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Abstract. Let l be any positive number. For any non-negative potential p a Llð0; lÞ, we
show that for any solution u of utt þ uxxxx þ pðxÞu ¼ 0 in R� ð0; lÞ with u ¼ uxx ¼ 0 on
R� f0; lg, and for any form z a

�
H 2ð0; lÞBH 1

0 ð0; lÞ
� 0
, the function t ! 3z; uðtÞ4 has a

zero in each closed interval I of R with length jI jb p
3 l

2. A similar result of uniform
oscillation property on each interval of length at least equal to 2l is established for all
weak solutions of the equation utt � uxx þ aðtÞu ¼ 0 in R� ð0; lÞ with u ¼ 0 on R� f0; lg
where a is a nonnegative essentially bounded coe‰cient. These results apply in particular
to any finite linear combination of evaluations of the solution u at arbitrary points of
ð0; lÞ.
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1. Introduction

This paper is a worked out version of a concise preprint which was written in 1994

and that I did not try to publish at that time since I was expecting possibly better

results. Since in 20 years essentially nothing new happenned concerning pointwise

oscillation of vibrating systems, I decided to publish the results in a more devel-

opped style. Let us first consider the basic equation

u 00 þ AuðtÞ ¼ 0; ð1:1Þ

where V is a real Hilbert space, A a LðV ;V 0Þ is a symmetric, positive, coercive

operator and there is a second real Hilbert space H for which V ,! H ¼
H 0 ,! V 0 where the imbedding on the left is compact. In this case it is well



known, cf. e.g. [1], [2], [9] that all solutions u a CðR;VÞBC1ðR;HÞ of (1.1) are

almost periodic: R ! V with mean-value 0. Then for any form z a V 0, the func-

tion gðtÞ :¼ 3z; uðtÞ4 is a real-valued continuous almost periodic function with

mean-value 0. Assuming the existence of a sequence of intervals Jn ¼ ½an; bn�
with length jJnj ¼ jbn � anj tending to infinity and such that

Et a Jn; gðtÞb 0;

the almost periodic character of g implies that gC 0. Indeed the sequence of

almost periodic translates hnð�Þ ¼ g
�
anþbn

2 þ �
�
has at least a uniformly convergent

subsequence on the whole line. The limit h is almost periodic, nonnegative with

mean-value 0, which is well known to imply, as in the periodic case, that hC 0.

Now g is the uniform limit on R of translates of h, implying gC 0.

As a consequence, we find that either gC 0, or there exists M > 0 such that on

each interval J with jJjbM, g takes negative values and (by symmetry of the

argument) positive values. We shall say that M is a strong oscillation length for

the numerical function g.

Definition 1.1. We say that a number M > 0 is a strong oscillation length for a

numerical function g a L1
locðRÞ if the following alternative holds: either gðtÞ ¼ 0

almost everywhere, or for any interval J with jJjbM, we have

measft a J; f ðtÞ > 0g > 0 and measft a J; f ðtÞ < 0g > 0:

As a consequence of the previous argument we have

Proposition 1.2. Under the above conditions on H, V and A, for any solution

u a CðR;VÞBC1ðR;HÞ of (1.1) and for any z a V 0, the function gðtÞ :¼ 3z; uðtÞ4
has some finite strong oscillation number M ¼ Mðu; zÞ.

In the previous papers [3], [4], [8] we have focused our attention to obtaining a

strong oscillation length independent of the solution and the observation in vari-

ous cases, including non-linear perturbations of equation (1.1). A basic example is

the vibrating string equation

utt � uxx þ gðt; uÞ ¼ 0 in R� ð0; lÞ; u ¼ 0 on R� f0; lg ð1:2Þ

where l > 0 and gðt; �Þ is an odd non-decreasing function of u for all t. Here the

function spaces are H ¼ L2ð0; lÞ and V ¼ H 1
0 ð0; lÞ. Since any function of V is

continous, a natural form z a V 0 is the Dirac mass dx0 for some x0 a ð0; lÞ: It
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turns out that 2l is a strong oscillation length independent of the solution and the

observation point x0, but at the time of [3], [4] we did not consider the case of a

general z a V 0 ¼ H�1ð0; lÞ. The research done in [3], [4] was motivated first by

the consideration of the special case g ¼ 0, the ordinary vibrating string. Since

in this case all solutions are 2l-periodic with mean-value 0 functions with values

in V , it is clear that 2l is a strong oscillation length independent of the solution

and the observation point x0. The slightly more complicated gðt; uÞ ¼ au with

a > 0 is immediately more di‰cult since the general solution is no longer time-

periodic, it is only almost periodic in t. The time-periodicity is too unstable and

for an almost periodic function, the determination of strong oscillation lengths

is not easy in general, as was exemplified in [8]. The oscillation result of [3], [4] is

consequently not so immediate even in the linear case. In the nonlinear case, it

becomes even more interesting because the solutions are no longer known to be

almost periodic. The existence of non-trivial periodic solutions (cf. [10]) refers to

very special solutions and for an equation very similar to (1.2), it was established

in [7] that non-recurrent (in particular, not almost periodic) exceptional solutions

do exist. The oscillation results from [3], [4] were later extended to more general

string equations by Uesaka [11], [12].

The plan of the paper is as follows: In Section 2, we state a slight improvement

of a result from [8] and we give some examples of application. Section 3 is de-

voted to a new kind of results which cannot follow from the method of [8] since

we fall in the limiting case of the method. However a construction relying on the

results from [3], [4] will allow us to obtain a strong oscillation length in the case

gðt; uÞ ¼ aðtÞu.

2. Rapidly oscillating vibrating systems

Let H, V and A be as in the introduction and let u a CðR;VÞBC1ðR;HÞ be a

solution of (1.1). In general it is not known whether for any z a V 0, the function

gðtÞ :¼ 3z; uðtÞ4 has a strong oscillation length independent of the solution u.

Actually, for the ordinary wave equation in a two dimensional domain, this is

even unknown if z a H, while an intermediate result valid for z a ½DðA1=4Þ�0 has
been proved in [8] when the eigenvalues of A have a su‰cient growth. In fact

the method of [8] gives the following

Proposition 2.1. Let flngn AN be the sequence of eigenvalues of A repeated accord-

ing to multiplicity and setting mn :¼ flng1=2, assume that

T ¼ 2p
X
n

1

mn
< l
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Then for any solution u a CðR;VÞBC1ðR;HÞ of (1.1) and any z a V 0, the function
gðtÞ :¼ 3z; uðtÞ4 has a strong oscillation length equal to T.

Proof. This is just a readjustment of the proof of Theorem 4.1 in [8]. Indeed,

although the condition u a CðR;VÞBC1ðR;HÞ does not imply the absolute con-

vergence of the solution series in V , the function gðtÞ :¼ 3z; uðtÞ4 belongs to the

closure in CbðRÞ of finite sums of tj-periodic functions with mean-value 0 where

tj ¼ 2p 1
mj
. Corollary 1.6 of [8] clearly applies to this situation and therefore

if gðtÞ :¼ 3z; uðtÞ4 is nonnegative on a closed interval J with lengthbT , it has

to vanish identically on J. Then, due to the pairwise orthogonality in V of the

eigenfunctions occuring in the Fourier-Bohr expansion of uðtÞ, we have the special
property that u is the limit in CbðRÞ of the truncated series, so that the functions

gk can be constructed exactly as in the proof of Lemma 2.8 from [8]. By the same

argument, we obtain gðtÞ :¼ 3z; uðtÞ4C 0 on R: This concludes the proof. r

Corollary 2.2. Let l be any positive number. For any non-negative potential

p a Llð0; lÞ, and for any solution u a C
�
R;H 2ð0; lÞBH 1

0 ð0; lÞ
�
BC1

�
R;L2ð0; lÞ

�
of

utt þ uxxxx þ pðxÞu ¼ 0 in R� ð0; lÞ; u ¼ uxx ¼ 0 on R� f0; lg

and for any z a
�
H 2ð0; lÞBH 1

0 ð0; lÞ
� 0
, the function t ! 3z; uðtÞ4 has a strong

oscillation length equal to T ¼ p

3
l2.

Proof. We apply Proposition 2.1 with H ¼ L2ð0; lÞ, V ¼ H 2ð0; lÞBH 1
0 ð0; lÞ and

A defined by

Au ¼ uxxxx þ pðxÞu; Eu a V

Here the eigenvalues of A are simple and by Courant-Fisher’s principle it follows

easily that lnb
�
np
l

�4
, hence we can apply Proposition 2.1 with

T ¼ 2pl2
Xl
n¼1

1

p2n2
¼ 2pl2 � 1

p2
� p2

6
¼ p

3
l2 r

Corollary 2.3. Let l be any positive number. For any non-negative potential

p a Llð0; lÞ, and for any solution u a C
�
R;H 2

0 ð0; lÞ
�
BC1

�
R;L2ð0; lÞ

�
of

utt þ uxxxx þ pðxÞu ¼ 0 in R� ð0; lÞ; u ¼ ux ¼ 0 on R� f0; lg
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and for any z a H�2ð0; lÞ, the function t ! 3z; uðtÞ4 has a strong oscillation length

equal to T ¼ 2pl2
P

n

1

s2
n

, where sn is the nth positive root of the equation

cos s cosh s ¼ 1.

Proof. We apply Proposition 2.1 with H ¼ L2ð0; lÞ, V ¼ H 2
0 ð0; lÞ and A defined

by

Au ¼ uxxxx þ pðxÞu; Eu a V

Here the eigenvalues of A are simple and by Courant-Fisher’s principle it follows

easily that lnb nn where nn is the n
th eigenvalue of the operator L defined by

Lu ¼ uxxxx; Eu a V

It is well known that nn ¼
sn

l

� �4
and the di¤erence snþ1 � sn tends to p as n tends

to infinity, in particular
P

n

1

s2
n

< l and we can apply Proposition 2.1. The rest is

obvious. r

Remark 2.4. Both Corollaries 2.2 and 2.3 are applicable to the functional z

defined by

3z; j4 ¼
X
j A J

ajjðxjÞ þ
X
k AK

bkjxðykÞ

where the sets J, K are finite and the points xj, yk lie in ð0; lÞ. This way we obtain

a common strong oscillation length of all expressions of the form

X
j A J

ajuðt; xjÞ þ
X
k AK

bkuxðt; ykÞ

valid for all solutions in the natural energy space.

Remark 2.5. a) Corollary 2.2 is obviously non optimal since if p ¼ 0, all solu-

tions are periodic with period 2p
�
l
p

�2 ¼ 2
p
l2 and mean-value 0: in this case the

smallest oscillation time has been overestimated by a factor at least p2

6 . On the

other hand, the simple harmonic solution associated with the smallest eigenvalue

has precisely an oscillation time equal to 1
p
l2; so that we are not dramatically far

away from optimality, especially if p is small in Ll.

b) It is known that in fact, snb n for all n. Hence Corollary 2.2 is also valid

with T replaced by p
3 l

2. This can be interpreted saying that the clamped boundary

conditions provide a stronger elastic response than simply supported boundary

conditions, a phenomenon which is known in other contexts.
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c) The method of this section does not provide any oscillation result when p

becomes time dependent. Actually, even the existence of zeroes of the function

uðt; xÞ is presently unknown for u a smooth solution of the equation

utt þ uxxxx þ pðtÞu ¼ 0 in R� ð0; lÞ; u ¼ uxx ¼ 0 on R� f0; lg

when pb 0 is smooth function of t only and x a ð0; lÞ.

3. Strong oscillations for a perturbed string equation

Theorem 3.1. Let l be any positive number. For any non-negative potential

a a Ll
locðRÞ, and for any solution u a C

�
R;H 1

0 ð0; lÞ
�
BC1

�
R;L2ð0; lÞ

�
of

utt � uxx þ aðtÞu ¼ 0 in R� ð0; lÞ; u ¼ 0 on R� f0; lg ð3:1Þ

and for any z a H�1ð0; lÞ, the function t ! 3z; uðtÞ4 has a strong oscillation length

equal to T ¼ 2l.

Proof. It follows at once from the Lax-Milgram theorem that any z a H�1ð0; lÞ
can be written as z ¼ �hx for some h a L2ð0; 1Þ. Then for any t a R and any

solution u a C
�
R;H 1

0 ð0; lÞ
�
BC1

�
R;L2ð0; lÞ

�
of (4.1) we have

3z; uðtÞ4 ¼ vðt; 0Þ

where v is defined on R� R by the formula

vðt; xÞ ¼ 3z;Uðt; � þ xÞ4 ¼
ð l

0

hðyÞUyðt; xþ yÞ dy

and U : R2 ! R is the odd and 2l-periodic extension of u with respect to the space

variable x. We observe that zðt; x; yÞ ¼ Uyðt; xþ yÞ a C
�
R2;L2ð0; lÞ

�
and the

continuity is uniform for t bounded and x arbitrary. It follows that v a CðR2Þ.
On the other hand, by construction we clearly have

vtt � vxx þ aðtÞv ¼ 0 in D 0ðR2Þ

and for each t given, the function vðt; �Þ is 2l-periodic in x with mean-value 0. We

are therefore in a good position to apply the method introduced in [3], consist-

ing in using the positivity preserving of the wave operator inside a characteristic

triangle after exchanging x and t. More precisely we shall establish the following

Lemma
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Lemma 3.2. Let v a CðR2Þ be any solution of

vtt � vxx þ aðt; xÞv ¼ 0 in D 0ðR2Þ ð3:2Þ

where ab 0, a a Ll
locðR2Þ with aðt; xÞ ¼ aðt;�xÞ almost everywhere. Assuming

Et a R;

ðþl

�l

vðt; xÞ dx ¼ 0

then for any compact interval J a R with jJjb 2l, either the function vðt; 0Þ takes
both positive and negative values on J, or denoting by m the middle of J, there exists

an open neighborhood W of fmg � ð�l;þlÞ such that

Eðt; xÞ a W ; vðt; xÞ þ vðt;�xÞ ¼ 0

Proof. We set

Eðt; xÞ a R2; vðt; xÞ þ vðt;�xÞ ¼ wðt; xÞ

It is clear that w is also a solution of (3.2) and by hypothesis

Et a R;

ðþl

�l

wðt; xÞ dx ¼ 0

By a translation in t it is su‰cient to consider the case J ¼ ½�l;þl� and prove the

result with m ¼ 0. Let us assume for instance that

Et a J; vðt; 0Þb 0

and let us introduce the open characteristic square

S :¼ fðt; xÞ a R2; jtj þ jxj < lg:

It is not di‰cult, using the even character of w in x, to check the formula

Eðt; xÞ a S;

wðt; xÞ ¼ 1

2

h
wðtþ x; 0Þ þ wðt� x; 0Þ þ

ð x

0

ds

ð t�ðxþsÞ

t�ðx�sÞ
aðs; sÞwðs; sÞ ds

i

¼: zðt; xÞ: ð3:3Þ

Indeed, z is easily seen to be a continuous solution of

ztt � zxx þ aðt; xÞw ¼ 0 in D 0ðSÞ
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with zðt; 0Þ ¼ wðt; 0Þ for all t a J and zðt; xÞ ¼ zðt;�xÞ for all ðt; xÞ a S: There-

fore f ¼ w� z a CðSÞ is a solution of

ftt � fxx ¼ 0 in D 0ðSÞ

for which f ðt; 0Þ ¼ 0 for all t a J and f ðt; xÞ ¼ f ðt;�xÞ for all ðt; xÞ a S: The

standard theory of distributions gives f C 0 in S: Now, considering the forward

characteristic triangle

T :¼ fðt; xÞ a R2; xb 0; jtj þ x < lg

by using as in [4] a Gronwall lemma with respect to the increasing variable

x a ½0; l� for the function

cðxÞ :¼
ð l�x

�lþx

w�ðt; xÞ dx

we can show easily that wb 0 in T. In particular

Eðt; xÞ a T; wðt; xÞb 1

2
½wðtþ x; 0Þ þ wðt� x; 0Þ�

and for t ¼ 0 we find

Ex a ½0; l�; wð0; xÞb 1

2
½wðx; 0Þ þ wð�x; 0Þ�

Since w is even in x, the same property holds true in J and since the integral of

wð0; xÞ on J is 0, by integrating on J we find

Ex a J; wð0; xÞ ¼ 0

Now by using formula (3), by using a Gronwall Lemma with respect to the in-

creasing variable x a ½0; l� for the function

fðxÞ :¼
ð l�x

�lþx

wðt; xÞ dx

we obtain wC 0 in T. By applying the same procedure to the backward charac-

teristic triangle

T 0 :¼ fðt; xÞ a R2; xa 0; jtj � x < lg
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we obtain wC 0 in S, which implies the conclusion of the Lemma, the neighbor-

hood W of fmg � ð�l;þlÞ being an open characteristic square centered at ðm; 0Þ.
r

End of the proof of Theorem 3.1. Assuming that 3z; uðtÞ4 does not take both

positive and negative values on some compact interval J a R with jJjb 2l,

Lemma 3.2 applied with a independent of x implies the existence of an open

neighborhood W of fmg � ð�l;þlÞ such that

Eðt; xÞ a W ; wðt; xÞ ¼ vðt; xÞ þ vðt;�xÞ ¼ 0

Assuming for simplicity, as previously, that m ¼ 0, by periodicity and continuity

it follows that

Ex a R; wð0; xÞ ¼ 0

On the other hand it is not di‰cult to deduce from the definition of v that

v a C1
�
R;D 0ðRÞ

�
with vtðt; xÞ ¼ zxðt; xÞ where

zðt; xÞ ¼
ð l

0

hðyÞUtðt; xþ yÞ dy

Hence for all real t, the function vtðt; xÞ is the x-derivative of a continuous func-

tion of x, and so is wtðt; xÞ: By periodicity and continuity of w we now find

suppfwtð0; xÞgH flg þ 2lZ

This is easily seen to imply, since wtð0; xÞ is the x-derivative of a continuous func-

tion of x, that in fact

wtð0; �Þ ¼ 0 in D 0ðRÞ

Finally let re be the standard approximation of the Dirac measure by smooth

functions with support in ½�e; e� and let

weðt; �Þ :¼ re � wðt; �Þ

It is clear that for all e > 0, we is a smooth solution of utt � uxx þ aðtÞ
�
u in R� R

with weð0; �Þ ¼ ðweÞtðt; �Þ ¼ on R. The method of characteristics for solutions with

locally finite energy now gives weC 0 on R� R. By letting e tend to 0 we finaly

obtain wC 0 on R� R, thereby concluding the proof of Theorem 3.1. r
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Remark 3.3. a) Lemma 3.2, formulated with a time-dependent potential a, im-

plies more than Theorem 3.1: it contains as a special case the basic result of [4].

b) In the special case where

z ¼
X
j A J

ajdxj

where the set J is finite and the points xj lie in ð0; lÞ, the function v appearing in

the proof is just a linear combination of space translates of the extension U of u:

The proof in this case becomes more natural, and the general case corresponds

formally to an approximation by density of this special case. If we only want to

prove the existence of zeroes on J, actually the density argument is exactly what

we need. However the proof of the oscillation result requires the whole power of

Lemma 3.2.

c) In [5]–[7], the authors investigated the problem

utt � uxx þ cu

ð l

0

u2ðt; xÞ dx ¼ 0 in R� ð0; lÞ; u ¼ 0 on R� f0; lg ð3:4Þ

which can be viewed as a simplified model to understand the more di‰cult (from

the point of view of classification of trajectories) equation

utt � uxx þ u3 ¼ 0 in R� ð0; lÞ; u ¼ 0 on R� f0; lg ð3:5Þ

Solutions of (3.4) are special cases of (4.1) with aðtÞ ¼ c
Ð l

0 u
2ðt; xÞ dx. By applying

Theorem 3.1 we obtain

Corollary 3.4. For any solution u a C
�
R;H 1

0 ð0; lÞ
�
BC1

�
R;L2ð0; lÞ

�
of (3.4) and

for any z a H�1ð0; lÞ, the function t ! 3z; uðtÞ4 has a strong oscillation length

equal to 2l.

Remark 3.5. The method of this section does not seem provide any interesting

oscillation result when a becomes space dependent.

4. Some extensions and open questions

4.1. More regular solutions
The oscillation theorems stated and proved in Sections 2–3 concern the existence

of uniform oscillation times for linear observation of the solutions lying in the dual
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of the natural space for the equation. If the solution is more regular, the question

naturally arises of whether the oscillation properties are valid for more singular

observation operators. In the two main examples considered in Sections 2–3,

such results are easily derived from invariance properties under some elementary

operations. For instance, we have

Proposition 4.1. Let l be any positive number. Let us introduce D1 ¼
fz a H 2ð0; lÞBH 1

0 ð0; lÞ; zxx a H 2ð0; lÞBH 1
0 ð0; lÞg. For any non-negative potential

p a Llð0; lÞ, and for any solution u a CðR;D1ÞBC1
�
R;H 2ð0; lÞBH 1

0 ð0; lÞ
�
of

utt þ uxxxx þ pðxÞu ¼ 0 in R� ð0; lÞ; u ¼ uxx ¼ 0 on R� f0; lg

and for any z a
�
H 2ð0; lÞBH 1

0 ð0; lÞ
� 0
, the function t ! 3z; utðtÞ4 has a strong

oscillation length equal to T ¼ p

3
l2.

Remark 4.2. This result is not very strong, since when f ¼ fðtÞ a C1ðRÞ, between
two zeroes of f there is a zero of f 0. Oscillations of u are therefore more interest-

ing that oscillations of ut. However Proposition 4.1 provides the additional result

that 3z; utðtÞ4 vanishes identically if it has a constant sign on some interval of

lengthb 2l.

Remark 4.3. For the string equation, in [3] it was shown that the functions

uxðt; 0Þ and uxðt; lÞ, which are locally square integrable in t (the so-called hidden

regularity property) even for initial data in the natural energy space, are both

strongly oscillatory. It is natural to ask what happens to uxðt; x0Þ when x0 is an

interior point. A partial answer is given by the following property

Proposition 4.4. Let l be any positive number. For any non-negative potential

a a Ll
locðRÞ, and for any solution u a C

�
R;H 2ð0; lÞBH 1

0 ð0; lÞ
�
BC1

�
R;H 1

0 ð0; lÞ
�

of

utt � uxx þ aðtÞu ¼ 0 in R� ð0; lÞ; u ¼ 0 on R� f0; lg ð4:1Þ

and for any z a
�
H 2ð0; lÞBH 1

0 ð0; lÞ
� 0
, the function t ! 3z; uðtÞ4 has a strong

oscillation length equal to T ¼ 2l.

Remark 4.5. Proposition 4.4 is applicable to the functional z defined by

3z; j4 ¼
X
j A J

ajjðxjÞ þ
X
k AK

bkjxðykÞ
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where the sets J, K are finite and the points xj, yk lie in ð0; lÞ. This way we obtain

a common strong oscillation length of all expressions of the form

X
j A J

ajuðt; xjÞ þ
X
k AK

bkuxðt; ykÞ

valid for all solutions u a C
�
R;H 2ð0; lÞBH 1

0 ð0; lÞ
�
BC1

�
R;H 1

0 ð0; lÞ
�
.

4.2. Relaxing the positivity condition on the potential
The oscillation theorems stated and proved in Sections 2–3 concern the case of a

nonnegative potential p (resp. a), but they can be generalized easily when the

negative part of the potential is uniformly smaller than the first eigenvalue of the

principal part A0 of A. In this case the oscillation length is larger. We leave

the easy calculations to the reader (the formula is given in [8].)

4.3. Some open problems
1) Find su‰cient conditions on a ¼ aðt; xÞb 0 for strong oscillation of the solu-

tions to

utt � uxx þ aðt; xÞu ¼ 0 in R� ð0; lÞ; u ¼ 0 on R� f0; lg ð4:2Þ

This is related to a possible generalization of the results from [4] to combinations

of Dirac measures instead of just pointwise oscillations. Any result of this type

would be interesting for the solutions of

utt � uxx þ gðuÞ ¼ 0 in R� ð0; lÞ; u ¼ 0 on R� f0; lg ð4:3Þ

2) Same problem for

utt þ uxxxx þ pðt; xÞu ¼ 0 in R� ð0; lÞ; u ¼ ux ¼ 0 on R� f0; lg ð4:4Þ

and

utt þ uxxxx þ pðt; xÞu ¼ 0 in R� ð0; lÞ; u ¼ uxx ¼ 0 on R� f0; lg ð4:5Þ

Here the situation is even worse than for the string equation since presently no

pointwise oscillation result seems to be known for the solutions of

utt þ uxxxx þ gðuÞ ¼ 0 in R� ð0; lÞ; u ¼ ux ¼ 0 on R� f0; lg ð4:6Þ

or

utt þ uxxxx þ gðuÞ ¼ 0 in R� ð0; lÞ; u ¼ uxx ¼ 0 on R� f0; lg ð4:7Þ
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3) The string equation represents a limiting case which is not covered in the

general framework of Proposition 2.1. It has been treated by using the method

of characteristics based on the propagation properties of the 1D wave equation.

Similarly, the plate equation

utt þ D2uþ pðxÞu ¼ 0 in R� ð0; lÞ; u ¼ Du ¼ 0 on R� f0; lg ð4:8Þ

is in 2 dimensions a limiting case of Proposition 2.1 in the sense that the relevant

series is in l1þe for every e > 0 but not in l1: What happens in this case? Even the

problem of pointwise oscillations is open, even for p ¼ 0 and W ¼ ð0; aÞ � ð0; bÞ
with a2

b2 B Q.
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