ðS; �LÞ coincide as well. On the other hand, for any a a S we have

a �L S1 ¼ S1ðaS1Þ ¼ S1 �L a �L S1, which implies that the relations R and J for

ðS; �LÞ coincide with J in ðS; �Þ. Hence we also have D ¼ J and L ¼ H for

the multisemigroup ðS; �LÞ.

4.2. Rees quotients. Let ðS; �Þ be a multisemigroup and I HS a two-sided ideal

di¤erent from S (possibly empty). Consider the set T :¼ SnI and for a; b a T

set a � b :¼ ða � bÞnI . It is straightforward to verify that this turns ðT ; �Þ into a

multisemigroup. Making a parallel with the classical semigroup theory, we will

call the multisemigroup ðT ; �Þ the Rees quotient of S modulo the ideal I .

4.3. Zero elements. Let ðS; �Þ be a multisemigroup. An element z a S is called

a zero element provided that for every a a S we have a � z ¼ z � a ¼ z. A zero

element is necessarily unique, if exists, and therefore it is natural to denote this

unique zero element by 0.

Let ðS; �Þ be a multisemigroup with the zero 0 and suppose that SA f0g.
Then we claim that for any a; b a S we have a � bA j. Indeed, assume that

a � b ¼ j, then, on the one hand, ða � bÞ � 0 ¼ j, but, on the other hand,

a � ðb � 0Þ ¼ a � 0 ¼ 0, a contradiction. Consider the set T :¼ Snf0g and for

a; b a T set a � b :¼ ða � bÞnf0g. It is straightforward to verify that ðT ; �Þ is a

multisemigroup (see also Subsection 4.2).

Conversely, let ðS; �Þ be a multisemigroup without a zero element. Consider

the set S0 :¼ SA f0g, where we assume 0 B S, and for a; b a S0 define

a � b :¼ ða � bÞA f0g; a; b a S;

f0g; otherwise:

�

Isomorphism of multisemigroups is defined in the obvious way, that is, two multi-

semigroups ðX1; �1Þ and ðX2; �2Þ are called isomorphic, denoted X1 GX2, provided

that there is a bijection j : X1 ! X2 such that for any x; y a X1 we have

fjðsÞ : s a x �1 yg ¼ jðxÞ �2 jðyÞ:

Lemma 7. (a) The construct ðS0; �Þ is a multisemigroup with the zero 0.

(b) The set f0g is an ideal of ðS0; �Þ.
(c) We have ðS0; �Þnf0gG ðS; �Þ.

Proof. Let a; b; c a S0. If one of these elements equals 0, then both sides of (1.1),

with � in place of �, are equal to 0. If a; b; c a S, then both sides of (1.1), with �
in place of �, are equal to ða � b � cÞA f0g. This proves claim (a). Claims (b) and

(c) follow from the definition of �. r
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By the above one can consider multisemigroups without zero elements and

understand that the role of the zero element is played by the ‘‘undefined’’ mul-

tiplication, that is the case a � b ¼ j. This, in particular, unifies the notions of

‘‘simple’’ and ‘‘0-simple’’ multisemigroups and semigroups.

A multisemigroup ðS; �Þ will be called a quasi-semigroup provided that for any

a; b a S the product a � b is either empty or an element of S. Quasi-semigroups

can be identified with semigroups with zero elements: Given a semigroup with a

zero element we can take this zero element away and redefine the product to be

empty whenever it was zero to obtain a quasi-semigroup. Conversely, let ðS; �Þ
be a quasi-semigroup. Consider the set S0 :¼ SA f0g, where we assume 0 B S,

and for a; b a S0 define

ap b :¼ a � b; a; b a S; a � bA j;

f0g; otherwise:

�

Then ðS0; p Þ becomes a semigroup with a zero element. Note that the previous

construction ðS0; �Þ produces in this case a multisemigroup, not a semigroup.

4.4. Homomorphisms. Let ðS; �Þ and ðT ; �Þ be multisemigroups. A strong

homomorphism from S to T is a map j : S ! T such that for any a; b a S we have

fjðsÞ : s a a � bg ¼ jðaÞ � jðbÞ:

Comparing this with the notion of isomorphism defined in the previous subsec-

tion, we see that an isomorphism is just a bijective strong homomorphism. If

j : S ! T is a strong homomorphism, it extends uniquely to a quantale homo-

morphism j : 2S ! 2T by setting jðAÞ :¼ 6
a AAfjðaÞg for AHS. By definition,

j maps atoms of 2S to atoms of 2T . A homomorphism of atomic quantales which

maps atoms to atoms is called atomic. Conversely, any atomic homomorphism

from 2S to 2T gives, via restriction to atoms, a strong homomorphism from S

to T .

Let MSemi denote the category of multisemigroups with strong homomor-

phisms. By the above, this category is equivalent to the category QCABA 0

of quantale structures on complete atomic Boolean algebras with atomic

homomorphisms.

As multisemigroups are defined in a multi-setting anyway, it is natural to

extend the above as follows: Let ðS; �Þ and ðT ; �Þ be multisemigroups. A weak

homomorphism from S to T is a map j : S ! 2T such that for any a; b a S we

have

6
s A a�b

jðsÞ ¼ jðaÞ � jðbÞ:
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If j : S ! 2T is a weak homomorphism, it extends uniquely to a quantale homo-

morphism j : 2S ! 2T by setting jðAÞ :¼ 6
a AA jðaÞ for AHS. Conversely, any

quantale homomorphism from 2S to 2T gives, via restriction to atoms of S, a

weak homomorphism from S to T .

Let MSemi denote the category multisemigroups with weak homomorphisms.

By the above, this category is equivalent to the category QCABA of quantale

structures on complete atomic Boolean algebras with usual homomorphisms.

4.5. Submultisemigroups. A non-empty subset T of a multisemigroup ðS; �Þ is
called a submultisemigroup provided that a � bHT for all a; b a T . Any submul-

tisemigroup T is a multisemigroup with respect to the restriction of � to T .

Let ðS; �Þ be a multisemigroup and X HS a non-empty subset. Then the sub-

multisemigroup 3X4 of S generated by X is the minimal (with respect to inclusion)

submultisemigroup of S containing X . Alternatively, 3X4 is the intersection of all

submultisemigroups of S containing X .

Let ðS; �Þ be a multisemigroup and J a J-class of S. Set T ¼ 3J4. As J is

a J-class, TnJ is an ideal of T and hence we can consider the corresponding

Rees quotient TnðTnJÞ ¼ J. Note that J might not be a semigroup even if S

is a semigroup. This construction is a natural multisemigroup analogue of the

standard construction of the ‘‘semigroup associated with a J-class’’.

4.6. Congruences and quotients. Let ðS; �Þ be a multisemigroup. An equiva-

lence relation P on S is called a left congruence provided that the following

condition is satisfied: for any a; b; c a S such that aP b and for any s a c � a
and t a c � b there are s 0 a c � b and t 0 a c � a such that sP s 0 and tP t 0. A right

congruence is defined similarly (using a � c and b � c at appropriate places) and a

congruence is an equivalence relation which is both a left and a right congruence

(confer [Da]).

Let P be a congruence on ðS; �Þ. Then the usual argument shows that the

quotient set S=P has the natural structure of a multisemigroup with respect to

the induced multioperation � defined for A;B a S=P as follows:

A � B ¼ fC a S=Pj there exist a a A; b a B; c a C such that c a a � bg:

Mapping s a S to itsP-class s is obviously a strong homomorphism from the multi-

semigroup ðS; �Þ to the multisemigroup ðS=P; �Þ. We have A � B ¼ fs j s a A � Bg
for A;B a S=P, furthermore, for any a; b a S we have a � b ¼ fs j s a a � bg.

Let ðT ; �Þ be another multisemigroup and j : S ! T a strong homomorphism.

Then the equivalence relation KerðjÞ on S is easily seen to be a congruence.

Hence, as usual, congruences on multisemigroups are exactly kernels of strong

homomorphisms.
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Let P be a congruence on a multisemigroup ðS; �Þ. Then the map j which

sends a a S to itsP-class extends to the map j : 2S ! 2S, by jðAÞ ¼ 6
a AA jðaÞ.

It is straightforward to verify that this map is monotone, extensive, idempotent

and satisfies jðAÞ � jðBÞa jðA � BÞ. It follows that j is a quantic nucleus, see

[Ro], Chapter 3. The quotient quantale defined by j is a complete atomic Boolean

algebra with the atoms jðaÞ, a a S. Setting T ¼ S=P, it is easy to see that this

quotient quantale is just the quantale 2T associated to the multisemigroup T .

Conversely, assume that we are given a complete atomic Boolean algebra 2X

with a quantale structure on it and assume that j : 2X ! 2X is a nucleus such

that the quotient quantale is a complete atomic Boolean algebra 2Y . On the

multisemigroup X we define a relation P as follows: xP y if and only if

jðfxgÞ ¼ jðfygÞ. This relation is a congruence and the quotient multisemigroup

is Y , the multisemigroup of atoms of 2Y . It follows that congruences on multi-

semigroups are in a bijective correspondence with congruences on quantale struc-

tures on complete atomic Boolean algebras.

4.7. Representations of multisemigroups by binary relations. Regular repre-

sentations of multisemigroups by binary relations were constructed in [Ea] in the

following way: Let ðS; �Þ be a multisemigroup. Then � can be viewed as a binary

relation S � S ! S, in particular, every a a S defines a binary relation ta on S via

y ta x if and only if y a a � x (this corresponds to the usual convention that maps

operate from the right to the left). Our convention for multiplication � of binary

relations is as follows: for two binary relations t and s we have yðt � sÞx if and

only if there is z such that y t z and z s x. This allows us to identify binary rela-

tions on S with square matrices over B, whose rows and columns are indexed

by elements of S (i.e. a t b if and only if the intersection of row a and column b

of the matrix of t contains 1). Then for the usual sum þ and product � of binary

relations (i.e. sum and product of Boolean matrices) we have

ta � tb ¼
X
s A a�b

ts:

This is the left regular representation of ðS; �Þ. The right regular representation is

defined similarly.

This representation extends to a homomorphism from the quantale 2S to the

quantale BðSÞ of binary relations on S. Therefore it is natural to generalize this

and call a representation of ðS; �Þ (by binary relations) any quantale homomor-

phism from 2S to any quantale of binary relations.

Similarly, given an L-class L in S, for a a S we define the binary relation la
on L via y la x if and only if y a a � x. This extends, using addition of binary

relations, to a homomorphism from the quantale 2S to the quantale BðLÞ of
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binary relations on L. This is the representation of S associated to L (confer

[GM2], Section 10).

5. Strongly simple multisemigroups

5.1. Simple and strongly simple multisemigroups. A multisemigroup ðS; �Þ is

called simple if for any a a S we have S1 � a � S1 ¼ S, that is S has a unique

J-class (confer [JSM]). From now on, unless stated otherwise, we assume that S

does not contain a zero element (see Subsection 4.3). This excludes one special

case: when ðS; �Þ is a singleton group. In the latter case ðS; �Þ contains both the

identity and the zero elements and they coincide. This case is usually excluded

in the classical ring theory as well.

Recall the example of a two-element multisemigroup, ðS; �Þ, from Subsection

3.2. This multisemigroup is finite simple with a unique R-class but two di¤erent

L-classes which are, moreover, comparable with respect to aL. This shows a

significant di¤erence between multisemigroups and semigroups as no analogous

situation is possible for semigroups.

From now on, if the converse is not explicitly stated, by a minimal left ideal

of S we mean a minimal non-empty left ideal, that is a non-empty left ideal I of

S such that for any left ideal J of S the inclusion JJ I implies that J ¼ I or

J ¼ j. In a similar way we will also use the notions of a minimal right ideal and

a minimal (two-sided) ideal.

If ðS; �Þ is a multisemigroup, an element s a S will be called a quark provided

that S1 � s is a minimal left ideal and s � S1 is a minimal right ideal. For any

quark s we thus have Ls ¼ S1 � s and Rs ¼ s � S1. We denote by QðSÞ the set

of all quarks in ðS; �Þ. The set QðSÞ will be called the support of S. A simple

multisemigroup ðS; �Þ will be called strongly simple if S ¼ QðSÞ. For instance,

any completely simple semigroup is a strongly simple multisemigroup. Further-

more, the quasi-semigroup associated to a completely 0-simple semigroup as

described at the end of Subsection 4.3 is a strongly simple multisemigroup. A

special case of the last example is the singleton multisemigroup 0 :¼ ðf0g; �Þ,
where 0 � 0 ¼ j. Moreover, the multisemigroup 0 is very special because of the

following:

Proposition 8. Let ðS; �Þ be a multisemigroup. If ðS; �Þ contains only one H-class,

then either SG 0 or S is a hypergroup.

Proof. Assume that S ¼ Ha for every a a S. If jSj ¼ 1 then SG 0 (note that S

cannot be isomorphic to the trivial semigroup as the trivial semigroup contains

a zero element) and hence is a hypergroup. Suppose that jSj > 1. Let a a S.

We have a � S1 ¼ b � S1 C b, for any b a S, which implies that a � SISnfag.
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Assume that a � S ¼ Snfag. Then Snfag is a proper right ideal of S and hence for

any b a Snfag we have b � S1 HSnfag, a contradiction. Hence a � S ¼ S. Simi-

larly one shows that S � a ¼ S and the claim follows. r

For QðSÞ we have the following elementary property:

Proposition 9. Let ðS; �Þ be a multisemigroup with non-empty support. Then we

have:

(a) QðSÞ and every non-empty intersection of QðSÞ with a J-class of S is a

submultisemigroup.

(b) The multisemigroup QðSÞ is a disconnected union (as defined in Subsection

3.13) of its non-empty intersections with J-classes of S.

Proof. Let a; b a QðSÞ. Every element s a a � b belongs to S1 � bB a � S1 and

hence to QðSÞ. This shows that QðSÞ is a submultisemigroup and claim (a)

follows.

Let a; b a QðSÞ be such that a and b belong to di¤erent J-classes of S. If

s a a � b, then s a S1 � b and hence sL b by the minimality of S1 � b. At the

same time s a a � S1 and hence sR a by the minimality of a � S1. This implies

sJ b and sJ a which means that aJ b contradicting our assumptions. This im-

plies that a � b ¼ j and hence QðSÞ is the disconnected union of its intersections

with J-classes of S. r

Lemma 10. Let ðS; �Þ be a simple multisemigroup, I a non-empty left ideal of S

and J a non-empty right ideal of S. Then I B JA j and J � I A j.

Proof. The claim is obvious in the case jSj ¼ 1, so we assume that jSj > 1. Since

I B JI J � I , it is enough to show that J � I A j. Assume that this is not the case,

that is J � I ¼ j. Since S1 � J is a non-empty ideal of S, we have S ¼ S1 � J since

S is simple. Similarly S ¼ I � S1. But then

S � S ¼ S1 � J � I � S1 ¼ j:

This is, however, not possible if S is simple and jSj > 1. This completes the proof.

r

We say that a multisemigroup ðS; �Þ is of finite type provided that every (non-

empty) left ideal of S contains a minimal left ideal and every (non-empty) right

ideal of S contains a minimal right ideal. Clearly, every finite multisemigroup is

of finite type.

Corollary 11. Let ðS; �Þ be a simple multisemigroup of finite type. Then QðSÞA j.
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Lemma 12. Let ðS; �Þ be a multisemigroup and a; b a S. Then the following state-

ments are equivalent:

(a) a � b ¼ j.

(b) ðS1 � aÞ � ðb � S1Þ ¼ j.

(c) La �Rb ¼ j.

(d) There is s a La and t a Rb such that s � t ¼ j.

Proof. That (b) implies (c) is obvious. That (c) implies (d) is obvious. That

(a) implies (b) follows from the following computation, which uses associativity:

ðS1 � aÞ � ðb � S1Þ ¼ S1 � ða � bÞ � S1 ¼ j. The same argument shows that (d)

implies ðS1 � sÞ � ðt � S1Þ ¼ j and, as a a S1 � s and b a t � S1, we get that (d)

implies (a). r

Corollary 13. Let ðS; �Þ be a multisemigroup and H an H-class in S. Then the

following conditions are equivalent:

(i) H �HA j.

(ii) There exist s; t a H such that s � tA j.

(iii) For all s; t a H we have s � tA j.

Proof. Obviously, condition (iii) implies condition (i) and condition (i) implies

condition (ii). For a a H we have H ¼ LaBRa and the fact that condition (ii)

implies condition (iii) follows from Lemma 12. r

Proposition 14. Let ðS; �Þ be a multisemigroup and a; b a QðSÞ. Then

a � bHLbBRa. Moreover, if S is simple and H :¼ LaBRb, then a � bA j if

and only if H �HA j.

Proof. The first claim is obvious, so we prove the second one. Suppose a � bA j.
Since a; b a QðSÞ it follows that La, Lb are minimal left ideals and Ra, Rb are

minimal right ideals. By Lemma 10 we have HA j and hence there exists

y a H. We have y � yA j by Lemma 12 and thus H �HA j. Conversely, if

H �HA j, then a � bA j by Lemma 12. r

Proposition 15. Let ðS; �Þ be a multisemigroup such that QðSÞA j. Then QðSÞ
is a union of H-classes of S, the restrictionP of the relation H to QðSÞ is a con-

gruence on QðSÞ and QðSÞ=P is a quasi-semigroup with singleton H-classes.

Proof. If a a QðSÞ and bH a, then clearly b a QðSÞ, so QðSÞ is a union of H-

classes. Let a; b a QðSÞ be such that aP b. Then there exist a minimal left ideal

I and a minimal right ideal J of S such that a; b a I B J. Let further c a QðSÞ.
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Then there exist a minimal left ideal I 0 and a minimal right ideal J 0 of S such that

c a I 0B J 0. But then we have both a � cH I 0B J and b � cH I 0B J, which implies

that P is a right congruence on QðSÞ. That P is a left congruence is proved

similarly. Hence P is a congruence on QðSÞ. The elements of QðSÞ=P can be

identified with pairs ðI ; JÞ, where I is a minimal left ideal in S and J is a minimal

right ideal in S such that I B JA j (the pair ðI ; JÞ corresponds to I B J). The

above also shows that the multiplication in QðSÞ=P is given by

ðI ; JÞ � ðI 0; J 0Þ ¼ ðI 0; JÞ; ðI B JÞ � ðI 0B J 0ÞA j;

j; otherwise:

�

This is obviously a quasi-semigroup with singleton H-classes. r

5.2. Structure of strongly simple multisemigroups. Let ðS; �Þ be a strongly

simple multisemigroup. Then S is both, the (disjoint) union of its minimal left

ideals and the (disjoint) union of its minimal right ideals. At the same time, if S

is simple and every element of S generates a minimal left and a minimal right

ideal, then S is strongly simple. Furthermore, S1 � a ¼ La and a � S1 ¼ Ra for

any a a S. In this subsection we show how the results of the previous subsection

can be strengthened in the case of strongly simple multisemigroups. It turns

out that hypergroups arise naturally and play a very important role in this case

(similar to the role of group H-classes for completely 0-simple semigroups).

Theorem 16 (Structure of strongly simple multisemigroups). Let ðS; �Þ be a

strongly simple multisemigroup.

(a) For any a; b a S we have LaBRbA j.

(b) If H is an H-class in S, then either H �H ¼ j or H is a hypergroup.

(c) For a; b a S we have a � bA j if and only if LaBRb is a hypergroup.

(d) Assume SZ 0. Then every L-class and every R-class in S contains at least

one hypergroup H-class.

(e) Let a; b a S be such that aR b and let s a S1 be such that b a a � s. Then the

multivalued map x 7! x � s is surjective from La to Lb and preserves both

R- andH-classes, that is, for anyH-class HHLa we have H � s is anH-class

in Lb and the two H-classes H and H � s are contained in the same R-class.

(f ) Assume SZ 0. Let I be a minimal left ideal of S and J a minimal right ideal

of S. Then I B J ¼ J � I .
(g) H is a congruence on S and the quasi-semigroup S=H is bisimple (i.e. contains

a unique D-class) with singleton H-classes.

Proof. Claim (a) is a special case of Lemma 10.
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Let us prove claim (b). Let H be an H-class in S and assume that H �HA j.
Let L and R be the L-class and the R-class whose intersection is H. We have

that L � R is an ideal of S and is non-empty (since H �HA j). Hence

L � R ¼ S. We first show that H �H ¼ H. Let a a H. Since L � R ¼ SKH, it

follows that a a b � c for some b a L and c a R. But b � cJ b � S1BS1 � c. Since

the latter is an H-class and b � cBHA j then H ¼ b � S1BS1 � c. Since also

H ¼ S1 � bB c � S1 it follows that b a H and c a H. Therefore H ¼ H �H, as

required. Let a a H. Show that H � a ¼ H. Let c a H. As H ¼ H �H, there

are some x; y a H such that c a x � y. Now aR x implies x a a � t for some

t a S1. We then have c a x � yJ a � t � y. So c a a � L (because t � yJL). We

have shown that HJ a � L. So H ¼ a � L since clearly a � LJH. Observe that

L � a is a non-empty left ideal and so L � a ¼ L. Hence we have

H � a ¼ ða � LÞ � a ¼ a � ðL � aÞ ¼ a � L ¼ H:

Similarly we verify that a �H ¼ H and claim (b) follows.

Claim (c) follows from claim (b) and Proposition 14.

We prove claim (d) for L-classes (for R-classes the proof is similar). The case

jSj ¼ 1 cannot occur by our assumptions that S has no zero element and SZ 0.

Consider the case jSj > 1. Then for any di¤erent a; b a S we have S1 � a � S1 ¼
S1 � b � S1 C b, which implies S � SA j, in particular, there exist s; t a S such

that s � tA j. Set H :¼ LsBRt. Claim (c) implies that H is a hypergroup H-

class in Ls. Let L be an L-class di¤erent from Ls, x a LBRt and y a H. Then

yAx and yR x and hence there is u a S such that y a x � u. Consider

H 0 ¼ S1 � xB u � S1, which is an H-class by Lemma 10. Proposition 14 along

with claim (b) imply that H 0 is a hypergroup. Claim (d) follows.

In the setup of claim (e) we have La � sA j and hence La � s is a left ideal of

S contained in Ls ¼ Lb. Then La � s ¼ Lb by minimality of Lb. If c a Lb is

such that c a x � s, then cR x and hence the map preserves R-classes and, conse-

quently, H-classes. This proves claim (e).

To prove claim (f ) we note that J � I A j by Lemma 10 and J � I H I B J. Let

a a J and b a I be such that a � bA j. Then claim (e) implies that Ha � b ¼ I B J.

This proves claim (f ).

Finally, claim (g) follows from Proposition 15 and claims (c) and (d). r

5.3. Example: a finite simple multisemigroup with nontrivial inclusions of
principal one-sided ideals. Let ðX ;aÞ be a partially ordered set possessing a

unique minimal element y. Consider the rectangular band T ¼ X � X . For

a a X let a# ¼ fx a X : xa ag be the downward closure of a. We define the func-

tion f : T ! 2T by setting

f ða; bÞ ¼ a# � b#: ð5:1Þ
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It is easy to check that the function f satisfies the equality f
�
f ðxÞ f ðyÞ

�
¼

f ðxÞ f ðyÞ and therefore S ¼ ðT ; �Þ with ða; bÞ � ðc; dÞ ¼ f ða; bÞ f ðc; dÞ is a multise-

migroup (see Subsection 3.14). Moreover, one checks that S is a simple multise-

migroup and QðSÞ ¼ fðy; yÞg. Clearly QðSÞ is a strongly simple multisemigroup.

Note that ða; bÞ � S1 is a minimal right ideal if and only if a ¼ y; S1 � ða; bÞ is a
minimal left ideal if and only if b ¼ y. Let a1 < � � � < am be a chain in X and

c a X be any element. Then we have a chain of principal left ideals

S1 � ðc; a1ÞWS1 � ðc; a2ÞW � � �WS1 � ðc; amÞ: ð5:2Þ

The above example can be generalized as follows. Let I be a set and let ðXi;aiÞ,
i a I , be partially ordered sets each possessing a unique minimal element yi,

i a I . We assume that the sets Xi are pairwise disjoint. Let Y ¼ fyi : i a Ig.
Let X ¼ 6

i A I Xi. We define on X the partial ordera by setting xa y provided

that there is i such that x; y a Xi and xai y. Consider the rectangular band

T ¼ X � X and define f : T ! 2T as given in (5.1).

The map f gives a simple multisemigroup S ¼ ðT ; �Þ according to Subsection

3.14. The submultisemigroup QðSÞ of S is equal to Y � Y and is a rectangular

band, hence is a strongly simple multisemigroup (in fact, a semigroup); ða; bÞ � S1

is a minimal right ideal if and only if a a Y ; S1 � ða; bÞ is a minimal left ideal if

and only if b a Y . Let a1 < � � � < am be a chain in X . Let c a Z be any element.

Then (5.2) gives a chain of left ideals.

5.4. Example: a finite simple multisemigroup whose support is not simple. Let

X ¼ f1; 2g with the order given by 1 < 2. Let S ¼ X � X . Let ðS; �Þ ¼ SðXÞ be
the multisemigroup constructed in Subsection 5.3. That is, the multiplication � on

S is given by the map � : S � S ! 2S:

ði; jÞ � ðk; lÞ ¼ i# � l#:

Let T ¼ SA ð1 0; 1 0Þ (here 1 0 is an element di¤erent from both 1 and 2). Define

the map p : T ! S by setting pðaÞ ¼ a, if a a S, and p
�
ð1 0; 1 0Þ

�
¼ ð1; 1Þ. Let

� : T � T ! 2T be defined as follows:

x � y ¼
pðxÞ � pðyÞ; x a fð1; 1Þ; ð1 0; 1 0Þ; ð1; 2Þg and

y a fð1; 1Þ; ð1 0; 1 0Þ; ð2; 1Þg;�
pðxÞ � pðyÞ

�
A ð1 0; 1 0Þ; otherwise:

8><
>:

Lemma 17. ðT ; �Þ is a multisemigroup.

Proof. Observe that we have ð1; 1Þ � x ¼ ð1 0; 1 0Þ � x and x � ð1; 1Þ ¼ x � ð1 0; 1 0Þ for
any x a T .
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Let x; y; z a T . We have to verify that ðx � yÞ � z ¼ x � ðy � zÞ. Note that

ð1; 1Þ a s � t for any s; t a T . It follows that ðx � yÞ � z ¼
�
pðxÞ � pðyÞ

�
� z and,

similarly, x � ðy � zÞ ¼ x �
�
pðyÞ � pðzÞ

�
.

By the definition,
�
pðxÞ � pðyÞ

�
� z equals either

�
pðxÞ � pðyÞ

�
� pðzÞ or

��
pðxÞ

� pðyÞ
�
� pðzÞ

�
A fð1 0; 1 0Þg. Let us establish when it equals

�
pðxÞ � pðyÞ

�
� pðzÞ.

From the definition we have that this happens if and only if z a fð1; 1Þ; ð1 0; 1 0Þ;
ð2; 1Þg and pðxÞ � pðyÞJ fð1; 1Þ; ð1; 2Þg. The latter inclusion holds if and only if

x a fð1; 1Þ; ð1 0; 1 0Þ; ð1; 2Þg.
Similarly, x �

�
pðyÞ � pðzÞ

�
equals either pðxÞ �

�
pðyÞ � pðzÞ

�
or
�
pðxÞ �

�
pðyÞ �

pðzÞ
��

A fð1 0; 1 0Þg and one shows that x �
�
pðyÞ � pðzÞ

�
¼ pðxÞ �

�
pðyÞ � pðzÞ

�
if

and only if x a fð1; 1Þ; ð1 0; 1 0Þ; ð1; 2Þg and z a fð1; 1Þ; ð1 0; 1 0Þ; ð2; 1Þg. The equality

ðx � yÞ � z ¼ x � ðy � zÞ follows. r

It is easy to check that T is a simple multisemigroup. For x a T we have

x � T 1 ¼
�
pðxÞ � S1

�
A fð1 0; 1 0Þg, T 1 � x ¼

�
S1 � pðxÞ

�
A fð1 0; 1 0Þg. Furthermore,

QðTÞ ¼ fð1; 1Þ; ð1 0; 1 0Þg, ð1; 1Þ � T 1BT 1 � ð1; 1Þ ¼ fð1; 1Þ; ð1 0; 1 0Þg. Both ð1; 1Þ
and ð1 0; 1 0Þ belong to the same H-class of T . At the same, QðTÞ �QðTÞ ¼
fð1; 1Þg and hence QðTÞ is not a hypergroup. Clearly, ð1; 1Þ and ð1 0; 1 0Þ are not

in the same J-class of QðTÞ and so QðTÞ is not simple.

5.5. Example: a finite simple multisemigroup for whichR N LAL NR. Let

X ¼ f1; 2g and S ¼ X � X . Let ðS; �Þ ¼ SðXÞ be the multisemigroup from Sub-

section 5.4. We have ði; jÞ � ðk; lÞ � ðp; qÞ ¼ i# � q#.
Let T ¼ Snfð2; 2Þg. We define a map T � T ! 2T , ðx; yÞ 7! x � y, by

ði; jÞ � ðk; lÞ ¼
�
ði; jÞ � ðk; lÞ

�
nfð2; 2Þg:

Lemma 18. ðT ; �Þ is a multisemigroup.

Proof. Let ði; jÞ; ðk; lÞ; ðp; qÞ a T . Observe that if ði; jÞ � ðk; lÞ C ð2; 2Þ, then

ði; jÞ � ðk; lÞ C ð2; 1Þ and hence
�
ði; jÞ � ðk; lÞ

�
� ðp; qÞ ¼

��
ði; jÞ � ðk; lÞ

�
nfð2; 2Þg

�
�

ðp; qÞ. Using this we calculate

�
ði; jÞ � ðk; lÞ

�
� ðp; qÞ ¼

���
ði; jÞ � ðk; lÞ

�
nfð2; 2Þg

�
� ðp; qÞ

�
nfð2; 2Þg

¼
��
ði; jÞ � ðk; lÞ

�
� ðp; qÞ

�
nfð2; 2Þg:

Similarly we show that

ði; jÞ �
�
ðk; lÞ � ðp; qÞ

�
¼
�
ði; jÞ �

�
ðk; lÞ � ðp; qÞ

��
nfð2; 2Þg:

Associativity of � follows. r
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It is easy to see that T is simple and QðTÞ ¼ fð1; 1Þg. Further, it is easy to

calculate Green’s relations on T . We have Rð1;1Þ ¼ fð1; 1Þ; ð1; 2Þg and Rð2;1Þ ¼
fð2; 1Þg. Also Lð1;1Þ ¼ fð1; 1Þ; ð2; 1Þg and Lð1;2Þ ¼ fð1; 2Þg. We see that ð1; 2Þ
R ð1; 1Þ L ð2; 1Þ so that

�
ð1; 2Þ; ð2; 1Þ

�
a R �L. But since Lð1;2ÞBRð2;1Þ ¼ j,

we have
�
ð1; 2Þ; ð2; 1Þ

�
B L �R. In particular, L �RAR �L. Note that we

always have L �R ¼ R �L for semigroups.

5.6. Simple multisemigroups with identity. A simple finite semigroup with

identity is a group. For multisemigroups the situation is much more complicated.

Lemma 19. Let ðS; �Þ be a strongly simple multisemigroup with identity. Then S

is a hypergroup.

Proof. Since S is strongly simple, S ¼ S � 1 is a minimal left ideal and S ¼ 1 � S is

a minimal right ideal. Hence S � a ¼ S and a � S ¼ S for any a a S and thus S

is a hypergroup. r

One could expect that even a simple finite multisemigroup with identity should

be a hypergroup. Unfortunately, this is not the case. Indeed, consider S ¼
f1; a; b; tg with the multioperation � defined by the following Cayley table:

� 1 a b t

1 1 a b t

a a a S fa; tg
b b t b t

t t t fb; tg t

It is straightforward to verify that ðS; �Þ is a multisemigroup. This multise-

migroup is simple; it contains an identity element; it consists of idempotents; it

has a unique minimal left ideal, namely fa; tg; it has a unique minimal right ideal,

namely fb; tg; we have QðSÞ ¼ ftg and S is not a hypergroup.

Below we collect some properties of simple multisemigroups of finite type with

identity:

Proposition 20. Let ðS; �Þ be a simple multisemigroup of finite type with identity.

(a) If I is a non-empty left ideal of S and J is a non-empty right ideal of S, then

I BR1A j and JBL1A j.

(b) If I and I 0 are two non-empty left ideals of S, then I � I 0A j.

(c) If J and J 0 are two non-empty right ideals of S, then J � J 0A j.
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Proof. Since S contains the identity, it contains a unique (possibly empty) maxi-

mal proper right ideal (the union of all right ideals of S which do not contain the

identity), call it K. Clearly, R1 ¼ SnK.

Let I be a non-empty left ideal of S. Then X :¼ I � S is a non-empty two-

sided ideal of S since S contains the identity and hence X ¼ S since S is simple.

If I HK, then X HK and hence X cannot be equal to S, a contradiction. There-

fore I intersects SnK ¼ R1 non-trivially. Similarly one shows that every non-

empty right ideal intersects L1 non-trivially, which proves claim (a).

Let I and I 0 be two non-empty left ideals in of S. Then from the previous

paragraph we have: ðI � I 0Þ � S ¼ I � ðI 0 � SÞ ¼ I � S ¼ S, thus I � I 0A j. This

proves claim (b). Claim (c) is proved similarly to claim (b). r

5.7. A Kazhdan-Lusztig example in type B. In Subsection 5.2 we established

many elementary properties of strongly simple multisemigroups that are similar

to properties of 0-bisimple semigroups. One could observe that the multise-

migroup version of Green’s lemma does not assert that c 7! c � x is a bijection

from H to H � x. This turns out to be false for multisemigroups in general.

Here we give an explicit example.

Let W ¼ fe; s; t; st; ts; sts; tst; ststg be a Weyl group of type B2 (the generators

s and t satisfy s2 ¼ t2 ¼ e and stst ¼ tsts) and ðW ; �Þ be the corresponding

Kazhdan-Lusztig multisemigroup as explained in Subsection 3.9. Denote by T

the Rees quotient of the submultisemigroup Wnfeg by the zero element fststg.
Then a direct computation shows that T is a strongly simple multisemigroup

with the following Cayley table:

� s t st ts sts tst

s s st st fs; stsg sts st

t ts t ft; tstg ts ts tst

st fs; stsg st st fs; stsg fs; stsg st

ts ts ft; tstg ft; tstg ts ts ft; tstg
sts sts st st fs; stsg s st

tst ts tst ft; tstg ts ts t

It follows that T has the following egg-box diagram (in which all H-classes are

hypergroups):

Ls Lt

Rs fs; stsg fstg
Rt ftsg ft; tstg:
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6. The number of multisemigroups

In this section we compare asymptotic properties of associativity for ordinary

binary operations and for multivalued binary operations.

6.1. The number of semigroups. Let n be a positive integer and Nn :¼
f1; 2; . . . ; ng. A binary operation on Nn corresponds to the choice of a square

n� n matrix with coe‰cients in Nn. Let Matn�nðNnÞ be the set of all such

matrices. Clearly, jMatn�nðNnÞj ¼ nn2 . Let X denote the subset of Matn�nðNnÞ
which consists of all matrices corresponding to associative binary operation. By

[KRS], Equation (3.6), we have

jX j ¼ n�
2eþ oð1Þ

�
ln n

 !n2

and hence, dividing by nn2 , we obtain the following corollary, which says that

‘‘almost all’’ binary operations are not associative:

Corollary 21. We have
jX j
nn2

! 0 when n ! l.

6.2. The number of multisemigroups. A multivalued binary operation on Nn

corresponds to the choice of a square n� n matrix with coe‰cients in 2Nn . Let

Matn�nð2NnÞ be the set of all such matrices. Clearly, jMatn�nð2NnÞj ¼ 2n3 . Let Y

denote the subset of Matn�nð2NnÞ which consists of all matrices corresponding to

associative multivalued binary operation (i.e. those satisfying (1.1)). Let Y 0 denote
the subset of Matn�nð2NnÞ which consists of all matrices corresponding to multi-

valued binary operation defining a hypergroup. The following claim, which

says that ‘‘almost all’’ multivalued binary operations are associative, is in striking

contrast with Corollary 21:

Theorem 22. We have both
jY j
2n3

! 1 and
jY 0 j
2 n3

! 1 when n ! l.

Proof. Denote by Z the subset of Matn�nð2NnÞ which consists of all matrices

such that the corresponding multivalued binary operation � for every a; b; c a Nn

satisfies

6
s A a�b

s � c ¼ 6
t A b�c

a � t ¼ Nn:

Then ZHY 0 HY and hence it is enough to show that
jZj
2n3

! 1 when n ! l.

It is enough to show that for the subset U of Matn�nð2NnÞ which consists of all

matrices such that the corresponding multivalued binary operation � for every

a; b; c a Nn satisfies

6
t A b�c

a � t ¼ Nn; ð6:1Þ
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we have
jU j
2n3

! 1 when n ! l. Indeed, the latter, by symmetry, also implies that
jU 0j
2n3

! 1 for n ! l, where U 0 denotes the subset of Matn�nð2NnÞ corresponding to

all operations � satisfying

6
s A a�b

s � c ¼ Nn

for all a; b; c a Nn, so that we have
jU BU 0j

2n3
! 1 for n ! l.

Given a multivalued binary operation � on Nn, with each a a Nn we can asso-

ciate, similarly to Subsection 4.7, a binary relation ta on Nn defined as follows:

i ta j if and only if i a a � j. Let f denote the full relation on Nn. Then (6.1) is

equivalent to the fact that tatb ¼ f for all a; b a Nn.

To prove the latter claim we can adopt the classical argument from [KR],

Theorem 4. Our choice of an element M ¼ ðMi; jÞ of Matn�nð2NnÞ corresponds

to a random choice of n binary relations sa, a a Nn, on Nn (here i sa j if and only

if i a Ma; j). We claim that the probability of the random event that the product

of any two of these n relations equals the full relation tends to 1 when n tends to

infinity ([KR], Theorem 4 claims this just for two instead of n random binary

relations). Indeed, the probability that the product of two random elements of

the two-element Boolean algebra is zero equals 3
4 . This implies that the probabil-

ity that the element in a fixed entry in a product of two random Boolean n� n

matrices is zero is at most 3
4

� �n
. We have n random elements sa, a a Nn. We can

form n2 pairs ðsa; sbÞ, a; b a Nn, from these elements. The Boolean n� n matrix

corresponding to the product sasb has n2 entries, each of which is zero with

probability at most 3
4

� �n
. Hence the probability that at least one of these entries

in at least one of the products of the form sasb is zero is at most n4 3
4

� �n
. Since

n4 3
4

� �n ! 0 for n ! l, the claim follows. r

7. Nilpotent multisemigroups

In this section we establish some basic fact about nilpotent multisemigroups

(see e.g. [GM1], [GM2] for more advanced semigroup analogues).

7.1. Nilpotent multisemigroups and their characterization. Let ðS; �Þ be a

multisemigroup. As usual, for an element s a S and k a N we write s k for the

product s � s � � � � � s of length k. Similarly, for X HS we write X k for the union

of all x1 � x2 � � � � � xk, where xi a X for all i. An element s a S is said to be

nilpotent provided that s k ¼ j for some k. The multisemigroup S is called nilpo-

tent provided that Sk ¼ j for some k. The minimal such k is called the nilpotency

degree of S. Similarly, a subset X HS is called nilpotent provided that X k ¼ j
for some k (in particular, the empty set is nilpotent). The notion of nilpotent

74 G. Kudryavtseva and V. Mazorchuk



multisemigroups generalizes that of nilpotent semigroups. Nilpotent semigroups

correspond, via the construction given at the end of Subsection 4.3, to nilpotent

quasi-semigroups.

For a multisemigroup ðS; �Þ define the action digraph G ¼ GS as follows: the

set of vertices of G is S and for s; t a S (not necessarily di¤erent) we have an

oriented edge s ! t if and only if there exists a a S such that t a a � s.

Proposition 23. Let ðS; �Þ be a multisemigroup.

(a) The multisemigroup ðS; �Þ is nilpotent if and only if there is m a N such that

the length of any directed path in G is smaller than m.

(b) If ðS; �Þ is nilpotent, then the nilpotency degree of S is exactly the length of the

longest directed path in G minus two.

Proof. Let ðS; �Þ be nilpotent of nilpotency degree k and s0 ! s1 ! � � � ! sm
be an oriented path in G of length m. Then there exist ai such that si a ai � si�1,

i ¼ 1; 2; . . . ;m. This means that am � am�1 � � � � � a1 � s0A j and hence mþ 1 < k.

On the other hand, if the length of any oriented path in G is at most m, then for

any mþ 2 elements s1; . . . ; smþ2 a S we have smþ2 � smþ1 � � � � � s1 ¼ j and hence

S is nilpotent of nilpotency degree at most mþ 2. This implies both claims of

the proposition. r

Corollary 24. Let ðS; �Þ be a nilpotent multisemigroup. Then all Green’s relations

on S coincide with the equality relation.

Proof. This follows directly from the fact that G does not have any oriented

cycles. The latter is a direct consequence of Proposition 23. r

7.2. Finite nilpotent multisemigroups. Similarly to the case of finite nilpotent

semigroups (see [Ar], Chapter 7, Fact 2.30), for finite nilpotent multisemigroups

we have:

Proposition 25. A finite multisemigroup ðS; �Þ is nilpotent if and only if every ele-

ment of S is nilpotent.

Proof. The ‘‘only if ’’ part is obvious, so we prove the ‘‘if ’’ part. Assume that

every element of S is nilpotent. We claim that the digraph G does not have

oriented cycles (in particular, loops). Indeed, assume that this is not the case and

let s1 ! s2 ! � � � ! sk ! skþ1 ¼ s1 be an oriented cycle in G. For i ¼ 1; 2; . . . ; k
let ai a S be such that siþ1 a ai � si. Then there exists t a ak � ak�1 � � � � � a1 such

that s1 a t � s1. This implies that s1 a tn � s1 for any n a N and hence t is not

nilpotent, a contradiction.
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As S is finite and G does not have oriented cycles, then the length of any

oriented path in G is strictly smaller than jSj. This means that S is nilpotent by

Proposition 23. r

Finite nilpotent semigroups can be characterized as finite semigroups with

unique idempotent which, moreover, is the zero element. Equivalently, a finite

semigroup ðS; �Þ is nilpotent if and only if for any non-singleton subsemigroup T

of S we have jT � T j < jT j. The following gives an analogue of the latter charac-

terization of nilpotency for multisemigroups.

Theorem 26. A finite multisemigroup ðS; �Þ is nilpotent if and only if for any

(non-empty) submultisemigroup T of S we have jT � T j < jT j (or, equivalently,

T � T AT).

Proof. If S is nilpotent and T is a submultisemigroup of S, then T is nilpotent as

well. However, T � T ¼ T implies T k ¼ T for all k which contradicts nilpotency

of T . Therefore T � T AT .

If S is not nilpotent, we can use the fact that S is finite and choose some non-

nilpotent submultisemigroup T of S which is minimal with respect to inclusion.

We claim that T � T ¼ T . If this were not the case, then U :¼ T � T A j would

be a submultisemigroup of S properly contained in T . Hence U must be nil-

potent by minimality of T . Therefore Uk ¼ j for some k, which implies that

ðT � TÞk ¼ T 2k ¼ j, a contradiction. r

7.3. The radical. Let ðS; �Þ be a multisemigroup. Following [GM1], by the

radical RðSÞ of S we will mean the set

RðSÞ :¼ fs a S jS1 � s � S1 is nilpotentg:

Then RðSÞ, which might be empty, is a union of two-sided ideals of S and hence is

a two-sided ideal of S.

Lemma 27. Let S be a finite multisemigroup.

(a) The set RðSÞ is the maximal (with respect to inclusion) nilpotent two-sided

ideal of S.

(b) The multisemigroup S is nilpotent if and only if S ¼ RðSÞ.

Proof. For s a RðSÞ we have that S1 � s � S1 is nilpotent, in particular, s is

nilpotent. Hence every element of RðSÞ is nilpotent and thus the fact that RðSÞ
is nilpotent follows from Proposition 25 and the fact that RðSÞ is finite (since S is

finite).
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On the other hand, if I is a nilpotent two-sided ideal of S and s a I , then

S1 � s � S1 H I is nilpotent and hence s a RðSÞ. Claim (a) follows. Claim (b)

follows from claim (a). r

Our next observation is the following:

Proposition 28. Let S be a finite multisemigroup and T a nilpotent submultise-

migroup of S.

(a) The set T ARðSÞ is a nilpotent submultisemigroup of S.

(b) If T is maximal with respect to inclusion, then RðSÞHT.

Proof. That T ARðSÞ is submultisemigroup follows directly from the facts that T

is a submultisemigroup and RðSÞ is a two-sided ideal of S. That T ARðSÞ is

nilpotent follows from Proposition 25. This proves claim (a). Claim (b) follows

from claim (a). r

Corollary 29. Let S be a finite multisemigroup.

(a) If RðSÞ is a maximal nilpotent submultisemigroup of S, in particular, if

S ¼ RðSÞ, then RðSÞ is the unique maximal nilpotent submultisemigroup of S.

(b) If RðSÞ is not a maximal nilpotent submultisemigroup of S, then the map

X 7! XnRðSÞ is a bijection from the set of all maximal nilpotent submultise-

migroups of S to the set of all maximal nilpotent submultisemigroups of the

Rees quotient SnRðSÞ.

Proof. Claim (a) follows directly from Proposition 28(b).

To prove claim (b), let X be a maximal nilpotent submultisemigroup of S.

Then X ARðSÞ and XnRðSÞ is a nilpotent submultisemigroup of SnRðSÞ. As-

sume Y is a nilpotent submultisemigroup of SnRðSÞ containing XnRðSÞ. Then

from Lemma 27 it follows that Y ARðSÞ is a nilpotent submultisemigroup of S.

Therefore Y ¼ XnRðSÞ by maximality of X , that is XnRðSÞ is maximal.

Conversely, let Y be a maximal nilpotent submultisemigroup of SnRðSÞ.
Then, similarly to the above, Y ARðSÞ is a nilpotent submultisemigroup of S. If

X is a nilpotent submultisemigroup of S containing Y ARðSÞ, then XnRðSÞ is a
nilpotent submultisemigroup of SnRðSÞ containing Y . Hence X ¼ Y ARðSÞ by
maximality of Y . This proves claim (b). r

7.4. Maximal nilpotent submultisemigroups of strongly simple multisemi-
groups. Let ðS; �Þ be a strongly simple multisemigroup which is not isomorphic

to the singleton multisemigroup 0. Recall that H is a congruence on S and that

S=H is a quasi-semigroup.
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Proposition 30. The canonical strong surjective homomorphism j : S !! S=H in-

duces a bijection between the set of maximal (with respect to inclusion) nilpotent

submultisemigroups of S and maximal nilpotent sub-quasi-semigroups of S=H.

This bijection preserves nilpotency degree.

Proof. From Lemma 12 it follows that for a; b a S we have a � bA j if and only

if Ha �HbA j. Furthermore, from Proposition 14 it also follows that Ha �Hb,

when non-empty, is contained in a single H-class of S, namely RaBLb. Hence,

by induction, for a1; a2; . . . ; ak a S we have a1 � a2 � � � � � ak A j if and only if

Ha1 �Ha2 � � � � �Hak A j, moreover, Ha1 �Ha2 � � � � �Hak , when non-empty, is

contained in a single H-class of S.

Consequently, if T is a nilpotent submultisemigroup of S, then T 0 :¼ 6
t AT Ht

is a nilpotent submultisemigroup of S of the same nilpotency degree, moreover,

T HT 0. Hence any maximal nilpotent submultisemigroup of S is a union of

H-classes of S.

If T is a nilpotent submultisemigroup of S, then jðTÞ is a nilpotent sub-quasi-

semigroup of S=H (since j is a homomorphism), moreover, the above implies

that jðTÞ has the same nilpotency degree as T . Conversely, if K is a nilpotent

sub-quasi-semigroup of S=H, then the above observations imply that j�1ðKÞ is

a nilpotent submultisemigroup of S of the same nilpotency degree as K . Note

also that j�1ðKÞ is a union of H-classes of S by construction. We have

j�1
�
jðTÞ

�
¼ T 0 in the above notation and also we have j

�
j�1ðKÞ

�
¼ K , in par-

ticular, j�1 maps maximal nilpotent sub-quasi-semigroups of S=H to maximal

nilpotent submultisemigroups of S. The above also implies that if T is a max-

imal nilpotent submultisemigroup of S, then jðTÞ is a maximal nilpotent sub-

quasi-semigroup of S=H. Thus the first claim of the proposition follows. The

second claim follows from the above observations that both j and j�1 preserve

nilpotency degree. r

Let ðS; �Þ be a finite strongly simple multisemigroup, I1; . . . ; Im—the list of

all L-classes, and J1; . . . ; Jn—the list of all R-classes in S. Let IðSÞ denote the

Boolean matrix ðaijÞ, i ¼ 1; . . . ;m, j ¼ 1; . . . ; n, defined as follows:

aij ¼
1; Ii B Jj is a hypergroup;

0; otherwise:

�

The matrix IðSÞ is called the incidence matrix of S. Recall that SZ 0. Then, by

Theorem 16, all rows and columns of S are non-zero. Assume that IðSÞ has the
form

Ek B

A A � B

 !
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for some positive integer k, where Ek is the identity matrix and A and B are

Boolean matrices such that each row of A is not zero and each column of B

is not zero, and A � B is the Boolean matrix which is the product of A and B. In

this case a classification of maximal nilpotent sub-quasi-semigroups of S=H

can be found in [GM1], Subsection 6.10. In particular, there are exactly k! such
sub-quasi-semigroups and each of them has nilpotency degree k.
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