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Abstract. We consider variational inequality solutions with prescribed gradient constraints
for first order linear boundary value problems. For operators with coefficients only in L2,
we show the existence and uniqueness of the solution by using a combination of parabolic
regularization with a penalization in the nonlinear diffusion coefficient. We also prove
the continuous dependence of the solution with respect to the data, as well as, in a coercive
case, the asymptotic stabilization as time ¢ — 400 towards the stationary solution. In a
particular situation, motivated by the transported sandpile problem, we give sufficient
conditions for the equivalence of the first order problem with gradient constraint with a
two obstacles problem, the obstacles being the signed distances to the boundary. This
equivalence, in special conditions, illustrates also the possible stabilization of the solution
in finite time.
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1. Introduction

Several works have developed solutions u = u(x, ¢) to the linear equation of first
order

ou+b-Vu+cu=f, (1)

for £ > 0 and x in an open subset Q of R", where b = b(x, t) is a given vector field
and ¢ = ¢(x, ) and f = f(x,) are given functions.
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The well-known DiPerna and Lions theory of renormalized solutions, when b
is given in Sobolev spaces, has been extended by Ambrosio to BV coefficients for
the Cauchy problem and has found several applications in the study of hyperbolic
systems of multidimensional conservation laws (see, for instance [1], for an intro-
duction and references). The initial-boundary value problem for (1) with a C!
vector field b has been studied in the pioneer work of Bardos [2] using essentially
a L? approach for the transport operator. This method also holds for Lipschitz
vector fields, as observed in [8], and was extended by Boyer [5] for solenoidal vec-
tor fields in Sobolev spaces that do not need to be tangential to the boundary of Q,
ie.b-n#0on dQ fort>0.

The delicate point is then to prescribe the boundary data to the normal trace of
b on the portion of the space-time boundary I'_ = dQ x (0, T') where the charac-
teristics are entering the domain Qr = Q x (0, 7). In the case when I'_ does
not vary with ¢, Besson and Pousin [3] have treated the initial-inflow problems
for the continuity equation (1) with L™ velocity fields b with ¢ =V -b=divh
also in L*(Qr). Recently Crippa et al. [7] have also considered this problem
without that restriction on I'_ and with similar assumptions on b in BV.

Here we are interested in the initial-boundary value problem for (1) under the
additional gradient constraint

|Vu(x7 t)| < g(x, t)? (x’ t) € QT7 (2)

where g = g(x, ) is a given strictly positive and bounded function. This problem
was already considered in [20] in the framework of a quasilinear continuity
equation

ou+V-®u)=F(u) (3)

and a Lipschitz semilinear lower order term F = F(x, ¢, u), with a gradient bound
in (2) that may depend also on the solution but not on time. As observed in [20],
in the linear transport equation (1), corresponding to

®(w)=bu and F(u)=f+(V-b—c)u

with regular coefficients and g = g(x) independent of ¢, the problem is well-posed
in terms of a first order variational inequality with the convex set

K, = {ve H)(Q) : |[Vo(x)| < g(x) ae. x e Q}. (4)

In [20] it is also proved the existence and asymptotic behaviour of quasivariational
solutions for positive nonlinear gradient constraints g = g(x,u) depending con-
tinuously on the solution u = u(x,7). Here H}(Q) denotes the usual Sobolev
space of functions vanishing on the boundary 0Q, as the gradient bound allows
to prescribe values on the whole boundary. Moreover, it allows also to consider
the data b, ¢ and / only in L*(Qr), provided ¢ — §V - b is bounded from below.
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A motivation for the constraint (2) applied to the equation (1) is the “trans-
ported sandpile” problem. Following Prigozhin [14], [15], the gradient of the
shape of a growing pile of grains z = z(x, 7) characterized by its angle of repose
o > 0 is constrained by its surface slope, i.e. g = arctano. A general conservation
of mass, in the form (3) with ® = —xVz + bz and source density F, with transport
directed by b and dropping flow directed to the steepest descent —uVz, should be
then subjected to the unilateral conditions

u=0, |Vz|<g and |Vz]<g = u=0.

We illustrate this problem with the interesting example of the one dimensional
special case announced in [19]: Q= (0,1), b=1=g,ie. a=%and f(x,1) =1t
Taking as initial condition the parabola zo(x) = —1x? up to the point & =
V3 —1, and the straight line zo(x) = x — 1, for & < x < 1, the profile of the
“transported sandpile” growth attains a steady state exactly at = %. This

happens with the first free boundary point &(#) increasing from &, up to ¢ = %,

touching then the boundary x = 1, and decreasing till the midpoint x = % At

this point, the free boundary &(f) meets a second increasing free boundary
{(r) =2(t— 1), that appears at r = | and increases up to the final stabilization at
r=3.

4
The explicit sandpile profile is given by

ix—1ix? f0<x<&()and0<r<1,
x—1 if () <x<land0<¢< 1,
1—x if () <x<land f<t<1,

z(x, 1) = q x ifo<x<{(fand1<r<2,
tx—1x2 if{(f)<x<&()and 1 <1< 3,
x—1 if () <x<landl<i<3,
b-lv=y) ife>d,

0 £(0) 1 0 £(3) 1 0 &3 1 0 £3) 1

Figure 1. The free boundary of the transported sandpile problem at r = 0,3/4,9/8 and 5/4.
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where (1) =1 —1+4+1/(1—1)°+2,if0<r< i and &) =1+ 1—/(t+1)" =2,
ifl<r<ji.
It is clear that z(¢) € I, = H} (Q).

We introduce the function d(x) =1 — |x — 1| and the convex set

K ={ve H(Q): —d(x) <v(x) <d(x)ae xe (0,1)} K.

Since 0,z + 0yz =t 1in A = {(x,1) € Qr : |0xz(x,t)| < 1}, by simple computa-
tion and integration in Qr, we easily conclude that z, which (using v = sup and
A = inf) can be written as

z(x, 1) = (—=d(x)) v ((tx - ;xz) /\d(X)>,

is then the unique solution z = u € K[ of the variational inequality
J (Ou+ou—t)w—u)=0 Vw(t)eK),0<t<T,u0)=2z. (5)
Or

But since z, z(7) € K, z is also the solution of the variational inequality (5) with
w(t) € K; < K, which has at most one solution also in the convex set [;, defined
asin (4) with g = 1.

In Section 2 we establish the existence and the uniqueness of the solution of the
first order variational inequality associated with the general linear equation (1) in
a family of time dependent convex sets with gradient constraints of the type (4)
with g = ¢g(x, 7). We improve the results of [20] under general square integra-
bility assumptions on the coefficients and on the data, by direct estimates in the
parabolic-penalized problem and passage to the limit, first in the penalization
parameter ¢, and afterwards in the regularization parameter 6. The continuous
dependence of the solution with respect to the gradient constraint variations in
L™, to the coefficients of the operator and the data in L!, is proven in Section 3
under the weak coercive condition (7), as well as the asymptotic convergence
towards the unique stationary solution under the stronger coercive assumption
(23).

Finaly, in Section 4, we consider the special case of a constant vector b, with
g =1and f = f(¢) bounded, to show the equivalence of the variational inequal-
ities with the gradient constraint and with the two obstacles, i.e. with the signed
distances to the boundary constraints on the solution. This is a first result of this
type for first order variational inequalities, similar to the elliptic well-known case
of the elastoplastic torsion problem (see, for instance, [16] and its references) and
to the parabolic case without convection considered in [21], [22], where it was
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shown that this equivalence is not always possible in the general case. With addi-
tional conditions, that include the above one dimensional transported sand pile
problem, we establish the finite time stabilization of the solution. This extends
to the convective problem a similar result by Cannarsa et al. [6] and raises the
interesting open question of establishing more general conditions on the finite
time stabilization of evolutionary problems with gradient constraints.

Another interesting open question is the complete characterization of the vec-
tor distribution V¥ that arises as a second unknown in the distributional formula-
tion of (1) under the additional gradient constraint (2) writen as

ou+b-Vu+cu=f+V-¥.

Indeed the estimates of Section 2 allow us to guarantee the existence of a
couple (u, ¥), where formally W = 0 and u solves (1) in the region where |Vu| < g,
but it would be interesting to verify if there exists a multiplier # > 0, such that,
¥ = uVu subjected to a unilateral condition as we could expect from the formula-
tion of the above sandpile problem or as in the classical elastic-plastic torsion
problem (see [16], for instance).

2. Existence and uniqueness of the variational solution
Let Q be a bounded open subset of RY with a Lipschitz boundary 0Q and, for any
T >0, denote Q7 =Q x (0, T).

Assume that

be LZ(QT) and ce LZ(QT)7 (6)

and there exists / € R such that

c—%V-bzl in 07, (7)

being this inequality satisfied in the distributional sense, since V - b does not need
to be a function.
In addition we also suppose given

feLl*Qr) and e K4(0), (8)
with

ge WIHO.TLAQ), gzm>0 ®)
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As in (4), we define, for 7 > 0,
Ky ={v e HJ(Q) : |Vo(x)| < g(x,1) forae. in x € Q}.

Consider the following variational inequality problem: To find «, in an appro-
priate space, such that

u(t) € Ky forae. 1€ (0,T), u(0) = u,
J o) (v — u(t)) + J B(1) - Vu(t) (v — ()
o o
+ JQ c(t)u(t) (v —u(r)) > J F(0)(v—u(1)),

Q
Vo € Ky, forae. 1€ (0,T).

Theorem 2.1. With the assumptions (6)—(9), problem (10) has a unique solution
ue L*(0,T; Wy " (Q)) n4(0r),  due L*(Qr).

Proof. To prove the uniqueness of the solution we assume there exist two solu-
tions u; and wup. Using up = up(t) as test function in (10) for the variational
inequality of «; and reciprocally, setting # = u; — u, at a.e. t > 0, we obtain

JQ oa(n)u(r) + J

b(1) - Va(t)a(1) +J c(t)a*(t) < 0.
Q

Q
Using (7), for any v € %, (Q2), we have

%Lb(l) Vo 4+ L} C(Z)v2 > IJQ v?

and, by approximation in H} (Q) of i(z), we obtain,

d( _. .2 N2
EL a(7)| +21L2|u(t)| <0.

By Gronwall’s inequality, we conclude # = 0 from 2(0) = 0.
To prove the existence of a solution, we consider a family of approximating
quasilinear parabolic problems for u*, with &,6 € (0,1), defined as follows

Ot =6V - (ko (|Vu™| = g?)Vu?) + 5% - Vu® + *ut = % in Or,

u®® =0on 0Q x (0, 7T), (11)
u®(0) = u¢ in Qy,
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where Q) = Q x {0}, °, ¢, f? and uj are ¥™ appropriate regularizations of b,
¢, f and uy, respectively, with |Vu§| < g(0) and k, is a smooth real function such
that k,(s) = 1 if s <0 and k,(s) = e*/® if s >¢. Notice that this problem has a
unique solution u® € H'(0,T; L*(Q)) n L* (0, T; H} (Q)) n€(07), by the clas-
sical theory of parabolic quasilinear problems (see, for instance, [10]).

We prove first several a priori estimates.

Estimate 1

) 1
e[V = 4| gy < 5 €1 (12)

for some constant C; dependent only on m, |1, || £l .20, 1911 12(0,) @0d lltoll 120

Multiplying the equation of the problem (11) by u*® and integrating over
0, =Q x]0,1], we have

1 -
EJ |u35(t)|2+5j k(,.(|VuS’;|2—g2)|Vu€5|2+J (bé_vusé)us6+J c(3|ug(3|2
Q

t Ql Q/
) 1 )2
= /u+5] |l
o 2)a
Observing that

) & &0 __ 1 ) &d
JQ’(b() VU ut = 2.[Q,(V - b0)(u™)?,

and using the coercive inequality for the regularized coefficients

1 1
c‘S—EV-b‘S:(c—EV-b>*p(;zl*p(;:l,

we have

1
3| 0P 8| k(v - v

5 1 2 5112
< 1/l 2o 1%l 2o, 5 luollZzy + 1l 22 g, -

Hence, by the integral Gronwall’s inequality, there exists a positive constant
Cr, independent of ¢ and o, such that

”ua)“Lz(QT) < CT
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and so
o[ (v - v <
O

where C" = C'([[ £l L2, 140l L2y 11)-
On the other hand, we observe that

J k£(|vu£5|2 _g2)|Vusd|2
or

=j ka<|w"5|2—gz><\vm2—g2>+j (V12— )P (13)
Or

T

Since k,(s) = 1 for s < 0 and k,(s)s > 0, for all s > 0, then

j k(Y2 — g?) (W — g?)

t

k(| = ) (IVu®? = ¢°)

J{VH“’|2<!]2}

+j ke<|vw‘5|2—g2><|vw’”\2—g2>z—J @2 (14)
{IVuro|*>g2} Or

From (13) and (14) we obtain
1

m?2

1 /1 , 1
W (5 C’ -+ |g||L2<QI)> < gC],

IA

|, =g

1

(J kc(|Vw|2_g2)|VW|2+J g2>

T Or

where Cy = Cy(m, ||f||L2(QT)7 ||g”LZ(QT)7 ||u0||L2(Q)7 1))
Estimate 2
VU™ 1o,y < Das (15)

where, for any 6 > 0 and any 1 < p < o0, the constant Ds depends only on p, m,
L £ 22005 190l 22¢0,)> [0l 12y and a negative power of 6.

From (12) we know that

1
J (Va2 — ) < S,
or 0
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where C; is the positive constant of Estimate 1. So,

ez | LAV = o) = | (V=)
d {IVue*> g2 4} {IVuro|*>g2+z}

and recalling that, for all s > 0 and all j e N, ¢* > ;—ﬁ, we get, for any j € N,

(IVu’]? — %)/ < j!.st TP < eI C.

J (VU2 > g2} {IVue9*> g2}

Given 1 < p < o, we have

J Vi) = J V|7 + J Vi | (16)
or {IVu|? <g2+2} (Va2 >g2+42}

and, since ¢ is bounded, we can estimate, for any p € N, the second integral in the
second term of (16) as follows,

)4
012 2p—2j 02 j
Ve <] }:(])ngngi Y (Vu? - g2

R =

1 N

<53 (7 et
j=0

The first integral in the second term of (16) is clearly bounded since

J{|Vu‘m'2>gz+£}

Vu| ¥ < J (9> + 1)

J{Vu"‘”SgZH} or

and the conclusion follows easily, first for 2p € N and afterwards for any
1 <p<oo.

Estimate 3

100112 0y < 4U18° 3 07y + Gl )1V Eugyy + o (17)

where, for 2 < s < N 2, C3 is an upper bound, independent of ¢ = i_sz: of the
Poincaré constant for W0 7(Q) and Cy is a positive constant depending only on

m, |1}, ”fHLZ(QT); ||9||w1=x(o,T;L'f(Q)) and ||”0HL2(Q)

We multiply the equation of problem (11) by a,u“S and we integrate over Qy,
noting that d,u* = 0 on 0Q x (0, T'). Denoting ¢,(s = [, ks(z) dz, we have



170 J. F. Rodrigues and L. Santos

oS5t d : :
|| 10ap 43| SR =) +o | (VP — ggtg
O O O
+ J (b° - Vu)ou® + J Cufou® = J foow™.
O O (o2

1 1.1_
) =5, and so we have;+§+§— 1. Then

‘ J (bé . Vuad)atucri
O

We choose 2 < s < 25 and g = 2

J 0 0
<5 ||L“(Q1‘)HvuS)HL"(QT)Ha’uC ||L2(QT>

; 5 1
2 2 2
= ||b()||L~‘(QT)HVMEOHL'/(QT) +Z Hal“S(;HLz(QT)a
and

‘ J Couat)atusb
O

5 5 5
<l ”LA'(QT)HME ||L4(QT)||at“£ ||L2(QT)

i X 1 X

2 2 2
<|le? ||L:(QT) H“sb ”L‘I(QT) + 4 ||atu£b||L3(QT)'

So

IJ 012 o2 5 ) 2 2
< 10120, + j 4. (IVu (0) - 47(0)
4Jo, ! L2(Qr) T o o ( )
5 &
- zL 8, (Va2 ()2 = 6(1)) + Cillgll o0 100l -0
oy

2 52 52
zoor) T Call 2o VU Zacop»

being C, a Poincaré constant. Observe that, since Q is bounded we may find a
positive upper bound C; of C,, independently of ¢ < co.
On one hand

|, v - 20y <o,

because |Vud(0)| = |Vui| < g(0). On the other hand, if we set A = {(x,7) € Or :
|Vu®(x, )| < g(x,1)}, we have

¢, (1Vu* (x.0)* = g7 (x, 1)) = [Vu* (x, 0)* = ¢7(x,0)

> —g*(x,1) forae. (x,1) €A,

¢8(|Vu35(x, N* = g*(x, ) >0> —g*(x,t) forae. (x,7) € Or\A.
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Consequently, for a.e. 1 € (0, T),

—jQ B,V () = () < 11912 0.7:12(00)

So,

o
ed |2 2 2
2 [[Oru 6||L2(QT) < ||f5||L2(QT) +§||g||Lx<o, T:L2(Q))

+ CillgllL= o 199l L= 0,

)2 ) 5112
+ (HboHL‘(QT) + Cch3||LS(QT))||Vu"5||L(,<QT),

and the proof of Estimate 3 is concluded.
By (15) and (17), we know there exist constants D;, Cs and Cj, independent of
&, such that, for each N < p < oo,

||1,{":(5||Lﬂ(07 T; WOII/'(Q)) S D(5? ||al‘um3||L2(QT) S (HbéHLx(Qj) + HC(;”L‘(Q]))C(S + C4‘

Since u* is bounded in H'(0, T; L*(Q)) n L7 (0, T; Wy " (Q) n €% 1-V/P(Q)),
independently of ¢ € (0,1), for p > N, by a known compactness theorem ([23],
page 84), {u*’}, is relatively compact in %([0,7]; 4(Q)). Then, at least for a
subsequence,

u® — ' in6(0r).
E—

The above estimates also imply that we may choose, always with fixed o,

u® —u’  weakly in L”(0, T; Wol""Q)), 1<p< o,

e—0

ou® — dw’  weakly in L*(Qr).

Given v e L* (0, T; Hy(Q)) such that v t) Ky for ae. t € (0, T), we multi-
ply the equation of problem (11) by v(¢) — u®(t), we use the monotonicity of k,
and we integrate over Q X (s,7),0 <s << T, to conclude that

N N
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Letting ¢ — 0, since s and 7 are arbitrary, we obtain that for a.e. 1 € (0, T)

|, 2000 = w(0) +5 | Voto)-¥(e(o) ~ (1)
Q Q

zj 7o) (o) — (1),
Q

for all ve L* (0, T; H} (Q)), such that v(r) € Ky, for a.e. 1 € (0, T).
Set A, = {(x,1) € Q7 : |[Vu(x,1)|* — g2(x,1) > \/&}. Since k,(|Vu®|* — ¢?) >
e'/Vin A,, then we have

_ (VP —¢*) _ Ci i
R R P T

by (12), being C; a constant independent of ¢ as we have seen. So we have

j (Vi — g?)* < lirginfj (IVu)? — g — Vo)

Or Or

&

= liminfj (Vi > — g> — V) < lim Ms|A,|"? =0, (18)
A &

&

where M is an upper bound of |||Vu®|? — g% — Vellz2(0,)» independent of e.
Consequently,

Vi’ <g ae. in Qr
and so u’(t) € Ky, for a.e. te (0,T). Let ze L*(0,T; H}(Q)) be such that

2(t) € K. Defining v = u+ 0(z — u), 0 € (0, 1], then v(¢) € I§,(;. Using v(#) as
test function in (10) and dividing both sides of the inequality by 0, we get

J o’ (1) (z(t) — u®(2)) +5J Vil (1) - V(z(2) — u(1)) +(50J IV (z(r) - u‘)\(t))|2 +
o o) o

J b (1) - Vul (1) (z(t) — u’(2)) +J
Q

Q

e (Ou(1) (z(r) — u’(1)) = JQ Fo0(=(r) — (1))

and, letting 0 — 0, we conclude that u° solves the following variational inequality
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u’(t) € Ky forae. 1€ (0,T), u°(0) = up,

J o’ (1) (v — u’(1)) +6J Vil () - V(v — u(1))
Q Q
o o B S(\,,0 5 (19)
+ JQb (1) - Vul(2) (v — u’(1)) + JQ C(0u’(t) (v — u (1))

> J o) (v—u’(t)), VYvely, forae. te(0,T).
Q
Recalling the Estimate 3 we have
& 2 5112 O 2 & 2
10 1 2200,y < (1B Z50r) + Cille? Nz IV 262, + Ca

< U810y + Ol g (], (VP = g2/ - vy

T

(s=2)/s
) + Cy.

+J (gZS/(s—Z)_’_\/E)
Or

Passing to the liminf when ¢ — 0 and arguing as in (18), we conclude that

e—0

lim inf J (|Vat P07 — g2672) — eyt =0

Or
and, consequently,

5 5112 2 2
10 120,y < 4B N z0r) + Colle’lIEsior) Nl E2s20) + Ct
Observing that
. 2 2 2
T (1813 g,y + ol gy gl E2-210y)

2 2

= (16°l1 220,y + C3ll’ Nl 20191172 (01

we have the sequence {d,u°}4 uniformly bounded in L?(Q7).

Moreover, the sequence {u°}; is uniformly bounded in L* (0, T; WOI’OO(Q)),
independently of &, since each u’(z) belongs to <4 So, there exists a
function u e L™ (0, T; W, *(Q)) n H' (0, T; L*(Q)) n4(07) and, at least for a
subsequence,

s : A
u® —uin €(0r),
u’ o weakly in L7 (0, T; Wol’p(Q)), 1 <p< oo,
ol s du  weakly in L*(Qr).

—
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Integrating in (19) between s and ¢, for 0 <s < ¢ < T, and passing to the limit
when 0 — 0, we get

[+ [ [ 390+ [ e [ e

for all v such that v() € [<,(, fora.e. z € (0,T). Since s and ¢ are arbitrary, we can
drop the integration in time. Since u°(7) € K, for a.e. 7 € (0, T'), the same holds
for u(t), concluding that u solves the variational inequality (10). O

Remark 2.2. We observe that in the proof of the uniqueness of the solution it is
sufficient to assume only

beL'(Qr) and ceLY(Qr),

instead of (6).
Similarly, we may replace (7) by the different weak coercive assumption by
assuming the existence of r € R, such that, in the sense of distributions,

c—V-b>r inQr,

in order to have also the uniqueness of the solution to the variational inequality
(10).

In fact, assuming that there are two solutions u; and u,, we may choose for
test function v = uy +Czs¢(u2 —u;) in the variational inequality for u;, where
sc: R— R is a sequence of C! increasing odd functions approximating point-
wise the sign function sgn’ and ( is sufficient small. Then, choosing also v =
uy + ¢ 2s§(u1 — uy) in the variational inequality for u,, we get

L oi(1)s (a(t)) + J

Q

b(1) - Vi(t)s: (u(t)) + JQ c(0)i(t)s: (a(r)) <0

Noting S¢(s) = [; s¢(7) dz = |s| and zs¢(7) = 7], by the dominated convergence
theorem, we have = &

d _ _ _
&, aon+ | s i)+ | domor<o

Q

and so
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Since #(0) = 0, by the Gronwall’s inequality, we conclude the uniqueness from

J, ator e jato) =o.

3. Stability and asymptotic behaviour in time

In this section, the stability of the solutions of the variational inequality (10), as
well as its asymptotic limit when # — +oo is based in the following Lemma, which
is due essentially to [22].

Lemma 3.1. For i = 1,2, let g; belong to L*(Qr). If vy € L4(0,T; WOI”’(Q)),
1 <p,qg<o0o, is such that vi(t) € K, for a.e. te (0,T) then there exists
by € LI(0, T; Wy (Q)) such that i5(t) € Koy for ae. t e (0,T) and a positive
constant C such that

lor=22ll oo, 7w #(@y) < Cllor = 92ll(g):

Prog]i;clget a(t) = [|g1(t) = g2(1)[| 1= (). Define (1) =1 +%, 0y (t) = ﬁvl(t).
Vi _ ! \% < !
[Va(1))| _W| vi(n)] < ng(l)
and
G (0 < )

then 0,(7) € Ky, () for a.e. £ € (0, T). The conclusion follows immediately from

~ 1 VUl
v = i)l =1 = 5ol 9l < T2y = gl g 0

The continuous dependence result is a consequence of the boundedness of the
solution and of its gradient, when we impose the weakly coercive assumption (7).

Theorem 3.2. For i = 1,2, let u; denote the solution of the variational inequality
(10) with data (b;, c;, fi, gi, uo;) satisfying assumptions (6)—(9). Then there exists a
positive constant C = C(T), depending on T, such that
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2 2
[y — a7 0, 7, 12(0)) < Cllluor — uoallz2(q) + 181 — B2l 10, + [ler — e2ll 110y

+ A = Llleon +llgr = g2ll -0,

Proof. Let i1 be defined as in Lemma 3.1, for the solution u; and #; be the corre-
sponding function for u,. Using #; as test function in the variational inequality
(10), we obtain

J 6,u1(t) (ul(t) — uz(t)) +J bl(l‘) : Vul(t) (ul(t) — Ltz(l))
Q Q

+ JQ Cl(Z)ul(Z) (ul (Z) — uz(l)) < Jgﬁ(l) (ul(t) — LQ(Z))
+ L(am(t) + b1 (1) - V(1) + c1 (D (1) = £i (1)) (i (1) — ua(1))

and a similar inequality is true using the variational inequality of u,, by replacing
the data fi, by, ¢; by f>, by, ¢; and @) by #;. Then we have

JQ 0, (141(1) — uz(l)) (Ll1<l) — uz(l)) + JQ bl(t) . V(ul(t) — uz(l)) (ul(t) — 142([))
+ JQ ¢ (t) (wr (1) — uz(t))2 < 0(1), (20)
with

o) = J (Qaur (1) 4 by (1) - Vuy (1) + er () (1) — £1(2)) (i1 (1) — ua(2))

Q
+ Q(@,uz(t) +b(1) - Vur (t) + c(D)ux(t) — fo(1)) (42 (1) — uy (1))
+ ug(bl(t) — bz(l‘)) : Vuz(l) (ul(t) - uz(l))
+ ], Ha @ = ex()u(e) + (A1) = /(0)] (1 () = 2(0))-

Using the boundedness of the solutions u;, i = 1,2, and their gradients and
recalling the L?(Qr) estimates of d,u;, we have

T
Jo O(1)dr < Cu(llgr — 921l =0,y + 1101 = B2l 10y

+ller = ellpiop + 11/ = Lllion):
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where Cy, is a positive constant depending on 7', on the norms of the solutions
and their derivatives (which can be bounded in terms of the data) and on the
constant C of Lemma 3.1.

Setting w = u; — u, in the inequality (20), we obtain using (7),

d
—J w(t)|* < 2|1|J lw(t)|* +20(¢).
dt Jq Q

Applying Gronwall’s inequality, we conclude

jﬂ (1) — w(0)]? < AT (Juro — ol 2o + 2Cus (g1 — -0

+1br = ball 1o, + ller = callioy + 1A = Ll i)
O

In order to consider the corresponding time independent solution to the first
order variational inequality, we give stationary data f.., g.., b, Coo satisfying
the assumptions

Joo ELOG(Q)a oo =m >0, S ELI(Q)a (21)
b, eL'(Q), c,eL(Q), (22)

1
¢ =3Viby24>0 inQ (23)

in the distributional sense, where we set accordingly
K, ={we H}(Q):|Vw| <g. ae inQ}.

Then, the stationary problem can be written as

u, €Ky, - J by - Vi (W —1uy) +J Copllo (W — Uop)
Q Q

ZJ fow—uy), Ywel,,. (24)
Q

Since the convex set [, is bounded in HJ(Q) and the first order linear
operator in the left hand side of (24) is pseudo-monotone, by the classical theory
(see, for instance, [12]) it has a solution, which is unique by the strict coerciveness
induced by the condition 4 > 0 in (23).

In order to study the asymptotic convergence of the solution of the variational
inequality (10) to the stationary solution of (24), we consider solutions global in
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time. This is easily obtained if we assume that (6)—(8) are satisfied for any 7> 0
and replace (9) by

ge Whe(0,00;L7(Q)), g=m>0. (25)
We need an auxiliary lemma.

Lemma 3.3 (]9, page 286]). Let ¢ : (0, 0) — R be a nonnegative function, abso-
lutely continuous in any compact subinterval of (0, 0), ® € L} (0,00) a nonneg-
ative function and p a positive constant, such that

o' (1) + up(t) < d(1), Vi>0.

Then, for any s,t > 0,

+1
pli+3) < e+ [iili’L (&) dé| O
In order to apply this Lemma to
o(0) = | ) —u >0, (26)
Q

we shall require the additional assumptions on the coefficients and on the data
beL”(0,00;L*(Q)) and ¢, [ e L*(0,00;L*(Q)). (27)

Theorem 3.4. Assume that f, g, b, ¢, uy satisfy the assumptions (6)—(8), (25), (27)
and fy, goos boo, Cop satisfy the assumption (21), (22) and (23). Suppose, in addition,
that

J'H J, 170 = £oldeax — o,

t

+1
J J |b(7) — by | drdx — 0,
Q — o0

1

Jt+1 JQ(C(T) —¢y))drdx — 0

1 t—o0
and there exists y > %, such that, for some constant D > 0,

D

lg(1) = gooHLx(Q) < o t>0. (28)
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If u and u., are, respectively, the unique solutions of the variational inequalities
(10) and (24) then, for every o, 0 < o < 1,

u(t) — u,  in €"*Q)
t— o0
Proof. First we need to return to the estimate (17) of the existence proof in order
to prove that, under the additional assumptions of this theorem, there are positive
constants 4, B, independent of T, such that,

10l 12050, 7)) < AVT + B.

Since |Vu(x, )| < g(x, 1) for a.e. (x,7) € Q,, =Q x (0,00) and g € L™ (Q.,), we
have now u € L™ (0, co; W' *(Q)). This yields the estimate

2 2
2210, = jQ u® < T

T

where the constant ¢, > 0 is independent of 7. Using similar estimates for
Hf”iz(QT) with the constant ¢, replaced by ¢, = Hf”izw’w;[dz(g)), as well as
for ¢ = ||b||i2(0’%;1‘2(9)) and ¢, = |[¢||720, 0:12(q))» We may conclude that the
constant C; = Cj(7T) of (12), in the Estimate 1, grows also linearly with T, i.e.
Ci <co+ 1T, where ¢y depends only on uy and ¢; depends on m, cr, ¢4, cp
and c¢.. Using this fact in the Estimate 3, we may now easily deduce (3) from
(17), with s =2 and ¢ = o0, since Cy, depending on f and on C; grows also
linearly with 7.

Using Lemma 3.1, we choose #,, € I€,,, for a.e. € (0, T), as test function in
(10). Then

JQ Opu(t) (u(r) — us) + J

Q

b(1) - Vu(t) (u(t) — us) —I-J c(O)u(r) (u(t) — us)

Q

< JQ S (@) (u(t) —u) + J (Oauu(t) + b(2) - Vu(t) + c()u(t) — f(1)) (flor — tsp).

Q

Analogously, with #(7) € K, , for a.e. t € (0, T), we obtain the inequality

Joo >

JQ b - Vg (u(t) —us) + JQ Copthor (u(t) — U

> J oo (u(t) —uy) +J (boy - Vg, + coptten — f@)(u(t) — ﬁ(t))
Q

Q

Then, simple algebraic manipulations lead to
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J 0 (u(t) — uss) (u(t) — us) +J b - V(u(t) —us) (u(t) — us)
o

Q
+J Coo (u(t) — uee) (u(t) — us) < O(2), (29)
o

where

o1) = L(atu(t) + b(t) - Vu(t) + c(u(t) — f (1)) (tis — o)

+ Q(boo Vg + et _fw)(a([) o u(l))

+ (b(t) — bw) - Vu(t) (uw — u(t)) —l—J (c(t) — c%)u(t) (uw — u(l))

Q Q

+ | (f(0) = foo) (u(t) — us).

Q

Using (23) and the definition (26), from (29), we obtain the differential inequal-
ity with 4 = 2/ and where, taking into account (3), we may choose ®(¢) > 2|0 ()]
given by

D(1) = C((AVI+ B+ O)lg(t) = geoll -0 + 16(0) = becll 1o
+lle(t) = caoll i) + I1F () = foll i)

Then, using the assumptions and observing that the number y in (28) is greater
than 1, we have

t+1 t+1
j Q@WSCJ(W@—hh@+ww—%hmﬁkw—%h@ﬂf

t t

t+1
+cj (2 4 1)(2) = gorll iy d7 —— .

¢ t——+00

Therefore, by Lemma 3.3, u(¢) —— Uy in L*(Q).

Since u belongs to L* (0, oo; W (Q)), the compact inclusion of W *(Q) in
C%*(Q) implies, first _for a subsequence, and after for the whole sequence, that
u(t) —— Uy in C%*(Q), concluding the proof. ]

4. Finite time stabilization in a special case

In this section we assume that 0Q is of class 2 and

beRY, ¢=0, g=1, zelk; and feL*0,T). (30)
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We consider the following two obstacles problem
z(t) e K{ fora.e. t € (0,7), z(0) = u,
J 0iz(1) (v — z(1)) + J b-Vz(1)(v—z(1)) (31)
Q Q
> J f(@)(v—2z(1)), Vv e K, forae. € (0,T),
Q

where
K = {ve H}(Q) : —d(x) <v(x) < d(x) for ae. x € Q}.

Here d(x) =d(x,0Q) is the distance function to the boundary dQ. Notice
that d e WOI’OO(Q), [Vd(x) <1, ae. xeQ and Ad < C for some constant
C = C(Q) > 0. Observe that zy € I§; < [K].

Theorem 4.1. Under the assumptions (30), the inequality (31) has a unique solution
ze L*(0,T; Wy *(Q)) n H'(0,T; LA(Q)) n6(0y),

which satisfies |Vz| <1 a.e. in Qr and is the unique solution of the variational
inequality (10).

Proof. For ¢,0 € (0,1), we consider the following family of penalized problems
for z#

3

{ 020 = 0N bV 2 (20 — (P nd) v (~d) = £ in Qr, (3

z9(0) =z on Q, 2z =00noQ x (0,7),

where f¢ and z§ are regularizations of the functions f and zo, with |Vz§| < 1. This
problem has a unique solution z#° € H*!(Qr), since the operator

(P, wy = gJ (v—(oAd)v(=d))w (33)

Q
is monotone (see, for instance, [12]).

We obtain firstly an estimate of |Vz*°| on 0Q x (0, T'). Since dQ is of class %2,
there exists r > 0 such that, if B,(x) denotes the ball with centre in x and radius r,

then for all x, € 0Q there exists yg € R" such that B.(yy) N Q = {xo}. Placing the
origin of the coordinates in the point yy, let 7,(s) = e~%/V# and

p(x) =d(x) + Me(1 —n,(Ix| = 1)), o(x) = —d(x) — Me(1 —n,(|x] 1)),
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where M is a positive constant, depending on d, to be chosen later. We show that
¢ is a supersolution of (32). Analogously, it can be verified that ¢ is a subsolution.

We start by observing that
P(x0) =0=12%(xp,t) and §>0=2z%0ondQx (0,T).
Since z; € K, then
p(x) = d(x) = z5(x).
We compute

6xi¢(x)zaxid(x)+M\/5n£(|x|—r)% and  |Vg| <1+ Mz (34)

2 2 x; L
0. 0(x) = 05d(x) = Mn,(Ix] = r)—5 + MVen,(Ix] = )| = — =3
X1 X[

and

Ap(x) = Ad(x) + Mn,(|x| —r) (—1 + \/EN—_1>

| x]
Let
)
Lw=0w—0Aw+b-Vw+ . (w=(wad)v(-d)).

Then, recalling that there exists a positive constant C such that Ad < C and
choosing ¢ sufficiently small, such that 1 — \/.Ej\lf—’1 >1—e¥1 > 1we have
x| r 2

Lp— [ = —OAd + Mén,(|x| —r) (1 - \/EN|;| 1)
+b- <Vd + M/en,(|Ix] —r) ﬁ) +Mo(1—n,(Ix| = 1) = f

0
= —0C + M 3n,(|x] = R) — [b] - [b|M/en, (x| — R)

+ M(1 = n,(|x[ = 1) = I/l 0.7)

- M(a + (;5 — Bl — 5)?73(IXI - r>> —C— 1B~ |/ l0my (39
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Observe now that the term § — |b|\/z — J is negative and, since ,(|x| —r) < 1,
we have the following inequality

M<5+(§— BIVE—0 ) —r)) > (5 - 1b1V5).

We can fix & such that, for 0 < & < &, we have |b|\/e < 2. From (35), we obtain
then

_ )
Lp—f= MZ—5C— Bl — {1 /110, 7) = 0,
provided
M=—, Ci=40CH+I[bl+|fll.-0.mn) (36)

concluding then that ¢ is a supersolution of (32). Analogously, ¢ is a subsolution
of (32) and so we have

9 =< 2% <p inQr and  z%(xp, 1) = @(x0) = @(x0). (37)

Observe that, from (34), we obtain
) _ C1
V2" (x0. 0)] < max{|Va(xo)l, [Vo(xo) [} < T+

for an arbitrary point xy € dQ at any ¢ € (0, 7). We wish to prove that this esti-
mate is true a.e. in Qr. Differentiate the first equation of (32) with respect to
xi, multiply it by d,,z% and sum over k. Setting v = |[Vz*|* and noticing that
05 2 A0 2% =L Av — (02 | z%)” we get

Xie Xje

1 0 1 0 ~eo &0
E@,v—EAv—i—Eb-VU—i-E(U—Vz -Vz#) <0,

being 7% =z — (z% Ad) v (—=d). Using the Cauchy-Schwartz inequality, we
obtain

20 5
dw—0Av+b - Vo+—(v—|Vz®[p!/?) <0.
&

Multiplying the above inequality by (v — (1 + M+/z)?)" and integrating over Q;,
we have
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3,00 = (0 MVE) Pt | 9= 14008
Q O

+JQ b-V(v—(1+Me)?) (v—(1+Me)*)"

+2—(5J (0= V221! ) (0 = (1+ My/)*) " <0. (38)
¢ Jo,
Since
JQ b-V(o—(1+MVe)") (0= (1+MVe)") =0
and

J, (o= 192010 o= 1+ by

O

:J ‘ (0— 0" (v — (1 4+ Me)*)"

{z#0>d}

S CETC RS R
{z9<—d}

from (38) we conclude that (v — (1 + M/z)*) " = 0.
Then, recalling the choice of M done in (36), we have

|Vzg(;|2 —v<l1 _,_%\/5 a.e. in Qr, (39)

and {z*°}, is uniformly bounded in L* (0, T; W, (Q)). Using (37), it is easy to
see that
—C] <

(z% — (2 Ad) v (—d)) < C).

SIS

In fact, in the set {z*° > d} we have

0

g(z‘g" — (2 Ad) v (=d)) = 5(28‘5 —d) < g

(p—d) <y,

in the set {—d <z <d} we have z* — (z** Ad) v (—d) =0 and in the set
{z# < —d} we have

0

E(zc‘s — (2" Ad) v (—d)) 0

=-(z"+d) >
8(2 +d) >
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Multiplying the first equation of (32) by 9,z*°, we obtain

J |atzz;5|2 +5J AV Va,zm + J b- szriarzsri
O < Or

ﬁj (2 = (z® Ad) v (=d)) 02" = J f0,2%
¢lo o

and so

j 0,9 +2 J V= ()2

I\JIQq

j Va2 + <|b| 192200

L*(Qr)

+ 1/ 2200, T)) HatZE(SHLZ(QT)

l\JIQq

e Cl &0
Vg + <b| (145 ve+ @ )lerl™ + 1Al T)) e P

I\)IQq

2
JQIVuOI + <|b|<1+ W+Cl>|QT|1/2+IIfIILzOT>

1 12
5102122 ;)

where |Qr| denotes the Lebesgue measure of Q7. So, for ¢ fixed,

2
. ¢ G
182113 20, ﬁéJQ Vug| + (Ib (1 +3ﬁ+ C1> 107" + IIfIILz(o,T)> . (40)

Then, there exists z% € L= (0, T; W, (Q)) n H' (0, T; L*(Q)) such that

2 — 2 in L7(0, T; W, (Q))-weak *  and  9,z% — 9,z° in L?(Qr)-weak.

&e—0

Multiplying the first equation of the problem (32) by v — z%(¢), where v € K, and
integrating over Q x (s,7), 0 <s <t < T, we obtain

t

[La (0~ 2" >+5£ vaw.v@—zﬂ") w ] v ==

=[] rie-=.

+
|
—
)
—
o
52
—~
—
=
>
U
~
—
U
S~—
~—
—
<
|
t\]
\/
I
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For v € K], since the operator P, defined in (33) is monotone, we have

J | | (7= rayv (== <o

S

So, letting ¢ — 0, we obtain

Lr JQ 0,2°(v — z°) +5£ JQ Vz? - (v —z29)

+’ b-V°(v—2°) > t 1o —2%. (41)
Q Q

By (37), the function z° is such that z°(¢) € K/, for a.e. t € (0, T).
To prove that {9,z°} is bounded in L?(Q7), let & — 0 in (40), obtaining

jQ 22°] < 5]9 Veol? + (1BI(1 + €I + £l 20,

Analogously, letting ¢ — 0 in (39), we obtain
V2’| <1 ae.in Qr.

We can now pass easily to the limit when § — 0 in inequality (41). Observing
that z° converges to some function z weakly* in L™ (0, T; W, *(Q)) and 0,z
converges weakly in L>(Qr) to 0,z, we find forall0 < s <t < T

J: JQ 0iz(v —2) + J: JQ b-Vz(v—1z) > J; JQ flv—2)

and it follows also

J 0iz(1) (v —z(1)) + J b-Vz(1) (v — z(1))
Q

Q

> J f()(v—=z(r)) forae. te(0,T).
o

Since z%(¢) € K/, for a.e. t € (0, T), we also have z(¢) € K/ and the proof of
existence of solution for the variational inequality (31) is complete. The unique-
ness is also clear.

The inclusion K; < K and the fact z(¢) € ; for a.e. ¢ € (0, 7) implies that
the function z also solves the problem (10). O



Solutions for linear conservation laws with gradient constraint 187

Remark 4.2. The first order variational inequalities of obstacle type have been
introduced by Bensoussan and Lions in [4] and have been studied in [13] and
in [17], for general linear operators and general obstacles, and extended to a
quasilinear two obstacles problem in [11]. In all those cases the notion of solution
is less regular and the boundary data can only be prescribed on part of the
boundary. In addition, the solution cannot have a gradient in L? and the best
that can be expected in general is the operator d,u + b - Vu + cu € L?, as a conse-
quence of Lewy-Stampacchia inequalities. These estimates can be obtained from
the regularized parabolic inequality (41) and, as in [18], it allows the passage to the
limit 6 — 0 without the estimates on the gradient and on the time derivative. It is
an open question to establish the equivalence of the first order obstacle problem
with the variational inequality with gradient constraint for more general first order
linear operators.

Theorem 4.3. In addition to the assumptions (30), suppose

b-Vzo < f(t) in{xeQ:—d(x)<zy(x)} fort>0, (42)
f = f(¢) is increasing and nonnegative, (43)
lign inf /() > |b| + 2D, (44)

where D = ||d|| . (q) = max g d(x,0Q). Then there exists T. < oo such that the
solution z of the variational inequality (10), or equivalently of (31), satisfies

z(t)=d  forall t > T..
Proof. We consider z as the solution of the variational inequality (31).

Step 1: zp < z(z) forallz> 0.
Let o(f) = z(1) + (z0 — z(r)) " and note that v(z) € K. Then

J 0iz(1) (z0 — u(t))+ + J b-Vz(1)(zo — Z(Z))Jr > J F(0)(z0 - Z(l))+. (45)
Q Q Q

On the other hand, by (42), we have
b-Vzo(zo—2(t)) " < f()(20 —2(1)) " in{~d < =},

and also on {—d = z,} since, in this last set, (zo — z(l))+ = 0 (recall that f > 0).
Then

JQ 0iz0(z0 — z(l))+ + J

Q

b-Vz (ZO — Z(t))+ < J f(l) (Z() — Z(l))+. (46)

Q
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From (45) and (46) we get

JQ (1o — (1)) (z0 — Z(t))Jr + J b-V(zo—z(1))(z0 — Z(t))+ <0.

Q

But

J b-V((z0—z(0)")?

Q

[ 980200 =0

N —

J bV (0 — (1)) (20— 2(1) " =
Q

N —

and so

%JQ}(ZO —z(0)")’ < %JQKZ() —2(0)|* =0,

which implies that zy < z(), for all ¢+ > 0.

Step 2: z(¢) < z(t+h) forallz,h > 0.
Observe that v(r) = z(t + h) — (z(t) — z(t + h)) € K, so we can choose v(7)
as test function in (31). Noting that

v(t) —z(t) = z(t+ h) — z(t) — (z(1) — z(t + h)) ~ = —(z(t) — z(¢t + h))Jr

we get

- L 612(0) (=(1) — =(e + b)) — J b-V()(=(1) — (e + b))

Q

> = | 100 -+ 1) (47)
Q

Choosing v(t) = z(t + h) + (z(1) — z(1 + h))+ as test function in (31) in the
instant 7 4+ /4 and observing that

o(t) = 2(t) = 2(t + h) — 2(0) + (2(£) = 2(t + h)) " = (2(0) — z(t + h)) ",

we have

J 6tz(t+h)(z(t)—z(t+h))_+J bVt + h)(=(t) — =(t+ 1))
Q Q

S NGVICORECT) (48)
Q
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From (47) and (48) we get
J, 20 = (4 1) et0) = =0+ )~
[ 590~ 20+ ) (0 — 20+ 1)
< | o= reem) 0 -=e+m) <o

because /(1) < f(t+ h), by assumption (43) and (z(r) — z(t+ h))  >0. As

JQ bV (=() — =t + 1) (=(1) — =(6 + b))~ =0,

we obtain

3 ) 60 = =+m) < 5 (160 —=00) <0

using Step 1. So z(¢) < z(¢+ h), for all ,h > 0.

Step 3: There exists z., € 4(Q) such that lim, ., z(x,?) = z,(x), uniformly in
xeQ.

Since the sequence of continuous functions {z(¢)},. is increasing in ¢ and is
bounded from above by d, this conclusion follows immediatly.

However, in this special case we have a finite time stabilization.

First we prove that the function z,, coincides with d. We recall that d,z €
L*(Qr), for any T >0, and we set y(z) = [, z(r). Observe that W20, 0) <
|Q|D, where |Q| denotes the Lebesgue measure of Q. Since {z()},., is increasing,
then ¢,z > 0 and

W(t) — JQ Z, Y'(£)=0 forae.r>0.

This implies that

liminf 0,z(1) =0 in L'(Q).

Choosing v = d as test function in (31) we obtain, for a.e. # € (0, o),

L () (d — =(1)) + J

Q

b-Vz(1)(d — z(1)) > J f(0)(d —z(1))

Q
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and so
J 0uz(1)(d — =(1)) + |B] J (d—z(0)) = f(1) J (d —z(1)).
Q Q Q

Since d > z(¢), taking liminf,_,., to both sides of the inequality and using the
assumption (44), we obtain

|mjgai—zm>z<w|+2D>L;d—zxL

which is a contradiction unless z,, = d.
Consider the following subsets of Q., = Q x (0, o)

A={-d<z<d}, I'={z=d}, I ={z=-d}.

Since z solves the two obstacle problem (31), it is well known that the following
inequalities are verified a.e. in Q:

0iz+b-Vz=finA, 0z+b-Vz<finlI", Ou+b-Vu>finl .

If there is no finite time stabilization of the solution, since z(¢) is increasing in
time, we may find a point (xo, #p) and an open subset wy of Q with xy € wy, such
that, (x,7) e Aul~ fort>t. So,

f(t) <0z(x,6) + b-Vz(x,1) fora.e. (x,t) € wy X [tg, +0).

Then, for any ¢ > ) and any open set @ < g, we have

‘ o] J;

WJ (z(x, 1+ 1) — z(x, 1)) + |B] < (2D + |b]).

rﬂﬂﬂSé{ML@Anﬂ+”W“”)
1

IA

Asa consequence,

t+1
liminf f(1) < limian f(z)dr < 2D + |b|

1— 0 t—o0o ¢
and this is a contradiction with (44). So z(¢) must stabilize in finite time. O
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