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Abstract. In this paper, we discuss the determination of the exactly synchronizable state
to a coupled system of wave equations. In a special case, the exactly synchronizable state
can be uniquely determined whatever the boundary controls would be chosen. In the gen-
eral case, the determination of the exactly synchronizable state depends on the boundary
controls which realize the exact synchronization, however, we can give an estimate to the
di¤erence between the exactly synchronizable state and the solution to a problem indepen-
dent of boundary controls.
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§1. Introduction

The phenomenon of synchronization was first observed by Huygens in 1665 [4].

The theoretical research on synchronization phenomena dates back to Fujisaka

and Yamada’s study of synchronization for coupled equations in 1983 [2], and

since then the previous studies focused only on systems described by ODEs. The

exact synchronization in the PDEs case was first studied for a coupled system of

wave equations both for the higher-dimensional case in the framework of weak

solutions by Li-Rao [5], [6], and for the 1-D case in the framework of classical

solutions in Li-Rao-Hu [3], [7].

Let WHRn be a bounded open set with smooth boundary G. Let G ¼ G1AG0

be a partition of G such that G1BG0 ¼ j: Assume that the usual geometric
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control condition (see Bordos-Lebau-Rauch [1]) is satisfied, for instance, we as-

sume that there exists x0 a Rn such that, setting m ¼ x� x0, we have

ðm; nÞ > 0; Ex a G1; ðm; nÞa 0; Ex a G0; ð1:1Þ

where n is the unit outward normal vector and ð� ; �Þ denotes the inner product in

Rn (cf. Lions [9]).

Let

U ¼ ðuð1Þ; . . . ; uðNÞÞT : ð1:2Þ

Consider the following coupled system of wave equations with Dirichlet boundary

controls:

U 00 � DU þ AU ¼ 0 in W;

U ¼ 0 on G0;

U ¼ DH on G1;

t ¼ 0: U ¼ U0; U 0 ¼ U1;

8>>><
>>>:

ð1:3Þ

where A and D are matrices of order N with constant elements, and

H ¼ ðhð1Þ; . . . ; hðNÞÞT ð1:4Þ

is the boundary control.

Di¤erently from the statement given in Li-Rao [5], a control matrix D is added

to the boundary condition on G1. This way is more flexible since one can adjust

the number of boundary controls by changing the rank of D correspondingly.

Moreover, the introduction of D enables us to precisely express the form of

boundary controls which realize the exact synchronization.

As in Li-Rao [5], we recall the following

Definition 1.1. Problem (1.3) is exactly synchronizable at the moment T > 0,

if for any given initial data ðU0;U1Þ a
�
L2ðWÞ �H�1ðWÞ

�N
, there exist suitable

boundary controls H a
�
L2

�
0;þl;L2ðG1Þ

��N
with compact support in ½0;T �,

such that the corresponding solution U ¼ Uðt; xÞ satisfies the final condition

tbT : uð1ÞC � � �C uðNÞ :¼ u; ð1:5Þ

and u is called the corresponding exactly synchronizable state.

It is proved in Li-Rao [5] that if problem (1.3) is exactly synchronizable but not

exactly null controllable, then the coupling matrix A should satisfy the following

condition of compatibility:

XN
j¼1

aij :¼ l ð1a iaNÞ; ð1:6Þ
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where l is a constant independent of i. Moreover, under conditions (1.1) and

(1.6), problem (1.3) is certainly exactly synchronizable by means of suitable

boundary controls, provided that T > 0 is large enough.

Let C be the matrix of synchronization of type ðN � 1Þ �N, defined by

C ¼

1 �1

1 �1

� �
1 �1

0
BBB@

1
CCCA: ð1:7Þ

Then condition (1.6), which means that KerðCÞ is an invariant subspace of A, is

equivalent to the existence of a matrix A of order ðN � 1Þ, such that

CA ¼ AC ð1:8Þ

(cf. [8]). On the other hand, it was proved in Li-Rao [6] that if the rank of D is

less than N, then problem (1.3) is not exactly null controllable. Thus, in order to

exclude the exact null controllability and to realize the exact synchronization

essentially by means of ðN � 1Þ boundary controls, in what follows we always

assume that the rank of D is equal to ðN � 1Þ. The corresponding result of

synchronization will be precisely given in Section 2.

If problem (1.3) is exactly synchronizable at the moment T , then the exactly

synchronizable state u satisfies

tbT :
u 00 � Duþ lu ¼ 0 in W;

u ¼ 0 on G;

�
ð1:9Þ

where l is given by (1.6). However, the value of ðu; u 0Þ at t ¼ T should depend on

the original initial data ðU0;U1Þ as well as the boundary control H which realizes

the exact synchronization.

It was pointed out in Li-Rao [5] that the attainable set of all possible values of

ðu; u 0Þ at t ¼ T is the whole space L2ðWÞ �H�1ðWÞ when the initial data ðU0;U1Þ
vary in the space

�
L2ðWÞ �H�1ðWÞ

�N
. In this paper, we will try to determine the

exactly synchronizable state u for each given initial data ðU0;U1Þ.
The condition of compatibility (1.6) means that e ¼ ð1; 1; . . . ; 1ÞT is a right

eigenvector of A, corresponding to the eigenvalue l. Let ET be a left eigenvector

of A, corresponding to the same eigenvalue l. Assume that ðE; eÞ ¼ 1 and D is

chosen such that ETD ¼ 0. Then the exactly synchronizable state u is uniquely

determined by u ¼ f for tbT , where f is the solution to the following problem

with homogeneous Dirichlet boundary condition:
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f 00 � Dfþ lf ¼ 0 in W;

f ¼ 0 on G;

t ¼ 0: f ¼ ðE;U0Þ; f 0 ¼ ðE;U1Þ:

8<
: ð1:10Þ

Inversely, if the exactly synchronizable state u is independent of boundary control

H, then we have necessarily ðE; eÞ ¼ 1. In that case, the exactly synchronizable

state u is uniquely determined by the new initial data ðE;U0Þ and ðE;U1Þ which
are the weighted averages of the original initial data U0 and U1 (see Theorems

3.1 and 3.2).

In the case that ðE; eÞ ¼ 0 for all left eigenvectors ET of A, corresponding

to the eigenvalue l, we can find a Jordan chain E1;E2; . . . ;Er ðr > 1Þ such

that

ATEk ¼ lEk þ Ek�1; 1a ka r with E0 ¼ 0: ð1:11Þ

Then the exactly synchronizable state u can be determined by u ¼ cr for tbT ,

where ðc1; . . . ;crÞ is the solution to the following system of problems ð1a ka rÞ
with c0 ¼ 0 (see Theorem 3.2):

c 00
k � Dck þ lck þ ck�1 ¼ 0 in W;

ck ¼ 0 on G0;

ck ¼ ET
k DH on G1;

t ¼ 0: ck ¼ ðEk;U0Þ; c 0
k ¼ ðEk;U1Þ:

8>>><
>>>:

ð1:12Þ

In this case, the exactly synchronizable state u depends not only on the new initial

data ðEk;U0Þ and ðEk;U1Þ for 1a ka r, but also on the boundary control H,

then it can not be uniquely determined in general. Nevertheless, when CðU0;U1Þ
is small, if ET

r D ¼ 0, then we have the following estimate:

tbT : kðu; u 0ÞðtÞ � ð~uu; ~uu 0ÞðtÞkH 1
0
ðWÞ�L2ðWÞ

a ckCðU0;U1ÞkðL2ðWÞ�H�1ðWÞÞN�1 ; ð1:13Þ

where ~uu is the solution to a wave equation with homogeneous Dirichlet boundary

condition (see Theorem 4.1).

The paper is organized as follows. In Section 2, we first give some more gen-

eral results on the exact synchronization, which complete the results obtained in

Li-Rao [5]. In Section 3, the determination of the exactly synchronizable state is

discussed. In Section 4, we give an estimate on the exactly synchronizable state in

the general case. Finally, in Section 5, some remarks are given for the exact null

controllability and synchronization by 2-groups.
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§2. Complements for the exact synchronization

In this section we will give some more information on the exact synchronization

discussed in Li-Rao [5].

Theorem 2.1. Let

DN�1 ¼ fD a MNðRÞ : rankðDÞ ¼ rankðCDÞ ¼ N � 1g: ð2:1Þ

Assume that the geometric control condition (1.1) and the condition of compatibility

(1.8) are satisfied. Then for any given control matrix D a DN�1, problem (1.3) is

exactly synchronizable.

Proof. Setting

W ¼ CU ; H ¼ CDH; W0 ¼ CU0; W1 ¼ CU1 ð2:2Þ

and noting (1.8), from problem (1.3) we get the following reduced problem:

W 00 � DW þ AW ¼ 0 in W;

W ¼ 0 on G0;

W ¼ H on G1;

t ¼ 0: W ¼ W0; W 0 ¼ W1:

8>>><
>>>:

ð2:3Þ

It was proved in Li-Rao [5] that there exists T0 > 0, such that for all T > T0,

the reduced problem (2.3) is exactly null controllable at the moment T for all

ðW0;W1Þ a
�
L2ðWÞ

�N�1 �
�
H�1ðWÞ

�N�1
by means of some boundary controls

H a
�
L2

�
0;T ;L2ðG1Þ

��N�1
.

On the other hand, since CD is of rankðN � 1Þ, the linear system of H

CDH ¼ H ð2:4Þ

has always solutions, this yields the equivalence between the exact synchronization

of (1.3) and the exact null controllability of the reduced problem (2.3). The proof

is complete.

Theorem 2.2. Let us denote by H the set of all the boundary controls H which

realize the exact synchronization of problem (1.3) at the moment T. Assume that

the geometric control condition (1.1) and the condition of compatibility (1.8) are

satisfied. Then for e > 0 small enough, the values of H a H on �T � e;T ½ � G1

can be arbitrarily chosen.
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Proof. First recall that there exists a positive constant T0 > 0 independent of

initial data such that for all T > T0 the reduced problem (2.3) is exactly null

controllable at the moment T .

Next let e > 0 be such that T � e > T0 and

ĤHe a L2
�
T � e;T ;L2ðG1Þ

�N�1 ð2:5Þ

be arbitrarily given. We solve the reduced backward problem (2.3) to get a solu-

tion ŴWe ¼ ŴWeðt; xÞ on the time interval ½T � e;T � with the boundary function

H ¼ ĤHe and the final data

t ¼ T : ŴWe ¼ ŴW 0
e ¼ 0: ð2:6Þ

Since T � e > T0, the reduced problem (2.3) is still exactly controllable on the

interval ½0;T � e�, then we can find a boundary control

~HHe a L2
�
0;T � e;L2ðG1Þ

�N�1
; ð2:7Þ

such that the corresponding solution ~WWe satisfies the initial condition:

t ¼ 0: ~WWe ¼ W0; ~WW 0
e ¼ W1 ð2:8Þ

and the final condition:

t ¼ T � e: ~WWe ¼ ŴWe; ~WW 0
e ¼ ŴW 0

e : ð2:9Þ

Thus, setting

H ¼ ĤHe t a �T � e;T ½;
~HHe t a �0;T � e½;

�
W ¼ ŴWe t a �T � e;T ½;

~WWe t a �0;T � e½;

�
ð2:10Þ

we check easily that W is a weak solution of the reduced problem (2.3) and the

boundary control H realizes the exact null controllability. By this way, we can

construct a family of boundary controls H with arbitrarily given values on

�T � e;T ½ � G1.

Finally, once the controls H are found, we determine the corresponding con-

trols H by solving the linear system (2.4). It is easy to see that the values of H on

�T � e;T ½ � G1 can be arbitrarily given. The proof is then complete.

Remark 2.1. Though the control H can not be uniquely determined, but the

e¤ective control DH is uniquely determined by the boundary control H for the

exact null controllability of the reduced problem (2.3). More precisely, we have

the following result.
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Proposition 2.1. For any given matrix D a DN�1, the solutions H of linear system

(2.4) satisfy

DH ¼ D̂DðCD̂DÞ�1
H; ð2:11Þ

where D̂D is a full column-rank sub-matrix of D.

Proof. Since D is of rankðN � 1Þ, there exists an invertible matrix Q such that

DQ ¼ ðD̂D; 0Þ; ð2:12Þ

where D̂D is a full column-rank sub-matrix of D. Accordingly, setting

Q�1H ¼ ĤH

h

� �
; ð2:13Þ

the linear system (2.4) becomes

CD̂DĤH ¼ H: ð2:14Þ

Since CD is of rankðN � 1Þ, so is CD̂D, then it follows that

ĤH ¼ ðCD̂DÞ�1
H: ð2:15Þ

Using (2.12), (2.13) and (2.15), we have

DH ¼ ðD̂D; 0ÞQ�1H ¼ D̂DĤH ¼ D̂DðCD̂DÞ�1
H:

The proof is complete.

§3. Determination of the synchronizable part

Noting (1.6) or (1.8), ð1; 1; . . . ; 1ÞT is a right eigenvector of A, corresponding to

the real eigenvalue l given in (1.6). Let e1; e2; . . . ; er (resp. E1;E2; . . . ;ErÞ be a

Jordan chain of length rb 1 of A (resp. AT ) corresponding to the eigenvalue l,

such that

Ael ¼ lel þ elþ1; 1a la r;

ATEk ¼ lEk þ Ek�1; 1a ka r;

ðEk; elÞ ¼ dkl ; 1a k; la r;

er ¼ ð1; 1 . . . ; 1ÞT ; erþ1 ¼ 0; E0 ¼ 0:

8>>><
>>>:

ð3:1Þ
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Consider the projection P on the bi-orthogonal systems e1; e2; . . . ; er and

E1;E2; . . . ;Er as follows:

P ¼
Xr

k¼1

ek nEk; ð3:2Þ

where

ðenEÞU ¼ ðE;UÞe ¼ ETUe; EU a RN : ð3:3Þ

P can be represented by a matrix of order N. We can decompose

RN ¼ ImðPÞaKerðPÞ: ð3:4Þ

Moreover, we have

ImðPÞ ¼ Spanfe1; e2; . . . ; erg; KerðPÞ ¼ ðSpanfE1;E2; . . . ;ErgÞ? ð3:5Þ

and

PA ¼ AP: ð3:6Þ

Now let U ¼ Uðt; xÞ be the solution to problem (1.3). We define

Uc :¼ ðI � PÞU ; Us :¼ PU : ð3:7Þ

If problem (1.3) is exactly synchronizable, we have

tbT : U ¼ uer; ð3:8Þ

where u ¼ uðt; xÞ is the exactly synchronizable state and er ¼ ð1; . . . ; 1ÞT . Then,

noting (3.5), we have

tbT : Uc ¼ uðI � PÞer ¼ 0; Us ¼ uPer ¼ uer: ð3:9Þ

Thus Uc and Us will be called the controllable part and the synchronoizable part

of U , respectively.

Lemma 3.1. The controllable part Uc is the solution to the following system:

U 00
c � DUc þ AUc ¼ 0 in W;

Uc ¼ 0 on G0;

Uc ¼ ðI � PÞDH on G1;

t ¼ 0: Uc ¼ ðI � PÞU0; U 0
c ¼ ðI � PÞU1;

8>>><
>>>:

ð3:10Þ

90 T. Li and B. Rao



while, the synchronoizable part Us is the solution to the following system:

U 00
s � DUs þ AUs ¼ 0 in W;

Us ¼ 0 on G0;

Us ¼ PDH on G1;

t ¼ 0: Us ¼ PU0; U 0
s ¼ PU1:

8>>><
>>>:

ð3:11Þ

Proof. Noting (3.6) and applying the projection P on problem (1.3), we get imme-

diately (3.10) and (3.11).

Remark 3.1. In fact, the boundary control H realizes the exact null controll-

ability for Uc with initial data
�
ðI � PÞU0; ðI � PÞU1

�
a KerðPÞ �KerðPÞ on one

hand, and the exact synchronization for Us with the initial data ðPU0;PU1Þ a
ImðPÞ � ImðPÞ on the other hand.

Lemma 3.2. There exists a control matrix D a DN�1 such that ET
r D ¼ 0.

Proof. Let D be a matrix of order N such that

ImðDÞ ¼ ðSpanfErgÞ?: ð3:12Þ

Clearly, we have rankðDÞ ¼ N � 1 and ET
r D ¼ 0.

We next show that rankðCDÞ ¼ N � 1. Let x a KerðCDÞ. We have

Dx a KerðCÞ ¼ Spanferg; ð3:13Þ

then there exists a real number a such that

Dx ¼ aer: ð3:14Þ

Since ET
r D ¼ 0 and ðEr; erÞ ¼ 1, taking the inner product of (3.14) with Er, we

get a ¼ 0, then x a KerðDÞ. Thus, it is easy to see that KerðCDÞ ¼ KerðDÞ. It

follows that

rankðCDÞ ¼ N � dimKerðCDÞ ¼ N � dimKerðDÞ ¼ N � 1: ð3:15Þ

The proof is complete.

Theorem 3.1. Let the projection P be defined by (3.2). Assume that problem (1.3)

is exactly synchronizable. When r ¼ 1, we can take a control matrix D a DN�1 such

that PD ¼ 0, then the synchronizable part Us is independent of boundary controls
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H. Inversely, if the synchronizable part Us is independent of boundary controls H,

then we should have

r ¼ 1 and PD ¼ 0: ð3:16Þ

In particular, if PU0 ¼ PU1 ¼ 0, then problem (1.3) is exactly null controllable for

the initial data ðU0;U1Þ of this kind.

Proof. When r ¼ 1, by Lemma 3.2, we can take a control matrix D a DN�1

such that ET
1 D ¼ 0. From (3.5), we have KerðPÞ ¼ ðSpanfE1gÞ? ¼ ImðDÞ, then

PD ¼ 0. Therefore (3.11) becomes a problem with homogeneous Dirichlet bound-

ary condition, then the solution Us is independent of boundary controls H.

Inversely, let H1 and H2 be two boundary controls which realize simultane-

ously the exact synchronization of (1.3). If the corresponding solution Us to

(3.11) is independent of the boundary controls H1 and H2, then, noting Lemma

3.1, we have

PDðH1 �H2Þ ¼ 0 on �0;T ½ � G1: ð3:17Þ

By Theorem 2.2, the values of ðH1 �H2Þ on �T � e;T ½ � G1 can be arbitrarily

chosen, this yields that PD ¼ 0. It follows that

ImðDÞJKerðPÞ: ð3:18Þ

Noting (3.5), we have dimKerðPÞ ¼ N � r and dim ImðDÞ ¼ N � 1, then, we

have necessarily r ¼ 1. The proof is complete.

Corollary 3.1. Assume that KerðCÞ and ImðCTÞ are simultaneously invariant

subspaces of A. Then there exists a control matrix D a DN�1 such that problem

(1.3) is exactly synchronizable and the synchronizable part Us is independent of

boundary controls H.

Proof. Recall that KerðCÞ ¼ Spanfeg with e ¼ ð1; 1; . . . ; 1ÞT . Since KerðCÞ is

an invariant subspace of A, the condition of compatibility (1.8) holds. Then

by Theorem 2.1, problem (1.3) is exactly synchronizable for any given control

matrix D a DN�1. On the other hand, ImðCTÞ being an invariant subspace of

A,
�
ImðCT Þ

�? ¼ KerðCÞ is an invariant subspace of AT . Thus, eT is a left eigen-

vector of A corresponding to the same eigenvalue l given by (1.6), then taking

E ¼ e=N, we have ðE; eÞ ¼ 1 and then r ¼ 1. Thus by Theorem 3.1 we can chose

a control matrix D a DN�1 such that the synchronizable part Us of problem (1.3)

is independent of boundary controls H. The proof is complete.
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Remark 3.2. The condition r ¼ 1 means that l is a single eigenvalue of A, or

equivalently, there exists a left eigenvector ET of A, such that

ðE; eÞ ¼ 1: ð3:19Þ

Clearly, if A is symmetric or AT satisfies also the condition of compatibility (1.6),

then e is also an eigenvector of AT . Consequently, we can take E ¼ e=N such that

ðE; eÞ ¼ 1. However, this condition is not always satisfied for any given matrix A.

For example, let

A ¼ 2 �1

1 0

� �
: ð3:20Þ

We have

l ¼ 1; e ¼ ð1; 1ÞT ; E ¼ ð1;�1ÞT ; ð3:21Þ

then

ðE; eÞ ¼ 0: ð3:22Þ

In general, if (3.22) holds, then

E a ðSpanfegÞ? ¼
�
KerðCÞ

�? ¼ ImðCT Þ: ð3:23Þ

This means that ðE;UÞ is just a combination of CU , therefore it does not provide

any new information for the synchronizable part Us.

Remark 3.3. Let ðĉc1; . . . ; ĉcN�1Þ be a basis of ðSpanfEgÞ?. Then

Aðe; ĉc1; . . . ; ĉcN�1Þ ¼ ðe; ĉc1; . . . ; ĉcN�1Þ
l 0

0 A22

� �
; ð3:24Þ

where A22 is a matrix of order ðN � 1Þ. Therefore, A is diagonalizable by blocks

under the basis ðe; ĉc1; . . . ; ĉcN�1Þ.
We next discuss the general case rb 1. Let us denote

ck ¼ ðEk;UÞ; 1a ka r ð3:25Þ

and write

Us ¼
Xr

k¼1

ðEk;UÞek ¼
Xr

k¼1

ckek: ð3:26Þ
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Then, ðc1; . . . ;crÞ are the coordinates of Us on the bi-orthogonal basis e1; e2; . . . ; er
and E1;E2; . . . ;Er.

Theorem 3.2. Let e1; e2; . . . ; er (resp. E1;E2; . . . ;Er) be a Jordan chain of A

(resp. AT ) corresponding to the eigenvalue l and er ¼ ð1; . . . ; 1ÞT . Then the

synchronizable part Us ¼ ðc1; . . . ;crÞ can be determined by the solution of the

following system ð1a ka rÞ:

c 00
k � Dck þ lck þ ck�1 ¼ 0 in W;

ck ¼ 0 on G0;

ck ¼ hk on G1;

t ¼ 0: ck ¼ ðEk;U0Þ; c 0
k ¼ ðEk;U1Þ;

8>>><
>>>:

ð3:27Þ

where

c0 ¼ 0 and hk ¼ ET
k DH: ð3:28Þ

Moreover, the exactly synchronizable state is given by u ¼ cr for tbT :

Proof. First, for 1a ka r, we have

ðEk;UÞ ¼ ðEk;UsÞ ¼ ck; ð3:29Þ

ET
k PDH ¼

Xr

l¼1

ðEl ;DHÞðEk; elÞ ¼ ðEk;DHÞ ¼ ET
k DH; ð3:30Þ

ET
k PU0 ¼ ðEk;U0Þ; ET

k PU1 ¼ ðEk;U1Þ: ð3:31Þ

Taking the inner product of (3.11) with Ek, we get (3.27)–(3.28).

On the other hand, noting (3.8), we have

tbT : ckðtÞ ¼
�
Ek;UðtÞ

�
¼

�
Ek; uðtÞer

�
¼ uðtÞdkr; 1a ka r: ð3:32Þ

Thus, the exactly synchronizable state u is given by

tbT : u ¼ uðt; xÞ ¼ crðt; xÞ: ð3:33Þ

The proof is complete.

In the special case r ¼ 1, by Theorems 3.1 and 3.2, we have

Corollary 3.2. When r ¼ 1, we can take D a DN�1 such that ET
1 D ¼ 0. Then the

exactly synchronizable state u is determined by u ¼ f for tbT, where f is the

solution of the following problem with homogeneous Dirichlet boundary condition:
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f 00 � Dfþ lf ¼ 0 in W;

f ¼ 0 on G;

t ¼ 0: f ¼ ðE1;U0Þ; f 0 ¼ ðE1;U1Þ:

8<
: ð3:34Þ

Inversely, if the synchronizable part Us ¼ ðc1; . . . ;crÞ is independent of the

boundary controls H, then we have necessarily

r ¼ 1 and ET
1 D ¼ 0: ð3:35Þ

Consequently, the exactly synchronizable state u is given by u ¼ f for tbT ,

where f is the solution of (3.34). In particular, if

ðE1;U0Þ ¼ ðE1;U1Þ ¼ 0; ð3:36Þ

then problem (1.3) is exactly null controllable for such initial data ðU0;U1Þ.

§4. Approximation of the exactly synchronizable state

The relation (3.32) shows that only the last component cr is synchronized, while,

the others are steered to zero. However, in order to get cr, we have to solve the

whole system (3.27)–(3.28) for ðc1; . . . ;crÞ. Therefore, except in the case r ¼ 1,

the exactly synchronizable state u depends on the boundary controls which realize

the exact synchronization, and then, generically speaking, one can not uniquely

determine the exactly synchronizable state u. However, we have the following

result.

Theorem 4.1. Assume that (1.3) is exactly synchronizable by means of some con-

trol matrix D a DN�1. Let ~uu be the solution of the following homogeneous problem:

~uu 00 � D~uuþ l~uu ¼ 0 in W;

~uu ¼ 0 on G;

t ¼ 0: ~uu ¼ ðEr;U0Þ; ~uu 0 ¼ ðEr;U1Þ:

8<
: ð4:1Þ

Assume furthermore that

ET
r D ¼ 0: ð4:2Þ

Then there exists a positive constant c > 0 such that the exactly synchrizable state u

satisfies the following estimate:

tbT : kðu; u 0ÞðtÞ � ð~uu; ~uu 0ÞðtÞkH 1
0
ðWÞ�L2ðWÞ

a ckCðU0;U1ÞkðL2ðWÞ�H�1ðWÞÞN�1 : ð4:3Þ
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Proof. By Lemma 3.2, we can take a control matrix D a DN�1 such that (4.2)

is satisfied. Then considering the r-th equation of (3.27), we get the following

problem with homogeneous Dirichlet boundary condition:

c 00
r � Dcr þ lcr ¼ �cr�1 in W;

cr ¼ 0 on G;

t ¼ 0: cr ¼ ðEr;U0Þ; c 0
r ¼ ðEr;U1Þ:

8><
>: ð4:4Þ

From (3.32) we have

tbT : crðtÞ ¼ uðtÞ; cr�1ðtÞC 0: ð4:5Þ

Noting that problems (4.1) and (4.4) have the same initial data and the same

homogeneous Dirichlet boundary condition, by the well-posedness, there exists a

positive constant c1 > 0 such that

tbT : kðu; u 0ÞðtÞ � ð~uu; ~uu 0ÞðtÞk2H 1
0
ðWÞ�L2ðWÞa c1

ðT

0

kcr�1ðsÞk
2
L2ðWÞ ds: ð4:6Þ

But the condition ðEr�1; erÞ ¼ 0 implies that

Er�1 a ðSpanfergÞ? ¼
�
KerðCÞ

�? ¼ ImðCTÞ;

then Er�1 is a combination of the rows of C. Therefore, there exists a positive

constant c2 > 0 such that

kcr�1ðsÞk
2
L2ðWÞ ¼ kðEr�1;UÞðsÞk2L2ðWÞa c2kCUðsÞk2ðL2ðWÞÞN�1 : ð4:7Þ

But CU ¼ W , due to the exact null controllability of the reduced problem (2.3),

there exists a positive constant c3 > 0 such that

ðT

0

kCUðsÞk2ðL2ðWÞÞN�1 dsa c3kCðU0;U1Þk2ðL2ðWÞ�H�1ðWÞÞN�1 : ð4:8Þ

Inserting (4.7)–(4.8) into (4.6), we get (4.3). The proof is complete.

Corollary 4.1. Let S a SN be a permutation of f1; 2; . . . ;Ng. Under the same

conditions as in Theorem 4.1, we have

kðu; u 0ÞðtÞ � ð~uu; ~uu 0ÞðtÞkH 1
0
ðWÞ�L2ðWÞa c min

S ASN

kCSðU0;U1ÞkðL2ðWÞ�H�1ðWÞÞN�1 ð4:9Þ

for all tbT :
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Proof. In fact, the synchronization condition CU ¼ 0 is equivalent to CSU ¼ 0

for any given S a SN . Then (4.9) is a direct consequence of (4.3).

Remark 4.1. When ðE; eÞ ¼ 0, the exactly synchronizable state u of problem (1.3)

can not be determined independently of boundary controls H. Nevertheless, by

Theorem 4.1, when CðU0;U1Þ is suitably small, then u is closed to the solution of

(4.1) whose initial data are given by the weighted average of the original initial

data ðU0;U1Þ with the weight Er (a root vector of AT ).

§5. Remarks on the exact null controllability and synchronization by 2-groups

Now let us rearrange the components of U in 2-groups:

ðuð1Þ; . . . ; uðmÞÞ; ðuðmþ1Þ; . . . ; uðNÞÞ: ð5:1Þ

For any given initial data ðU0;U1Þ a
�
L2ðWÞ

�N �
�
H�1ðWÞ

�N
, if there exist suit-

able boundary controls H a
�
L2

�
0;þl;L2ðG1Þ

��N
with compact support in

½0;T �, such that the first group is exactly null controllable and the second one is

exactly synchronizable:

tbT : uð1ÞC � � �C uðmÞC 0; uðmþ1ÞC � � �C uðNÞ :¼ u; ð5:2Þ

then, we say that problem (1.3) is exactly null controllable and synchronizable by

2-groups at the moment T > 0, and u ¼ uðt; xÞ is called the partially synchroniz-

able state.

It was proved in Li-Rao [5] that when the rank of D is less than N and if

problem (1.3) is exactly null controllable and synchronizable by 2-groups, then

we have the following conditions of compatibility:

XN
p¼mþ1

akp ¼ 0; k ¼ 1; . . . ;m;

XN
p¼mþ1

akp :¼ ~ll; k ¼ mþ 1; . . . ;N;

8>>>>><
>>>>>:

ð5:3Þ

where ~ll is a constant independent of k ¼ mþ 1; . . . ;N. Inversely, assume that

(5.3) hold, then there exists a control matrix D of rankðN � 1Þ such that problem

(1.3) is exactly null controllable and synchronizable by 2-groups.

Let

~ee ¼ ð0; 0; . . . ; 0
zfflfflfflfflfflffl}|fflfflfflfflfflffl{m

; 1; 1; . . . ; 1
zfflfflfflfflfflffl}|fflfflfflfflfflffl{N�m

ÞT : ð5:4Þ
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The conditions of compatibility (5.3) imply that ~ee is an eigenvector of A, corre-

sponding to the eigenvalue ~ll given in (5.3). Moreover, there exists a Jordan chain

~ee1; ~ee2; . . . ; ~eer (resp. ~EE1; ~EE2; . . . ; ~EEr) of A (resp. AT ), corresponding to the eigen-

value ~ll, such that

A~eel ¼ ~ll~eel þ ~eelþ1; 1a la r;

AT ~EEk ¼ ~ll ~EEk þ ~EEk�1; 1a ka r;

ð ~EEk; ~eelÞ ¼ dkl ; 1a k; la r;

~eer ¼ ð0; . . . ; 0; 1; . . . ; 1ÞT ; ~eerþ1 ¼ 0; ~EE0 ¼ 0:

8>>><
>>>:

ð5:5Þ

Noting that the partially synchronizable state u satisfies

tbT : U ¼ u~ee; ð5:6Þ

similar results as in Theorems 3.1, 3.2 and 4.1 can be easily established as follows.

Theorem 5.1. Assume that (1.3) is exactly null controllable and synchronizable by

2-groups. Then the partially synchronizable state u can be determined by u ¼ ~ccr

for tbT, where ð ~cc1; . . . ;
~ccrÞ is the solution to the following system of problems

ð1a ka rÞ:

~cc 00
k � D ~cck þ ~ll ~cck þ ~cck�1 ¼ 0 in W;

~cck ¼ 0 on G0;
~cck ¼ ~hhk on G1;

t ¼ 0: ~cck ¼ ð ~EEk;U0Þ; ~cc 0
k ¼ ð ~EEk;U1Þ;

8>>>><
>>>>:

ð5:7Þ

where

~cc0 ¼ 0 and ~hhk ¼ ~EET
k DH: ð5:8Þ

Moreover, when r ¼ 1, we can chose a control matrix D such that

~EET
1 D ¼ 0: ð5:9Þ

Then the partially synchronizable state u is uniquely given by u ¼ ~ff for tbT, where
~ff is the solution to the following problem with homogeneous Dirichlet boundary

condition:

~ff 00 � D ~ffþ ~ll ~ff ¼ 0 in W;
~ff ¼ 0 on G;

t ¼ 0: ~ff ¼ ð ~EE1;U0Þ; ~ff 0 ¼ ð ~EE1;U1Þ:

8><
>: ð5:10Þ
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Inversely, if the solution ð ~cc1; . . . ;
~ccrÞ of (5.7)–(5.8) is independent of boundary

controls H, then we have necessarily

r ¼ 1 and ~EET
1 D ¼ 0: ð5:11Þ

Consequently, the partially synchronizable state u is determined by u ¼ ~ff for

tbT , where ~ff is the solution of (5.10). In particular, if

ð ~EE1;U0Þ ¼ ð ~EE1;U1Þ ¼ 0; ð5:12Þ

then problem (1.3) is exactly null controllable for such initial data ðU0;U1Þ.

Theorem 5.2. Assume that (1.3) is exactly null controllable and synchronizable by

2-groups. Assume that

~EET
r D ¼ 0 ð5:13Þ

and let ~uu be the solution of the following problem with homogeneous Dirichlet

boundary condition:

~uu 00 � D~uuþ ~ll~uu ¼ 0 in W;

~uu ¼ 0 on G;

t ¼ 0: ~uu ¼ ð ~EEr;U0Þ; ~uu 0 ¼ ð ~EEr;U1Þ:

8><
>: ð5:14Þ

Then there exists a positive constant c > 0 such that the partially synchrizable state

u satisfies the following estimate:

tbT : kðu; u 0ÞðtÞ � ð~uu; ~uu 0ÞðtÞkH 1
0
ðWÞ�L2ðWÞ

a ckCðU0;U1ÞkðL2ðWÞ�H�1ðWÞÞN�1 : ð5:15Þ
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