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Abstract. A function f a BUCðRdÞ is said to be weakly* almost periodic, denoted
f a W�APðRdÞ, if there is g a APðRdÞ, such that, Mðj f � gjÞ ¼ 0, where BUCðRdÞ and
APðRdÞ are, respectively, the space of bounded uniformly continuous functions and the
space of almost periodic functions, in Rd , and MðhÞ denotes the mean value of h, if it
exists. We give a very simple direct proof of the stochastic homogenization property
of the Dirichlet problem for fully nonlinear uniformly elliptic equations of the form
F
�
o; x

e
;D2u

�
¼ 0, x a U , in a bounded domain U JRd , in the case where for almost all

o a W, the realization Fðo; �;MÞ is a weakly* almost periodic function, for all M a Sd ,
where Sd is the space of d � d symmetric matrices. Here ðW; m;FÞ is a probability space
with probability measure m and s-algebra F of m-measurable subsets of W. For each
fixed M a Sd , Fðo; y;MÞ is a stationary process, that is, Fðo; y;MÞ ¼ ~FF

�
TðyÞo;M

�
:¼

F
�
TðyÞo; 0;M

�
, where TðyÞ : W ! W is an ergodic group of measure preserving mappings

such that the mapping ðo; yÞ ! TðyÞo is measurable. Also, Fðo; y;MÞ, M a Sd , is uni-
formly elliptic, with ellipticity constants 0 < l < L independent of ðo; yÞ a W� Rd . The
result presented here is a particular instance of the general theorem of Ca¤arelli, Souganidis
and Wang, in CPAM 2005. Our point here is just to show a straightforward proof for this
special case, which serves as a motivation for that general theorem, whose proof involves
much more intricate arguments. We remark that any continuous stationary process verifies
the property that almost all realizations belong to an ergodic algebra on Rd , and that
W�APðRdÞ contains all the ergodic algebras on Rd so far known.
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1. Introduction

We consider the homogenization of solutions to the following Dirichlet problem

for fully nonlinear elliptic equations

F o;
x

e
;D2u

� �
¼ 0; x a U ð1:1Þ

uðxÞ ¼ gðxÞ; x a qU ; ð1:2Þ

where U JRn is a bounded domain with Lipschitz boundary, g a CðqUÞ and

o a W, where ðW; m;FÞ is a probability space, with probability measure m and

s-algebra F of m-measurable sets AJW.

Let Sd denote the space of d � d symmetric matrices. We assume that, for

each ðy;MÞ a Rd �Sd , F ð�; y;MÞ : W ! R is a bounded m-measurable function,

and F : W� Rd �Sd ! R is uniformly elliptic, that is, for certain constants

0 < l < L,

lkNkaF ðo; y;M þNÞ � Fðo; y;MÞaLkNk; ð1:3Þ

for all ðo; yÞ a W� Rd , and all M;N a Sd , with Nb 0.

We first recall some well known results for the deterministic case in which F

does not depend on the stochastic parameter o. When, F ð�;MÞ is periodic in

Rd , for each M a Sd , the solution of this problem follows from essentially the

same ideas on the well know (never to be published) preprint by Lions, Papa-

nicolaou and Varadhan [23] (see also [18]), for the Hamilton-Jacob equation.

The situation in the case of fully nonlinear elliptic equations is a bit more involv-

ing and the main ideas to tackle the compactness of the corrector functions were

given in [7] (see [2] for an application of the ideas in [2] to the Bellman-Isaacs

equations). When Fð�;MÞ is almost period in Rd , the homogenization problem

can be addressed using ideas as those employed by Ishii in [21]. The adaptations

of the ideas in [21] for the case of fully nonlinear elliptic equations were briefly

described in [11] and again make use of the clever resort to the homogeneous

part of the Hamiltonian function introduced in [7] (see also [2]). It is important

to remark that, while the uniform convergence of the solutions of the Hamilton-

Jacobi equations, both in [23] and [21], is guaranteed by the uniform boundedness

of Du e, which follows from the coerciveness of the nonlinearity, in the case of the

fully nonlinear elliptic equations, the compactness of the solutions ue is obtained

through an application of the Hölder continuous regularity theorem by Ca¤arelli

[9] (see also [10]).

As for the determination of the e¤ective nonlinearity, roughly speaking, we

have the following. As outlined in [11], both in the periodic case and almost peri-

odic cases, we consider the approximate corrector (or cell) equation
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dvþ F ðy;M þD2
yvÞ ¼ 0; y a Rd :

for the definition of the e¤ective nonlinearity, F ðMÞ, as the limit dvdð0Þ. The solu-

tions vd of the above equation are the approximate correctors. To obtain the

convergence of wd :¼ d
�
vd � vdð0Þ

�
, through the Hölder regularity given by [9],

the clever introduction of the homogeneous part of F as set forth in [7] (see also

[2]) is a key point. Having proved the uniform convergence of wd to 0, the rest

of the argument follows very closely [21]. A compactness criterion for families of

almost periodic functions is then used to guarantee the uniform convergence of d

times the solutions vd of the d-approximate corrector equations, and this limit,

which is proven to be unique and constant, depending only on M, is the e¤ective

nonlinearity F ðMÞ for the almost periodic homogenization problem.

In [12], Ca¤arelli, Souganidis and Wang solved the stochastic homogenization

problem for (1.1), in the most general form where F may also depend explicitly on

x, u, Du, and, for each M, F ðo; y;MÞ is a stationary ergodic process. The latter

means that

Fðo; y;MÞ ¼ ~FF
�
TðyÞo;M

�
; ð1:4Þ

with ~FFð�;MÞ :¼ F ð�; 0;MÞ, for TðyÞ : W ! W, y a Rd , satisfying:

(T1) (Group property) Tð0Þ ¼ Id, Tðyþ zÞ ¼ TðyÞ � TðzÞ, where Id : W ! W is

the identity mapping;

(T2) (Measurability) The mapping T : Rd �W ! W, defined by Tðy;oÞ ¼
TðyÞo, is measurable in the product s-algebra Bd �F, where Bd denotes

the Borel s-algebra in Rd ;

(T3) (Invariance of m) m
�
TðyÞA

�
¼ mðAÞ, for all A a F;

(T4) (Ergodicity) If A a F satisfies TðyÞA ¼ A, for all y a Rd , then either

mðAÞ ¼ 0 or mðAÞ ¼ 1.

In the recent paper [5], Armstrong and Smart simplify the proof in [12] and

improve the treatment of the case in which F depends also on the gradient Du.

The main purpose of this Note is to give a very simple and direct proof of the

result in [12] under the additional assumption that almost all realization Fðo; �;MÞ
is a weakly* almost periodic function, that is,

F ðo; �;MÞ a W�APðRdÞ; for all M a Sd ; m-a:a: o a W; ð1:5Þ

where we denote by W�APðRdÞ the space of so called weakly* almost periodic

functions, defined as the algebraic sum

W�APðRdÞ :¼ APðRdÞ þNðRdÞ;
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where APðRdÞ denotes the space of almost periodic functions and NðRdÞ is the
subspace of the bounded uniformly continuous functions BUCðRdÞ, defined by

N :¼
n
f a BUCðRdÞ : lim

R!l

1

jBð0;RÞj

ð
Bð0;RÞ

j f ðyÞj dy ¼ 0
o
; ð1:6Þ

where, as usual, Bð0;RÞ denotes the ball centered at the origin with radius R, and

jBj denotes the d-dimensional Lebesgue measure of B. We believe that this special

case serves, on one hand, as a good verification of the general result of [12], in

which it is possible a much simpler definition for the e¤ective nonlinearity. On

the other hand, it also serves as a good instance for the application of results in

the abstract theory of ergodic algebras (see Appendix A).

More generally, for any compact metric space K , we define W�AP
�
Rd ;CðKÞ

�
,

the weakly* almost periodic functions with values in CðKÞ, the space of continu-

ous functions in K , by

W�AP
�
Rd ;CðKÞ

�
:¼ AP

�
Rd ;CðKÞ

�
þN

�
Rd ;CðKÞ

�
;

where AP
�
Rd ;CðKÞ

�
is the space of almost periodic functions with values in CðKÞ

(see, e.g., [3]), and N
�
Rd ;CðKÞ

�
is the subspace of the CðKÞ-valued bounded uni-

formly continuous functions, BUC
�
Rd ;CðKÞ

�
, defined by

N
�
Rd ;CðKÞ

�
:¼

n
f a BUC

�
Rd ;CðKÞ

�
: lim
R!l

1

jBð0;RÞj

ð
Bð0;RÞ

k f ðy; �Þkl dy ¼ 0
o
: ð1:7Þ

In this Note, we give a simple direct proof of the following result, which is a

particular case of the general result in [12]. We still need one more condition on

F , which is also required in [12] and [5] and is needed in connection with the basic

results in the theory of viscosity solutions of fully nonlinear elliptic equations, see

[14]. So, as in [5], we assume that there exists a function r : ½0;lÞ ! ½0;lÞ sat-
isfying lims!0þ rðsÞ ¼ 0, and g > 1

2 , such that, for all ðo;MÞ a W�Sd , y; z a Rd ,

jFðo; y;MÞ � F ðo; z;MÞja r
�
ð1þ jMjÞjy� zjg

�
: ð1:8Þ

We impose a further additional condition, whose purpose is to guarantee that

the almost periodic components in the decomposition given by condition (1.5), are

uniformly almost periodic with respect to M. Namely, if F�ðo; �;MÞ denotes

the almost periodic component of F ðo; �;MÞ, given by (1.5), we need to use the

property that, for some F1ðMÞ satisfying an uniform ellipticity condition with con-
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stants l, L, as in (1.3), the family of all translates fF�ðo; � þ l; �Þ � F1ð�Þ : l a Rdg
is pre-compact in BUCðRd �SdÞ. A corresponding uniform almost periodicity

hypothesis was also imposed by Ishii (cf. assumption (A4) in [21]), although there-

in such uniformity is only needed locally in p, while here we need it to be global in

M. The following conditions imply the necessary uniform almost periodicity:

(F1) For a.a. o a W, and all R > 0,

Fðo; �; �Þ a W�AP
�
Rd ;CðSd

R Þ
�
; ð1:9Þ

where Sd
R is the set of M a Sd , with jMj < R.

(F2) There exist F1ðMÞ and F2ðo; yÞ such that F0ðo; y;MÞ :¼ F1ðMÞ þ F2ðo; yÞ
satisfies the same hypotheses as F , and for m-a.a. o a W,

lim
jMj!l

kFðo; �;MÞ � F0ðo; �;MÞkl ¼ 0: ð1:10Þ

(F3) Finally, we also assume that the function F1ðMÞ defined in (F2) possesses a

homogeneous part F 0ðMÞ, that is, the following limit exists

F 0ðMÞ :¼ lim
s!þl

s�1F1ðs�1MÞ: ð1:11Þ

Observe that conditions (F1) and (F2) imply the pre-compactness of the

family fF�ðo; � þ l; �Þ � F1ð�Þ : l a Rdg in BUCðRd �SdÞ, where F�ðo; �;MÞ is

the component of Fðo; �;MÞ in APðRdÞ. Indeed, (F1) and (F2) imply that

F�ðo; �; �Þ � F1ð�Þ a AP
�
Rd ;CðSd

R Þ
�
, for all R > 0, and that, for any e > 0, there

exists R0, such that kF�ðo; �;MÞ � F1ðMÞ � F2ðo; �Þkl < e, for jMj > R > R0.

Using these facts it is easy to see that from any sequence of translates

F�ðo; � þ lk; �Þ � F1ð�Þ, we may extract a subsequence F�ðo; � þ lki ; �Þ � F1ð�Þ con-
verging in BUCðRd �SdÞ.

Theorem 1.1 (cf. [12]). Let Fðo; y;MÞ satisfy (1.3), (1.4), (1.8), (1.9), (1.10) and

(1.11), with TðyÞ satisfying (T1)–(T4). Then, there exists F : Sd ! R satisfying

the uniform ellipticity condition

lkNkaFðM þNÞ � FðMÞaLkNk; ð1:12Þ

with l, L as in (1.3), such that, for any bounded open set U, with Lipschitz boundary

qU, and g a CðqUÞ, m-almost surely, the solutions of (1.1)–(1.2), ueðo; �Þ, converge
uniformly to the unique viscosity solution u of

F ðD2uÞ ¼ 0; x a U ð1:13Þ
uðxÞ ¼ gðxÞ; x a qU ð1:14Þ
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We remark that the only fact used to prove Theorem 1.1, related specifically

with problem, (1.1)–(1.2), is that the corresponding deterministic almost periodic

homogenization problem has been solved, besides an usual hypothesis of equi-

continuity on the microscopic variable, such as (1.8), in general also needed for

solving the equation itself and for finding the e¤ective nonlinearity. So, in partic-

ular, instead of (1.1) we could have a much more general fully nonlinear uni-

formly elliptic or parabolic equation, or Hamilton-Jacobi, etc. In sum, the point

we make here is a very general one. It basically means that adding the condition

that almost surely the realizations belong to W�APðRdÞ, reduces any stochastic

homogenization problem, under an usual equicontinuity assumption on the micro-

scopic variable, to the corresponding deterministic almost periodic homogeniza-

tion problem.

The proof of Theorem 1.1 is given in the following Section 2. We also provide

in the Appendix A a brief exposition of the subject of ergodic algebras, including

the statement of Theorem A.7, asserted in [22] with detailed proof in [4], which

establishes that almost all realizations of continuous functions by a stationary

process belong to an ergodic algebra. This point is important since W�APðRdÞ
is the greatest so far known ergodic algebra in Rd . In Appendix B, we provided

a detailed discussion about the weakly almost periodic functions, introduced by

Eberlein in [16].

2. Proof of Theorem 1.1

Step 1. We may assume that F is the s-algebra generated by the countable family

of sets fo a W : a < F ðo; y;MÞ < bg, with a; b a Q, y a Qd , M a SqBQd 2

. Let

us define UF as the closed algebra with unity generated by the functions
~FF
�
TðyÞ �;M

�
, for y a Qd and M a Sd BQd 2

. We may assume that the algebra

UF distinguishes between the points of W, that is, given any two distinct points

o1;o2 a W, there exists g a UF such that gðo1ÞA gðo2Þ; if this is not true we

may replace W by its quotient by a trivial equivalence relation, in a standard

way, and we proceed correspondingly with F and m. Thus, using a classical

theorem of Stone (see, e.g., [15], Theorem 20, p. 276), we may embed W densely

in a compact (separable) topological space ~WW so that UF is isometrically identified

to Cð~WWÞ. In this way, F extends to the collection, ~FF, of Borel sets of ~WW and

m extends to a probability measure ~mm on ~WW by setting ~mmðAÞ ¼ mðABWÞ, for all

A a ~FF. It is also a standard matter (see, e.g., [4]) to check that the mappings

TðyÞ : W ! W extend to a group of homeomorphisms ~TTðyÞ : ~WW ! ~WW, satisfying

(T1)–(T4) with W replaced by ~WW, but now, using also (1.8), we have that the

mapping ~TT : Rd � ~WW ! ~WW, ~TTðy; ~ooÞ ¼ ~TTðyÞ ~oo is continuous. Indeed, given any

g a UF, g is identified as a representative of Cð~WWÞ, and, if ðok; ykÞ ! ðo; yÞ,
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��g�TðykÞok

�
� g

�
TðyÞo

���
a

��g�TðykÞok

�
� g

�
TðyÞok

���þ ��g�TðyÞok

�
� g

�
TðyÞo

���
aOðjyk � yjÞ þ

��g�TðyÞok

�
� g

�
TðyÞo

��� ! 0; as k ! l;

where we used (1.8) and the continuity of g
�
TðyÞ �

�
, for each fixed y a Rd .

Moreover, clearly, ~mm is an invariant measure for ~TTðyÞ, y a Rd . The family��
~TTðyÞ; ~WW; ~mm

�
: y a Rd

�
constitutes a so called continuous dynamical system,

which is ergodic by (T4). In what follows in this proof, we will no longer use

the ‘‘~’’ to distinguish the extensions from the original objects, that is, we assume

that
��

TðyÞ;W; m
�
: y a Rd

�
is a continuous ergodic dynamical system on the

separable compact space W.

Step 2. We claim that there exists F� : W� Rd �Sd ! R, such that, for each

ðy;MÞ a Rd �Sd , F�ð�; y;MÞ is F-measurable, and for, m-a.a. o a W and all

M a Sd , F�ðo; �;MÞ is the almost periodic component of F ðo; �;MÞ, that is,

F�ðo; �;MÞ a APðRdÞ;

lim
R!l

1

jBð0;RÞj

ð
Bð0;RÞ

jFðo; y;MÞ � F�ðo; y;MÞj dy ¼ 0: ð2:1Þ

Moreover, if ~FF�ðo;MÞ :¼ F�ðo; 0;MÞ, for all ðo;MÞ a W�Sd , then F�ðo; y;MÞ
¼ ~FF�

�
TðyÞo;M

�
, with T given by (1.4) satisfying (T1)–(T4).

Indeed, by assumption Fðo; �;MÞ a W�APðRnÞ, for m-a.a. o a W and all

M a Sd , and by definition of W�APðRdÞ, we have

F ðo; �;MÞ ¼ F�ðo; �;MÞ þ FNðo; �;MÞ; ð2:2Þ

for certain F�ðo; �;MÞ a APðRdÞ and FNðo; �;MÞ a NðRdÞ. Let us assume that

(2.2) holds for o a W�, with mðW�Þ ¼ 1. Since we may find compact sets Kn JW�,
with mðKnÞb 1� 1

n
, for all n a N, we may assume that (2.2) holds everywhere in

the compact space W.

Now, by the properties of APðRdÞ (see, e.g., [15]) it is well known that there

exists in APðRdÞ a generalized sequence of approximations of the unity ffaga AD,
for some directed set D, such that, for all j a APðRdÞ,

fa �M j ��!
a AD

j; where fa �M jðyÞ :¼ M
�
fað�Þjðy� �Þ

�

¼ lim
R!l

1

jBð0;RÞj

ð
Bð0;RÞ

faðzÞjðy� zÞ dz;

where the convergence is in the sup-norm in Rd , and we also assume, as we may,

that fað�yÞ ¼ faðyÞ, for all y a Rd , for all a a D.
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Since, clearly, fa �M FNðo; �;MÞC 0, for all o a W, we have that

fa �M Fðo; �;MÞ ��!
a AD

F�ðo; �;MÞ; for all o a W and all M a Sd :

We remark that the above convergence is uniform and we may replace fa by a

sequence fn. We also remark that (1.8) allows to choose the sequence fn inde-

pendently of o a W, or M a Sd , which can be seen as follows.

Indeed, since W is separable, we may endow it with a metric. Using (1.8) and

the compactness of the metric space W, we choose a sequence fn such that

fn �M Fðo; �;MÞ converges locally uniformly in W� Rd , and fn �M F ðo; �;MÞ ¼
fn �M F�ðo; �;MÞ, for all o a W. In fact, for each N a N, using (1.8), we may

define a subsequence of fa �M F ðo; �;MÞ converging, uniformly for jyjaN and

o in a countable dense subset DJW, to a function GNð�; �;MÞ, defined in

D� fjyjaNg. Now the uniform continuity of Fð�; �;MÞ on W� fjyjaNg,
implies the uniform continuity of the limit GNð�; �;MÞ in D� fjyjaNg and so it

can be extended continuously in a unique way to W� fjyjaNg. We then prove,

in a standard fashion, that the sequence so defined converges to GNð�; �;MÞ uni-
formly in W� fjyjaNg. By taking successive subsequences for N ¼ 1; 2; . . . ,
by a diagonal process we may then define the locally uniformly convergent se-

quence fn �M F ðo; �;MÞ, to some continuous function Gð�; �;MÞ, in W� Rd .

Now, for each o a W, fn �M F�ðo; �;MÞ is compact in the sup-norm. Indeed,

each fn �M F�ðo; �;MÞ belongs to co
�
O
�
F�ðo; �;MÞ

��
, where O

�
F�ðo; �;MÞ

�
:¼

fF�ðo; � þ l;MÞ : l a Rdg, which is pre-compact in APðRdÞ by Bochner’s

criterion, and co
�
O
�
F�ðo; �;MÞ

��
denotes the closure of the convex hull of

O
�
F�ðo; �;MÞ

�
, which is then also compact in the sup-norm, by a well known

result (see, e.g., [25], p. 72). Thus, we may extract a subsequence converging

uniformly to an almost periodic function, which then must coincide with

F�ðo; �;MÞ. Hence, we conclude that fn �M Fð�; �;MÞ converges locally uniformly

to F�ð�; �;MÞ.
The F-measurability of F�ðo; y;MÞ is then clear in view of these observations.

It is also immediate to check that F�ðo; y;MÞ ¼ ~FF�
�
TðyÞo;M

�
, with T given by

(1.4) satisfying (T1)–(T4).

Step 3. We claim that

F ðo; y;MÞ ¼ F�ðo; y;MÞ; for m-a:a: o a W; for all ðy;MÞ a Rd �Sd : ð2:3Þ

Indeed, for each ðy;MÞ a Rd �Sd , we haveð
W

�� ~FF�TðyÞo;M
�
� ~FF�

�
TðyÞo;M

��� dmðoÞ
¼

ð
W

j ~FF ðo;MÞ � ~FF�ðo;MÞj dmðoÞ

¼ M
��� ~FF�Tð�Þo�;M

�
� ~FF�

�
Tð�Þo�;M

���� ¼ 0; for m-a:a: o� a W; ð2:4Þ
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by the invariance of m with respect to TðyÞ, Birkho¤ ’s relation and (1.5). Thus,

(2.4) implies that we may find a subset W� JW, with mðW�Þ ¼ 1, such that

~FF
�
TðyÞo;M

�
¼ ~FF�

�
TðyÞo;M

�
; for all o a W�; y a Qd ; M a Sd BQd 2

;

which, by density and continuity, gives (2.3).

Step 4 (Homogenization). By (2.3), it is then enough to consider the stochastic

almost periodic homogenization problem, that is, in (1.1)–(1.2), it su‰ces to con-

sider the case where, instead of (1.5), we have

F ðo; �;MÞ a APðRdÞ; for all M a S; m-a:a: o a W; ð2:5Þ

W is a separable compact space and
��

TðyÞ;W; m
�
: y a Rd

�
is a continuous

ergodic d-dimensional dynamical system.

#4.1. So, we fix o a W verifying (2.5), and solve the homogenization problem

for (1.1)–(1.2) using the blueprint described in [12] and detailed in [3], which builds

upon the ideas from Ishii [21]. Here, the existence and uniqueness of viscosity

solutions to (1.1)–(1.2) follow from the general theory presented in [14] and the

references therein.

The compactness of the sequence of solutions ue of (1.1)–(1.2) follows from

the uniform Holder continuity estimate of Ca¤arelli [9] (see also [10]). The

approximate d-corrector equation is then introduced, as mentioned in the Intro-

duction,

dvþ Fðo; y;M þD2
yvÞ ¼ 0; y a Rd : ð2:6Þ

The compactness of dvd, where vd is the solution of (2.6), follows from an applica-

tion of a classical general criterion for the pre-compactness of a family of almost

periodic functions (see, e.g., [3]). This is obtained in three steps:

(1) We first observe that the solution of (2.6) obtained from Perron’s method

satisfies kdvdklaC, for some C > 0 independent of d.

(2) Second1, we prove the uniform convergence of d
�
vd � vdð0Þ

�
to 0. In order to

get that, we pass dvd to the right-hand side member in (2.6). Unfortunately, vd
is not uniformly bounded with respect to d, so we cannot apply the Hölder

continuity estimate of Ca¤arelli [9] to (2.6) to obtain the uniform convergence

of dvd, locally in Rd . Instead, we apply the idea of Arizawa and Lions [7],

namely, to use the homogeneous part of F , F 0, defined in (1.11). More

1We thank Martino Bardi for providing us the argument in this item and bringing to our attention the
paper [2], where the argument is explained in detail and applied to Hamilton-Jacobi-Bellman equations.
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specifically, define wd :¼ d
�
vd � vð0Þ

�
=sd, where sd :¼ kvdkl. We have that wd

satisfies

s�1
d Fðo; y;M þ s�1

d D2
ywdÞ ¼ � dvd

sd
; y a Rd : ð2:7Þ

We have two possibilities: either sup0<d<1 sd < l, or there is a sequence dk
such that sk :¼ sdk ! þl. In the first case, we may apply the Hölder regular-

ity as mentioned before, and conclude that dvd converges locally uniformly

to a constant. In the second case, we have that wk :¼ wdk is uniformly

bounded with respect to k, so we can apply to wk the already mentioned

Hölder regularity to obtain that, passing to a subsequence if necessary, wk

converges locally uniformly to some w a BUCðRdÞ. Moreover, the limit w

satisfies the uniformly elliptic equation

F 0ðD2
ywÞ ¼ 0; y a Rd ;

which by the comparison principle implies that w must be constant, and since

wð0Þ ¼ 0, we deduce wC 0. Therefore, passing to a subsequence, we conclude

that dvd converges locally uniformly to a constant.

(3) Third, we use (1.9), (1.10), that trivially also holds for F�, with F0�ðo; y;MÞ :¼
F1ðMÞ þ F2�ðo; yÞ, instead of F0, to guarantee the uniform almost periodicity

of the family
�
F�ðo; �; �Þ a AP

�
Rd ;CðSd

R Þ
�
: R > 0

�
, and to deduce that dvd

is almost periodic and, and also that we can apply the compactness criterion

for families of almost periodic functions to the family fdvdg0<dad0
, to obtain

the global uniform convergence of dvd to a constant in Rd .

The e¤ective operator F ðo;MÞ is then defined as the limit dvd, in the sup-

norm, which is easily seen to be constant, depending on M and, in principle, also

on o. A routine procedure shows that F ðo;MÞ satisfies the uniform ellipticity

condition (1.3), with the same constants l, L. It is then shown that any uniform

limit of a subsequence of the solutions ue, of (1.1)–(1.1), is the unique viscosity

solution u of

F ðo;D2uÞ ¼ 0; x a U ; ð2:8Þ
u j qU ¼ g: ð2:9Þ

#4.2. It remains to prove that F ðo;MÞ does not depend on o. This follows

from the ergodicity of TðyÞ, y a Rd , which so far has not been used. So, we claim

that Fðo;MÞ is an invariant function, for each M a Sd .
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Indeed, if o a W verifies (2.5), then let us take an arbitrary y0 a Rd . We

prove that F
�
Tðy0Þo;M

�
¼ F ðo;MÞ, for all M a Sd . In fact, for any d > 0, if

vdðo; y;MÞ is the solution of (2.6) and vd
�
Tðy0Þo; y;M

�
is the solution of the

same equation with o replaced by Tðy0Þo, using (1.4), it is easy to see that

vd
�
Tðy0Þo; y;M

�
¼ vdðo; yþ y0;MÞ; for all y a Rd :

Since F
�
Tðy0Þo;M

�
is the uniform limit in Rd , as d ! 0, of dvd

�
Tðy0Þo; �;M

�
,

we conclude that F
�
Tðy0Þo;M

�
¼ F ðo;MÞ, for all o verifying (2.5). Now, by

the ergodicity of TðyÞ, we conclude that Fðo;MÞ does not depend on o, and

so F ðo;MÞ ¼ FðMÞ, which implies that for a.a. o a W the solutions ueðo; xÞ
converge as e ! 0, uniformly to the unique viscosity solution of

FðD2uÞ ¼ 0; x a U ; ð2:10Þ
u j qU ¼ g; ð2:11Þ

which finishes the proof of Theorem 1.1.

Example. Consider the compactification K of Rd induced by the ergodic algebra

W�APðRdÞ (see Theorem A.4 below). Take W :¼ K, take TðyÞ : W ! W the nat-

ural extension of the translations in Rd , TðyÞo ¼ oþ y, and take m ¼ m, where

m is as in Theorem A.4. Assume, for each M a Sd , ~FF ð�;MÞ a W�APðRdÞ, and
define Fðo; y;MÞ :¼ ~FFðoþ y;MÞ. Then, by Birkho¤ Ergodic Theorem, we have

that, for m-a.a. o a W,

lim
R!l

1

jBð0;RÞj

ð
Bð0;RÞ

j ~FFðoþ y;MÞ � ~FF�ðoþ y;MÞj dy

¼
ð
W

j ~FFðs;MÞ � ~FF�ðs;MÞj dmðsÞ:

But, by the definition of m,

ð
W

j ~FFðs;MÞ � ~FF�ðs;MÞj dmðoÞ

¼ lim
R!l

1

jBð0;RÞj

ð
Bð0;RÞ

j ~FF ðy;MÞ � ~FF�ðy;MÞj dy ¼ 0;

the last equality by the definition of W�APðRdÞ. That is, we have that the condi-

tion (1.5) is satisfied: for m-a.a. o a W, F ðo; y;MÞ a W�APðRnÞ. Observe that

we used, implicitly, the fact, for m-a.a. o a W, the realizations F�ðoþ y;MÞ are
almost periodic, which easily follows from the properties of almost periodic func-

tions, whose details we leave to the reader.
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A. Algebras with mean value

In this section we recall the basic facts concerning algebras with mean values and,

in particular, ergodic algebras. To begin with, we recall the notion of mean value

for functions defined in Rd .

Definition A.1. Let g a L1
locðRdÞ. A number MðgÞ is called the mean value of g if

lim
e!0

ð
A

gðe�1xÞ dx ¼ jAjMðgÞ ðA:1Þ

for any Lebesgue measurable bounded set AJRd , where jAj stands for the

Lebesgue measure of A. This is equivalent to say that gðe�1xÞ converges, in the

duality with Ll and compactly supported functions, to the constant MðgÞ.
Also, if At :¼ fx a Rn : t�1x a Ag for t > 0 and jAjA 0, (1.2) may be written as

lim
t!l

1

td jAj

ð
At

gðxÞ dx ¼ MðgÞ: ðA:2Þ

Also, we will use the notation
Ð
A
g dx for the average or mean value of g on the

measurable set A, and
Ð
Rd g dx or g for MðgÞ, given by (1.3).

We recall now the definition of algebras with mean value introduced in [27].

As usual, we denote by BUCðRdÞ the space of the bounded uniformly continuous

real-valued functions in Rd .

Definition A.2. Let A be a linear subspace of BUCðRdÞ. We say that A is an

algebra with mean value (or algebra w.m.v., in short), if the following conditions

are satisfied:

(A) If f and g belong to A, then the product fg belongs to A.

(B) A is invariant with respect to translations ty in Rd .

(C) Any f a A possesses a mean value.

(D) A is closed in BUCðRdÞ and contains the unity, i.e., the function eðxÞ :¼ 1

for x a Rd .

For the development of the homogenization theory in algebras with mean

value, as is done in [22], [27] (see also [13]), in similarity with the case of almost

periodic functions, one introduces, for 1a p < l, the space Bp as the abstract

completion of the algebra A with respect to the Besicovitch seminorm

j f jpp :¼ lim sup
L!l

1

ð2LÞd
ð
½�L;L� d

j f jp dx:
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Both the action of translations and the mean value extend by continuity to Bp,

and we will keep using the notation f ð� þ yÞ and Mð f Þ even when f a Bp and

y a Rd . Furthermore, for p > 1 the product in the algebra extends to a bilin-

ear operator from Bp �Bq into B1, with q equal to the dual exponent of p,

satisfying

j fgj1a j f jpjgjq:

In particular, the operator Mð fgÞ provides a nonnegative definite bilinear form

on B2.

Obviously the corresponding quotient spaces for all these spaces (with respect

to the null space of the seminorms) are Banach spaces, and we get a Hilbert space

in the case p ¼ 2. We denote by ¼B
p

, the equivalence relation given by the equality

in the sense of the Bp semi-norm.

Remark A.3. A classical argument going back to Besicovitch [8] (see also [22],

p. 239) shows that the elements of Bp can be represented by functions in

L
p
locðRdÞ, 1a p < l.

We next recall a result established in [4] which provides a connection between

algebras with mean value and compactifications of Rd endowed with a group of

‘‘translations’’ and an invariant probability measure.

Theorem A.4 (cf. [4]). For an algebra w.m.v. A, we have:

(i) There exist a compact space K and an isometric isomorphism i identifying A

with the algebra CðKÞ of continuous functions on K. By abuse of notation we

will make the identification ið f ÞC f , for all f a A. When A distinguishes

between points, there is a canonical embedding Rd JK, with dense image.

(ii) The translations TðyÞ : Rd ! Rd , TðyÞx ¼ xþ y, extend to a group of

homeomorphisms TðyÞ : K ! K, y a Rd , i.e., Tð0Þ ¼ Id, Tðy1 þ y2Þ ¼
Tðy1Þ � Tðy2Þ. The map T : Rn �K ! K, given by Tðy; zÞ :¼ TðyÞz is

continuous. In other words, TðyÞ, y a Rd , is a continuous (d-dimensional)

dynamical system over K.

(iii) There exists a Radon probability measure m on K which is invariant by the

group of transformations TðyÞ, y a Rd , such that

ð
Rd

f dx ¼
ð
K

f dm:

(iv) For 1a pal, the Besicovitch space Bp= ¼B
p

is isometrically isomorphic to

LpðK;mÞ.
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Actually, (i) and (ii) hold independently of the mean value property (C) in the

definition of algebra w.m.v.

A group of unitary operators TðyÞ : B2 ! B2 is then defined by setting

½TðyÞ f �ð�Þ :¼ f
�
Tðy; �Þ

�
. Since the elements of A are uniformly continuous in

Rd , the group fTðyÞg is strongly continuous, i.e. TðyÞ f ! f in B2 as y ! 0 for

all f a B2. The notion of invariant function is introduced then by simply saying

that a function in B2 is invariant if TðyÞ f ¼B
2

f , for all y a Rn. More clearly,

f a B2 is invariant if

M
�
jTðyÞ f � f j2

�
¼ 0; Ey a Rn: ðA:3Þ

The concept of ergodic algebra is then introduced as follows.

Definition A.5. An algebra A w.m.v. is called ergodic if any invariant function f

belonging to the corresponding space B2 is equivalent (in B2) to a constant.

In [22] it is also given an alternative definition of ergodic algebra which is

shown therein to be equivalent to Definition A.5, by using von Neumann mean

ergodic theorem. We state that as the following lemma, whose detailed proof

may be found in [22], p. 247.

Lemma A.6. Let A be an algebra with mean value on Rd . Then A is ergodic if

and only if

lim
t!l

My

	��� 1

jBð0; tÞj

ð
Bð0; tÞ

f ðxþ yÞ dx�Mð f Þ
���2
¼ 0 Ef a A: ðA:4Þ

Finally, the following theorem stated in [22], whose detailed proof is given in

[4], is a sort of converse of Theorem A.4.

Theorem A.7 (cf. [4]). Let Q be a compact space, TðxÞ : Q ! Q, x a Rd , a con-

tinuous dynamical system, m a Radon probability invariant measure in Q, and

V JCðQÞ a separable subspace. Then, for m-almost all o a Q, there is an ergodic

algebra containing the set of realizations
�
f
�
Tð�Þo

��
f AV

.

We finally remark that W�APðRdÞ is an ergodic algebra. Indeed, since

W�APðRdÞ is defined simply as the algebraic sum of APðRdÞ and NðRdÞ, and
since, for any g a BUCðRdÞ and h a NðRdÞ, gh a NðRdÞ, we immediately check

that W�APðRdÞ is a sub algebra of BUCðRdÞ and it is trivially invariant by

translations. It is also immediate that any element of W�APðRdÞ possesses a

mean value. So, the only property to be checked is that W�APðRdÞ is a closed
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subspace of BUCðRdÞ. This is indeed a consequence of the fact that both APðRdÞ
and NðRdÞ are closed subspaces of BUCðRdÞ such that APðRdÞBNðRdÞ ¼ f0g,
and so we can apply the closed graph theorem to the mapping APðRdÞ �NðRdÞ
! W�APðRdÞ, ðg; hÞ 7! gþ h.

B. Weakly almost periodic functions

Examples of ergodic algebras include the periodic continuous functions, the

almost periodic functions, and the Fourier-Stieltjes transforms, studied in [19].

More generally, all the just mentioned ergodic algebras are subalgebras of a

strictly larger ergodic algebra, that is the algebra of the (real-valued) weakly

almost periodic functions in Rd , WAPðRdÞ. It is defined as the subspace of the

space of the bounded continuous functions, CðRdÞ, formed by those f : Rd ! R,

satisfying the property that any sequence of its translates
�
f ð� þ liÞ

�
i AN

possesses

a subsequence
�
f ð� þ likÞ

�
k AN

weakly converging in CðRdÞ. This space was intro-

duced and its main properties were obtained by Eberlein in [16] (see also [17]).

In particular, in [16], Eberlein proved that WAPðRdÞ satisfies all the properties

defining an algebra w.m.v. It is immediate to see, from the definition, that

WAPðRdÞIAPðRdÞ, where the latter denotes the space of almost periodic

functions. Indeed, for functions in APðRdÞ, Bochner theorem gives the relative

compactness of the translates f ð� þ lÞ, l a Rn, in the sup-norm (see, e.g., [8]).

We summarize in the following lemma the properties of WAPðRdÞ which were

essentially proved by Eberlein in [16]. The proof below is borrowed from [20] for

the reader’s convenience.

Lemma B.1 (cf. [16]). WAPðRdÞ is an ergodic algebra which contains the algebra

of Fourier-Stieltjes transforms FSðRdÞ.

Proof. The fact that WAPðRdÞJ BUCðRdÞ is proved by contradiction. Assume,

on the contrary, that one can find points xk, sk, with jxk � skj ! 0 as k ! l,

such that j f ðxkÞ � f ðskÞjb e0 > 0, for all k a N. Define gkðxÞ ¼ f ðxþ xkÞ�
f ðxþ skÞ. By passing to a subsequence, we may assume that gk converges weakly

to some g a CbðRnÞ; in particular jgð0Þjb e0 > 0. On the other hand, if BrðxÞ is
the ball of radius r > 0 around x a Rn,

���
ð
Brð0Þ

gkðxÞ dx
���a ���

ð
BrðxkÞ

f ðxÞ dx�
ð
BrðskÞ

f ðxÞ dx
���

a k f kl
���BrðxkÞnBrðskÞ

�
A
�
BrðskÞnBrðxkÞ

���
¼ k f kl

���Brð0ÞnBrðxk � skÞ
�
A
�
Brðxk � skÞnBrð0Þ

��� ! 0;

as k ! l; for all r > 0;
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which gives the desired contradiction. We also remark that, if g a CbðRdÞ is

the weak limit of a sequence of translates f ð� þ lkÞ, with f a WAPðRnÞ, then
g a BUCðRdÞ. Indeed, weak convergence impies pointwise convergence in Rn,

in particular, and so, since the family f f ð� þ lkÞg is equicontinuous, for

f a BUCðRdÞ, it follows that g a BUCðRdÞ.
To have a better idea of this space, consider Čech compactification of Rd ,

associated with the algebra CbðRdÞ (see, e.g., [15]), denote it by K0. There is

an isometric isomorphism between CbðRdÞ and CðK0Þ, and weak convergence in

CbðRnÞ is then translated to pointwise convergence in CðK0Þ. So, the weakly

almost periodic functions are then identified with the functions in CðK0Þ whose

sequences of translates,
�
f ð� þ liÞ

�
i AN

, always possess a subsequence converging

pointwise to a function g a CðK0Þ. By this characterization, it is immediate that

WAPðRdÞ is an algebra in CbðRdÞ, closed in the sup norm. For the following

considerations on WAPðRdÞ, instead of the compactification provided by all

space CbðRdÞ, it will be more convenient to consider the compactification pro-

vided by the algebra BUCðRdÞ, which is then identified with the compact K0=P
with the topology t0 generated by the functions in BUCðRdÞ, where P is the

equivalence relation whose quotient makes t0 Hausdor¤. So, we have the identi-

fication of BUCðRdÞ with the space of continuous functions CðK0=P; t0Þ. In what

follows we omit the quotient, writing simply K0, instead of K0=P, and will assume

K0 to be endowed with the topology t0.

Existence of mean value for functions in WAPðRdÞ may be seen as follows.

First, by Theorem A.4, the translations TðyÞ f ð�Þ ¼ f ð� þ yÞ may be extended

to K0 to form a continuous dynamical system in K0. A well known theorem by

Krylov and Bogolyubov asserts the existence of a probability measure m in

K0, invariant by fTðyÞ : y a Rng (see, e.g., [24]; the extension of the proof given

therein, for compact metric spaces, to general compact topological spaces is

straightforward). Also, von Neumann mean ergodic theorem (see, e.g., [15])

implies that, given f a WAPðRnÞ, MLð f ÞðzÞ :¼
Ð
BLð0Þ f

�
TðyÞz

�
dy converges,

as L ! l, in L2ðK0; mÞ, to a function gðzÞ a L2ðK0; mÞ which is invariant, that

is, gðzþ yÞ ¼ gðzÞ, for m-a.e. z a K0, for all y a Rd . Observe that, for any

x a Rd ,

ð
BLðxÞ

f
�
TðyÞ �

�
dy ¼

ð
BLð0Þ

f
�
Tðyþ xÞ �

�
dy ¼ TðxÞMLð f Þð�Þ ! TðxÞgð�Þ

¼ gð�Þ; as L ! l; in L2ðK0; mÞ;

by the continuity of TðxÞ : L2ðK0; mÞ ! L2ðK0; mÞ, and the invariance of g. Now,

MLð f ÞðzÞ may be arbitrarily approximated in CðK0Þ by a finite convex combina-

tion of translates of f , gLð�Þ ¼ y1L f ð� þ l1LÞ þ � � � þ y
KðLÞ
L f ð� þ l

KðLÞ
L Þ, and, taking

L ¼ 1; 2; . . . , we may arrange that gL ! g, in L2ðK0; mÞ. Let us consider the
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separable closed subspace SJCðK0Þ generated by the translates of f , f ð� þ lÞ,
l a Rd . The dual of S, is a separable space which, by Hahn-Banach, may be

viewed as a subspace of the dual of CðK0Þ. We may then define a metric dð f ; gÞ
in S, whose induced topology is equivalent to the weak topology of S, and sat-

isfies dð f þ h; gþ hÞ ¼ dð f ; gÞ. Since the set Oð f Þ ¼ f f ð� þ lÞ : l a Rdg is pre-

compact, we deduce that it is totally bounded in the metric d. But then, since

S with the weak topology is locally convex, by a well known result (see, e.g.,

[25], p. 72) the convex hull of Oð f Þ, co
�
Oð f Þ

�
, is totally bounded, and, hence,

co
�
Oð f Þ

�
is compact in the weak topology. In particular, by passing to a subse-

quence if necessary, we deduce that gL weakly converges to some ~gg a CðK0Þ, that
is gLðzÞ ! ~ggðzÞ, for all z a K0. But then, ~ggðzÞ ¼ gðzÞ, m-a.e., and by the invariance

of g, we deduce that g is constant and we denote it by Mð f Þ. Hence, for any

x a Rd , and all z a K0, the averages
Ð
BLðxÞ f

�
TðyÞ z

�
dy converge to Mð f Þ, which

does not depend on either z or x, and this implies that f possesses mean value

and this is Mð f Þ.
Taking the invariant measure m, above, as the measure induced by the mean

value, we see that the proof just given for the existence of the mean value for

functions in WAPðRdÞ may be repeated, line by line, to prove the ergodicity of

this algebra w.m.v., as a straightforward application of Lemma A.6. In sum,

WAPðRdÞ is an ergodic algebra.

We recall that the Fourier-Stieltjes algebra FSðRnÞ is defined as the closure in

the sup-norm of functions f : Rd ! R which admit a representation as

f ðxÞ ¼
ð
Rd

eix�y dmðyÞ; ðB:1Þ

for some signed Radon measure in Rd with finite total variation. If f admits the

representation in (B.1), then any of its translates, f ð� þ lÞ, admits a similar repre-

sentation with mðyÞ replaced by eil�ymðyÞ. Suppose first, that f a FSðRdÞ, admits

a representation as in (B.1), with supp mJBRð0Þ, for some R > 0. Given a se-

quence of translates, f ð� þ lnÞ, we have that these translates satisfy an equation

like (B.1), with mðyÞ replaced by mnðyÞ :¼ eln�ymðyÞ, and so jmnjðRdÞ ¼ jmjðRdÞ,
and supp mn ¼ supp m. Since the space of Radon measures with finite total varia-

tion and support in a compact K JRd , MðKÞ, is the dual of CðKÞ, we may

extract a subsequence from mn, still labeled mn, such that mn * n in the weak-star

topology of MðKÞ, for some n a MðKÞ. Therefore, f ð� þ lnÞ pointwise converges
to g a CbðRdÞ, where

gðxÞ ¼
ð
Rd

eix�ynðyÞ:
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Since any function in FSðRdÞ is the uniform limit of functions satisfying a repre-

sentation like (B.1), for a signed Radon measure m with compact support and finite

total variation, we conclude that FSðRdÞJWAPðRdÞ. r

Another very important result on the ergodic algebra WAPðRdÞ was estab-

lished by Eberlein in [17]. In sum, it shows that WAPðRdÞJW�APðRdÞ. As

yet, it is not known if the latter is an strict inclusion.

Lemma B.2 (cf. [17]). Given any j a WAPðRdÞ, then we can write,

j ¼ j� þ jN; ðB:2Þ

where j� a APðRdÞ, and MðjjNj2Þ ¼ 0.

Proof. If K�, m� are the compact topological space and the invariant probability

measure associated with APðRdÞ according to Theorem A.4, then K� is the so

called Bohr group, which, in particular, is a topological group and m� coincides

with the corresponding Haar measure (see, e.g., [4]). Therefore, it is possible to

define an approximation of the identity net ffaga AL JAPðRdÞ, with a running

along the directed set L of all neighborhoods of the identity, ordered naturally

by a1 < a2 if a2 J a1. More specifically, for each a a L, fab 0, supp fa J a, and

MðfaÞ ¼ 1. We may also assume that fað�xÞ ¼ faðxÞ. Therefore, given any

g a APðRdÞ, we have that fgaga AL, defined by

gaðxÞ :¼ g �M faðxÞ :¼
ð
K�

gðx� yÞfaðyÞ dm�ðyÞ

is a net in APðRdÞ converging uniformly to g. Moreover, it is easy to see that,

given j a WAPðRdÞ and f a APðRdÞ, then f �M j, defined by,

f �M jðxÞ :¼
ð
K

fðx� yÞjðyÞ dmðyÞ;

belongs to APðRdÞ, where K, m are the compact topological space and the invar-

iant probability measure associated with WAPðRdÞ by Theorem A.4. Indeed,

this follows directly from the fact that, through conveniently chosen partitions of

the unity in K, f �M j maybe uniformly approximated by convex combinations

of jðyiÞfðx� yiÞ, for certain finite sets of points yi a K. In particular, given

j a WAPðRdÞ, we have that the net ja :¼ j �M fa is contained in APðRdÞ.
Now, the net ja belongs to co

�
OðjÞ

�
, the closure of the convex hull of the set of

translates of j, which, by the definition of WAPðRdÞ, is compact in the weak

topology (again, see, e.g., [25], p. 72). Therefore, there is a cluster point j� of ja.
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Since ja a APðRdÞ and j� is the weak limit of a subnet of ja, we conclude that

j� a APðRdÞ.
The second main observation leading to the decomposition, is the fact that any

j a WAPðRdÞ has a Fourier series converging in B2 to j, that is,

jðxÞ ¼ MðfÞ þ
Xl
j¼1

ðaj cos lj � xþ bj sin lj � xÞ; for certain lj a Rd ; j a N;

in the sense of B2, whose proof follows by standard arguments. In particular, j

can be approximated in B2 by functions in APðRdÞ. Therefore, j � fa converges

to j in B2, which implies that Mðjj� j�j
2Þ ¼ 0, as was to be proved. Finally, the

uniqueness of j�, which follows by Parseval’s equation, implies that the whole

net ja converges to j�. r

Finally, Rudin, in [26], proved that there are functions in WAPðRdÞ which are

not in FSðRdÞ, that is, the inclusion FSðRdÞJWAPðRdÞ is strict.
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