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Abstract. We study the Euler-Poisson system describing the evolution of a fluid without
pressure e¤ect and, more generally, also treat a class of nonlinear hyperbolic systems with
an analogous structure. We investigate the initial value problem by generalizing a method
first introduced by LeFloch in 1990 and based on Volpert’s product and Lax’s explicit for-
mula for scalar conservation laws. We establish several existence and uniqueness results
when one component of the system (the density) is measure-valued and the second one
(the velocity) has bounded variation. Existence is proven for general initial data, while
uniqueness is guaranteed only when the initial data does not generate rarefaction centers.
Our proof proceeds by solving first a nonconservative version of the problem and construct-
ing solutions with bounded variation, while the solutions of the Euler-Poisson system is
then deduced by di¤erentiation.
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1. Introduction

We study here a class of nonlinear hyperbolic systems in one space dimension

which includes, in particular, the pressureless Euler-Poisson system

qtrþ qxðruÞ ¼ 0;

qtðruÞ þ qxðru2Þ ¼ krE;

qxE ¼ r:

ð1:1Þ

Here, u : Rþ � R ! R denotes the velocity of the fluid, r : Rþ � R ! Rþ its

density, and E the electric field, normalized so that limx!þl Eðt; xÞ ¼ 0 for each



time tb 0. Here k is a given constant whose sign determines the (attractive or

repulsive) nature of the underlying force. More generally, we consider the systems

qtrþ qx
�
rf 0ðuÞ

�
¼ 0; ð1:2aÞ

qtðruÞ þ qx
�
rf 0ðuÞu

�
¼ rh

�ð x

�l
r dy

�
; ð1:2bÞ

with u : Rþ � R ! R and r : Rþ � R ! Rþ. In the above, h : R ! R is a given

Lipschitz continuous function and f : R ! R satisfies the following two assump-

tions:

(A1) f : R ! R is a smooth, strictly convex function.

(A2) limjuj!þl
f ðuÞ
juj ¼ þl.

Our objective is to establish several existence and uniqueness results in a suitable

class of weak solutions, for both the above systems and their nonconservative for-

mulations which are obtained by formally integrating in space.

In our investigation, we closely follow LeFloch [10], which treated the same

problem but without electric field. The presence of an electric field significantly

modify the analysis, although the strategy in [10] can still be closely followed. In

particular, as observed in [10], it is very convenient to introduce a nonconservative

version of the system under consideration and seek for solutions of bounded

variation—defined by relying on the so-called Volpert’s product [5], [9], [12],

[14]—and then to recover the original system by di¤erentiation. It then naturally

follows that solutions can be measure-valued.

We do not try to review here the vast literature existing on the pressureless

Euler system and we simply refer to [2], [3], [4], [6] and the numerous references

cited therein. As far as the Euler-Poisson system is concerned, we recall that

Tadmor and Wei [13] recently proposed a theory of weak solutions based on a

variational approach. Note also that transport equations with discontinuous

coe‰cients have been found to be useful for the analysis of the linear stability of

shock waves [1].

An outline of this paper is as follows. In Section 2, we present some elemen-

tary properties of bounded variation (BV) functions and Volpert’s product. In

Section 3, we study the following hyperbolic system in a nonconservative form

(formally derived by integration of (1.2))

qtwþ f 0ðuÞqxw ¼ 0; ð1:3aÞ
qtuþ qx f ðuÞ ¼ hðwÞ: ð1:3bÞ

Weak solutions to (1.3) are defined in the sense of Volpert’s product, and we

establish the existence and uniqueness of bounded variation solution when the
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initial data uð0; �Þ ¼ u0 has bounded variation and the initial data wð0; �Þ ¼ w0 is

Lipschitz continuous.

In Section 4, we return to the conservative formulation (1.2), but first substitute

(1.2b) by (1.3b), which, in some sense, contains ‘‘more information’’ (for the

dynamics of the velocity variable in the vacuum regions) than (1.2b). We note

that a solution to (1.2a) and (1.3b) is also a solution of (1.2). Finally, in Section

5, we generalize our existence theory above by allowing both initial data u0 and

w0 to be bounded variation functions and by defining the composition of a BV

function and a strictly monotone function.

2. Background material

2.1. Change of variable formulas. Throughout, we work with functions of

bounded variation (BV) and we recall that the total variation of a function

v : ½a; b� ! R is defined as

TV½a;b�v :¼ sup
Xn

i¼1

jvðxiÞ � vðxi�1Þj;

where the supremum is taken over all finite partitions a ¼ x0 < x1 < � � � < xn ¼ b.

The interval ½a; b� can be decomposed in two disjoint sets: the set C of points of

continuity of v and the set J of points of jump. The set J is at most countable,

while left- and right-hand limits vðxeÞ exist for each x a ½a; b� and are distinct if

x a J. For instance, monotone functions have (locally) bounded variation.

We will use the following notion of inverse of a non-decreasing and right-

continuous function FðxÞ : ½a; b� ! ½A;B�. Its generalized inverse is defined by

gðyÞ ¼ inffx : FðxÞ > yg;

which is obviously non-decreasing. Similarly, we can define the inverse of left-

continuous/right-continuous and non-decreasing/non-increasing functions.

We will also need change of variable formula. Given any right-continuous BV

function v defined on an interval ða; bÞ, there exists a unique finite Borel measure

mv associated to v, such that

vðxÞ � vðaþÞ ¼ mv
�
ða; x�

�
; vðaþÞ � vðaÞ ¼ mvðaÞ:

We denote mv by dv and decompose it into an absolutely continuous part de-

noted by v 0 dx, an atomic part dav, and a singular part dsv. We thus have dv ¼
v 0ðxÞ dxþ davþ dsv.
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Given such a function v, we use the notation L1ðdvÞ for the set of Borel func-

tions that are integrable with respect to the measure dv. From [14], we have the

following result.

Proposition 2.1. Let u : ½a; b� ! R be a right-continuous function of bounded vari-

ation and let X : ½a; b� ! ½c; d� be a continuous, non-decreasing (and not necessary

strictly increasing) function with XðaÞ ¼ c, XðbÞ ¼ d.

1. If X�1 denotes the generalized inverse of X, then for all g a L1
�
dðu � XÞ

�
ð d

c

gðsÞd
�
u � XðsÞ

�
¼

ð b

a

g � X�1 duðxÞ:

2. For any function g a L1
�
dðu � XÞ

�
, one has

ð d

c

ðg � XÞðsÞd
�
u � XðsÞ

�
¼

ð b

a

gðxÞ duðxÞ:

2.2. Nonconservative products. More generally, the total variation of an inte-

grable function v ¼ vðxÞ defined on a domain WHRN (for Nb 1) is defined

by

TVWv¼ sup
nð

W

v‘ � j=j : W! R; smooth; compactly supported; kjkLlðWÞ a 1
o
:

When this total variation is finite, the first order derivatives qu
qxi

are finite Borel

measures. Let us recall the following regularity results for BV functions, as proven

first in Volpert [14]. For a function u in BVðW;RÞ, it happens that up to a set of

vanishing Hausdor¤ measure, each point x a W is regular, that is, is either a point

of approximate continuity or a point of approximate jump. With obvious nota-

tion, we write W ¼ CAJAN. To be more specific, recall that the formula

lim
e!0

1

e2

ð
fðx�x0; nÞ>0gBBeðx0Þ

juðxÞ � lnuðx0Þj dx ¼ 0

holds at a point of approximate jump, where n is a unit normal at x0, Beðx0Þ
denotes the ball of radius e > 0 centered at x0 and lenuðx0Þ ¼: ueðx0Þ denote the

left- and right-hand traces. At a point of approximate continuity, the normal n is

irrelevant and the traces ueðx0Þ coincides.
We now turn to the notion of averaged superposition.
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Definition 2.2. Given g a C1ðRÞ and u a LlðW;RÞBBVðW;RÞ, the averaged

superposition of the function u by g is defined as

ĝgðuÞðxÞ ¼
g
�
uðxÞ

�
; at an approximate continuity point;Ð 1

0 g
�
ð1� lÞu�ðxÞ þ luþðxÞ

�
dl; at a jump point:

(

The following result was proven by Volpert [14].

Proposition 2.3. Let u, v be two functions in LlðW;RÞBBVðW;RÞ and g be in

C1ðRÞ. Then, the function ĝgðuÞ above is measurable and integrable with respect to

each Borel measure qu
qxi

, so that the nonconservative product ĝgðuÞ qv
qxi

makes sense as

a finite Borel measure.

As was first proposed by LeFloch [9], [10], Volpert’s product is useful in order

to define a notion of weak solutions to systems in nonconservative form such as

qtuþ ÂAðuÞqxu ¼ 0; ð2:1Þ

where u is the unknown function and A ¼ AðuÞ is a matrix-valued map of u.

3. The nonconservative formulation

3.1. Definition and existence theory. We begin by introducing our notion of

solutions.

Definition 3.1. A pair of functions ðw; uÞ in Ll
�
Rþ;BVðRÞ

�
is said to be a weak

solution to (1.3) if:

1. The component u is a weak solution in the sense of distributions to

qtuþ qx f ðuÞ ¼ hðwÞ: ð3:1Þ

2. The component w is a weak solution in the sense of Volpert-LeFloch to

qtwþ bf 0f 0ðuÞqxw ¼ 0: ð3:2Þ

In this section, we are interested in initial data with regularity

u0 a BVðRÞ; w0 a W 1;lðRÞ:

We are going to rely on a generalization of Lax’s explicit formula [7], [8], which is

well-known for homogeneous conservation laws. Let G : Rþ � R2 ! R be given by

Gðt; x; yÞ ¼
ð y

0

�
z� xþ

ð t

0

f 0�u0ðzÞ þ h
�
w0ðzÞ

�
s
�
ds
�
dz; ð3:3Þ
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and denote by x : Rþ � R ! R the minimizer associated with the function

y 7! Gðt; x; yÞ (for t, x fixed), which is characterized by the property

G
�
t; x; xðt; xÞ

�
¼ inf

y AR
Gðt; x; yÞ; a:e: ðt; xÞ a Rþ � R: ð3:4Þ

We observe that, when t approaches 0, the function G approaches

ð1=2Þ
�
ðy� xÞ2 � x2

�
which trivially achieves its minimum (with respect to the

variable y) at the point x, so that xð0; xÞ ¼ x.

Lemma 3.2. For each time t, the function xðt; �Þ defined in (3.4) is non-decreasing

in x.

Proof. We write

Ht;xðzÞ ¼ z� xþ
ð t

0

f 0�u0ðzÞ þ h
�
w0ðzÞ

�
s
�
ds; ð3:5Þ

so that Gðt; x; yÞ ¼
Ð y

0 Ht;xðzÞ dz. Let us assume that there exists two points

x1 < x2 such that xðt; x1Þ > xðt; x2Þ. Since xðt; x1Þ is a minimizer of Gðt; x1; yÞ,
we have ð xðt;x1Þ

xðt;x2Þ
Ht;x1ðzÞ dz ¼ G

�
t; x1; xðt; x1Þ

�
� G

�
t; x1; xðt; x2Þ

�
a 0:

Moreover, we haveð xðt;x1Þ

xðt;x2Þ
Ht;x2ðzÞ dz ¼

ð xðt;x1Þ

xðt;x2Þ
Ht;x1ðzÞ dzþ

ð xðt;x1Þ

xðt;x2Þ
ðx1 � x2Þ dz < 0:

Thus, G
�
t; x2; xðt; x1Þ

�
< G

�
t; x2; xðt; x2Þ

�
, which contradicts the definition of

xðt; x2Þ. r

We begin with the existence theory.

Theorem 3.3 (Existence result for the nonconservative formulation). Given any

initial data u0 in BVðRÞ and w0 in W 1;lðRÞ, the system (3.1)–(3.2) admits at least

one weak solution ðu;wÞ in Ll
�
Rþ;BVðRÞ

�
satisfying the initial data:

wð0; �Þ ¼ w0; uð0; �Þ ¼ u0;

which is given by the formula

uðt; xÞ ¼ b
�
t; x; xðt; xÞ

�
þ h

�
w0

�
xðt; xÞ

��
t; ð3:6Þ

wðt; xÞ ¼ w0

�
xðt; xÞ

�
; ð3:7Þ
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where bðt; x; yÞ is defined by the implicit relation

Y
�
t; x; y; bðt; x; yÞ

�
¼ 0;

with ( for all ðt; x; y; bÞ)

Yðt; x; y; bÞ :¼ y� xþ
ð t

0

f 0�bþ h
�
w0ðyÞ

�
s
�
ds: ð3:8Þ

Proof. Since the function f is convex and satisfies limx!þl
f ðxÞ
jxj ¼ þl, the func-

tion Gðt; x; yÞ reaches its minimum at some point(s). According to Lemma 3.2,

for each fixed t the function xðt; �Þ is non-decreasing, and therefore w is well-

defined. We have also, for all t > 0,

lim
b!el

ð t

0

f 0�bþ hðw0ðyÞ
�
s
�
ds ¼el:

Therefore, for every t > 0 and fixed x, y, the function Yðt; x; y; bÞ will have at

least one root b. Moreover, by the strict monotonicity of f 0, this root is unique.
Therefore, the expression proposed for u is also well-defined.

We next consider the equation (3.2). Thanks to ([5], Theorem A2), we see that

w belongs to Ll
�
Rþ;BVðRÞ

�
whenever w0 (only) belongs to W 1;lðRÞ. Since x

has bounded variation, so that we can introduce the decomposition Rþ � R ¼
CAJAN associated with x, as was introduced in Section 2. Consider first the

set of approximate continuity C, and define the function F by

F 0ðyÞ :¼ f 0�u0ðyÞ þ h
�
w0ðyÞ

�
t
�

for all t, y. Thanks to Proposition 2.1, F is well-defined. We combine x and F

into the formula

xðt; xÞ ¼ lim
N!þl

xNðt; xÞ; xNðt; xÞ ¼
Ð
�y expð�NGÞ dyÐ
expð�NGÞ dy :

Similarly, we write

F ðt; xÞ ¼ lim
N!þl

FNðt; xÞ; FNðt; xÞ ¼
Ð
FðyÞ expð�NGÞ dyÐ

expð�NGÞ dy :

In the set C, we have

qtw ¼ w 0
0ðxÞqtx; ð3:9Þbf 0f 0ðuÞqxw ¼ w 0

0ðxÞ f 0�b�t; x; xðt; xÞ�þ h
�
w0

�
xðt; xÞ

��
t
�
qxx: ð3:10Þ

235Existence and uniqueness results for the pressureless Euler-Poisson system



Now, we introduce the function

VN ¼ �ln

ð
expð�NGÞ dy

and compute

xN ¼ � 1

N
qxVN ; FN ¼ 1

N
qtVN :

Therefore, the equation qtxN þ qxFN ¼ 0 holds true. Letting N ! þl and

changing F 0 back to f 0, we get

qtxþ f 0�u0ðxÞ þ h
�
w0ðxÞ

�
t
�
qxx ¼ 0: ð3:11Þ

Hence, on the set of approximate continuity points, we have

Ht;x

�
xðt; xÞ

�
¼ 0;

with Ht;xðzÞ defined in (3.5). The fact that b is uniquely defined ensures that

b
�
t; x; xðt; xÞ

�
¼ u0

�
xðt; xÞ

�
:

Combining (3.5), (3.10) with (3.11), we obtain the equation (3.2).

Turning our attention to the set of jump points, we consider the Borel measure

defined by

m :¼ qtwþ bf 0f 0ðuÞqxw: ð3:12Þ

Taking a point in J denoted by ðt�; x�Þ, we find according to Volpert’s definition

mfðt�; x�Þg ¼ �sðwþ � w�Þ þ
ð1

0

f 0�u� þ lðuþ � u�Þ
�
dlðwþ � w�Þ:

On the other hand, Rankine-Hugoniot jump condition yields us the shock speed

s :¼ f ðuþÞ � f ðu�Þ
uþ � u�

¼
ð1

0

f 0�u� þ lðuþ � u�Þ
�
dl:

We thus conclude that the mass of the corresponding Borel measure mfðt�; x�Þg ¼ 0

vanishes. Combining our results for the set of approximate continuity points and

the set of jump points, we have thus derived the equation (3.2).
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We need next to discuss the equation (3.1). As done before, we introduce the

function

bNðt; xÞ ¼
Ð
b
�
t; x; xðt; xÞ

�
expð�NGÞ dyÐ

expð�NGÞ dy :

and bðt; xÞ ¼ limN!þl bNðt; xÞ. In particular, we have

lim
N!þl

bNð0; xÞ ¼ u0ðxÞ:

As for the derivation of the equation (3.2), we have here

qtbþ f 0�bðt; x; xÞ þ h
�
w0ðxÞ

�
t
�
qxb ¼ 0

and, since

qtwþ f 0�b�t; x; xðt; xÞ�þ hðwÞt
�
qxw ¼ 0;

we deduce

qt
�
h
�
w0

�
xðt; xÞ

��
t
�
þ f 0�b�t; x; xðt; xÞ�þ h

�
w0

�
xðt; xÞ

��
t
�
qx
�
h
�
w0

�
xðt; xÞ

��
t
�

¼ h 0ðw0Þw 0
0

�
xðt; xÞ

�
t
�
qtwþ f 0�bðt; x; xðt; xÞ�þ hðwÞt

�
qxw

�
þ hðwÞ

¼ hðwÞ:

Therefore, we have obtained (3.1) and this completes the proof of Theorem 3.3.

r

3.2. Uniqueness theory. For given initial data u0 a BVðRÞ and w0 a W 1;lðRÞ,
we have constructed a solution in Ll

�
Rþ;BVðRÞ

�
given by the explicit formula

(3.6)–(3.7) based the (generalized) characteristic x ¼ xðt; xÞ. As shown in [8], solu-

tions u ¼ uðt; xÞ to homogeneous conservation laws satisfy the entropy inequality

(for all x1 < x2 and all times t > 0)

uðt; x2Þ � uðt; x1Þ
x2 � x1

a kðtÞ; ð3:13Þ

where k ¼ kðtÞ > 0 is some function determined by the initial data and may blows

up at t ¼ 0. In particular, at each jump point, we have f 0ðu�Þ > s > f 0ðuþÞ,
where s denotes the shock speed. Relying on (3.13), we are going to prove a

uniqueness result for the system (3.1)–(3.2) under the assumptions that the map h

is non-increasing and the initial data u0 also satisfies the entropy condition.
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Proposition 3.4. Suppose that qxwb 0 in the sense of distribution and that the

map w 7! hðwÞ is non-increasing. Suppose also that the initial data u0 satisfies the

entropy condition

du0ðxÞ
dx

aK0 ð3:14Þ

in the sense of distributions. Then, the solution u to system (3.1)–(3.2) also satisfies

the entropy condition

qu

qx
ðt; �ÞaK0 ð3:15Þ

for each time t.

We emphasize that our addititional assumption qxwb 0 above is natural since

we are primarily interested in returning (in the following section) to the conserva-

tive system for which we write qxw ¼ r with rb 0.

Proof. Consider the equation

qtuþ qx f ðuÞ ¼ yq2xxuþ hðwÞ; ð3:16Þ

with y > 0 and let us di¤erentiate (3.16) once with respect to x:

qtðqxuÞ þ f 0ðuÞq2xxuþ f 00ðuÞðqxuÞ2 ¼ yq2xxðqxuÞ þ h 0ðwÞqxw:

Since the flux f is a strictly convex, we have f 00 > 0 and, in addition,

h 0ðwÞqxwa 0 holds since h is non-increasing. Thus, we get

qtðqxuÞ þ f 0ðuÞq2xxua yq2xxðqxuÞ:

Writing a ¼ ðqxuÞþ ¼ maxð0; qxuÞ, we find

qtaþ f 0ðuÞqxa� yq2xxaa 0:

Considering the function v ¼ a� K0, we thus have

qtvþ f 0ðuÞqxv� yq2xxva 0:

By the maximum principle, we conclude that aaK0. Finally, by letting y ! 0,

we have proven that quðt;xÞ
qx

aK0. r
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The following technical observation will be useful.

Lemma 3.5. Assume that both ðw1; u1Þ and ðw2; u2Þ are entropy solutions to (3.1)–

(3.2) in Ll
�
Rþ;BVðRÞ

�
. Then the function w2ðt; xÞ � w1ðt; xÞ has the same sign as

u2ðt; xÞ � u1ðt; xÞ on the set of points of approximate continuity.

Proof. Assume that u2ðt; xÞb u1ðt; xÞ on some set of points of approximate

continuity. Consider the equation

qtwi þ f 0ðuiÞqxwi ¼ eq2xxwi: ð3:17Þ

where i ¼ 1; 2 and e > 0. Noting that

qtw2 þ f 0ðu1Þqxw2 � eq2xxw2

¼ qtw2 þ f 0ðu2Þqxw2 � eq2xxw2 þ
�
f 0ðu2Þ � f 0ðu1Þ

�
qxw2

b qtw2 þ f 0ðu2Þqxw2 � eq2xxw2 ¼ 0;

we see that w2 is a sub-solution of (3.17) with speed f 0ðu1Þ. Letting e ! 0þ, we
conclude that w2bw1 and that w2 � w1 has the same sign has u2 � u1. r

Theorem 3.6 (Uniqueness result for the nonconservative formulation). Consider

initial data u0 a BVðRÞ and w0 a W 1;lðRÞ and suppose that u0 satisfies the entropy

condition

du0

dx
aK0;

dw0

dx
b 0

for some constant K0 > 0. Then, provided the map h is non-increasing, the Cauchy

problem for the system (3.1)–(3.2) admits at most one entropy solution satisfying

qxwb 0.

Proof. Let ðw1; u1Þ and ðw2; u2Þ be entropy solutions to (3.1)–(3.2) and let us intro-

duce the decomposition Rþ � R ¼ CAJAN as in the proof of Theorem 3.3.

Standard techniques yield the inequality

d

dt

ð
ju2 � u1j dxa

ð
C

sgnðu2 � u1Þ
�
hðw2Þ � hðw1Þ

�
;

in which the right-hand side is non-positive since h is non-increasing and

sgnðu2 � u1Þ ¼ sgnðw2 � w1Þ (according to Lemma 3.5). Thus, we obtain u1ðt; xÞ
¼ u2ðt; xÞ :¼ uðt; xÞ for a.e. ðt; xÞ.

239Existence and uniqueness results for the pressureless Euler-Poisson system



Consider next the components w1, w2. By a standard regularization argument,

we have

u ¼ qtjw2 � w1j þ bf 0f 0ðuÞqxjw2 � w1j ¼ 0:

Define the Borel measure

u ¼ qtjw2 � w1j þ qx
� bf 0f 0ðuÞjw2 � w1j

�
: ð3:18Þ

On the set of points of approximate continuity, we have

u ¼ qtjw2 � w1j þ qx
� bf 0f 0ðuÞjw2 � w1j

�
¼ f 00ðuÞqxujw2 � w1jaK jw2 � w1j;

by Proposition 3.4.

On the set of points of jump, say at a point ðt�; x�Þ we have

u
�
ðt�; x�Þ

�
¼ f 0ðuþÞjw2þ � w1þj � f 0ðu�Þjw2� � w1�j

�
ð1

0

f 0�u� þ lðuþ � u�Þ
�
dlðjw2þ � w1þj � jw2� � w1�jÞ

¼ jw2þ � w1þj
�
f 0ðuþÞ �

ð1

0

f 0�u� þ lðuþ � u�Þ
�
dl

�
þ jw2� � w1�j

�ð1

0

f 0�u� þ lðuþ � u�Þ
�
dl� f 0ðu�Þ

�
:

Since

f ðuþÞ � f ðu�Þ
uþ � u�

¼
ð1

0

f 0�u� þ lðuþ � u�Þ
�
dl;

we find

u
�
ðt�; x�Þ

�
¼ jw2þ � w1þj f 0ðuþÞ �

f ðu�Þ � f ðu�Þ
uþ � u�

� �
þ jw2� � w1�j

f ðuþÞ � f ðu�Þ
uþ � u�

� f 0ðu�Þ
� �

:

Consequently, u
�
ðt�; x�Þ

�
a 0 holds since u� > uþ and f is convex.

We deduce the inequality

uaK jw2 � w1j ð3:19Þ
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and, after integration in space and time,

d

dt

ð
jw2 � w1j dxa

ð
K jw2 � w1j:

Applying Gronwall’s inequality, we get

ð
jw2ðt; xÞ � w1ðt; xÞj dxa eKt

ð
jw2ð0; xÞ � w1ð0; xÞj dx;

which yields us the desired uniqueness property. r

4. The conservative formulation

4.1. Definition and existence theory. Following [9], the theoy in the previous

section can be reformulated at the level of the conservative system

qtrþ qx
�
rf 0ðuÞ

�
¼ 0;

qtuþ qx f ðuÞ ¼ h
�
rð�l; xÞ

�
;

ð4:1Þ

such that the component u is a BV function in x, but the component r is a measure

in x. In particular, we can obtain uniqueness for the velocity component even in

regions where the mass density vanishes. We omit the details.

Consider next the system

qtrþ qx
�
rf 0ðuÞ

�
¼ 0;

qtðruÞ þ qx
�
ruf 0ðuÞ

�
¼ rh

�
rð�l; xÞ

�
:

ð4:2Þ

Denote by MðRÞ the space of all bounded Borel measures. Clearly, uniqueness

can no longer be expected in regions where r vanishes, unless we strengthen

the notion of weak solution, as we do below. We emphasize that for su‰ciently

regular solutions with non-vanishing density, (4.1) and (4.2) are equivalent. Fur-

thermore, the jump relations at non-vanishing and bounded density can aso be

checked to be equivalent. This motivates us to propose the following notion of

solution.

Definition 4.1. A pair of functions ðr; uÞ satisfying

r a Ll
�
Rþ;MðRÞ

�
; u a Ll

�
Rþ;BVðRÞ

�
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is said to be a precised entropy solution to the system (4.2) if ðu;wÞ with

wðt; xÞ ¼ r
�
t; ð�l; xÞ

�
(for all x and almost every t) is a weak solution to (3.1)–(3.2) in the sense of

Definition 3.1.

Our first result based on this definition is as follows.

Theorem 4.2 (Existence result for the conservative formulation). Given any

u0 a BVðRÞ and r0 a L1ðRÞBLlðRÞ with r0b 0, the system (4.2) admits a precised

entropy solution in Ll
�
Rþ;BVðRÞ

�
� Ll

�
Rþ;MðRÞ

�
satisfying the initial data

rð0; �Þ ¼ r0; uð0; �Þ ¼ u0:

It is given by the formula

rðt; �Þ ¼ qx

�ð xðt;xÞ

�l
r0ðsÞ ds

�
; ð4:3Þ

uðt; xÞ ¼ b
�
t; x; xðt; xÞ

�
þ h

�ð xðt;xÞ

�l
r0ðsÞ ds

�
t; ð4:4Þ

where x ¼ xðt; xÞ is the minimizer of G ¼ Gðt; x; yÞ defined in (3.4).

We have here w0ðxÞ ¼
Ð x

�l r0ðsÞ ds for x a R, and Theorem 4.2 is immediate

in view of Theorem 3.3.

4.2. Uniqueness theory. Our next result is an immediate consequence of

Theorem 3.6, stated as follows.

Theorem 4.3 (Uniqueness result for the conservative formulation). Let u0 a
BVðRÞ and r0 a L1ðRÞBLlðRÞ satisfying r0b 0 and the entropy condition

du0

dx
aK0 ð4:5Þ

in the sense of distributions, and suppose that the map h is non-increasing. Then,

(4.2) admits at most one precised entropy solution ðr; uÞ in Ll
�
Rþ;BVðRÞ

�
�

Ll
�
Rþ;MðRÞ

�
. satisfying rb 0.

Since our notion of solution requires that the velocity satisfies an evolution

equation, we have uniqueness of both r and u—whereas only the uniqueness of

the momentum ru would be expected otherwise. Finally, we have reached the

following final conclusion.
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Corollary 4.4. Let u0 a BVðRÞ and r0 a L1ðRÞBLlðRÞ with r0b 0 be initial

conditions satisfying the entropy condition (4.5) and suppose that the map h is

non-increasing. Then, the Cauchy problem for (4.2) has one and only one precised

entropy solution in Ll
�
Rþ;BVðRÞ

�
� Ll

�
Rþ;MðRÞ

�
.

5. Dealing with BV initial data

In Section 3, we have proved that (1.3) admits a weak solution when the initial

data are u0 a BVðRÞ and w0 a W 1;lðRÞ. Here, we further generalize this result

and weaken the regularity requirement on the initial data by now taking both

u0;w0 a BVðRÞ.

Lemma 5.1. Let y ¼ yðxÞ be a strictly increasing function and g a BVðRÞ, then
the composition g � ye ðxÞ is well-defined and is a BV function.

Proof. Use the notation ðg � yÞeðxÞ :¼ g
�
yðxÞe

�
. There is no di‰culty to define

the function ðg � yÞeðxÞ when x is a point of continuity of y or y is a continu-

ity point of h. Consider next the case where x� is a jump point for y, and

y� a ½yðx��Þ; yðx�þÞ� is a also a jump point for the function g. Since the map y

is strictly monotone, yðx�eÞ are uniquely determined by the value of x�. There-

fore, it makes sense to define ðg � yÞeðx�Þ :¼ g
�
yðx�eÞ

�
. This provides us with a

unique definition for the composition of the two functions. r

Remark 5.2. When the function y is not strictly monotone, the definition of the

composition may fail. Consider the simple example

gðyÞ ¼ gðyÞ ¼ y; ya 1;

gðyÞ ¼ 2y; y > 1

�
ð5:1Þ

yðxÞ ¼
yðxÞ ¼ 1

2 x; x < 1;

yðxÞ ¼ 1; 1ax < 2;

yðxÞ ¼ x; xb 2:

8><>: ð5:2Þ

At the point x� ¼ 1, we have yðx��Þ ¼ 1 and h
�
yðx��Þ

�
¼ 1, but note that

y�� ¼ 1
2 , so that gðy��ÞA g

�
yðx��Þ

�
, which is in contradiction with the notion

of composition of functions.

Lemma 5.3. Assume that

du0

dx
aK0; in the sense of distributions;
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for some constant K0b 0 and suppose that the map h is non-increasing. Then, the

minimizer x ¼ xðt; xÞ of y 7! Gðt; x; yÞ is such that x 7! xðt; xÞ is strictly increasing

for almost every time t.

Proof. Since x 7! xðt; xÞ is increasing for every t (according to Lemma 3.2), so

on the set of jump points, we have xðt; x�Þ < xðt; xþÞ. We only have to focus

on the set of approximate continuity points. We would like to use the identity

Ht;x

�
xðt; xÞ

�
¼ 0, which holds since x is a minimizer of y 7! Gðt; x; yÞ. Suppose

that there exist two points ðt; xÞ and ðt; xÞ with x < x such that xðt; xÞ ¼ xðt; xÞ.
By monotonicity, xðt; �Þ is a constant for all x a ðx; xÞ. Derive x with respect to x

on ðx; xÞ:

0 ¼ qx

qx
¼ 1

1þ
Ð t

0 f 00
�
u0
�
xðt; xÞ

�
þ h

�
w0

�
xðt; xÞ

��
s
��
h 0ðw0Þsw 0

0 þ u 0
0

�
ds

;

from which we deduce that

ð t

0

f 00�u0�xðt; xÞ�þ h
�
w0

�
xðt; xÞ

��
s
��
h 0ðw0Þsw 0

0 þ u 0
0

�
ds ¼ þl

since xðt; xÞC xðt; xÞ ¼ xðt; xÞ on ðx; xÞ. However, Since f 00 > 0 and h is non-

increasing, we have

ð t

0

f 00�u0�xðt; xÞ�þ h
�
w0

�
xðt; xÞ

��
s
��
h 0ðw0Þsw 0

0 þ u 0
0

�
ds dsaK0Mt;

where M > 0 depends on f and t. This contradicts the fact that
qx

qx
¼ 0 on

x a ðx; xÞ. r

Theorem 5.4 (Existence theory for the nonconservative system with BV initial

data). Let u0 and w0 be in BVðRÞ and satisfy the conditions in Lemma 5.3. Then

the system (3.1)–(3.2) has at least one weak solution ðu;wÞ in Ll
�
Rþ;BVðRÞ

�
sat-

isfying the initial data that wð0; �Þ ¼ w0, uð0; x�Þ ¼ u0 given by

wðt; xÞ ¼ w0

�
xðt; xÞþ

�
; Ht;xðxÞa 0;

w0

�
xðt; xÞ�

�
; Ht;xðxÞ > 0

(
ð5:3Þ

uðt; xÞ ¼ b
�
t; x; xðt; xÞþ

�
þ hðwÞt; Ht;xðxÞa 0;

b
�
t; x; xðt; xÞ�

�
þ hðwÞt; Ht;xðxÞ > 0;

(
ð5:4Þ

with bðt; x; �Þ satisfying (3.8) and Ht;xð�Þ defined in (3.5).

244 P. G. LeFloch and S. Xiang



In view of Lemmas 5.1 and 5.3, the solution is well-defined. Similarly, we have

the following statement for the conservative formulation.

Theorem 5.5 (Existence theory for the conservative system with general initial

data). Let u0 be in BVðRÞ and r0 in MlocðRÞ and assume that

du0

dx
aK0; in the sense of distributions

for some constant K0b 0 and suppose that the map h is non-increasing. Then

the system (4.2) has a weak solution in Ll
�
Rþ;BVðRÞ

�
� Ll

�
Rþ;MðRÞ

�
which

satisfies the initial data

rð0; �Þ ¼ r0; uð0; �Þ ¼ u0;

and is given by

rðt; �Þ ¼ r0
��
�l; xðt; xÞþ

��
; Ht;xðxÞa 0;

r0
��
�l; xðt; xÞ�

��
; Ht;xðxÞ > 0;

(
ð5:5Þ

uðt; xÞ ¼ b
�
t; x; xðt; xÞþ

�
þ h

�
r0
��
�l; xðt; xÞþ

��
t; Ht;xðxÞa 0;

b
�
t; x; xðt; xÞ�

�
þ h

�
r0
��
�l; xðt; xÞ�

��
t; Ht;xðxÞ > 0;

(
ð5:6Þ

with bðt; x; �Þ defined in (3.8) and Ht;xð�Þ in (3.5).
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