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Abstract. We consider variational inequality solutions with prescribed gradient constraints
for first order linear boundary value problems. For operators with coe‰cients only in L2,
we show the existence and uniqueness of the solution by using a combination of parabolic
regularization with a penalization in the nonlinear di¤usion coe‰cient. We also prove
the continuous dependence of the solution with respect to the data, as well as, in a coercive
case, the asymptotic stabilization as time t ! þl towards the stationary solution. In a
particular situation, motivated by the transported sandpile problem, we give su‰cient
conditions for the equivalence of the first order problem with gradient constraint with a
two obstacles problem, the obstacles being the signed distances to the boundary. This
equivalence, in special conditions, illustrates also the possible stabilization of the solution
in finite time.
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1. Introduction

Several works have developed solutions u ¼ uðx; tÞ to the linear equation of first

order

qtuþ b � ‘uþ cu ¼ f ; ð1Þ

for t > 0 and x in an open subset W of RN , where b ¼ bðx; tÞ is a given vector field

and c ¼ cðx; tÞ and f ¼ f ðx; tÞ are given functions.



The well-known DiPerna and Lions theory of renormalized solutions, when b

is given in Sobolev spaces, has been extended by Ambrosio to BV coe‰cients for

the Cauchy problem and has found several applications in the study of hyperbolic

systems of multidimensional conservation laws (see, for instance [1], for an intro-

duction and references). The initial-boundary value problem for (1) with a C1

vector field b has been studied in the pioneer work of Bardos [2] using essentially

a L2 approach for the transport operator. This method also holds for Lipschitz

vector fields, as observed in [8], and was extended by Boyer [5] for solenoidal vec-

tor fields in Sobolev spaces that do not need to be tangential to the boundary of W,

i.e. b � nA 0 on qW for t > 0.

The delicate point is then to prescribe the boundary data to the normal trace of

b on the portion of the space-time boundary G� H qW� ð0;TÞ where the charac-

teristics are entering the domain QT ¼ W� ð0;TÞ. In the case when G� does

not vary with t, Besson and Pousin [3] have treated the initial-inflow problems

for the continuity equation (1) with Ll velocity fields b with c ¼ ‘ � b ¼ div b

also in LlðQT Þ. Recently Crippa et al. [7] have also considered this problem

without that restriction on G� and with similar assumptions on b in BV.

Here we are interested in the initial-boundary value problem for (1) under the

additional gradient constraint

j‘uðx; tÞja gðx; tÞ; ðx; tÞ a QT ; ð2Þ

where g ¼ gðx; tÞ is a given strictly positive and bounded function. This problem

was already considered in [20] in the framework of a quasilinear continuity

equation

qtuþ ‘ �FðuÞ ¼ FðuÞ ð3Þ

and a Lipschitz semilinear lower order term F ¼ Fðx; t; uÞ, with a gradient bound

in (2) that may depend also on the solution but not on time. As observed in [20],

in the linear transport equation (1), corresponding to

FðuÞ ¼ bu and F ðuÞ ¼ f þ ð‘ � b� cÞu

with regular coe‰cients and g ¼ gðxÞ independent of t, the problem is well-posed

in terms of a first order variational inequality with the convex set

Kg ¼ fv a H 1
0 ðWÞ : j‘vðxÞja gðxÞ a:e: x a Wg: ð4Þ

In [20] it is also proved the existence and asymptotic behaviour of quasivariational

solutions for positive nonlinear gradient constraints g ¼ gðx; uÞ depending con-

tinuously on the solution u ¼ uðx; tÞ. Here H 1
0 ðWÞ denotes the usual Sobolev

space of functions vanishing on the boundary qW, as the gradient bound allows

to prescribe values on the whole boundary. Moreover, it allows also to consider

the data b, c and f only in L2ðQTÞ, provided c� 1
2‘ � b is bounded from below.
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A motivation for the constraint (2) applied to the equation (1) is the ‘‘trans-

ported sandpile’’ problem. Following Prigozhin [14], [15], the gradient of the

shape of a growing pile of grains z ¼ zðx; tÞ characterized by its angle of repose

a > 0 is constrained by its surface slope, i.e. g ¼ arctan a. A general conservation

of mass, in the form (3) with F ¼ �m‘zþ bz and source density F , with transport

directed by b and dropping flow directed to the steepest descent �m‘z, should be

then subjected to the unilateral conditions

mb 0; j‘zja g and j‘zj < g ¼) m ¼ 0:

We illustrate this problem with the interesting example of the one dimensional

special case announced in [19]: W ¼ ð0; 1Þ, b ¼ 1 ¼ g, i.e. a ¼ p
4 and f ðx; tÞ ¼ t.

Taking as initial condition the parabola z0ðxÞ ¼ � 1
2 x

2, up to the point x0 ¼ffiffiffi
3

p
� 1, and the straight line z0ðxÞ ¼ x� 1, for x0axa 1, the profile of the

‘‘transported sandpile’’ growth attains a steady state exactly at t ¼ 5
4 . This

happens with the first free boundary point xðtÞ increasing from x0 up to t ¼ 1
2 ,

touching then the boundary x ¼ 1, and decreasing till the midpoint x ¼ 1
2 . At

this point, the free boundary xðtÞ meets a second increasing free boundary

zðtÞ ¼ 2ðt� 1Þ, that appears at t ¼ 1 and increases up to the final stabilization at

t ¼ 5
4 .

The explicit sandpile profile is given by

zðx; tÞ ¼

tx� 1
2 x

2 if 0axa xðtÞ and 0a ta 1;

x� 1 if xðtÞ < xa 1 and 0a ta 1
2 ;

1� x if xðtÞ < xa 1 and 1
2 < ta 1;

x if 0axa zðtÞ and 1 < ta 5
4 ;

tx� 1
2 x

2 if zðtÞ < xa xðtÞ and 1 < ta 5
4 ;

x� 1 if xðtÞ < xa 1 and 1 < ta 5
4 ;

1
2 � x� 1

2

�� �� if t > 5
4 ;

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

1

Figure 1. The free boundary of the transported sandpile problem at t ¼ 0; 3=4; 9=8 and 5=4.
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where xðtÞ ¼ t� 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� tÞ2 þ 2

q
, if 0a ta 1

2 , and xðtÞ ¼ tþ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtþ 1Þ2 � 2

q
,

if 1
2 < ta 5

4 .

It is clear that zðtÞ a K1 HH 1
0 ðWÞ.

We introduce the function dðxÞ ¼ 1
2 �

��x� 1
2

�� and the convex set

Kb
4 ¼ fv a H 1

0 ðWÞ : �dðxÞa vðxÞa dðxÞ a:e: x a ð0; 1ÞgIK1:

Since qtzþ qxz ¼ t in A ¼ fðx; tÞ a QT : jqxzðx; tÞj < 1g, by simple computa-

tion and integration in QT , we easily conclude that z, which (using4¼ sup and

b¼ inf ) can be written as

zðx; tÞ ¼
�
�dðxÞ

�
4 tx� 1

2
x2

� �
bdðxÞ

 !
;

is then the unique solution z ¼ u a Kb
4 of the variational inequality

ð
QT

ðqtuþ qxu� tÞðw� uÞb 0 EwðtÞ a Kb
4; 0 < t < T ; uð0Þ ¼ z0: ð5Þ

But since z0, zðtÞ a K1, z is also the solution of the variational inequality (5) with

wðtÞ a K1 HKb
4, which has at most one solution also in the convex set K1, defined

as in (4) with gC 1.

In Section 2 we establish the existence and the uniqueness of the solution of the

first order variational inequality associated with the general linear equation (1) in

a family of time dependent convex sets with gradient constraints of the type (4)

with g ¼ gðx; tÞ. We improve the results of [20] under general square integra-

bility assumptions on the coe‰cients and on the data, by direct estimates in the

parabolic-penalized problem and passage to the limit, first in the penalization

parameter e, and afterwards in the regularization parameter d. The continuous

dependence of the solution with respect to the gradient constraint variations in

Ll, to the coe‰cients of the operator and the data in L1, is proven in Section 3

under the weak coercive condition (7), as well as the asymptotic convergence

towards the unique stationary solution under the stronger coercive assumption

(23).

Finaly, in Section 4, we consider the special case of a constant vector b, with

g ¼ 1 and f ¼ f ðtÞ bounded, to show the equivalence of the variational inequal-

ities with the gradient constraint and with the two obstacles, i.e. with the signed

distances to the boundary constraints on the solution. This is a first result of this

type for first order variational inequalities, similar to the elliptic well-known case

of the elastoplastic torsion problem (see, for instance, [16] and its references) and

to the parabolic case without convection considered in [21], [22], where it was
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shown that this equivalence is not always possible in the general case. With addi-

tional conditions, that include the above one dimensional transported sand pile

problem, we establish the finite time stabilization of the solution. This extends

to the convective problem a similar result by Cannarsa et al. [6] and raises the

interesting open question of establishing more general conditions on the finite

time stabilization of evolutionary problems with gradient constraints.

Another interesting open question is the complete characterization of the vec-

tor distribution C that arises as a second unknown in the distributional formula-

tion of (1) under the additional gradient constraint (2) writen as

qtuþ b � ‘uþ cu ¼ f þ ‘ �C:

Indeed the estimates of Section 2 allow us to guarantee the existence of a

couple ðu;CÞ, where formally C ¼ 0 and u solves (1) in the region where j‘uj < g,

but it would be interesting to verify if there exists a multiplier mb 0, such that,

C ¼ m‘u subjected to a unilateral condition as we could expect from the formula-

tion of the above sandpile problem or as in the classical elastic-plastic torsion

problem (see [16], for instance).

2. Existence and uniqueness of the variational solution

Let W be a bounded open subset of RN with a Lipschitz boundary qW and, for any

T > 0, denote QT ¼ W� ð0;TÞ.
Assume that

b a L2ðQTÞ and c a L2ðQTÞ; ð6Þ

and there exists l a R such that

c� 1

2
‘ � bb l in QT ; ð7Þ

being this inequality satisfied in the distributional sense, since ‘ � b does not need

to be a function.

In addition we also suppose given

f a L2ðQT Þ and u0 a Kgð0Þ; ð8Þ

with

g a W 1;l
�
0;T ;LlðWÞ

�
; gbm > 0: ð9Þ
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As in (4), we define, for tb 0;

KgðtÞ ¼ fv a H 1
0 ðWÞ : j‘vðxÞja gðx; tÞ for a:e: in x a Wg:

Consider the following variational inequality problem: To find u, in an appro-

priate space, such that

uðtÞ a KgðtÞ for a:e: t a ð0;TÞ; uð0Þ ¼ u0;ð
W

qtuðtÞ
�
v� uðtÞ

�
þ
ð
W

bðtÞ � ‘uðtÞ
�
v� uðtÞ

�
þ
ð
W

cðtÞuðtÞ
�
v� uðtÞ

�
b

ð
W

f ðtÞ
�
v� uðtÞ

�
;

Ev a KgðtÞ; for a:e: t a ð0;TÞ:

8>>>>>>>><
>>>>>>>>:

ð10Þ

Theorem 2.1. With the assumptions (6)–(9), problem (10) has a unique solution

u a Ll
�
0;T ;W 1;l

0 ðWÞ
�
BCðQT Þ; qtu a L2ðQT Þ:

Proof. To prove the uniqueness of the solution we assume there exist two solu-

tions u1 and u2. Using u2 ¼ u2ðtÞ as test function in (10) for the variational

inequality of u1 and reciprocally, setting u ¼ u1 � u2 at a.e. t > 0, we obtain

ð
W

qtuðtÞuðtÞ þ
ð
W

bðtÞ � ‘uðtÞuðtÞ þ
ð
W

cðtÞu2ðtÞa 0:

Using (7), for any v a Cl
0 ðWÞ, we have

1

2

ð
W

bðtÞ � ‘v2 þ
ð
W

cðtÞv2b l

ð
W

v2

and, by approximation in H 1
0 ðWÞ of uðtÞ, we obtain,

d

dt

ð
W

juðtÞj2 þ 2l

ð
W

juðtÞj2a 0:

By Gronwall’s inequality, we conclude uC 0 from uð0Þ ¼ 0.

To prove the existence of a solution, we consider a family of approximating

quasilinear parabolic problems for ued, with e; d a ð0; 1Þ, defined as follows

qtu
ed � d‘ �

�
keðj‘uedj2 � g2Þ‘ued

�
þ bd � ‘ued þ cdued ¼ f d in QT ;

ued ¼ 0 on qW� ð0;TÞ;
uedð0Þ ¼ ue

0 in W0;

8><
>: ð11Þ
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where W0 ¼ W� f0g, bd, cd, f d and ue
0 are Cl appropriate regularizations of b,

c, f and u0, respectively, with j‘ue
0ja gð0Þ and ke is a smooth real function such

that keðsÞ ¼ 1 if sa 0 and keðsÞ ¼ es=e if sb e. Notice that this problem has a

unique solution ued a H 1
�
0;T ;L2ðWÞ

�
BLl

�
0;T ;H 1

0 ðWÞ
�
BCðQTÞ, by the clas-

sical theory of parabolic quasilinear problems (see, for instance, [10]).

We prove first several a priori estimates.

Estimate 1

kkeðj‘uedj2 � g2ÞkL1ðQT Þa
1

d
C1; ð12Þ

for some constant C1 dependent only on m, jlj, k f kL2ðQT Þ, kgkL2ðQT Þ and ku0kL2ðWÞ.

Multiplying the equation of the problem (11) by ued and integrating over

Qt ¼ W� �0; t½, we have

1

2

ð
W

juedðtÞj2 þ d

ð
Qt

keðj‘uedj2 � g2Þj‘uedj2 þ
ð
Qt

ðbd � ‘uedÞued þ
ð
Qt

cdjuedj2

¼
ð
Qt

f dued þ 1

2

ð
W

jue
0j

2:

Observing that

ð
Qt

ðbd � ‘uedÞued ¼ � 1

2

ð
Qt

ð‘ � bdÞðuedÞ2;

and using the coercive inequality for the regularized coe‰cients

cd � 1

2
‘ � bd ¼ c� 1

2
‘ � b

� �
� rdb l � rd ¼ l;

we have

1

2

ð
W

juedðtÞj2 þ d

ð
Qt

keðj‘uedj2 � g2Þj‘uedj2

a k f dkL2ðQT Þku
edkL2ðQtÞ þ

1

2
ku0k2L2ðWÞ þ jlj kuedk2L2ðQtÞ:

Hence, by the integral Gronwall’s inequality, there exists a positive constant

CT , independent of e and d, such that

kuedkL2ðQT ÞaCT
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and so

d

ð
Qt

keðj‘uedj2 � g2Þj‘uedj2aC0;

where C 0 ¼ C 0ðk f kL2ðQT Þ; ku0kL2ðWÞ; jljÞ.
On the other hand, we observe thatð

QT

keðj‘uedj2 � g2Þj‘uedj2

¼
ð
QT

keðj‘uedj2 � g2Þðj‘uedj2 � g2Þ þ
ð
QT

keðj‘uedj2 � g2Þg2: ð13Þ

Since keðsÞ ¼ 1 for sa 0 and keðsÞsb 0, for all sb 0, thenð
Qt

keðj‘uedj2 � g2Þðj‘uedj2 � g2Þ

¼
ð
fj‘u e dj2ag2g

keðj‘uedj2 � g2Þðj‘uedj2 � g2Þ

þ
ð
fj‘u e dj2>g2g

keðj‘uedj2 � g2Þðj‘uedj2 � g2Þb�
ð
QT

g2: ð14Þ

From (13) and (14) we obtainð
Qt

keðj‘wj2 � g2Þa 1

m2

� ð
QT

keðj‘wj2 � g2Þj‘wj2 þ
ð
QT

g2
�

a
1

m2

1

d
C 0 þ kgk2L2ðQT Þ

� �
a

1

d
C1;

where C1 ¼ C1ðm; k f kL2ðQT Þ; kgkL2ðQT Þ; ku0kL2ðWÞ; jljÞ.

Estimate 2

k‘uedkLpðQT ÞaDd; ð15Þ

where, for any d > 0 and any 1a p < l, the constant Dd depends only on p, m,

jlj, k f kL2ðQT Þ, kgkL2ðQT Þ, ku0kL2ðWÞ and a negative power of d.

From (12) we know that

ð
QT

keðj‘uedj2 � g2Þa 1

d
C1;
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where C1 is the positive constant of Estimate 1. So,

1

d
C1b

ð
fj‘u e dj2>g2þeg

keðj‘uedj2 � g2Þ ¼
ð
fj‘u e dj2>g2þeg

eðj‘u
e dj2�g2Þ=e

and recalling that, for all s > 0 and all j a N, esb s j

j! , we get, for any j a N,

ð
fj‘u e dj2>g2þeg

ðj‘uedj2 � g2Þ j a j!e j
ð
fj‘u e dj2>g2þeg

eðj‘u
e dj2�g2Þ=e

a
1

d
j!e jC1:

Given 1a p < l, we have

ð
QT

j‘uedj2p ¼
ð
fj‘u e dj2ag2þeg

j‘uedj2p þ
ð
fj‘u e dj2>g2þeg

j‘uedj2p ð16Þ

and, since g is bounded, we can estimate, for any p a N, the second integral in the

second term of (16) as follows,

ð
fj‘u e dj2>g2þeg

j‘uedj2pa
ð
fj‘u e dj2>g2þeg

Xp
j¼0

p

j

� �
kgk2p�2j

LlðQT Þðj‘u
edj2 � g2Þ j

a
1

d

Xp
j¼0

p

j

� �
kgk2p�2j

LlðQT Þ j!e
jC1:

The first integral in the second term of (16) is clearly bounded since

ð
fj‘u e dj2ag2þeg

j‘uedj2pa
ð
QT

ðg2 þ 1Þp

and the conclusion follows easily, first for 2p a N and afterwards for any

1a p < l.

Estimate 3

kqtuedk2L2ðQT Þa 4ðkbdk2L sðQT Þ þ C3kcdk2L sðQT ÞÞk‘u
edk2LqðQT Þ þ C4; ð17Þ

where, for 2 < s < 2N
N�2 , C3 is an upper bound, independent of q ¼ 2s

s�2 , of the

Poincaré constant for W
1;q
0 ðWÞ and C4 is a positive constant depending only on

m, jlj, k f kL2ðQT Þ, kgk
2
W 1;lð0;T ;LlðWÞÞ and ku0kL2ðWÞ.

We multiply the equation of problem (11) by qtu
ed and we integrate over Qt,

noting that qtu
ed ¼ 0 on qW� ð0;TÞ. Denoting feðsÞ ¼

Ð s
0 keðtÞ dt, we have
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ð
Qt

jqtuedj2 þ d

2

ð
Qt

d

dt

�
feðj‘uedj2 � g2Þ

�
þ d

ð
Qt

keðj‘uedj2 � g2Þgqtg

þ
ð
Qt

ðbd � ‘uedÞqtued þ
ð
Qt

cduedqtu
ed ¼

ð
Qt

f dqtu
ed:

We choose 2 < s < 2N
N�2 and q ¼ 2s

s�2 , and so we have 1
s
þ 1

q
þ 1

2 ¼ 1. Then

��� ð
Qt

ðbd � ‘uedÞqtued
���a kbdkLsðQT Þk‘u

edkLqðQT Þkqtu
edkL2ðQT Þ

a kbdk2LsðQT Þk‘u
edk2LqðQT Þ þ

1

4
kqtuedk2L2ðQT Þ;

and

��� ð
Qt

cduedqtu
ed
���a kcdkLsðQT Þku

edkLqðQT Þkqtu
edkL2ðQT Þ

a kcdk2LsðQT Þku
edk2LqðQT Þ þ

1

4
kqtuedk2L2ðQT Þ:

So

1

4

ð
QT

jqtuedj2a k f dk2L2ðQT Þ þ
d

2

ð
W

fe
�
j‘uedð0Þj2 � g2ð0Þ

�
� d

2

ð
W

fe
�
j‘uedðtÞj2 � g2ðtÞ

�
þ C1kgkLlðQT ÞkqtgkLlðQT Þ

þ ðkbdk2LsðQT Þ þ Cqkcdk2LsðQT ÞÞk‘u
edk2LqðQT Þ;

being Cq a Poincaré constant. Observe that, since W is bounded we may find a

positive upper bound C3 of Cq, independently of qal.

On one hand

ð
W

fe
�
j‘uedð0Þj2 � g2ð0Þ

�
a 0;

because j‘uedð0Þj ¼ j‘ue
0ja gð0Þ. On the other hand, if we set L ¼ fðx; tÞ a QT :

j‘uedðx; tÞj < gðx; tÞg, we have

fe
�
j‘uedðx; tÞj2 � g2ðx; tÞ

�
¼ j‘uedðx; tÞj2 � g2ðx; tÞ

b�g2ðx; tÞ for a:e: ðx; tÞ a L;

fe
�
j‘uedðx; tÞj2 � g2ðx; tÞ

�
b 0b�g2ðx; tÞ for a:e: ðx; tÞ a QTnL:
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Consequently, for a.e. t a ð0;TÞ,

�
ð
W

fe
�
j‘uedðtÞj2 � g2ðtÞ

�
a kgk2Llð0;T ;L2ðWÞÞ:

So,

1

4
kqtuedk2L2ðQT Þa k f dk2L2ðQT Þ þ

d

2
kgk2Llð0;T ;L2ðWÞÞ

þ C1kgkLlðQT ÞkqtgkLlðQT Þ

þ ðkbdk2LsðQT Þ þ Cqkcdk2LsðQT ÞÞk‘u
edk2LqðQT Þ;

and the proof of Estimate 3 is concluded.

By (15) and (17), we know there exist constants Dd, Cd and C4, independent of

e, such that, for each N < p < l,

kuedk
Lpð0;T ;W 1; p

0
ðWÞÞaDd; kqtuedkL2ðQT Þa ðkbdkL sðQT Þ þ kcdkLsðQT ÞÞCd þ C4:

Since ued is bounded in H 1
�
0;T ;L2ðWÞ

�
BLp

�
0;T ;W 1;p

0 ðWÞBC0;1�N=pðWÞ
�
,

independently of e a ð0; 1Þ, for p > N, by a known compactness theorem ([23],

page 84), fuedge is relatively compact in C
�
½0;T �;CðWÞ

�
. Then, at least for a

subsequence,

ued �!
e!0

ud in CðQT Þ:

The above estimates also imply that we may choose, always with fixed d,

ued �*
e!0

ud weakly in Lp
�
0;T ;W 1;p

0 WÞ
�
; 1a p < l;

qtu
ed �*

e!0
qtu

d weakly in L2ðQTÞ:

Given v a Ll
�
0;T ;H 1

0 ðWÞ
�
such that vðtÞ a KgðtÞ for a.e. t a ð0;TÞ, we multi-

ply the equation of problem (11) by vðtÞ � uedðtÞ, we use the monotonicity of ke
and we integrate over W� ðs; tÞ, 0a s < taT , to conclude that

ð t
s

ð
W

qtu
edðv� uedÞ þ d

ð t
s

ð
W

‘v � ‘ðv� uedÞ

þ
ð t
s

ð
W

bd � ‘uedðv� uedÞ þ
ð t
s

ð
W

cuedðv� uedÞb
ð t
s

ð
W

f dðv� uedÞ:
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Letting e ! 0, since s and t are arbitrary, we obtain that for a.e. t a ð0;TÞ

ð
W

qtu
dðtÞ
�
vðtÞ � udðtÞ

�
þ d

ð
W

‘vðtÞ � ‘
�
vðtÞ � udðtÞ

�
þ
ð
W

bdðtÞ � ‘udðtÞ
�
vðtÞ � udðtÞ

�
þ
ð
W

cdðtÞudðtÞ
�
vðtÞ � udðtÞ

�
b

ð
W

f dðtÞ
�
vðtÞ � udðtÞ

�
;

for all v a Ll
�
0;T ;H 1

0 ðWÞ
�
, such that vðtÞ a KgðtÞ for a.e. t a ð0;TÞ.

Set Ae ¼ fðx; tÞ a QT : j‘uedðx; tÞj2 � g2ðx; tÞb
ffiffi
e

p
g. Since keðj‘uedj2 � g2Þb

e1=
ffiffi
e

p
in Ae, then we have

jAej ¼
ð
Ae

1a

ð
Ae

keðj‘uedj2 � g2Þ
e1=

ffiffi
e

p a
C1

d
e�1=

ffiffi
e

p
;

by (12), being C1 a constant independent of e as we have seen. So we have

ð
QT

ðj‘udj2 � g2Þþa lim inf
e!0

ð
QT

ðj‘uedj2 � g2 �
ffiffi
e

p
Þþ

¼ lim inf
e!0

ð
Ae

ðj‘uedj2 � g2 �
ffiffi
e

p
Þa lim

e!0
MdjAej1=2 ¼ 0; ð18Þ

where Md is an upper bound of k j‘uedj2 � g2 �
ffiffi
e

p
kL2ðQT Þ, independent of e.

Consequently,

j‘udja g a:e: in QT

and so udðtÞ a KgðtÞ for a.e. t a ð0;TÞ. Let z a Ll
�
0;T ;H 1

0 ðWÞ
�
be such that

zðtÞ a KgðtÞ. Defining v ¼ uþ yðz� uÞ, y a ð0; 1�, then vðtÞ a KgðtÞ. Using vðtÞ as
test function in (10) and dividing both sides of the inequality by y, we get

ð
W

qtu
dðtÞ
�
zðtÞ � udðtÞ

�
þ d

ð
W

‘udðtÞ � ‘
�
zðtÞ � udðtÞ

�
þ dy

ð
W

��‘�zðtÞ � udðtÞ
���2 þ

ð
W

bdðtÞ � ‘udðtÞ
�
zðtÞ � udðtÞ

�
þ
ð
W

cdðtÞudðtÞ
�
zðtÞ � udðtÞ

�
b

ð
W

f dðtÞ
�
zðtÞ � udðtÞ

�

and, letting y ! 0, we conclude that ud solves the following variational inequality
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udðtÞ a KgðtÞ for a:e: t a ð0;TÞ; udð0Þ ¼ u0;ð
W

qtu
dðtÞ
�
v� udðtÞ

�
þ d

ð
W

‘udðtÞ � ‘
�
v� udðtÞ

�
þ
ð
W

bdðtÞ � ‘udðtÞ
�
v� udðtÞ

�
þ
ð
W

cdðtÞudðtÞ
�
v� udðtÞ

�
b

ð
W

f dðtÞ
�
v� udðtÞ

�
; Ev a KgðtÞ; for a:e: t a ð0;TÞ:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð19Þ

Recalling the Estimate 3 we have

kqtuedk2L2ðQT Þa ðkbdk2L sðQT Þ þ C3kcdk2LsðQT ÞÞk‘u
edk2L2s=ðs�2ÞðQT Þ þ C4

a ðkbdk2L sðQT Þ þ C3kcdk2LsðQT ÞÞ
� ð

QT

ðj‘uedj2s=ðs�2Þ � g2s=ðs�2Þ �
ffiffi
e

p
Þþ

þ
ð
QT

ðg2s=ðs�2Þ þ
ffiffi
e

p
Þ
�ðs�2Þ=s

þ C4:

Passing to the lim inf when e ! 0 and arguing as in (18), we conclude that

lim inf
e!0

ð
QT

ðj‘uedj2s=ðs�2Þ � g2s=ðs�2Þ �
ffiffi
e

p
Þþ ¼ 0

and, consequently,

kqtudkL2ðQT Þ a 4ðkbdk2L sðQT Þ þ C3kcdk2LsðQT ÞÞkgk
2
L2s=ðs�2ÞðQT Þ þ C4:

Observing that

lim
s!2þ

ðkbdk2L sðQT Þ þ C3kcdk2LsðQT ÞÞkgk
2
L2s=ðs�2ÞðQT Þ

¼ ðkbdk2L2ðQT Þ þ C3kcdkL2ðQT ÞÞkgk
2
LlðQT Þ;

we have the sequence fqtudgd uniformly bounded in L2ðQTÞ.
Moreover, the sequence fudgd is uniformly bounded in Ll

�
0;T ;W 1;l

0 ðWÞ
�
,

independently of d, since each udðtÞ belongs to KgðtÞ. So, there exists a

function u a Ll
�
0;T ;W 1;l

0 ðWÞ
�
BH 1

�
0;T ;L2ðWÞ

�
BCðQTÞ and, at least for a

subsequence,

ud �!
d!0

u in CðQTÞ;

ud �*
d!0

u weakly in Lp
�
0;T ;W 1;p

0 ðWÞ
�
; 1a p < l;

qtu
d �*

d!0
qtu weakly in L2ðQT Þ:
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Integrating in (19) between s and t, for 0a s < taT , and passing to the limit

when d ! 0, we get

ð t
s

ð
W

qtuðv� uÞ þ
ð t
s

ð
W

b � ‘uðv� uÞ þ
ð t
s

ð
W

cuðv� uÞb
ð t
s

ð
W

f ðv� uÞ;

for all v such that vðtÞ a KgðtÞ for a.e. t a ð0;TÞ. Since s and t are arbitrary, we can

drop the integration in time. Since udðtÞ a KgðtÞ for a.e. t a ð0;TÞ, the same holds

for uðtÞ, concluding that u solves the variational inequality (10). r

Remark 2.2. We observe that in the proof of the uniqueness of the solution it is

su‰cient to assume only

b a L1ðQTÞ and c a L1ðQTÞ;

instead of (6).

Similarly, we may replace (7) by the di¤erent weak coercive assumption by

assuming the existence of r a R, such that, in the sense of distributions,

c� ‘ � bb r in QT ;

in order to have also the uniqueness of the solution to the variational inequality

(10).

In fact, assuming that there are two solutions u1 and u2, we may choose for

test function v ¼ u1 þ z2szðu2 � u1Þ in the variational inequality for u1, where

sz : R ! R is a sequence of C1 increasing odd functions approximating point-

wise the sign function sgn0 and z is su‰cient small. Then, choosing also v ¼
u2 þ z2szðu1 � u2Þ in the variational inequality for u2, we get

ð
W

qtuðtÞsz
�
uðtÞ

�
þ
ð
W

bðtÞ � ‘uðtÞsz
�
uðtÞ

�
þ
ð
W

cðtÞuðtÞsz
�
uðtÞ

�
a 0

Noting SzðsÞ ¼
Ð s
0 szðtÞ dt �!z!0

jsj and tszðtÞ �!
z!0

jtj, by the dominated convergence

theorem, we have

d

dt

ð
W

juðtÞj þ
ð
W

bðtÞ � ‘juðtÞj þ
ð
W

cðtÞjuðtÞja 0

and so

d

dt

ð
W

juðtÞj þ r

ð
W

juðtÞja 0:
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Since uð0Þ ¼ 0, by the Gronwall’s inequality, we conclude the uniqueness from

ð
W

juðtÞja ert
ð
W

juð0Þj ¼ 0:

3. Stability and asymptotic behaviour in time

In this section, the stability of the solutions of the variational inequality (10), as

well as its asymptotic limit when t ! þl is based in the following Lemma, which

is due essentially to [22].

Lemma 3.1. For i ¼ 1; 2, let gi belong to LlðQTÞ. If v1 a Lq
�
0;T ;W 1;p

0 ðWÞ
�
,

1a p; qal, is such that v1ðtÞ a Kg1ðtÞ for a.e. t a ð0;TÞ then there exists

v̂v2 a Lq
�
0;T ;W 1;p

0 ðWÞ
�
such that v̂v2ðtÞ a Kg2ðtÞ for a.e. t a ð0;TÞ and a positive

constant C such that

kv1 � v̂v2kLqð0;T ;W 1; p
0

ðWÞÞaCkg1 � g2kLlðQT Þ:

Proof. Let aðtÞ ¼ kg1ðtÞ � g2ðtÞkLlðWÞ. Define cðtÞ ¼ 1þ aðtÞ
m

, v̂v2ðtÞ ¼
1

cðtÞ v1ðtÞ.
Since

j‘v̂v2ðtÞj ¼
1

cðtÞ j‘v1ðtÞja
1

cðtÞ g1ðtÞ

and

g1ðtÞ
cðtÞ ¼ m

mþ aðtÞ g1ðtÞa g2ðtÞ

then v̂v2ðtÞ a Kg2ðtÞ for a.e. t a ð0;TÞ. The conclusion follows immediately from

j‘ðv1 � v̂v2Þj ¼ 1� 1

cðtÞ

����
���� j‘v1ja j‘v1j

m
kg1 � g2kLlðQT Þ: r

The continuous dependence result is a consequence of the boundedness of the

solution and of its gradient, when we impose the weakly coercive assumption (7).

Theorem 3.2. For i ¼ 1; 2, let ui denote the solution of the variational inequality

(10) with data ðbi; ci; fi; gi; u0iÞ satisfying assumptions (6)–(9). Then there exists a

positive constant C ¼ CðTÞ, depending on T, such that
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ku1 � u2k2Llð0;T ;L2ðWÞÞaCðku01 � u02k2L2ðWÞ þ kb1 � b2kL1ðQT Þ þ kc1 � c2kL1ðQT Þ

þ k f1 � f2kL1ðQT Þ þ kg1 � g2kLlðQT ÞÞ:

Proof. Let ûu2 be defined as in Lemma 3.1, for the solution u1 and ûu1 be the corre-

sponding function for u2. Using ûu1 as test function in the variational inequality

(10), we obtain

ð
W

qtu1ðtÞ
�
u1ðtÞ � u2ðtÞ

�
þ
ð
W

b1ðtÞ � ‘u1ðtÞ
�
u1ðtÞ � u2ðtÞ

�
þ
ð
W

c1ðtÞu1ðtÞ
�
u1ðtÞ � u2ðtÞ

�
a

ð
W

f1ðtÞ
�
u1ðtÞ � u2ðtÞ

�
þ
ð
W

�
qtu1ðtÞ þ b1ðtÞ � ‘u1ðtÞ þ c1ðtÞu1ðtÞ � f1ðtÞ

��
ûu1ðtÞ � u2ðtÞ

�

and a similar inequality is true using the variational inequality of u2, by replacing

the data f1, b1, c1 by f2, b2, c2 and ûu1 by ûu2. Then we have

ð
W

qt
�
u1ðtÞ � u2ðtÞ

��
u1ðtÞ � u2ðtÞ

�
þ
ð
W

b1ðtÞ � ‘
�
u1ðtÞ � u2ðtÞ

��
u1ðtÞ � u2ðtÞ

�
þ
ð
W

c1ðtÞ
�
u1ðtÞ � u2ðtÞ

�2
aYðtÞ; ð20Þ

with

YðtÞ ¼
ð
W

�
qtu1ðtÞ þ b1ðtÞ � ‘u1ðtÞ þ c1ðtÞu1ðtÞ � f1ðtÞ

��
ûu1ðtÞ � u2ðtÞ

�
þ
ð
W

�
qtu2ðtÞ þ bðtÞ � ‘u2ðtÞ þ cðtÞu2ðtÞ � f2ðtÞ

��
ûu2ðtÞ � u1ðtÞ

�
þ
ð
W

�
b1ðtÞ � b2ðtÞ

�
� ‘u2ðtÞ

�
u1ðtÞ � u2ðtÞ

�
þ
ð
W

	�
c1ðtÞ � c2ðtÞ

�
u2ðtÞ þ

�
f1ðtÞ � f2ðtÞ

�
�
u1ðtÞ � u2ðtÞ

�
:

Using the boundedness of the solutions ui, i ¼ 1; 2; and their gradients and

recalling the L2ðQT Þ estimates of qtui, we have

ðT
0

YðtÞ dtaCMðkg1 � g2kLlðQT Þ þ kb1 � b2kL1ðQT Þ

þ kc1 � c2kL1ðQT Þ þ k f1 � f2kL1ðQT ÞÞ;
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where CM is a positive constant depending on T , on the norms of the solutions

and their derivatives (which can be bounded in terms of the data) and on the

constant C of Lemma 3.1.

Setting w ¼ u1 � u2 in the inequality (20), we obtain using (7),

d

dt

ð
W

jwðtÞj2a 2jlj
ð
W

jwðtÞj2 þ 2YðtÞ:

Applying Gronwall’s inequality, we concludeð
W

ju1ðtÞ � u2ðtÞj2a e2jljT
�
ku10 � u20k2L2ðWÞ þ 2CMðkg1 � g2kLlðQT Þ

þ kb1 � b2kL1ðQT Þ þ kc1 � c2kL1ðQT Þ þ k f1 � f2kL1ðQT ÞÞ
�
:

r

In order to consider the corresponding time independent solution to the first

order variational inequality, we give stationary data fl, gl, bl, cl satisfying

the assumptions

gl a LlðWÞ; glbm > 0; fl a L1ðWÞ; ð21Þ
bl a L1ðWÞ; cl a L1ðWÞ; ð22Þ

cl � 1

2
‘ � blb l > 0 in W ð23Þ

in the distributional sense, where we set accordingly

Kgl ¼ fw a H 1
0 ðWÞ : j‘wja gl a:e: in Wg:

Then, the stationary problem can be written as

ul a Kgl :

ð
W

bl � ‘ulðw� ulÞ þ
ð
W

clulðw� ulÞ

b

ð
W

flðw� ulÞ; Ew a Kgl : ð24Þ

Since the convex set Kgl is bounded in H 1
0 ðWÞ and the first order linear

operator in the left hand side of (24) is pseudo-monotone, by the classical theory

(see, for instance, [12]) it has a solution, which is unique by the strict coerciveness

induced by the condition l > 0 in (23).

In order to study the asymptotic convergence of the solution of the variational

inequality (10) to the stationary solution of (24), we consider solutions global in
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time. This is easily obtained if we assume that (6)–(8) are satisfied for any T > 0

and replace (9) by

g a W 1;l
�
0;l;LlðWÞ

�
; gbm > 0: ð25Þ

We need an auxiliary lemma.

Lemma 3.3 ([9, page 286]). Let j : ð0;lÞ ! R be a nonnegative function, abso-

lutely continuous in any compact subinterval of ð0;lÞ, F a L1
locð0;lÞ a nonneg-

ative function and m a positive constant, such that

j 0ðtÞ þ mjðtÞaFðtÞ; Et > 0:

Then, for any s; t > 0,

jðtþ sÞa e�mt þ 1

1� e�m

h
sup
tbs

ð tþ1

t

FðxÞ dx
i
: r

In order to apply this Lemma to

jðtÞ ¼
ð
W

juðtÞ � ulj2; t > 0; ð26Þ

we shall require the additional assumptions on the coe‰cients and on the data

b a Ll
�
0;l;L2ðWÞ

�
and c; f a Ll

�
0;l;L2ðWÞ

�
: ð27Þ

Theorem 3.4. Assume that f , g, b, c, u0 satisfy the assumptions (6)–(8), (25), (27)

and fl, gl, bl, cl satisfy the assumption (21), (22) and (23). Suppose, in addition,

that

ð tþ1

t

ð
W

j f ðtÞ � flj dt dx ��!
t!l

0;

ð tþ1

t

ð
W

jbðtÞ � blj dt dx ��!
t!l

0;

ð tþ1

t

ð
W

�
cðtÞ � clÞ

�
dt dx ��!

t!l
0

and there exists g > 1
2 , such that, for some constant D > 0,

kgðtÞ � glkLlðWÞa
D

tg
; t > 0: ð28Þ
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If u and ul are, respectively, the unique solutions of the variational inequalities

(10) and (24) then, for every a, 0 < a < 1,

uðtÞ ��!
t!l

ul in C0;aðWÞ

Proof. First we need to return to the estimate (17) of the existence proof in order

to prove that, under the additional assumptions of this theorem, there are positive

constants A, B, independent of T , such that,

kqtukL2ðW�ð0;TÞÞaA
ffiffiffiffi
T

p
þ B:

Since j‘uðx; tÞja gðx; tÞ for a.e. ðx; tÞ a Ql ¼ W� ð0;lÞ and g a LlðQlÞ, we
have now u a Ll

�
0;l;W 1;lðWÞ

�
. This yields the estimate

kuk2L2ðQT Þ ¼
ð
QT

juj2a cgT

where the constant cg > 0 is independent of T . Using similar estimates for

k f k2L2ðQT Þ with the constant cg replaced by cf ¼ k f k2L2ð0;l;L2ðWÞÞ, as well as

for cb ¼ kbk2L2ð0;l;L2ðWÞÞ and cc ¼ kck2L2ð0;l;L2ðWÞÞ, we may conclude that the

constant C1 ¼ C1ðTÞ of (12), in the Estimate 1, grows also linearly with T , i.e.

C1a c0 þ c1T , where c0 depends only on u0 and c1 depends on m, cf , cg, cb
and cc. Using this fact in the Estimate 3, we may now easily deduce (3) from

(17), with s ¼ 2 and q ¼ l, since C4, depending on f and on C1 grows also

linearly with T .

Using Lemma 3.1, we choose ûul a KgðtÞ, for a.e. t a ð0;TÞ, as test function in

(10). Then

ð
W

qtuðtÞ
�
uðtÞ � ul

�
þ
ð
W

bðtÞ � ‘uðtÞ
�
uðtÞ � ul

�
þ
ð
W

cðtÞuðtÞ
�
uðtÞ � ul

�
a

ð
W

f ðtÞ
�
uðtÞ � ul

�
þ
ð
W

�
qtuðtÞ þ bðtÞ � ‘uðtÞ þ cðtÞuðtÞ � f ðtÞ

�
ðûul � ulÞ:

Analogously, with ûuðtÞ a Kgl , for a.e. t a ð0;TÞ, we obtain the inequality

ð
W

bl � ‘ul
�
uðtÞ � ul

�
þ
ð
W

clul
�
uðtÞ � ul

�
b

ð
W

fl
�
uðtÞ � ul

�
þ
ð
W

ðbl � ‘ul þ clul � flÞ
�
uðtÞ � ûuðtÞ

�
:

Then, simple algebraic manipulations lead to
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ð
W

qt
�
uðtÞ � ul

��
uðtÞ � ul

�
þ
ð
W

bl � ‘
�
uðtÞ � ul

��
uðtÞ � ul

�
þ
ð
W

cl
�
uðtÞ � ul

��
uðtÞ � ul

�
aYðtÞ; ð29Þ

where

YðtÞ ¼
ð
W

�
qtuðtÞ þ bðtÞ � ‘uðtÞ þ cðtÞuðtÞ � f ðtÞ

�
ðûul � ulÞ

þ
ð
W

ðbl � ‘ul þ clul � flÞ
�
ûuðtÞ � uðtÞ

�
þ
ð
W

�
bðtÞ � bl

�
� ‘uðtÞ

�
ul � uðtÞ

�
þ
ð
W

�
cðtÞ � cl

�
uðtÞ

�
ul � uðtÞ

�
þ
ð
W

�
f ðtÞ � fl

��
uðtÞ � ul

�
:

Using (23) and the definition (26), from (29), we obtain the di¤erential inequal-

ity with m ¼ 2l and where, taking into account (3), we may choose FðtÞb 2jYðtÞj
given by

FðtÞ ¼ C
�
ðA

ffiffi
t

p
þ Bþ CÞkgðtÞ � glkLlðWÞ þ kbðtÞ � blkL1ðWÞ

þ kcðtÞ � clkL1ðWÞ þ k f ðtÞ � flkL1ðWÞ
�
:

Then, using the assumptions and observing that the number g in (28) is greater

than 1
2 , we haveð tþ1

t

FðtÞ dtaC

ð tþ1

t

�
k f ðtÞ � flkL1ðWÞ þ kbðtÞ � blkL1ðWÞ þ kcðtÞ � clkL1ðWÞ

�
dt

þ C 0
ð tþ1

t

ðt1=2 þ 1ÞkgðtÞ � glkLlðWÞ dt ���!t!þl
0:

Therefore, by Lemma 3.3, uðtÞ ���!
t!þl

ul in L2ðWÞ.
Since u belongs to Ll

�
0;l;W 1;lðWÞ

�
, the compact inclusion of W 1;lðWÞ in

C0;aðWÞ implies, first for a subsequence, and after for the whole sequence, that

uðtÞ ���!
t!þl

ul in C0;aðWÞ, concluding the proof. r

4. Finite time stabilization in a special case

In this section we assume that qW is of class C2 and

b a RN ; cC 0; gC 1; z0 a K1 and f a Llð0;TÞ: ð30Þ
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We consider the following two obstacles problem

zðtÞ a Kb
4 for a:e: t a ð0;TÞ; zð0Þ ¼ u0;ð

W

qtzðtÞ
�
v� zðtÞ

�
þ
ð
W

b � ‘zðtÞ
�
v� zðtÞ

�
b

ð
W

f ðtÞ
�
v� zðtÞ

�
; Ev a Kb

4; for a:e: t a ð0;TÞ;

8>>>>>><
>>>>>>:

ð31Þ

where

Kb
4 ¼ fv a H 1

0 ðWÞ : �dðxÞa vðxÞa dðxÞ for a:e: x a Wg:

Here dðxÞ ¼ dðx; qWÞ is the distance function to the boundary qW. Notice

that d a W
1;l
0 ðWÞ, j‘dðxÞja 1, a.e. x a W and DdaC for some constant

C ¼ CðWÞ > 0. Observe that z0 a K1 HKb
4.

Theorem 4.1. Under the assumptions (30), the inequality (31) has a unique solution

z a Ll
�
0;T ;W 1;l

0 ðWÞ
�
BH 1

�
0;T ;L2ðWÞ

�
BCðQTÞ;

which satisfies j‘zja 1 a.e. in QT and is the unique solution of the variational

inequality (10).

Proof. For e; d a ð0; 1Þ, we consider the following family of penalized problems

for zed,

qtz
ed � dDzed þ b � ‘zed þ d

e

�
zed � ðzedbdÞ4ð�dÞ

�
¼ f d in QT ;

zedð0Þ ¼ ze0 on W; zed ¼ 0 on qW� ð0;TÞ;

(
ð32Þ

where f d and ze0 are regularizations of the functions f and z0, with j‘ze0ja 1. This

problem has a unique solution zed a H 2;1ðQT Þ, since the operator

3Pev;w4 ¼ d

e

ð
W

�
v� ðvbdÞ4ð�dÞ

�
w ð33Þ

is monotone (see, for instance, [12]).

We obtain firstly an estimate of j‘zedj on qW� ð0;TÞ. Since qW is of class C2,

there exists r > 0 such that, if BrðxÞ denotes the ball with centre in x and radius r,

then for all x0 a qW there exists y0 a RN such that Brðy0ÞBW ¼ fx0g. Placing the

origin of the coordinates in the point y0, let heðsÞ ¼ e�s=
ffiffi
e

p
and

jðxÞ ¼ dðxÞ þMe
�
1� heðjxj � rÞ

�
; jðxÞ ¼ �dðxÞ �Me

�
1� heðjxj � rÞ

�
;
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where M is a positive constant, depending on d, to be chosen later. We show that

j is a supersolution of (32). Analogously, it can be verified that j is a subsolution.

We start by observing that

jðx0Þ ¼ 0 ¼ zedðx0; tÞ and jb 0 ¼ zed on qW� ð0;TÞ:

Since ze0 a Kb
4, then

jðxÞb dðxÞb ze0ðxÞ:

We compute

qxijðxÞ ¼ qxidðxÞ þM
ffiffi
e

p
heðjxj � rÞ xijxj and j‘jja 1þM

ffiffi
e

p
; ð34Þ

q2xijðxÞ ¼ q2xidðxÞ �Mheðjxj � rÞ x2
i

jxj2
þM

ffiffi
e

p
heðjxj � rÞ 1

jxj �
x2
i

jxj3

 !

and

DjðxÞ ¼ DdðxÞ þMheðjxj � rÞ �1þ
ffiffi
e

p N � 1

jxj

� �
:

Let

Lw ¼ qtw� dDwþ b � ‘wþ d

e

�
w� ðwbdÞ4ð�dÞ

�
:

Then, recalling that there exists a positive constant C such that DdaC and

choosing e su‰ciently small, such that 1�
ffiffi
e

p
N�1
jxj b 1�

ffiffi
e

p
N�1
r

b 1
2 we have

Lj� f ¼ �dDd þMdheðjxj � rÞ 1�
ffiffi
e

p N � 1

jxj

� �

þ b � ‘d þM
ffiffi
e

p
heðjxj � rÞ x

jxj

� �
þMd

�
1� heðjxj � rÞ

�
� f

b�dC þM
d

2
heðjxj � RÞ � jbj � jbjM

ffiffi
e

p
heðjxj � RÞ

þMd
�
1� heðjxj � rÞ

�
� k f kLlð0;TÞ

¼ M dþ d

2
� jbj

ffiffi
e

p
� d

� �
heðjxj � rÞ

 !
� dC � jbj � k f kLlð0;TÞ: ð35Þ
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Observe now that the term d
2 � jbj

ffiffi
e

p
� d is negative and, since heðjxj � rÞa 1,

we have the following inequality

M dþ d

2
� jbj

ffiffi
e

p
� d

� �
heðjxj � rÞ

 !
bM

d

2
� jbj

ffiffi
e

p� �
:

We can fix e0 such that, for 0 < ea e0, we have jbj
ffiffi
e

p
a d

4 . From (35), we obtain

then

Lj� f bM
d

4
� dC � jbj � k f kLlð0;TÞ ¼ 0;

provided

M ¼ C1

d
; C1 ¼ 4ðdC þ jbj þ k f kLlð0;TÞÞ; ð36Þ

concluding then that j is a supersolution of (32). Analogously, j is a subsolution

of (32) and so we have

ja zedaj in QT and zedðx0; tÞ ¼ jðx0Þ ¼ jðx0Þ: ð37Þ

Observe that, from (34), we obtain

j‘z edðx0; tÞjamaxfj‘jðx0Þj; j‘jðx0Þjga 1þ C1

d

ffiffi
e

p

for an arbitrary point x0 a qW at any t a ð0;TÞ. We wish to prove that this esti-

mate is true a.e. in QT . Di¤erentiate the first equation of (32) with respect to

xk, multiply it by qxk z
ed and sum over k. Setting v ¼ j‘zedj2 and noticing that

qxkz
edDqxkz

ed ¼ 1
2Dv� ðq2xkxk z

edÞ2 we get

1

2
qtv�

d

2
Dvþ 1

2
b � ‘vþ d

e
ðv� ‘~zzed � ‘zedÞa 0;

being ~zz ed ¼ zed � ðzedbdÞ4ð�dÞ. Using the Cauchy-Schwartz inequality, we

obtain

qtv� dDvþ b � ‘vþ 2d

e
ðv� j‘~zzedjv1=2Þa 0:

Multiplying the above inequality by
�
v� ð1þM

ffiffi
e

p
Þ2
�þ

and integrating over Qt,

we have
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1

2

ð
W

���vðtÞ � ð1þM
ffiffi
e

p
Þ2
�þ��2 þ d

ð
Qt

��‘�v� ð1þM
ffiffi
e

p
Þ2
�þ��2

þ
ð
Qt

b � ‘
�
v� ð1þM

ffiffi
e

p
Þ2
�þ�

v� ð1þM
ffiffi
e

p
Þ2
�þ

þ 2d

e

ð
Qt

ðv� j‘~zzedjv1=2Þ
�
v� ð1þM

ffiffi
e

p
Þ2
�þ

a 0: ð38Þ

Since ð
Qt

b � ‘
�
v� ð1þM

ffiffi
e

p
Þ2
�þ�

v� ð1þM
ffiffi
e

p
Þ2
�þ ¼ 0

and ð
Qt

ðv� j‘~zzedjv1=2Þ
�
v� ð1þM

ffiffi
e

p
Þ2
�þ

¼
ð
fz e d>dg

ðv� v1=2Þ
�
v� ð1þM

ffiffi
e

p
Þ2
�þ

þ
ð
fz e d<�dg

ðv� v1=2Þ
�
v� ð1þM

ffiffi
e

p
Þ2
�þ

b 0;

from (38) we conclude that
�
v� ð1þM

ffiffi
e

p
Þ2
�þ

C 0.

Then, recalling the choice of M done in (36), we have

j‘zedj2 ¼ va 1þ C1

d

ffiffi
e

p
a:e: in QT ; ð39Þ

and fzedge is uniformly bounded in Ll
�
0;T ;W 1;l

0 ðWÞ
�
. Using (37), it is easy to

see that

�C1a
d

e

�
zed � ðzedbdÞ4ð�dÞ

�
aC1:

In fact, in the set fzed > dg we have

d

e

�
z ed � ðzedbdÞ4ð�dÞ

�
¼ d

e
ðzed � dÞa d

e
ðj� dÞaC1;

in the set f�da zeda dg we have zed � ðzedbdÞ4ð�dÞ ¼ 0 and in the set

fz ed < �dg we have

d

e

�
zed � ðzedbdÞ4ð�dÞ

�
¼ d

e
ðzed þ dÞb d

e
ðjþ dÞb�C1:
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Multiplying the first equation of (32) by qtz
ed, we obtainð

Qt

jqtzedj2 þ d

ð
Qt

‘zed � ‘qtzed þ
ð
QT

b � ‘zedqtzed

þ d

e

ð
Qt

�
z ed � ðzedbdÞ4ð�dÞ

�
qtz

ed ¼
ð
Qt

f qtz
ed

and soð
Qt

jqtzedj2 þ
d

2

ð
W

j‘zedðtÞj2

a
d

2

ð
W

j‘ue
0j

2 þ
 
jbj k‘z edkL2ðQT Þ þ

d

e

�
zed � ðzedbdÞ4ð�dÞ

�����
����
LlðQT Þ

þ k f kL2ð0;TÞ

!
kqtzedkL2ðQT Þ

a
d

2

ð
W

j‘ue
0j

2 þ jbj 1þ C1

d

ffiffi
e

p
þ C1

� �
jQT j1=2 þ k f kL2ð0;TÞ

 !
kqtz edkL2ðQT Þ;

a
d

2

ð
W

j‘ue
0j

2 þ 1

2
jbj 1þ C1

d

ffiffi
e

p
þ C1

� �
jQT j1=2 þ k f kL2ð0;TÞ

 !2

þ 1

2
kqtzedk2L2ðQT Þ

where jQT j denotes the Lebesgue measure of QT . So, for d fixed,

kqtzedk2L2ðQT Þa d

ð
W

j‘ue
0j

2 þ jbj 1þ C1

d

ffiffi
e

p
þ C1

� �
jQT j1=2 þ k f kL2ð0;TÞ

 !2

: ð40Þ

Then, there exists zd a Ll
�
0;T ;W 1;l

0 ðWÞ
�
BH 1

�
0;T ;L2ðWÞ

�
such that

zed �*
e!0

zd in Ll
�
0;T ;W 1;l

0 ðWÞ
�
-weak � and qtz

ed �*
e!0

qtz
d in L2ðQTÞ-weak:

Multiplying the first equation of the problem (32) by v� zedðtÞ, where v a Kb
4 and

integrating over W� ðs; tÞ, 0a s < taT , we obtainð t
s

ð
W

qtz
edðv� zedÞ þ d

ð t
s

ð
W

‘zed � ‘ðv� zedÞ þ
ð t
s

ð
W

b � ‘zedðv� zedÞ

þ d

e

ð
W

�
zed �

�
z edðtÞbd

�
4ð�dÞ

�
ðv� zedÞ ¼

ð t
s

ð
W

f dðv� zedÞ:
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For v a Kb
4, since the operator Pe defined in (33) is monotone, we have

ð t
s

ð
W

�
zed � ðzedbdÞ4ð�dÞ

�
ðv� zedÞa 0:

So, letting e ! 0, we obtain

ð t
s

ð
W

qtz
dðv� zdÞ þ d

ð t
s

ð
W

‘zd � ðv� zdÞ

þ
ð t
s

ð
W

b � ‘zdðv� zdÞb
ð t
s

ð
W

f dðv� zdÞ: ð41Þ

By (37), the function zd is such that zdðtÞ a Kb
4, for a.e. t a ð0;TÞ.

To prove that fqtzdgd is bounded in L2ðQT Þ, let e ! 0 in (40), obtaining

ð
Qt

jqtzdj2a d

ð
W

j‘u0j2 þ
�
jbjð1þ C1ÞjQT j1=2 þ k f kL2ð0;TÞ

�2
:

Analogously, letting e ! 0 in (39), we obtain

j‘zdja 1 a:e: in QT :

We can now pass easily to the limit when d ! 0 in inequality (41). Observing

that zd converges to some function z weakly* in Ll
�
0;T ;W 1;l

0 ðWÞ
�
and qtz

d

converges weakly in L2ðQT Þ to qtz, we find for all 0 < s < t < T

ð t
s

ð
W

qtzðv� zÞ þ
ð t
s

ð
W

b � ‘zðv� zÞb
ð t
s

ð
W

f ðv� zÞ

and it follows alsoð
W

qtzðtÞ
�
v� zðtÞ

�
þ
ð
W

b � ‘zðtÞ
�
v� zðtÞ

�
b

ð
W

f ðtÞ
�
v� zðtÞ

�
for a:e: t a ð0;TÞ:

Since zdðtÞ a Kb
4 for a.e. t a ð0;TÞ, we also have zðtÞ a Kb

4 and the proof of

existence of solution for the variational inequality (31) is complete. The unique-

ness is also clear.

The inclusion K1 HKb
4 and the fact zðtÞ a K1 for a.e. t a ð0;TÞ implies that

the function z also solves the problem (10). r
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Remark 4.2. The first order variational inequalities of obstacle type have been

introduced by Bensoussan and Lions in [4] and have been studied in [13] and

in [17], for general linear operators and general obstacles, and extended to a

quasilinear two obstacles problem in [11]. In all those cases the notion of solution

is less regular and the boundary data can only be prescribed on part of the

boundary. In addition, the solution cannot have a gradient in L2 and the best

that can be expected in general is the operator qtuþ b � ‘uþ cu a L2, as a conse-

quence of Lewy-Stampacchia inequalities. These estimates can be obtained from

the regularized parabolic inequality (41) and, as in [18], it allows the passage to the

limit d ! 0 without the estimates on the gradient and on the time derivative. It is

an open question to establish the equivalence of the first order obstacle problem

with the variational inequality with gradient constraint for more general first order

linear operators.

Theorem 4.3. In addition to the assumptions (30), suppose

b � ‘z0a f ðtÞ in fx a W : �dðxÞ < z0ðxÞg for t > 0; ð42Þ
f ¼ f ðtÞ is increasing and nonnegative; ð43Þ

lim inf
t!l

f ðtÞ > jbj þ 2D; ð44Þ

where D ¼ kdkLlðWÞ ¼ max
x AW dðx; qWÞ. Then there exists T� < l such that the

solution z of the variational inequality (10), or equivalently of (31), satisfies

zðtÞ ¼ d for all tbT�:

Proof. We consider z as the solution of the variational inequality (31).

Step 1: z0a zðtÞ for all t > 0.

Let vðtÞ ¼ zðtÞ þ
�
z0 � zðtÞ

�þ
and note that vðtÞ a Kb

4. Then

ð
W

qtzðtÞ
�
z0 � uðtÞ

�þ þ
ð
W

b � ‘zðtÞ
�
z0 � zðtÞ

�þ
b

ð
W

f ðtÞ
�
z0 � zðtÞ

�þ
: ð45Þ

On the other hand, by (42), we have

b � ‘z0
�
z0 � zðtÞ

�þ
a f ðtÞ

�
z0 � zðtÞ

�þ
in f�d < z0g;

and also on f�d ¼ z0g since, in this last set,
�
z0 � zðtÞ

�þ
C 0 (recall that f b 0).

Then ð
W

qtz0
�
z0 � zðtÞ

�þ þ
ð
W

b � ‘z0
�
z0 � zðtÞ

�þ
a

ð
W

f ðtÞ
�
z0 � zðtÞ

�þ
: ð46Þ
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From (45) and (46) we get

ð
W

qt
�
u0 � zðtÞ

��
z0 � zðtÞ

�þ þ
ð
W

b � ‘
�
z0 � zðtÞ

��
z0 � zðtÞ

�þ
a 0:

But ð
W

b � ‘
�
z0 � zðtÞ

��
z0 � zðtÞ

�þ ¼ 1

2

ð
W

b � ‘
��
z0 � zðtÞ

�þ�2
¼ � 1

2

ð
W

‘ � b
��
z0 � zðtÞ

�þ�2 ¼ 0

and so

1

2

ð
W

���z0 � zðtÞ
�þ��2a 1

2

ð
W

���z0 � zð0Þ
�þ��2 ¼ 0;

which implies that z0a zðtÞ, for all t > 0.

Step 2: zðtÞa zðtþ hÞ for all t; h > 0.

Observe that vðtÞ ¼ zðtþ hÞ �
�
zðtÞ � zðtþ hÞ

��
a Kb

4, so we can choose vðtÞ
as test function in (31). Noting that

vðtÞ � zðtÞ ¼ zðtþ hÞ � zðtÞ �
�
zðtÞ � zðtþ hÞ

�� ¼ �
�
zðtÞ � zðtþ hÞ

�þ
we get

�
ð
W

qtzðtÞ
�
zðtÞ � zðtþ hÞ

�þ �
ð
W

b � ‘zðtÞ
�
zðtÞ � zðtþ hÞ

�þ
b�

ð
W

f ðtÞ
�
zðtÞ � zðtþ hÞ

�þ
: ð47Þ

Choosing vðtÞ ¼ zðtþ hÞ þ
�
zðtÞ � zðtþ hÞ

�þ
as test function in (31) in the

instant tþ h and observing that

vðtÞ � zðtÞ ¼ zðtþ hÞ � zðtÞ þ
�
zðtÞ � zðtþ hÞ

�þ ¼
�
zðtÞ � zðtþ hÞ

��
;

we haveð
W

qtzðtþ hÞ
�
zðtÞ � zðtþ hÞ

�� þ
ð
W

b � ‘zðtþ hÞ
�
zðtÞ � zðtþ hÞ

��
b

ð
W

f ðtþ hÞ
�
zðtÞ � zðtþ hÞ

��
: ð48Þ
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From (47) and (48) we getð
W

qt
�
zðtÞ � zðtþ hÞ

��
zðtÞ � zðtþ hÞ

��
þ
ð
W

b � ‘
�
zðtÞ � zðtþ hÞ

��
zðtÞ � zðtþ hÞ

��
a

ð
W

�
f ðtÞ � f ðtþ hÞ

��
zðtÞ � zðtþ hÞ

��
a 0;

because f ðtÞa f ðtþ hÞ, by assumption (43) and
�
zðtÞ � zðtþ hÞ

��
b 0. As

ð
W

b � ‘
�
zðtÞ � zðtþ hÞ

��
zðtÞ � zðtþ hÞ

�� ¼ 0;

we obtain

1

2

ð
W

����zðtÞ � zðtþ hÞ
����2a 1

2

ð
W

����zð0Þ � zðhÞ
����2a 0;

using Step 1. So zðtÞa zðtþ hÞ, for all t; h > 0.

Step 3: There exists zl a CðWÞ such that limt!þl zðx; tÞ ¼ zlðxÞ; uniformly in

x a W.

Since the sequence of continuous functions fzðtÞgt>0 is increasing in t and is

bounded from above by d, this conclusion follows immediatly.

However, in this special case we have a finite time stabilization.

First we prove that the function zl coincides with d. We recall that qtz a
L2ðQT Þ, for any T > 0, and we set cðtÞ ¼

Ð
W zðtÞ. Observe that kckLlð0;lÞa

jWjD, where jWj denotes the Lebesgue measure of W. Since fzðtÞgt>0 is increasing,

then qtzb 0 and

cðtÞ ���!
t!þl

ð
W

zl; c 0ðtÞb 0 for a:e: t > 0:

This implies that

lim inf
t!l

qtzðtÞ ¼ 0 in L1ðWÞ:

Choosing v ¼ d as test function in (31) we obtain, for a.e. t a ð0;lÞ,
ð
W

qtzðtÞ
�
d � zðtÞ

�
þ
ð
W

b � ‘zðtÞ
�
d � zðtÞ

�
b

ð
W

f ðtÞ
�
d � zðtÞ

�
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and so ð
W

qtzðtÞ
�
d � zðtÞ

�
þ jbj

ð
W

�
d � zðtÞ

�
b f ðtÞ

ð
W

�
d � zðtÞ

�
:

Since db zðtÞ, taking lim inf t!l to both sides of the inequality and using the

assumption (44), we obtain

jbj
ð
W

ðd � zlÞb ðjbj þ 2DÞ
ð
W

ðd � zlÞ;

which is a contradiction unless zl ¼ d.

Consider the following subsets of Ql ¼ W� ð0;lÞ

L ¼ f�d < z < dg; Iþ ¼ fz ¼ dg; I� ¼ fz ¼ �dg:

Since z solves the two obstacle problem (31), it is well known that the following

inequalities are verified a.e. in Ql:

qtzþ b � ‘z ¼ f in L; qtzþ b � ‘za f in Iþ; qtuþ b � ‘ub f in I�:

If there is no finite time stabilization of the solution, since zðtÞ is increasing in

time, we may find a point ðx0; t0Þ and an open subset o0 of W with x0 a o0, such

that, ðx; tÞ a LA I� for t > t0. So,

f ðtÞa qtzðx; tÞ þ b � ‘zðx; tÞ for a:e: ðx; tÞ a o0 � ½t0;þlÞ:

Then, for any tb t0 and any open set oHo0, we haveð tþ1

t

f ðtÞa 1

joj

ð tþ1

t

ð
o

�
qtzðx; tÞ þ b � ‘zðx; tÞ

�
a

1

joj

ð
o

�
zðx; tþ 1Þ � zðx; tÞ

�
þ jbja ð2Dþ jbjÞ:

As a consequence,

lim inf
t!l

f ðtÞa lim inf
t!l

ð tþ1

t

f ðtÞ dta 2Dþ jbj

and this is a contradiction with (44). So zðtÞ must stabilize in finite time. r

This research was partially supported by CMAT—‘‘Centro de Matemática da
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Dunod, Gauthier-Villars, Paris, 1969.

[13] F. Mignot and J.-P. Puel, Inéquations variationnelles et quasivariationnelles hyperbol-
iques du premier ordre. J. Math. Pures Appl. 55 (1976), 353–378.

[14] L. Prigozhin, Sandpiles and river networks: extended systems with nonlocal interac-
tions. Phys. Rev. E (3) 49 2 (1994), 1161–1167.

191Solutions for linear conservation laws with gradient constraint



[15] L. Prigozhin, Variational model of sandpile growth. European J. Appl. Math. 7 3
(1996), 225–235.

[16] J. F. Rodrigues, Obstacle problems in mathematical physics. North-Holland, Amster-
dam, 1987.

[17] J. F. Rodrigues, On the hyperbolic obstacle problem of first order. Chinese Ann. Math.

Ser. B 23 n 2 (2002), 253–266.

[18] J. F. Rodrigues, On hyperbolic variational inequalities of first order and some appli-
cations. Monasth. Math. 142 (2004), 157–177.

[19] J. F. Rodrigues, Some mathematical aspects of the Planet Earth. In Proceedings of

the European Congress of Mathematics, Krakow (2012), Published by the European
Mathematical Society, 2014, in pages 743–762.

[20] J. F. Rodrigues and L. Santos, Quasivariational solutions for first order quasilinear
equations with gradient constraint. Arch. Ration. Mech. Anal. 205 n 2 (2012),
493–514.

[21] L. Santos, A di¤usion problem with gradient constraint and evolutive Dirichlet
condition. Port. Math. 48 4 (1991), 441–468.

[22] L. Santos, Variational problems with non-constant gradient constraints. Port. Math.

(N.S.) 59 2 (2002), 205–248.

[23] J. Simon, Compact sets in the space Lpð0;T ;BÞ. Ann. Mat. Pura Appl. 4 (1981),
65–96.

Received January 24, 2015; revised April 16, 2015

J. F. Rodrigues, CMAFþIO, University of Lisbon, P-1749-016 Lisboa, Portugal

E-mail: jfrodrigues@ciencias.ulisboa.pt

L. Santos, CMAT, University of Minho, Campus de Gualtar, P-4710-057 Braga, Portugal

E-mail: lisa@math.uminho.pt

192 J. F. Rodrigues and L. Santos


