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1. Introduction

This paper deals with the study of the countable branches of nodal solutions bifur-

cating from the infinity for the eigenvalue type problem

�Duþ V0jujm�1
u ¼ lu in W;

u ¼ 0 on qW;

�
ð1Þ

where W is an open bounded set in RN , V0 > 0, m a ð0; 1Þ and l is a real

parameter. We shall show here that the one-dimensional case

�u 00 þ V0jujm�1
u ¼ lu in ��R;R½;

uðeRÞ ¼ 0;

(
ð2Þ

can be studied by using plane phase methods of ordinary di¤erential equations.

This kind of arguments were used by the authors in [9] (extended in [12] to the

case of m a ð�1; 1Þ) to a variation of the problem which is recalled in Section 2

of this paper. They have the advantage of providing a complete description of

the solution set for (2), something that cannot be expected for (1), except in the

radial case W ¼ BRð0Þ.
We deal with the one-dimensional problem (2) in Section 2, where we start by

proving the existence of a branch of positive solutions for a bounded interval of

the parameter, l a
�
l1; l

�
1 ðmÞ

�
. We recall that l1 ¼

p

2R

� �2

is the first eigenvalue

of the linearized problem

�u 00 ¼ lu in ð�R;RÞ;
uðeRÞ ¼ 0:

�
ð3Þ

Here l�
1 ðmÞ is a certain value of the parameter whose exact definition depends cru-

cially of the main assumption m a �0; 1½:

l�
1 ðmÞ ¼ 1

2R2

� ð ð2=ð1þmÞÞ1=ð1�mÞ

0

dr�
F ðmÞ � F ðrÞ

�1=2
�2

ð4Þ

with F ðrÞ ¼ r2

2
� rmþ1

mþ 1
. We show that the (unique) positive solution for l ¼

l�
1 ðmÞ has a peculiar behaviour near the boundary since

u 0ðeRÞ ¼ 0 ð5Þ

(in contrast with the fact that

u 0ðRÞ < 0 and u 0ð�RÞ > 0
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if l a
�
l1; l

�
1 ðmÞ

�
). This is the reason why we call any solution which additionally

satisfies (5) as ‘‘flat solution’’. We point out that this type of special solutions was

called previously by other authors as ‘‘free boundary nonnegative solutions’’ (see,

e.g. [15]), nevertheless in our opinion the use of the expression ‘‘free boundary’’

may be misleading: such terminology is more adequate in a context where the

equation (2) is set in the whole real line and not in a bounded interval.

The associated solution ul�
1 ðmÞ;V0

(when extended by zero to the real line R)

gives rise to a continuum of nonnegative solutions ul;V0
for any l > l�

1 ðmÞ through
a double rescaling (in amplitude and in the argument of application). This type of

solutions have compact support in the sense that

support ðul;V0
ÞWW;

and, in fact, the boundary of the support must be understood as a free boundary

of the problem. In a second result we show a qualitatively similar result for the

branches of nodal solutions changing a finite number of times of sign and ema-

nating from the infinity from the simple eigenvalues ln, for n > 1, of the linear

problem (3). The global bifurcation diagram is qualitatively described in the fol-

lowing Figure 3 below. Some of these results were already announced in [10].

The general formulation, problem (1), can be studied by using either varia-

tional or topological methods. Concerning the latter, existence of a continuum

of nonnegative solutions was proved in [13] by using a di¤erentiability result for

the solution operator in [5] [6] (see also [2]) and general results for asymptotic

bifurcation [22], [1] and [4]. Much later, Porretta [18] proved existence of nonneg-

ative solutions for any l > l1 (with l1 the first eigenvalue of the linear problem

(3)) by using variational methods. In [11] the authors use Nehari manifolds to

find non-negative solutions and more information on both positive, flat and com-

pact support solutions is obtained by using, in particular, a Pohozaev identity

for starshaped W (see [14]). We sketch the asymptotic bifurcation approach in

Section 3. Some of these ideas were presented in [10] and will be developed in [11].

One of the main motivations of the present paper was the series of lectures by

the first author ([7]) on the ambiguity of the mathematical treatment o¤ered in

most of the textbooks on Quantum Mechanics for the study of bound states of

the Schrödinger equation

�Duþ VðxÞu ¼ lu in RN ð6Þ

for the infinite well potential VðxÞ. For instance, for the one-dimensional case

such a potential is given by

VðxÞ ¼ V0 if x a ð�R;RÞ;
þl if x B ð�R;RÞ:

�
ð7Þ
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It was pointed out by this author (see also the detailed exposition made in [8]), it

seems that for the first time in the literature, that in fact what is usually presented

as ‘‘the corresponding solution of this Schrödinger equation’’ is not strictly true

since the solution generates two Dirac deltas over the boundary points x ¼eR.

Nevertheless, it is possible to o¤er an alternative to this type of ‘‘localizing’’ pro-

cess by considering other kinds of di¤erent potentials. Here by a solution u of

the above problem we must understand any function u ¼ limq!l uq with uq solu-

tion of the problem associated to the truncated potential Vq (see Remark 2.0 of

[8]). If we consider, again, the one-dimensional case, as a consequence of the pres-

ent paper, the linear eigenvalue problem

�u 00 þ V0jul �ðxÞjm�1
u ¼ lu in ð�R;RÞ;

uðeRÞ ¼ 0;

(
ð8Þ

has a first (principal) eigenvalue l� with a positive eigenfunction ul � > 0 such that,

u 0
l �ðeRÞ ¼ 0: Now, this function can be extended by zero outside of ð�R;RÞ,
without generating any Dirac delta on the boundaries x ¼eR: Thus, such an ex-

tension is a correct bound solution of the Schrödinger equation for the potential

VðxÞ ¼ V0jul �ðxÞjm�1 if x a ð�R;RÞ;
þl if x B ð�R;RÞ:

(

It is in this sense that all this can be interpreted as an ‘‘alternative’’ approach to

the infinite well potential for the Schrödinger equation. A more general statement

is presented in [8].

In Section 1 we deal with the one-dimensional case by using phase plane meth-

ods and give a description of the branch of both positive and compact support

nonnegative solutions. In Section 2 we sketch the application of asymptotic bifur-

cation in the case of a general domain W.

2. The one-dimensional case

In this Section we study the equation (1) by using ODE arguments. This allows to

obtain all the solutions to the problem and give a complete description of the set

of solutions and study the qualitative properties and its qualitative changes when

the parameter l varies. Some of these results were presented in [10]. We sketch

first the results obtained in the study of a similar problem just to illustrate the na-

ture of the solutions and its multiplicity.

We consider the semilinear elliptic equation

Pðm; qÞ �u 00 þ um ¼ luq in ð�1; 1Þ;
uðe1Þ ¼ 0;

�
ð9Þ
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where l is a real parameter and

0 < m < q < 1: ð10Þ

This problem was studied in [9] and the extension to �1 < m < q < p� 1 and

the p-Laplacian as well was carried out in [12]. The results are illustrated in the

diagram above.

There exists 0 < l� < l�� such that:

i) First, there is no solution if 0 < l < l�;

ii) For l > l� there is an upper branch of positive solutions ul > 0 such that

qul

qn
ðe1Þ < 0 which is continuated in a lower branch vl > 0 with

qvl

qn
ðe1Þ < 0

if l� < l < l�� but such that
qvl��

qn
ðe1Þ ¼ 0.

In this way we obtain a very special flat solution vl�� of (9) such that

vl��ðe1Þ ¼ v 0l�� ðe1Þ ¼ 0:

Hence this solution is also a solution of (9) on the whole real line and can

be ‘‘translated’’ freely ‘‘in both directions’’. This possibility together with

‘‘stretching’’ manipulations gives rise to a variety of compact support solutions

(i.e., solutions u such that suppðuÞHW).

Now we study problem (2) where V0 > 0 and 0 < m < 1. We shall prove our

main result

Figure 1. Bifurcation diagram for problem Pðm; qÞ.
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Theorem 2.1. We define

gðmÞ :¼ 1ffiffiffi
2

p
ð m

0

dr�
F ðmÞ � F ðrÞ

�1=2 ð11Þ

with F ðrÞ ¼ r2

2
� rmþ1

mþ 1
. Let rF ¼

�
2=ð1þmÞ

�1=ð1�mÞ
. Then the mapping

g : ½rF ;þlÞ ! R has the following properties

i) g a C½rF ;lÞBC1ðrF ;lÞ;
ii) g 0ðmÞ ! �l as m # rF ;

iii) For any m > rF , g
0ðmÞ < 0;

iv) lim
m!þl

gðmÞ ¼ p

2
.

Moreover, if we call

l�
1 ðmÞ ¼ 1

2R2

� ð rF

0

dr�
F ðmÞ � F ðrÞ

�1=2
�2

ð12Þ

then we have:

a) if l a
�
0;
�

p
2R

�2�
there is no nonnegative solution,

b) if l a
��

p
2R

�2
; l�

1 ðmÞ
�

there is a unique positive solution ul;V0
. Moreover

qul;V0

qn
ðeRÞ < 0 and kul;V0

kLlð�R:RÞ ¼
V0

l

� �1=ð1�mÞ
g�1ð

ffiffiffi
l

p
RÞ,

c) if l ¼ l�
1 ðmÞ there is only one positive solution ul�

1 ðmÞ;V0
. Moreover

u 0
l �
1 ðmÞ;V0

ðeRÞ ¼ 0

and

kul�
1 ðmÞ;V0

kLlð�R;RÞ ¼
2V0

l�
1 ðmÞð1þmÞ

� �1=ð1�mÞ
;

d) if l > l�
1 ðmÞ, there is a family of nonnegative solutions which are generated

by extending by zero the function ul�
1 ðmÞ;V0

outside ð�R;RÞ (and which we label

again as ul �
1 ðmÞ;V0

). In particular, if l ¼ l�
1 ðmÞo with o > 1 we have a family

S1ðlÞ of compact support nonnegative solutions with connected support defined

by

ul;V0
ðxÞ ¼ 1

o1=ð1�mÞ ul
�
1 ðmÞ;V0

ð
ffiffiffiffi
o

p
x� zÞ
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where the shifting argument z is arbitrary among the points z a ð�R;RÞ such

that support ul;V0
ð:ÞH ð�R;RÞ. Moreover, for l > l�

1 ðmÞ large enough we

can built, similarly, a subset of SjðlÞ of compact support nonnegative solutions

with the support formed by j-components, with j a f1; 2; . . . ;Ng, for some suit-

able N ¼ NðlÞ and then the set of nontrivial and nonnegative solutions of PðlÞ
is formed by SðlÞ ¼ 6N

j¼1
SjðlÞ. In any case those solutions are such that

kul;V0
kLlð�R;RÞ ¼

1

o1=ð1�mÞ kul�
1 ðmÞ;V0

kLlð�R;RÞ

¼ 1

o1=ð1�mÞ
2V0

l�
1 ðmÞð1þmÞ

� �1=ð1�mÞ

for any o ¼ l

l�
1 ðmÞ > 1.

Proof of Theorem 2.1. It is easy to show, multiplying by u and integrating by

parts, that there are nontrivial solutions only if l > l1 ¼ p2

4R2 , the first eigenvalue

to problem (3), i.e. (2) when V0 ¼ 0. To show the qualitative behaviour of solu-

tions of problem (2), we make the change of variables

ul;V0
ðxÞ ¼ V0

l

� �1=ð1�mÞ
uð

ffiffiffi
l

p
xÞ

where u is now the solution of the renormalized problem

PðLÞ �u 00 ¼ f ðuÞ in ð�L;LÞ;
uðeLÞ ¼ 0;

�
ð13Þ

where f ðuÞ ¼ u� um and L ¼
ffiffiffi
l

p
R. We introduce

F ðrÞ ¼
ð r

0

f ðsÞ ds ¼ r2

2
� rmþ1

mþ 1

and note that f ðsÞ < 0 if 0 < s < 1 :¼ rf and f ðsÞ > 0 if 1 < s. On the other hand

F ðsÞ < 0 if 0 < s < rF ¼
�
2=ð1þmÞ

�1=ð1�mÞ
and FðsÞ > 0 for s > rF .

For m > rF we define the mapping g : ½rF ;þlÞ ! R given by (11). Now we

use the following fact whose proof is exactly as in [9] and [12]: a function u is

a positive solution of problem PðLÞ if and only if

1ffiffiffi
2

p
ð m

uðxÞ

dr�
FðmÞ � F ðrÞ

�1=2 ¼ jxj; for jxjaL;
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where m :¼ kukLl (such that m a ðrF ;lÞ) and L > 0 are related by the equation

gðmÞ ¼ L: Moreover

u 0ðeLÞ ¼H
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2FðmÞ

p
: ð14Þ

Thus, we get that u 0ðeRÞ ¼ 0 corresponds to the case in which the maximum of

the solution is rF :

The main properties of gðmÞ are collected in the auxiliary properties i)–iv). The

proof of properties i) and ii) is exactly the same presented in [9] and [12] for a

similar case. For the proof of (iii), as in [12], we have

g 0ðmÞ ¼
ð m

0

yðmÞ � yðrÞ�
FðmÞ � F ðrÞ

�3=2 dr
where yðtÞ ¼ 2F ðtÞ � tf ðtÞ ¼ � 1�m

1þm
tmþ1 and di¤erentiating we get for any t > 0

y 0ðtÞ ¼ �ð1�mÞtm < 0:

Hence g 0ðmÞ < 0 for any m > rF :

Finally, to prove (iv) we note that

gðmÞa m

2

ð1

0

dt�
m2

2 ð1� t2Þ
�1=2 ¼

ð1

0

dtffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p ¼ p

2
: ð15Þ

Moreover, we have

gðmÞ ¼ mffiffiffi
2

p
ð1

0

dt� mffiffi
2

p
�
ð1� t2Þ � 1

m1�m
ð1� tmþ1Þ

�� ð16Þ

and if m ! þl by using Lebesgue’s Theorem we get

lim
m!þl

gðmÞ ¼ p

2
:

Now we define L0 ¼ p
2 and L� given by

L� ¼ gðrF Þ ¼
1ffiffiffi
2

p
ð rF

0

dr�
FðmÞ � FðrÞ

�1=2 ¼ 1ffiffiffi
2

p
ð rF

0

dr�
rmþ1

mþ1 � r2

2

�1=2 :
We know that u 0ðeRÞ ¼ 0 corresponds to the value L� and that the maximum

of the solution is rF : So, the function, qualitatively, function g is described by

the following Figure 2:
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If now we go back with our change of variables we get

kul;V0
kLlðWÞ ¼

V0

l

� �1=ð1�mÞ
rF

and we obtain finally the bifurcation diagram given by the first branch of Figure 3

below, where solutions for l > l� are compact supported solutions originated as

in [9] and [12] from the extension by zero of the flat solution ul� satisfying

�u 00
l� þ V0jul � jm�1

ul � ¼ l�ul� in ð�R;RÞ;
ul� ðeRÞ ¼ u 0

l� ðeRÞ ¼ 0:

(
ð17Þ

The rest of details are completely similar to the similar parts of the papers [9]

and [12]. 9

Remark 2.2. Once that we know that for l > l�
1 ðmÞ we have that

ul;V0
ðxÞ ¼ 1

o1=ð1�mÞ ul
�
1 ðmÞ;V0

ð
ffiffiffiffi
o

p
x� zÞ

we can express in terms of l other norms (di¤erent than the Ll-norm). For

instance we have that

ku 0
l;V0

kLlð�R;RÞ ¼ Cl�ð1þmÞ=ð2ð1�mÞÞ

Figure 2. The function g.
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for a suitable constant C > 0 independent of l. This improves the conclusion

kul;V0
kH 1

0
ð�R;RÞ ! 0 as l ! þl proved in Theorem 1 of [18]. 9

We shall end this section by studying the branches corresponding to nodal

solutions, i.e. changing sign a finite number of times. We state with detail the

case of the branch which bifurcates from the infinity from the second eigenvalue

l2 of the linear problem (3) and it is left to the reader to get similar statements for

other branches. We recall that when W ¼ ð�R;RÞ, then l2 ¼ p2=R2: We shall

study the branch of solutions which are nonnegative on ð0;RÞ and nonpositive

on ð�R; 0Þ (the reverse case is, obviously, similar). Let us call to these solutions

as ‘‘nonnegative-nonpositive solutions’’ (and by similarity with the definitions

presented in the Introduction we can talk of positive-negative solutions, flat

positive-negative solutions and nonnegative-nonpositive solutions with compact

support).

Theorem 2.3. We define l�
2 ðmÞ ¼ 2l�

1 ðmÞ then we have:

a) if l a
�
0;
�
p
R

�2�
there is no positive-negative solution,

b) if l a
��

p
R

�2
; l�

2 ðmÞ
�
there is a unique positive-negative solution ul;V0

. Moreover

qul;V0

qn
ðRÞ < 0;

qul;V0

qn
ð�RÞ > 0

and

kul;V0
kLlð�R:RÞ ¼

V0

l

� �1=ð1�mÞ
g�1ð

ffiffiffi
l

p
R=2Þ;

c) if l ¼ l�
2 ðmÞ there is only one positive-negative solution ul�

2 ðmÞ;V0
. Moreover

u 0
l �
2 ðmÞ;V0

ðeRÞ ¼ 0

(i.e. ul�
2 ðmÞ;V0

is a flat positive-negative solution) and

kul�
2 ðmÞ;V0

kLlð�R;RÞ ¼
2V0

l�
2 ðmÞð1þmÞ

� �1=ð1�mÞ
;

d) if l > l�
2 ðmÞ, there is a family of nonnegative-nonpositive solutions which are

generated by extending by zero the function ul�
2 ðmÞ;V0

outside ð�R;RÞ (and which

we label again as ul�
1 ðmÞ;V0

). In particular, if l ¼ l�
1 ðmÞo with o > 1, we have a

family S1ðlÞ of compact support nonnegative solutions with connected support

defined by

ul;V0
ðxÞ ¼ 1

o1=ð1�mÞ ul
�
2 ðmÞ;V0

ð
ffiffiffiffi
o

p
x� zÞ
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where the shifting argument z is arbitrary among the points z a ð�R;RÞ such

that support ul;V0
H ð�R;RÞ: Moreover, for l > l�

2 ðmÞ large enough we can

build, similarly, a subset of SjðlÞ of compact support nonnegative solutions with

the support formed by j-components, with j a f1; 2; . . . ;Ng, for some suitable

N ¼ NðlÞ and then the set of nontrivial and nonnegative solutions of PðlÞ is

formed by SðlÞ ¼ 6N

j¼1
SjðlÞ. In any case those solutions satisfy that

kul;V0
kLlð�R;RÞ ¼

1

o1=ð1�mÞ kul�
2 ðmÞ;V0

kLlð�R;RÞ

¼ 1

o1=ð1�mÞ
2V0

l�
2 ðmÞð1þmÞ

� �1=ð1�mÞ

for any o ¼ l

l�
2 ðmÞ > 1. In addition there exists a continuum of solutions taking

the value ul;V0
¼ 0 in intermediate points between the set of points where

ul;V0
< 0 and where ul;V0

> 0.

Proof of Theorem 2.3. The crucial point is the elementary remark that if v is a

nonnegative solution of problem

�v 00 þ V0v
m ¼ lv in ð0;RÞ;

vð0Þ ¼ vðRÞ ¼ 0;

�
ð18Þ

then the function u defined by

uðxÞ ¼ vðxÞ if x a ð0;RÞ;
vð�xÞ if x a ð�R; 0Þ;

�

is a nonnegative-nonpositive solution of problem (2). Indeed, thanks to the sym-

metry of function v we know that v 0ð0Þ ¼ �v 0ðRÞ and, in particular the function

u is at least C1 and u 0 does not develop any singularity at the origin x ¼ 0: As

a matter of fact, the explicit construction in Theorem 2.1 allows to see that

u a C2ð�R;RÞ and that it is a classical solution of the equation (2) in the whole

interval ð�R;RÞ.
Now, the positive flat solution v�ðyÞ, y a ð0;RÞ corresponds to the value of the

parameter l̂l�ðmÞ

l̂l�ðmÞ ¼ 1

2ðR=2Þ2
� ð rF

0

dr�
FðmÞ � F ðrÞ

�1=2
�2

¼ 2l�
1 ðmÞ

(this is an obvious adaptation of part b) of the proof of Theorem 2.1). Analo-

gously, the first eigenvalue of the linear problem (3) when W ¼ ð0;RÞ is given by
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p2=R2 (which coincides with l2, the second eigenvalue l2 of the linear problem (3)

when W ¼ ð�R;RÞ). Thus, by using Theorem 2.1 we get the qualitative reproduc-

tion of the first branch of nonnegative solutions of the problem (18) but now going

asymptotically to infinity when l & l2 and generating a flat positive-negative

solution for l ¼ l̂l�ðmÞ (which may be denoted by l�
2 ðmÞ). Since the associate

solution vl�
2 ðmÞ;V0

is ‘‘flat’’ near its boundary (v 0
l�
2 ðmÞ;V0

ð0Þ ¼ v 0
l�
2 ðmÞ;V0

ðRÞ ¼ 0) we

get that its extension by zero generates nonnegative-nonpositive solutions with

compact support for l > l�
2 ðmÞ. 9

Remark 2.4. Note that if m % 1 then l�
i ðmÞ % þl (since the integral becomes

divergent near r ¼ 0). Contrarily, if m & 0 then

l�
1 ðmÞ ¼ 1

2R2

� ð ð2=ð1þmÞÞ1=ð1�mÞ

0

dr�
F ðmÞ � F ðrÞ

�1=2
�2

converges to

l�
1 ð0Þ ¼

1

2R2

� ð2

0

dr�
F0ðmÞ � F0ðrÞ

�1=2
�2
;

where F0ðrÞ :¼
r2

2
� r ¼ r

r

2
� 1

� �
. 9

Figure 3. Bifurcation diagram.
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3. The general case N I 1. Asymptotic bifurcation

In this section we sketch the employ of asymptotic bifurcation in order to get

positive or non-negative solutions to our problem in the case of a general domain

in RN .

We consider first the problem

�Duþ jujm�1
u ¼ lu in W;

u ¼ 0 on qW;

�
ð19Þ

where W is an open bounded set in RN . Let us start with the case m > 1: Here l is

a real parameter. For m ¼ 2 this is a version of the well-known logistic equation.

It is also well-known that nontrivial solutions exists only for l > l1. There are

several proofs of the existence for any l > l1 of a unique positive solution. One of

them is to apply some global bifurcation theorem by Rabinowitz showing that

there is an unbounded continuum of positive solutions bifurcating from the first

eigenvalue l ¼ l1 of the linearized problem at the origin for (19). The result fol-

lows in this case from global bifurcation together with some (easy to find) a priori

estimates for positive solutions.

In the one-dimensional case W ¼ ð0; 1Þ it was proved in [20], [21] that all

(simple) eigenvalues of the linearized problem (at the origin) are bifurcation points

and that the well-known nodal properties of eigenfunctions are preserved all along

the bifurcating continua. It was also proved by Böhme [3] and Marino [17] that

in the variational case all eigenvalues are actually bifurcating points for (19),

independently of its multiplicity.

Problem (19) with 0 < m < 1 can be studied by using the results by Rabinowitz

[22] (see also [1] and [4]) following and greatly extending previous classical work

by Krasnoselski [16] for bifurcation at infinity.

For this we need a theorem concerning the existence of an asymptotic deriva-

tive for the nonlinear solution operator arising in the problem. More precisely, it

is known that for any u a L2ðWÞ the problem

�Dwþ jwjm�1
wþ w ¼ u in W;

w ¼ 0 on qW;

�
ð20Þ

has a unique solution w a H 2ðWÞBH 1
0 ðWÞ and that the nonlinear solution opera-

tor given by w ¼ Pu, P : L2ðWÞ ! L2ðWÞ, is a compact monotone operator and

that P is Fréchet di¤erentiable at the infinity with A ¼ P 0ðlÞ, where A is defined

as the unique solution of the linear problem

�DAuþ Au ¼ u in W;

Au ¼ 0 on qW;

�
ð21Þ
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and

lim
kuk

L2ðWÞ!þl

kPu� AukL2ðWÞ
kukL2ðWÞ

¼ 0

(see [2], [5], [6]).

It follows from a result in [5] (Theorem 2.1) [6] and [2] that all eigenvalues for

A are actually asymptotic bifurcation points following a partial result in [23].

Later, the authors learned that the result was previously proved in [19]. The

corresponding results hold for the Sturm-Liouville nonlinear problem as well.

However, there is an interesting feature making a di¤erence between ordinary

(i.e., at the origin) and asymptotic bifurcation. Indeed, the nodal properties of

solution are not preserved all along the bifurcating continua in the case of bifurca-

tion at infinity. This remark is already in Rabinowitz’s paper [22], more precisely

a counterexample is given in ([22], Remark 2.12); nodal properties are only pre-

served in some neighborhood (at infinity) of the corresponding eigenvalues.

From this point of view our results here (and in [10]) may be interpreted as partic-

ular examples showing how the nodal properties change along the corresponding

branches in this precise instance.

These ideas were pursued in [13], where the existence of an unbounded contin-

uum of non-negative solutions bifurcating at infinity at l ¼ l1 was proved. But

the question of flat and compact solutions was not raised there. More precisely

the following result was proved in [13].

Theorem 3.1. Under the above assumptions there exists an unbounded continuum

of non-negative solutions to (19) bifurcating from infinity at l1.

It is possible, reasoning as in [22] to show that solutions in some neighborhood

of ðl1;lÞ are actually positive (u > 0) and also qu
qn
< 0 on qW. It is easy to see that

there is no ordinary bifurcation point; moreover, a simple argument gives the

estimate

kulkLlðWÞb
1

l

� �1=ð1�mÞ

for any non-negative solution for the value l of the parameter. Much more infor-

mation is given in [11]. Concerning uniqueness it was only shown in [13] that if u

and v are ordered solutions, i.e. if say, ua v, then uC v. Again, some results can

be found in [11].

Added in proof. After the completion of this paper the authors became aware of

two papers by V. Ozolins, R. Lai, R. Caflisch, and S. Osher (Proc. Nat. Acad. Sci.
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USA 110(46), 2013, 18368–18373 and Proc. Nat. Acad. Sci. USA 111 (5), 2014,

1691–1696) where they present a set of very interesting numerical results on the

so called ‘‘compressed modes’’ functions. In the one dimensional case such func-

tions are very similar to the nodal solutions considered here for the special case of

m ¼ 0 (see our Remark 2.4).
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