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Abstract. We consider the Cauchy problem for the equation
u, — div(a(x, O)|Vu"™2Vu) = f(x,1) in Sy =R" x (0, T)

with measurable but possibly discontinuous variable exponent p(x): R" — [p~,p*] =
(1, c0). It is shown that for every u(x,0) € L*>(R") and f € L?>(S7) the problem has at least
one weak solution u € C°([0, T]; L7 (R")) n L*(S7), |Vu|"™) e L'(S7). We derive suffi-
cient conditions for global boundedness of weak solutions and show that the bounded
weak solution is unique.
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1. Statement of the problem and results

Let us consider the Cauchy problem for the p(x)-Laplace equation

{u,—div;zf(z,Vu):f(z) in Sy =R" x (0,71, (1)
u(x,0) = up(x) e L*(R"),
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where /(z, Vu) = a(z)|Vu|""™ Vi and z = (x,1) denotes the point of Sz. It is
assumed that

a(z) is a measurable function such that 2)
0<a_<a(z)<ay < o forae.ze Sy
with some constants a4,
p: R" — Ris a measurable function with
p- =ess i[gnf p(x)>1, p*t =esssup p(x) < 0. (3)
Ril

The continuity of p(x) is not required. By C;°(R") we denote the space of infi-
nitely differentiable functions with compact support and define the space W as
the closure of C* ([0, T]; C;°(R")) with respect to the norm

l[ully = Nulls,s, + Vully), s,

where || - ||, s, denotes the Luxemburg norm

.5, = inf{ >0 J /A7) dxdr < o0 )

St
on the space of functions
LPY(Sy) = {u(z) is measurable in St : J |u(z)|"™) dx dr < oo}.
St

The dual space to W is denoted by W'. This is the space of linear functionals over
w

Ipy € L*(S7), ¢; € LP'N(S7), i=1,....n,

DelW —= n
Vwe W (0,®),5, = (v.dy)s, + .ZI(D"U’ $i)2 5,5
i=

endowed with the usual norm

@[]y = sup{ (D, u)y s, < [Jully = 1}

Definition 1.1. A function u : S7 — R is called weak solution of problem (1) if
() ue W,u, e W,
(2) for every ¢ € C'([0, T]; C(R"))

J (1 + 4 (2,Vu) -V — f) dxdt = 0, ()
Sr
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(3) ue CY([0, T]; L*(R")), in particular, for every ¢(x) € Cj(R")
J d(x)(u—up)dx —0 ast— 0.
RVI

Theorem 1.2. Let conditions (2), (3) be fulfilled. Then for every uy € L*(R") and
f e L* (St) problem (1) has at least weak solution in the sense of Definition 1.1.
This solution satisfies the energy estimate

1 . 1 T
) iR" = 5 0 ;R” . Ty 2, R” .

ess sup [lu())l|3 g + | [Vu"™ dz < Suollz go + | 1SCoS) o geds. (5)
2 o0 Sy 2 0

Uniqueness of weak solutions is established under additional restrictions on
the data of problem (1).

Theorem 1.3. Let the conditions of Theorem 1.2 be fulfilled.

(1) If sups, | f| < Cr and supga|uo| < M with finite positive constants Cy, M, then
the solution of problem (1) satisfies the estimate

lu| < (14 M)e'SG/UMT g e in Sp. (6)

(2) If p(x) =2 ae in R", then problem (1) cannot have more than one bounded
solution.

(3) If up € LA(R") A WP R") with compact support, f € L*(Sy) and |a,| <
ar = const, then u, € L*(St), |Vu|"™ e L* (0,T;L'(R")) and

Wﬁg+wmmjwwmwsc
' 0,7) Jr"

with a finite constant C.

In the recent decade, nonlinear PDEs with variable nonlinearity have been
studied very intensively. Most of results concerning existence and uniqueness of
solutions of parabolic PDEs of the type (1) were established under certain reg-
ularity restrictions on the variable exponent p(x) (or p(x,?)), which allow one to
approximate the elements of the space W by infinitely differentiable functions—
see, e.g., [5], [8]. The question of solvability of the homogeneous Dirichlet prob-
lem for equation (1) with measurable but not necessarily continuous exponent
p(x, 1) was discussed by several authors. It is shown in [3], [4] that problem (1)
with measurable and bounded exponent p(x, ) admits a weak solution, but this
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solution need not satisfy the energy identity of the type (26) below. The solution
possesses better properties if the exponent p is independent of z. The proofs given
in [4] rely on the theory of monotone operators and a singular perturbation of the
operator .o (z,Vu). The sub-differential approach is used in [1], [2] to prove
solvability of the homogeneous Dirichlet problem for equation (1) with discon-
tinuous exponents p(x). This method is applicable if the coefficient a is inde-
pendent of ¢.

To the best of our knowledge, by now there are no results on the solvability of
the Cauchy problem for parabolic equations with variable nonlinearity.

2. Lebesgue spaces with variable exponents

A solution of the Cauchy problem (1) will be constructed as the limit of a sequence
of solutions of the Cauchy-Dirichlet problems posed in expanding cylinders. The
members of this sequence are elements of the Lebesgue and Sobolev spaces with
variable exponents defined in the present section.

2.1. Basic properties. Let Q = R” be an open bounded set with Lipschitz-
continuous boundary dQ and Qr = Q x (0, T]. The space W(Qr) is defined as
the closure of C* ([0, T]; Cg°(2)) with respect to the norm

[ullw oy = llullz, g, + [IVully) o (7)

where

10,0y, 0, = inf{i >0 jQ o2 dx < oo}. (8)

We will repeatedly use the following known properties of the spaces L’™Y). Let the
exponent p(x) satisfy conditions (3). Then

W eL(en). gerVin, = Lo

1 1
[ 06| = (5= + =) Wby
T

and

min{ |17, g 1712 .} < jQ I dz < max{ |17, o 11 0 (10)
T
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Inequality (10) means that || f — /||, o, — 0 if and only if ‘[QT |/ —f\p(x) dz — 0.
The proofs of properties (9) and (10) can be found in [9], [7].

2.2. Steklov’s means. Denote by f, the Steklov mean of the function

[ e LY (0r):

t+h
f/,—}llJJr f(x,7)dr.

t
Proposition 2.1. The operator Sy, : f — f, maps LP™)(Qr) into L™ (Qr_,).

Proof. By virtue of Holder’s inequality we have that for an arbitrary given
e€(0,T),every h € (0,¢) and a.e. x € Q

. 1 (" p(x)
|fh|p(“) = L f(xt+7) dT)
1 g b\ )P ()
p(x)
< G <Jo |f(x,t+17)] dT) (L d‘c)
1 h . .
- zL et 0" de = (1117, (1)
In particular,
1 h p(x) 1 h (x)
|| 0 = semnyad ™ < 4 [0 - soran 2)
hr) | |, hJo

Applying (12) we immediately obtain

h (x)
J flxt47) dr‘p dx dt
0

1
il dxe di = J )
JQTc QT—S hp(' )

- 1J (JI 1 (x, £+ 7)) df) dx d
h Or—

0
1

h
= _J (J |£17) dXd’) de :J 179 dx dt. O
hlo \o, or

Proposition 2.2. The translation operator is continuous: for every &> 0 and

[ e L"M(Qr)

Hf(xat_'_ h) - f(x7 t)”p(x),QT,g —0 ash— 0.
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Proof. Take f e LP™(Qr) and an arbitrary ¢ > 0. Since C°(Q7) is dense in
LP™(Qr), there exists ¢ € C°(Qy) such that ||/ — @], o, <& Fore<1 this
means that

J If = p[PY dz < &
Or

Since ¢ is uniformly continuous in Q, there exists d > 0 such that

&

VxeQ, t1€l0,T t—1 <0 = |d(x, 1) — dp(x,7)| < —————.
0. 7] |r—7 ¢(x, 1) — ¢(x,7)| 02077

Then

J 1f(x, 0+ h) — f(x, )P dxdr < J |f(x,t+ h) — ¢(x, 1+ h)|"™) dxdi
Or Or

+j 160x, £+ ) — (v, O dxds
Or_

] U = g
o1

P
e |Q|T < 3¢ . ]

< el =
= T <

Remark 2.3. Proposition 2.2 is false if p depends on ¢. It is known that in the
case p = p(x,t) the translation operator is unbounded unless p = const—see
([7], Proposition 3.6.1)

Proposition 2.4. If f € W(Qr), then || f — fllw g, ) — 0 ash— 0.

Proof. 1t is sufficient to check that for every f € L™ (Q7) || fi — f|| so.0r, — 0
ash — 0. By (12)

T—¢

J | |fh—f|p(x)dxdt:J ” ‘%Jh(f(x,tﬂ)—f(x,t))dr‘”(x)dxdz
o
h

< J (Jh|f(x,l+f)—f(x t)|”<x>dr)dxdt
0r-. o
- H: (J £+ 1) — f(x, ) dxdt) dr
o 0r.
= hJ() F(r)dr
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By Proposition 2.2 F(t) — 0 as © — 0+. For every ¢ > 0 there is A(¢) such that
F(1) < ¢if v < h(e). Tt follows that

h
Vh < he) %J F(r)dr <,
0

whence the assertion. |

Proposition 2.5. If u e W(Qr) and u, € W'(Qr), then (u,), = (uy), and (u;), —
u, in W'(Qr_;) for every ¢ > 0.

Proposition 2.6. If u,v € W(Qr) and u,,v, € W' (Qr), then for a.e. t),t, € (0,T)

=1

15 ty
J u,vdxdt—i—J uv,dxdt:J uv dx

h Iat Q 1=t

We omit the proofs of Propositions 2.5, 2.6 which are imitations of the proofs
of Lemmas 4.2, 4.3 in [6].

Proposition 2.7. If u e W(Qr) and u, € W'(Qr), then u € C°([0, T — ¢]; L*(Q))
for every e € (0,T).

Proof. Since u, € L*(Qr) and (), € L*(Qr—.), it follows from ([10], Ch. 1,
Lemma 1.2) that uy € C°([0, T — ¢]; L*(Q)) after possible redefining on a set of
zero measure in (0,7 —¢). Thus, for every Ay, hy € (0, T — &)

o, — I3 o (1) = ZJ (uy — wny) (1, — tny) dz + |Juion, — tton, |3 -

t

By Proposition 2.4 u, —u in W(Qr-,) as h—0, ie., {u;} is a Cauchy
sequence in W (Qr_,). By Proposition 2.5 (u;), — u, in W'(Qr_,) and, thus,
(up), are bounded in the norm of W’'(Qr_,). Notice also that (ug), = uyp and
lluon, — ton, |l,.q = 0. Foreveryte (0,T —e¢)

lutn, — 12 (1) = 2j (s — ) 1t — 1), dz

t

< 2/ (s, — i) llpellin, — il — 0 as iy — 0.

This means that {u,} is a Cauchy sequence in C°([0, 7' — ¢]; L*(Q)) and there is
a function 4 € C°([0, T’ — ¢]; L*(Q)) such that u, — . Since u, — u e W(Qr_,),
it necessary that u = u after possible redefining on a set of zero measure in
(0,7 —¢). O
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Corollary 2.8. It is easy to see that all the above propositions, except Proposition
2.2, remain true if the cylinder Qr is substituted by the layer St = R" x (0, T]. The
proof of Proposition 2.2 can be modified as follows. If f € LPY)(Sy), for every
&> 0 there is R > 0 such that

T
j j e+ h) — f(e )P dz < e
0 JR"\Br(0)

Set Qr_p.r = Br(0) x (0, T — h). Using the representation

|1t = pnr s - | et ) = £l dz
St

Sr-n\Qr-n, r

+ J |f(x, e+ h) — f(x,0)["™ dz
Or,
<e+ J f(x, 0+ h) — f(x, )| dz
Orp,

we complete the proof applying Proposition 2.2.

3. Regularization. Problems in bounded cylinders

Let us denote By = {x € R" : |x| < k}, Or.x = Br x (0, T], (k € N), and consider
the sequence of regularized problems

{ u, —dive/(z,Vu) = f in Qr i,

u=0ondB; x (0,T], u(x,0)=uy(x) e L*(By), (13)

where for the initial data we take the restriction of uy to By, f is the restriction
of f to Or . The natural energy space for problem (13) is defined by (7)—(8).
The solution is understood is the sense of Definition 1.1 with obvious changes:
u is a weak solution of the regularized problem (13) if u € C°([0, T]; L*(Bk)) N
W(Qr.k), us € W'(Qr.x), for every test-function ¢ € C'([0, T]; C§ (Bx))

[, G+ stz v Vo 1) =0, (14
Or.k

and (¢,u —ug), 5 — 0 as t — 0 for every ¢(x) € Cj(By).
Theorem 3.1. Let condition (3) be fulfilled. For every
w e L*(R"), fel*Sr), keN,

problem (13) has a unique weak solution u = uy.
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3.1. Galerkin’s approximations. Let {y;} be the orthonormal basis of L?(By)
composed of the eigenfunctions of the operator

(Wvlpi)Hg(B,\.) = )vi(W’lﬁi)z,Bk Vw € Hy(Bx).

The integer s is chosen so big that the embedding Hj(Q) = Wol’p . (Q) is compact:

-1 _1 1
a > — ——. Accept the notation
n 2 p*

WN = Span{lpla v 7¢N} < Lp+ (07 T7 H()S(Bk)) < W(QT,k)'
Lemma 3.2. The space L?" (0, T; Hi(By)) is dense in W (Qr k).

Proof. Let ue W(Qr,). By the definition there is a sequence {u} such that
ug € C*(0,T; Cy(Bx)) and uy — u in W(Qrx). Since C*(0,T;Cy(Bk)) <
L?" (0, T; H(B)), the assertion follows. O

A solution of problem (13) will be obtained as the limit of the sequence
N
u) ="y, (x)di (1) € Py (15)

i=1

with the coefficients d; y(¢) to be defined. Substituting #V) into equation (13),
multiplying by y; and integrating over Bj; we obtain the system of ODEs for the
coefficients dy = {d n(?),...,dy n(1)}:

dy(1) =7 (1,dy(1)), >0
{ N(0) = (uo,¥;)s 5, i=1,...,N, (16)

Zi(t,dy (1)) = — JB o (z,VuM) -V, dx + J S, dx.

By

Since # (t,dy) is continuous with respect to d; y and ¢, it follows from Peano’s
theorem that system (16) has a solution on an interval [0, T ).

3.2. Uniform a priori estimates.

Lemma 3.3. For every N the function u™) satisfies the estimate

ess sup Hu(N)(t)H;Bk +J IVuMPY gz < € (17)
0,7) ' Or.k
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with a constant C depending on a_, T, |uolly g» and || f||, g, but independent of
k and N. ' '

Proof. Set y(t) = ||u™” >(t)||§ - Multiplying the ith equation of system (16) by
d; n(t) and summing up the results we obtain the inequality

1
Ey/(t) +a,J |Vu(N)|P dx < JB |f] |u(N)|dx < /y(t)||f“2,B/(7 (18)
k

By

whence

V) < f’+j||f 9,5, ds.

Substituting this inequality into (18) and integrating over the integral (0,7) we
conclude that

||u<N><r>|\§,Bk+2afj VU™ dz

Or.k
T T
< ol g, + 20l g+ | 17C o ) |17,

This inequality yields the assertion because

r 2
2 2
(L 1/l g d5) < TSR0, , < TS5,

and
T 5 T 2

2wl | 176 < ol e+ (| UG a). O
Corollary 3.4. Estimates (17) are independent of N, which allows one to continue
each of u™) to the maximal existence interval [0, T).
Lemma 3.5. There is an independent of k and N constant C such that

@™ Lo 0,7 158, < C- (19)

The constant C depends only on ax, T, ||u0||2_’Rn and || f |l s,

Proof. Given ¢ e L (0,T; Hj(Q)), we denote ¢™ =S ¢ () (x) € Py.
Since {y,} are orthogonal in L?(Q), the definition of u) yields
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— J :Q/(Z,Vu(N)'V¢(N)dZ+J o)
Or Or

whence

‘ J u§N>¢dz‘
Or .k

<a|[Vu™ |p1|| Q”||V¢ || Q”+||f”zQ”||¢ ||2Q”
C+ V™0 0+ 112,00 VUM 0, L + 1V 00 000)-

By virtue of (10)

V¢ ™y, 0,

1/p* Vp-
< max{(JQ” |V¢ |P ) , (JQ” |V¢ |17 > }
< C<1 + max{ ( JQT ,( |V¢(N)|1’+ dz)l/”+7 (JQ” |V¢(N>\P+ dz>1/p})

< (1 max{[|$™7 70 ) 18 0 7 mg)-

Since

o™ jn¢n%&<Mz

Lo (0, T; W (B ))

p+
| 16l 0= UL 1y

applying estimate (17) we find that for every

S L (07 T; H(‘)Y(Bk)) with ||¢||Lp+(o7 T;H3(By)) <1

the function u,(N) satisfies the inequality

” uSN)¢dZ‘ <C
Or.«

with an independent on «") and ¢ constant C. O
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Lemma 3.6. The sequence {u™)} is precompact in L*(Qr 1) with some p > 1.

Proof. Estimates (17), (19) and the inclusion V < Wol”’ ~(By) yield the indepen-
dent of k, N estimates

N
||u( >||Lp,(0’ W (B) <C. (20)

The inclusion WOI’Pf(Bk) < L"(Bx) with r<mp~/(n—p~) is compact and
L"(Br) € H*(By). The assertion follows now from Lemma 3.5 and the com-
pactness results in [11]. O

3.3. Passage to the limit. Due to estimates (17) and Lemmas 3.5, 3.6 we may
find functions y; € L?'V(Qr k), ux € L*(Qrk) 0 W(Qrx), U € L*(0, T; L*(By))
such that

e

u™) — U x-weakly in L (0, T; L*(By)),

— uy in L*(Qr ;) with some x> 1 and a.e. in Q7 ,

, (21)
A (2,VuN) =z in L7 (Qr ),
(™), — uyin L(0, T; H(By)).
Lemma 3.7. For every k € N uy , € W(erk)/ and
””kAt”W,‘( <C
with an independent of k constant C.
Proof. Take some N € N, fix j < N and test (14) with a function ¢ € Z;:
J N g+ .4 (2, Vu™) . V) dz = J fd-. (22)
Or.k Or.k
Passing to the limit as N — oo we have that
We# | (wain-vhe=| fee (23)
Or.k Or.k

Since L7 (0, T; H§(By)) is dense in W (Qr i), letting j — oo we conclude that (23)
holds for an arbitrary ¢ € W(Qr ). It follows then that for every ¢ € W (QOr x)

| wdd] < ol
Or.k

with the constant C from (17). O
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Lemma 3.8. For every k and a.e. t € (0, T)

—| u;dx
2)p "

Proof. 1t is shown in the proof of Lemma 3.7 that

=0 0

=t t
+ J J L - Vupdz = J Suy dz. (24)
B/( QT,k

J (uk,tuk + X - Vuy, — fuk) dz = 0.
Or.k

The assertion follows now from Proposition 2.6 with u = v = u. O

Lemma 3.9. u; € C, (0, T; Lz(Q)) and (71()(?), Uy — u0)2 5 0 as t — 0 for every
ne Cgo (Bk).

Proof. Let us take for the test-function ¢ = 5(x)0(¢) with 0(¢) e C'[0, T] such that
0(0) = 0(T) = 0 and 5(x) € C!(By). Denote F(t) = [, wicn dx. By (23)

T

JTH'(Z)F(Z) dt = J

) ) 0¥ (t)dt, Y= JB (xx - Vip — fn)dx e LY(0,T).

It follows that F(¢) e W11(0, T), whence F(t) is absolutely continuous on (0, 7')
and the limits F(0) and F(T) are well-defined. O

Lemma 3.10. y, = </(z,Vuy) a.e. in Qr .

Proof. We apply the standard monotonicity argument. Recall that (.<(z,s) —
o/(z,r)) - (s —r) > 0 forae. z € Ory and all s,r € R”. By construction

1 =T

Z (N2 g
u X
2j3k< )

+ J oA (2, Vu'N)) - Vu™N) dz = J Suy dz.
Or.k

=0 Or.k

For every ¢ € 2y

A (2, VuMY - Vu™) = o/ (2, Vu™) . V(@™ = ¢) + (2, VulM)) - V¢
= (A (2, VuM) — A (z,V$) - V(™) — ¢)
+ (2, VuN)) -V + (2, V) - V™) — )

whence, by monotonicity,
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J oA (z,Vu")) . vu™N) dz > J A (z,Vu'N)) - Vg dz
Ok Or.k

+ J A (2,V4) - Vu™ — ¢) d-.
Or.k

Since u™) € 2y

=T

0= lj (u™)? dx
2 g,

+J oA (z,Vu™) . vu™) dz—J fu™) dz
=0 07k

Or.k

1 =T

> —J (u™)? dx
2)p,

+ J oA (2,V4) - V™) — ¢)dz — J fu™) dz.
Or.k [

+J oA (z,VuN)) . Vg dz
=0 Or.k

Fix an arbitrary ¢ € ¢, K < N. Letting N — oo and using (21) we obtain

1 2 =T
EJBk uj; dx't:() +J X - Vo dz

Or

+J J?/(Z,V¢)~V(uk—¢)dz—J Jurdz <0.
Ok Or.k

Writing (23) in the form

=T

1
EJ ui dx

—J fude:—J X - Vug dz
=0 Ork Or.k

and substituting the result into the previous inequality we obtain

J,, e 99) Vi =) 20

for every ¢ € Pk. Letting K — oo we may take for ¢ an arbitrary element from
the main functions space. Let us now choose ¢ in the special way: ¢ = u; + Aw
with 2 > 0 and w € W: letting A — 0 we have

J (5 — (2, Vug)) - Vw = 0,
Or k

which is only possible if y;, = .o7(z, Vuy) a.e. in Or .



On the Cauchy problem for evolution p(x)-Laplace equation 139

This completes the proof of existence of a weak solution of problem (13).
Uniqueness of the weak solution is an immediate byproduct of monotonicity of
the operator .«/. Assume that there are two different solutions ; of problem (13)
and set w = u,il) - u,(cz). Choosing ”1(;) for the test-function in identities (14) for

u,ii) and gathering the results we have that for every 7 € (0, T

iJ W) dv < - J J ((z,1) = o (z,0)) - V(e = 1) dz < 0,

whence w = 0 a.e. in Or k. OJ
Remark 3.11. Identity (14) holds true for the test-functions ¢ € W with ¢, € W'.

Lemma 3.12 (Improved regularity). Let uo € L2(R") n Wy "R, f e L2(Sy)
and |a,| < ar = const. Then

||tk ¢ |§-QT , Tess sup J |Vuk|”<x) dx< C (25)
’ ' Bk

(0,7)

with a constant C depending on |[uo||y, go, ||Vuto|l,() rr and || f 1l s, ar, but inde-
pendent of k.

Proof. To prove the lemma it suffices to show that (25) holds for the Galerkin
approximations of the regularized problems u™). Let us multiply the ith equation
of system (16) by d; (1), integrate over By and sum up:

(N) 2 d a(z) N p(x
I (l)|2'Bk+E(Jka(x)lvu( (O d)

— J 912 157,09 (1P i 4 J ful™ dx.
B, P(¥) By

Integrating in ¢ and applying Young’s inequality we arrive at the estimate

V) 12 a(z) (o (V) ) | L y,2
az) AP dx < = -
w12, 0,, + Lk () Vi () dx < 51120 5 4112, 0.,

a+ (N)p(x)
+J Vu dx
2

ar t a(Z) u(N) p(x) .
* JOJka(x) |V ([)| =
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Set

_ ! a(z) M(N) p(x) A
Yi(t) = jo L.pw V™) (1)) .

The function Yy(¢) satisfies the linear differential inequality

ar 1, . a .
V0 < VN0 +5 1 g+ | o5

i

Integration of this inequality gives the required uniform estimate:

a- . (ar/a 1 a N) plx
Yx(0) £ (@ =) (171 g, + j S )
k
a__ (ar/a-)T _ 1 112 p(x)
<l D(51/1q,, + € |Vl dx). O

k

4. The Cauchy problem

Let {u;} be the sequence of solutions of the regularized problems (13). Define the
sequence of functions extended to the whole S7

" :{Mk in Or, Y :{f in Or i,
“Tl0 inSA\Qrs, T 10 in Sp\Qr

According to the uniform estimates of Lemmas 3.3, 3.7

wy are bounded in L* (0, 7; L*(R")) and in W,
</(z,Vwy) and wy , are bounded in W'.

It follows that there exist functions w e W, y e W', U € L*(R") such that

wi(T) — Uin L*(R"),  wi — win W,
wi — w -weak in L (0, T; L*(R")),
A (z,Vwg) — x and  wg, — w,in W'

Lemma 4.1. The sequence {wy} contains a subsequence which converges in
C°([0, T); L*(Q)) on every compact Q = R".
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Proof. By Proposition 2.7 for every k there is a subsequence {w,, } converging
in C°([0, T]; L*(B)). Choosing subsequences {w,, } = {wy, }, k=1,2,..., we
conclude that the diagonal sequence {w,,, } converges in C°([0, T]; L?(By)) for
every k. |
An immediate corollary from Lemma 4.1 is the equality U = w(T). Take an
arbitrary ¢ € C'(0, T; C}(R")) and choose ko € N so big that supp ¢(-, 1) < By

for all k > ko and ¢ € [0, T]. Since C'([0, T}; C(Bk)) = W(Qr,k) for all k > kq,
the extended functions wy satisfy the identity

j (Wi, + o (z,Vwg) - Vo + fip) dz = 0.
St

Letting £k — oo we obtain

L (wip+ 7V~ f¢)dz= 0.

Since C'(0,T;Cj(R")) is dense in W(Qr ) for every k, the same is true for
¢ = wy, which gives the energy identity as k — oo:

J (ww + - Vw — fw)dz = 0. (26)
Sr

By virtue of Proposition 2.6 and Corollary 2.8 the energy equality holds:

1
3 JR” w2 dx

It is now standard to check that y = .«/(z, Vw) a.e. in St.

=0

—O-J (x-Vw— fw)dxdt=0.
St

5. Boundedness and uniqueness of weak solutions

In this section we give the proof of Theorem 1.3, which is split into three assertions.

Lemma 5.1 (The maximum principle). Let supg, |f| < Cr and supg |up| < My
with finite positive constants Cr and M. Then the solution of problem (1) satisfies
the estimate

lu| < Me'SG/MT qe in Sy with M = 1 + M. (27)
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Proof. 1t is sufficient to show that estimate (27) holds true for the solutions of the
auxiliary problems (13) u. Set vy := e *u; with a constant 4 to be defined and
write identity (14) in the form

,[ e (vk, 1§ + A (z,e"Vuy) - Vo) dz = — J (2e* v — f)gdz.
Or s Or.k
Now set

A= vk, = max{v, — M, 0}, ¢:e’)"vk7M.

By virtue of Remark 3.11 ¢ is an admissible test-function. Notice that

1 ;
Uk, Ok M = Eﬁ,viM, oA (z,e"Vo) - Vg s = o (2,6 Vg ar) - Vog ar = 0.
Then
J (vk‘tvk_,M + LSZ{(Z, e’“Vvk) . VU]QM) dz
Or k
1 )
= 7J vi 4 (T)dx + J A (z,e" V) - Vg yrdz :=J

2 B Or

with

J= —J (2e*vp — f)pdz = —J (Jvog — e Hf vy ar dz
Or,k

QT.km{Uk>M}

< (;LM — Cf)l)k,M dz < 0.

JQT7kﬁ(l)k>M>

It follows that vy < M a.e. in Qr . In the same way we check then that —v, < M.
Thus, |v;| < M and |uy| < Me(G/MT, 0O

Lemma 5.2 (Uniqueness of bounded solutions). If p(x) =2 a.e. in R", problem
(1) cannot have more than one bounded solution.

Proof. Let uy, up be two weak solutions of problem (1). Assume that there exists a
finite constant M such that |u;| < M a.e. in ST, set w = u; — up and introduce the
function

1 if |s| <R,

Ys)=¢s—R+1 if R<|s|<R+1,
0 if R+1<]s|.
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It is easy to see that |[y/'(s)| < 1. Taking y/(|x|)u; for the test-functions in the inte-
gral identities (4) for u; and subtracting the results we arrive at the relation

1 T

3| v |

0 JR” ‘//(|x|)(=9i(27 uy) — ,;zi(z,uz)) Vwdz =1

with

I= —J J w(t (z,ur) — A (z,u2)) - Vi (|x]) dz=.
0 Jrr

This integral is estimated as follows:

T

u1Sa+j
0

T T
sc([ | qval e wmryas [ g el dz)
0 JR™ B(0) 0 Jr™ By

=I1(R)+ L(R), C=C(as,p+).

J (Ve |7+ (Vs P (| + Jua]) iz
R\ Br(0)

Due to estimate (5) it is necessary that 7;(R) — 0 as R — oco. Let us consider the
integral I,(R). By assumption |u;] < M with a finite constant M. Since p(x) > 2
a.e. in R”, applying (5) we obtain

L(R) < T sup M?Y 2 ess sup (Jur|* + |ua)*)dx — 0  asR— 0. []

R (0,7) JR”\BR(O)

The assertion of item 3) of Theorem 1.3 follows from Lemma 3.12 as k — oo.
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