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Abstract. In this paper, we present the 3D-1D asymptotic analysis of the Dirichlet spectral
problem associated with an elliptic operator with axial periodic heterogeneities. We extend
to the 3D-1D case previous 3D-2D results (see [10]) and we analyze the special case where
the scale of thickness is much smaller than the scale of the heterogeneities and the planar
coefficient has a unique global minimum in the periodic cell. These results are of great
relevance in the comprehension of the wave propagation in nanowires showing axial heter-
ogeneities (see [17]).
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1. Introduction and main results

The motivation to manipulate matter on the nanometer scale arises not only from
the emergence of novel behaviors at small length-scales, but also from the appeal
of engineering material properties to building up from the nanoscale (see [5], [17],
(18], [19], [21], [24], [25], and references therein).

A true nanotechnology based on materials built from the bottom up requires a
rigorous mathematical analysis to obtain the corresponding effective behavior.
With a diameter of the order of a nanometer, nanowires are almost one-
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dimensional objects, which have special physical and chemical properties different
from those of their bulk counterparts. Also composite thin structures presenting
fast periodic oscillations, localized curvature or torsion, are interesting features.
The study of their interactions is of the highest importance in applications.

Previous mathematical analysis has been performed concerning the relation
between the effects of curvature, torsion, or transversal heterogeneities in wave
propagation through thin tubes (see, for instance, [2], [3], [4], [6], [8], [11], [15],
[16)).

The goal of this work is to analyze the interaction between thickness and axial
periodic heterogeneities in terms of their effect on electron transport through a
thin tube-shaped domain. We present a sharp analysis of the corresponding levels
of energy. Effective one-dimensional limit problems are derived explicitly by
the use of analytical tools. Our rigorous analysis can serve as a basis for numeri-
cal simulations of sophisticated devices involving nanowires presenting axial
heterogeneities.

Ballistic transport in modulated semiconductor devices, such as nanowire
heterostructures, is governed by the effective-mass Schrodinger equation

oo B ;
—5 dlv(WVl//(z)) +V()Y(z) = EY(z), zeR?, (1.1)

where V' is a sharp potential that is zero inside the confinement imposed by the
device geometry and infinite outside. The quantities y and E stand for the wave
function and the energy, respectively. The spatial position-dependence of the
effective mass m allows to model material consisting of different components. In
what follows, we use a notation that is more common in the mathematical litera-
ture and rewrite (1.1) as an elliptic Dirichlet eigenvalue problem of the form

—div(4,Vi®) = 2%, indw x I, (12)
70 e H} (6w x 1), '

where o is an open bounded domain in R?, I is the interval (0,L), L > 0, and
where ¢ and ¢ are small parameters: ¢ represents the thickness of the thin domain
and ¢ the length scale of the heterogeneities. These heterogeneities are encoded in
a 3 x 3 matrix 4., which only depends on the third variable and is defined by

A (x3) == A(%), a.e. x3 € R.

As suggested by the effective-mass Schrédinger equation, we consider the par-
ticular case of a diagonal and (0, 1)-periodic matrix A4 = (aj),; ;<3 € [L” (R)]>?
such that:
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aup(¥) = b(y)osp,  axn(y) =a(y) (1.3)
n<a(y),b(y) <¢ (1.4)

a.e. ye Y :=10,1], and for some 0 < 5 < (.

The general case of a non-diagonal matrix requires a different treatment and
will be the subject of a separate paper.

For each ¢ > 0, we set a,(x3) := a(x3/¢) and b,(x3) := b(x3/e).

This paper deals with the asymptotic behavior of spectral problem (1.2) as both
positive parameters ¢ and J tend to zero. The proofs and statements of Theorem
1.1 concerning the case ¢ ~ 0, Theorem 1.2 concerning the case ¢ « d, and Theo-
rems 1.4 and 1.5 regarding the case ¢ > ¢, are rather similar to those obtained in
[10] (see also [9]) for the 3D-2D setting. For the sake of completeness we state
these results, but we skip the details of their proofs. Here, the main result is Theo-
rem 1.9, where we consider the case ¢ > ¢ under different assumptions from those
in [10].

In Section 2, we present the principal auxiliary results, which give us the
general tools for the proofs of the statements stated below and, in Section 3, we
provide a detailed proof of Theorem 1.9.

Considering the quadratic energy Ef : L} (0w x I) — [0, +o0] associated with
the self-adjoint operator —div(4,V-) from L*(dcw x I) into itself, we obtain

A () VH(x°)\Vi(x) dx’, if € H] (0w x I),

o
Es (U) = J&wxl
~+00, otherwise.

(1.5)

To proceed with our analysis of the asymptotic behavior of problem (1.2) as ¢
and & go to zero, the first step is to perform a change of variables and a rescaling,
in order to transform the studied problem into an equivalent problem defined in
the fixed domain w x [I.

Let X stand for (x,x;). To each point x° = (¥°,x3) € dw x I we associate
the point x = (%,x3) = (0 '%°,x3) e o x I, and we define ve H}(w x I) by
v(x) == 6(x°) whenever & € H}(dw x I). Accordingly, we rescale the energy in
(1.5) by dividing it by 6°, so that the new energy becomes E:Hl(wxI)— R,

B =] a5 @ ar

wxI]

where V stands for (9/0x;,0/dx3), A for 8*/0x} + 6% /0x3, and 05 for 0/dx3.
The rescaled spectral problem is then

{—63(618830)—%&7:/10, inwx I, (1.6)

ve Hl (wxI).
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We stress that problems (1.2) and (1.6) are equivalent.

Before stating the results, let us introduce some notations. Since we are inter-
ested in the cases ¢ & 0, ¢ < J, and ¢ > J, we consider 0 = ¢ for each 7 € (0,4 00).

We introduce the first normalized eigenpair (4 o, ¢, ) for the one-dimensional
periodic spectral problem

{qﬁf c Hl((cgj DY *bonde = ud, wein, (1.7)

where p, is the first eigenvalue of the following bi-dimensional spectral problem
in w:

—AO =p0, ae. inw,

{HeHol(a)). (18)

We recall that C(Y) (resp. Cy(Y)) represents the subspace of C*(R) (resp.
C(R)) of Y-periodic functions, and H(Y) is the closure of Cy (Y) with respect to
the H'(Y)-norm. Furthermore, the eigenvalues u7, and p, are positive, and
simple, and the associated normalized eigenfunctions ¢, o and 0y may be chosen
to be strictly positive functions. '

Since in the case ¢ ~J (r = 1) problem (1.7) does not depend on &, we write
(149, Po) to denote its normalized first eigenpair.

Theorem 1.1 (¢ ~J,7 = 1). Under hypothesis (1.3) and (1.4), let (J.k, V. k) be the
sequence of normalized eigenpairs (with repetitions, according to multiplicity) to
problem (1.6) with ¢ =0. Let (vk, ¢;) be the sequence of normalized eigenpairs to
the following one-dimensional homogenized spectral problem (whose eigenvalues
are simple)

—(dh(ﬂ/)l =vp, ae.inl, (1 9)
[/BS Hol([)a |

where | Y| stands for the length of Y, and

_ 1 1 -1
@ (WJ v o) %a() v)

is the homogenized coefficient of divergence form operators with coefficients

o= [w(2) o),
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Then, for any k € Ny,
_ X3 _
Aok = % FVeks  Uek(X,X3) = ¢y <8> U k (X, X3),

a.e (X,x3) € w x I, wherease — 0%, v o — v and u, . — uy weakly in HOl (o x I).
Here, uy is the product of 0y (see (1.8)) with an eigenfunction associated with vy
(see (1.9)). Conversely, any eigenfunction u, = @0y is the weak limit of a particular

sequence of the form
X3 =
Ug o = |:¢0 <?>:| Vg, k-

Next, we describe the spectrum in the case ¢ <« 0. For j € Ny, define

V= Po be(y)tﬁj(y) dy,

where ¢y =1 in Y and, for j > 1, y; are the solutions of the recurrent problems
in H,(Y)

j-1
—(@W)) = =bpoyt + 3 T, j v, () dy = 0.
/=0

Theorem 1.2 (¢ «J,7 < 1). Suppose that hypotheses (1.3) and (1.4) are satisfied.
Let (A i, Ve, i) be the sequence of normalized eigenpairs (with repetitions, according
to multiplicity) associated with problem (1.6) for 6 = &° and some © € (0,1). Let
i € N be such that % <t< if'l, and let (1} o, ¢, o) be the normalized first eigenpair
of (1.7). Finally, let (v, ;) be the sequence of normalized eigenpairs associated
with the following homogenized spectral problem

—(a"p") =vp, ae.inl, (1.10)
p e Hy(I), '

where

= (il )

Then, as & — 0%, u o — po [ b(¥)dy = ,, $:0(x3/e) — 1 = uniformly in I,
and
i
Vi - X3 -
Je ke = Zm +r Vi 0ek(XX3) =4 (;) e (X, x3),
=0
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ae. (X,x3) € wx I, where v, u,y, and r} satisfy, as e = 0" : 1] — 0, v), — g,
and u, . — u weakly in HO1 (w x I). Here, uy is the product of the eigenfunction
associated with vy and 0y. Conversely, any eigenfunction ui, = @0y is the weak limit

of a sequence of the form
-1
|4t (3
=) e

Remark 1.3. In the present 3D-1D case, no further regularity assumptions on the
coefficients are needed. This contrasts with the 3D-2D case, where we have to
impose uniform Lipschitz continuity on the planar coefficients in order to ensure
the continuity of the principal cell mode (see [10]).

The case ¢ > J (7 > 1) is more delicate to handle due to the degeneracy of the
corresponding problem (1.7). Indeed, in that case, the asymptotic behavior of x;
depends essentially on the behavior of the potential a (see, for instance, [13], [14]).

Next, we state a general theorem for the case ¢ > ¢, which provides a charac-
terization of the limit behavior of spectrum in the Hausdorff sense. Then we
consider two specific cases, in which we are able to characterize the asymptotic
behavior of the eigenvalues. It is interesting to notice the differences between

those two cases.

Theorem 1.4 (¢ > 0,7 > 1). Assume hypotheses (1.3)—(1.4) and, in addition, that b
attains a minimum value, by, at some yo € Y such that a and b are continuous on
some neighborhood of yo. Then, denoting the spectrum of our initial problem by o,
he have
li%l (6%°0,) = [bminpo, +0), (L.11)
&e—0™

where the limit in (1.11) is to be understood in the sense of Hausdorff, that is,
[bimin po, +00] is the set of all cluster points of sequences {J.},.¢, A: € g,

Next we proceed with the first particular case.

Theorem 1.5 (¢ > J,7 > 1). Let hypotheses (1.3)—(1.4) hold, and assume that a is a
smooth function and that there exists a nonempty open interval Q, Q == Y, such
that b = byin in Q.  Assume, furthermore, that on Y\Q the function b is smooth
and satisfies the inequality b > bmin + K for some k > 0. Let (vo,qo) be the nor-
malized first eigenpair of the one-dimensional spectral problem on Q

{ —(aq") =vq, ae.inQ,
q € Hy(Q).
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Let i be an integer such that i > T%l, and let (1o, 9,,) be the normalized first
eigenpair of (1.7).  Then puly — bminpo, $5o — qo weakly in Hy(Y) as e — 0%,
where we identify qo with its extension by zero to the whole Y. Moreover, for any
ke No,

b .
is,k _ mmpo_'_m

St e+ T Rl v, (112)

where p;, je{l,...,i}, are well-determined constants, p;; satisfies |p;;| <
CeHVDE=D=2 for some constant C independent of &, and v}, — 0, as ¢ — 07,

Remark 1.6. Theorem 1.5 is valid under weaker regularity hypotheses on the
coefficients. In fact, as it becomes clear within the proof (see [10]), it suffices to
assume that ¢ is a C'*? function and that on Y\ Q, b is also a C'*? function, where
i is the smallest natural number satisfying i > 2. In fact, the smaller t — 1 > 0

7—1
is, the more regularity is required for the coefficients.

Remark 1.7. Hypotheses of Theorem 1.5 cover the important case where b os-
cillates between two different values, but rule out the case where b is constant.
Nevertheless, it is easy to see that under the general hypotheses stated at the
beginning of this section, if b is constant, then for any 7 € (0,+x), u, = bp,
and ¢;, = 1. Moreover, if (4;x,v;x) is the sequence of normalized eigenpairs
associated to problem (1.6) for § = ¢7, then

i&.k = (02.[ + vll,k,

where v, x — v and v, x — vp = @00 weakly in H} (w x I) as ¢ — 0%, (ve, 0)
being associated with (1.10).

Remark 1.8. Theorem 1.5 deals with the case of b attaining its minimum in the
interval Q and jumping up at the endpoints of this interval so that b > by, + x on
Y\ Q for some x > 0. One can assume instead that 4 is continuous in Y, smooth
in Y\Q, b = byin in Q, and b > by in Y\ Q. In this case, the first two terms in
(1.12) remain unchanged while the lower order terms should be introduced in a
different way. The structure of these terms depends on the behavior of b in the
vicinity of the endpoints of Q. If on both sides of Q the linear terms of the Taylor
series of (b — bpin) do not vanish, then

bwinPy | Vo | o (i(e-1))/3-2 c c No— |2 3.
+8—2+;e kPt e No= |25 ;

ig"k - g2t

7—1)
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here the symbol [-] stands for the integer part. If all the terms of the referred
Taylor series up to order (k — 1) vanish and the terms of order k£ do not, then

bmi v Moo
ig,k _ 'min 20 +8_(2)+ 28(21(171))/(k+2)72'ui +p;l + v;lw NO _ |:2
i=1

k+2
et :

2(r = 1)

The method of determining y; relies on constructing boundary layer correctors
in the neighborhood of the endpoints of Q. The case when the degeneration of
(b — bmin) at the endpoints of Q is not of the same order can also be treated.

We now proceed with the case of a unique global minimum of 5. We stress the
different behavior of the spectrum compared with the previous case.

Theorem 1.9 (¢> 0,7 > 1). Under hypotheses (1.3)—(1.4), assume, in addition,
that b is continuous and attains a global minimum by, at a unique point yy € Y.
Suppose that a and b are smooth in a neighborhood of yy and that, moreover,
b"(y9) #0. Let 6,:={dey € RT:k >0} be the spectrum of problem (1.6) for
0=¢" and v € (1,+c0), and let (vo,Y,) be the first normalized eigenpair of the
following quantum harmonic oscillator

—a(yo)y" +%12w =w, ae. inR, (1.13)
e H'(R).

Then, fori e N, i > 3!

-1

bminpo Vo + M3
g2t ettl  g(143)/2

Aok = 4o DD, 4ot v, (1.14)

where py is the first eigenvalue of problem (1.8), 1, j € {3,...,i+2}, are well-
determined constants, p; ; satisfies |p;i\ < CelENE=0)2=20 f61 4 constant C inde-
pendent of &, and v, — 0, as & — 0.

Remark 1.10. Observe that in the case v > 1, due to the singular structure of
cell problem (1.7), the coefficients x;, j € {3,...,i+ 2}, in (1.14) do not depend
on k.

2. Auxiliary results

In this section we present the auxiliary results that play an important role in the
sequel.
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In the first statement we make a dimension reduction in eigenvalue problem
(1.6).

Proposition 2.1. Let a and b be two measurable functions in R satisfying almost
everywhere bounds (1.4), with 0 < { < y. For eachn >0, let {}v({n)}kzo be the spec-
trum of the following eigenvalue problem:

—(ay") +bpy =, ae.inl,
Lo, 2

where p, is the n-th eigenvalue in (1.8). Then the set {}L,(cn) }enso coincides with the
spectrum of the three-dimensional spectral problem

{ —03(adsv) — bAv = v, a.e.inwXxI, (2.2)

ve Hi(w xI).
i 1. — 2O
In particular, Ao = Ay ".

Proof. Let (p,,0,) be the normalized sequence of eigenpairs of problem (1.8) and
(A,({"), W ,E")) the sequence of normalized eigenpairs of problem (2.1) (with repetitions
according to multiplicity). Then, it can be checked that

1) The family of functions {v,((") = lp,((")(ngn(fc), n>0,k >0} is an orthonormal
basis in L?(w x I);

2) (A”,i"), v/(C")), k,n e Ny, are eigenpairs of (2.2).

The domain of the operator —d;(ad;) — bA is a linear subset of H{(w x I)
which is dense in L*(w x I). Since this operator is coercive and self-adjoint in
L*(w x I) and has a compact resolvent, in view of 1) and 2) and using the
Fredholm Theorem, we conclude that its spectrum coincides with {)»,((")}k’n €Ny

This completes the proof. O

The second proposition regards a classical change of unknowns (c.f. [22]; see
also [1]).

Proposition 2.2. For fixed t,e > 0, consider the functions u and v related by the
Sformula

X3

o(x) = ¢, <?> u(x), ae x=(%x;) ewxl.

Then v e H}(w x I) if and only if u € H}(w x I). Moreover, if ve H} (v x I), we
have
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b.(x M
| atmoneP + 252yt - L2 ax

“[ b (2)] osor ax,

where (1 o, $; o) is the first normalized eigenpair of the cell problem (1.7).

Remark 2.3. Applying Propositions 2.1 and 2.2 to the rescaled problem (1.6) with
0 = &7, we obtain that

Tk :ﬁ—i—v&,k’ (2.3)

where
2

(X3

&,0 e

and the infimum is taken over all (k + 1)-dimensional subspaces Sy of H{ (I).

Since v}, converges to vi, as ¢ — 07, for any k > 0 we have Mé?,i - i‘z“ < Gy,
if ¢ is small enough. On the other hand, from the variational representation for
the eigenvalues it easily follows that /1;13 — /lif)g > pls%p(’bmin. Therefore, 4, ; = /150/)
when 0 <j < k, for sufficiently small .

T = i1nf & ' 2d )
v i=iof  max 1{J’ as(x3) 9" (x3)] x3}

167020y =

Another important tool in our spectral analysis is the following proposition
(see [23] and [20], Lemma III.1.1).

Proposition 2.4. Let L: H — H be a linear compact self-adjoint operator in a
Hilbert space H, and suppose that 2. > 0 and [ € H are such that ||Lf — if||; <7,
for some constant y € RT.  Then there exists an eigenvalue . of L such that
=2 <9ylfll,'. Furthermore, for d > y|f||,', there exists a f,||flly = L/l
linear combination of eigenvectors associated with the eigenvalues lying in the
interval [\ —d, ).+ d|, and satisfying || f — f|; <2d~'y.

3. Proof of Theorem 1.9

As we have seen in the previous section, the asymptotic behavior of the eigen-
values and eigenmodes of the cell problem (1.7) is crucial for further con-
siderations. The study of problem (1.7) relies on blow up analysis in the vicinity
of Yo-
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We recall, then, some classical results about the quantum harmonic oscillator.
Consider the Hamiltonian of the harmonic oscillator .7y = —" + v 2y (vy > 0).
For ¢, p € Z(R), denote by ¢, ) the duality between 2'(R) and 2(R). Then

(0> = L@(W L 22Yg) dt = a( g). (3.1)

Defining V" as the completion of Z(R) in the norm

W]l = \/JR(II//'I2 + 2yl dr,

relation (3.1) still holds for v, ¢ in the Hilbert space V. Furthermore, denoting
H = L*(R), we have V < H, with compact embedding (see, for instance, [7],
Propositions 25-26). Since V' is dense in H, and a(y, ¢) is coercive on V, the
operator .7 is a positive self-adjoint operator in L?(R) with compact resolvent.
So, the associated spectral problem:

_l//// + Vglzlﬂ =, yeV, (32)
has its spectrum composed by simple eigenvalues, given by the sequence
vp =v(l +2n), n>0.

Moreover, there exists an orthonormal basis of eigenfunctions in terms of Hermite
polynomials as follows:

4
(1) = Ce D (1), Cpi= — V0
Wl (ty/w) 2l /)
'ldn 2
Ho(1) = (—1)"e"” 2= (7).
()= (~1)e" (e )

In particular, the normalized fundamental mode is given by

Yolt) == {‘/Zoe_"”“z/”- (3.3)

Remark 3.1. An important property of the Hermite polynomials H, is the
following orthogonality relation:

J e UH,()dt =0, k=0,1,....n—1,
R
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Proof of Theorem 1.9. We divide the proof into four steps. In Step 1, we describe
the asymptotic behavior of the first eigenpair of the cell problem. In Step 2, we
prove a claim used in Step 1. In Step 3, we establish the asymptotic expansion
(1.14) of the eigenvalues of problem (1.6) and, in Step 4, we prove that v;; — 0,
ase— 0%,

Step 1. We prove that the asymptotic expansion of the first eigenpair
(4 0 @:0) of the cell problem (1.7), with 7 > 1, takes the form, for i € No, i > 1,
and ¢ < &:

1o =bminpy+& " vo+ &V Py 4 TNy T (3.4)
¢;0<y) =g (DA [lﬁo <y yo) + ¢ 1)/2% (y _ yo) 4.

Vel Vet
e, (y gfff)]gg(y) +RT, (3.5)

where 1, j € {3,...,i+2}, and ¢;, j € {1,...,i}, are well-determined constants
and functions, ¢, is a convenient cut-off function in Y, and

max{[r; [, | R} |2} < ceDED2, (3:6)

The proof is based on the asymptotic expansion techniques. We detail the
proof for i = 1 and then explain how to extend it for other eigenpairs.

Recalling problem (1.7), where ¢ is determined up to a multiplicative
constant,

(a(¢ )') + bpod; = g5, ae.inY,

we remark that it is well known (see [13], [14]) that u, — bminp, behaves like
e 1. Also, from (3.2) and (3.3) we see that, when the coefficient vy of the
harmonic oscillator is of order 1/&(*"1), then the corresponding principal eigen-
mode 1/, behaves like a function of the argument (7/v/¢*1), and the normalization
constant is of order V&7 1.

Those facts justify the following change of variables, where we omit the fixed
index t:

€= 81_17 1= 9 /uf Iue 0
c :
yo 1—yo (3.7)
9.(t) = ¢;(yo + et) te Y. := T e
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Without loss of generality we assume that yy is an interior point of Y so that
yo>0and 1 — yo > 0. Then, equation (1.7) takes the form:

—(alyo+e)(p)') +b(yo + et)pop. = ., ae.in Y, (3.8)
p. € Hy(Y,).
We assume the following expansions for the principal eigenpair of (3.8):

Heo = bminp() + 62/12 -+ 63/13 + 4 6i+21ul.+2 +
Peo(t) = 0o(t) +ep (1) + Epy (1) + -+ (1) + -+,

and write down the following Taylor series:

a(yo + et) = a(yo) + ea’(yo)t + 62@9 et ‘mtm
EP
b(yo + €1) = bin + € b”(zyO) £2+e b”’3('y0) R 71721:: (1J;?) s

(i+2)! ’

where 0, & € (o, yo + €t). Then, substituting the above expansions in (3.8), col-

lecting power like terms in the resulting equation, and taking the terms of order

€2 we conclude that ¢, should satisfy

b// )
—a(yo)(pg + %12% =y, a.e. inR. (3.9)

So (see (3.2) and (3.3)), &, coincides with the first normalized eigenvalue of
problem (3.9), more precisely

a b//
[y = Vg = (yO) 2_(y0)p0’ (310)

and we choose

g e D0 )y v [b"()po
Py =Y = e with ¢(yg) := a0~ \ 24000 (3.11)
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Collecting terms of order €3, we obtain that ¢, satisfies

b//
~a(yg] + 0 g gy = (o (o) + s, (3.12)

a.e. in R. Using the compatibility conditions given by the Fredholm alternative,
we determine

1 = d' (o) JR o) de, (3.13)

so that problem (3.12) has a unique solution ¢, orthogonal to .

Remark 3.2. We recall that the solution ¢, of problem (3.13) can be represented
by the series (see [7] for details)

o=y 0 Vnu, (3.14)

where g = a’(yo)y + @' (yo)tg + w3, and (-, ) stands for the inner product in
H = L*(R). Since g can be written as a finite sum of terms of the form cr*y,(7),
in view of Remark 3.1 the sum in (3.14) turns out to be finite and, consequently,
¢, (1) is also a finite linear combination of the terms ¥y ().

Repeating the described procedure, we determine the coefficients z; up to the
order (i +2) ((3.10) and (3.13) for i = 1) and g¢;, orthogonal to v, up to order i
((3.9) and (3.12) for i = 1).

We now prove estimates (3.4)—(3.6), using Proposition 2.4.

Considering, for fixed ¢, H=L3(Y) and .Z¢:= —¢' (a(y)qﬁ/)/ + b(y)pod,
¢e H ;(Y), we apply Proposition 2.4 to the operator L. : H — H that maps a
function g € H to the unique solution of equation .«Z.¢ = g. We define

) = (o220 e (2 o e (220 oo,

fe = AW, and

fie = bminpy + €0 + Epy + -+ € P,

where ¢ € C;°(0,1) is a cut-off function such that 0 <¢ <1, and ¢(y)=11ina
neighbourhood of yy.
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Since L.f, — a~'f. = g~ ' (aw. — /w.), using the definitions of i i

.....

Remark 3.2), all the solutions ¢; and its derivatives are finite sums of terms of
the form P(r)e /2, where P(f) are polynomials, we conclude that, for e small
enough, there exists a constant C, independent of ¢ (eventually different from line
to line), such that

ILefe = el y < Ce O,
This implies, by Proposition 2.4, the existence of an eigenvalue u;,l, of L. satisfying
ey = 1 < Cllfll' e O (3.15)

Notice that n might depend on e.
Since || fell ;7 = bminpol|Well;y ~ V€, from (3.15) we conclude that

e — B < Cetl (3.16)
Because 4! is uniformly bounded away from zero, we obtain
|/ue,n _ﬂe‘ < CGH_I' (317)

luf,n - bminﬂO

Consequently, defining v, ,, := 5

, we get that, for a certain n,
€

[Ven — (Vo + €5 + -+ 4 €'p;)| < Ce'™". (3.18)

We claim that for fixed n, as € goes to zero, v, , converges to the eigenvalue v, of
problem (1.13). This statement is justified below, in Step 2. Then, for e small
enough, formulas (3.16)—(3.18) hold with n = 0, that is

|Iu€,0 _/1(‘ < C6i+l' (319)

Proposition 2.4 also yields the existence, for € small enough, of an eigenfunction
w0 associated to u, , having the same norm as w. and satisfying:

| Aewe.o — Aoy < Ce TG/, (3.20)
Since ||W.||; ~ /€ and, for a constant C independent of ¢,

[We.o = Well g < Cll-ewe0 — ALeWel| g,
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we conclude from (3.20) that

From the definitions of w, and g, from (3.19) and (3.21), together with (3.7), we
conclude estimates (3.4)—(3.6), which completes Step 1.

¢6,0 - \/LE

W < Cetl (3.21)

Step 2. We prove that, for fixed n, v., converges, as € goes to zero, to the
eigenvalue v, of the harmonic oscillator (1.13). We present a proof for n = 0.
For the higher order eigenpairs the arguments are similar. In fact, we only need
this statement for n =0 and n = 1.

(i) We prove that liminf, .o+ ve0 = vo. Suppose, up to restricting e to a fixed
sequence converging to zero, that liminf._o+ ve o = lim._o+ v o and that the limit
is finite (otherwise (i) is immediate). Recalling (3.7), we have

- bmin . — i
Veo = He o Po —  inf J (62a|¢'|2 T (b = bmin)po ¢2> dy
Y

e? peH)(Y) €?
161,2(r)=1
. b + €t) — bmin
= inf J (a(yo +et)lo')” + (b0 )2 )ro ¢2> dt.
peHy(Y,) Jy. €
H(ﬂHL2(y():1
Define
b(yo + €t) — bin ) p
Ge(p) :=J (a(yo+et)|¢/|2+( ( 6)2 ) Lp? ) dr.

For each ¢, let ¢, € H(Y.) be such that 0cllr2(v,) = 1 and ve o > Ge(p,) — €. Let-
ting ¢, = 0 for y € R\ Y., we extend ¢, from Y. to the whole R. For the extended
function we keep the same name ¢,. Since b attains a global minimum by, at
a unique point yg € Y, there exists 77, > 0 such that 0 < 1/5y < (b(y) — b()0))/
(y — o) < n for all y € Y and, consequently,

b ) = bpin 1
12770> (y0+i2) m1n>%.

We have, then, the following uniform in ¢ bounds:

0< G(p,) <C, J lp!|*dr < C, J rordt<C, Jgpfdtzl. (3.22)
Y. R

€
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Up to extracting a subsequence of {¢,}, we may assume that ¢, — ¢ weakly in
L*(R). Also, for every finite 7 >0, {p,} is bounded in H'!(—7,5) so that by
Rellich-Kondrachov Theorem, it holds

limJ |¢€|2dz:J lp|* dt. (3.23)
=00 J (=) (=n.m)

Using the lower semicontinuity of the norm with respect to the weak topology,
the convergence (3.23), and exploiting the third inequality in (3.22), we obtain,
since ¢, = 0 outside Y.,

. C
J lp|*dr < llmlgfj lo.|? dr < hmsupJ lo.|?dr < J |(p\2dt+—2,
R =0 Y, 1 <n n

e—0F

from which follows the strong convergence of ¢, in L?(R) by sending # to infinity.
Then,

H(pHLZ(R) =1, (ﬂélY( - (pl in le()c’(R)?

where 1y, stands for the characteristic function of Y.. Furthermore, both se-
quences a(yo + €t) and W converge uniformly on compacts to a(yo) and
%}“)12, respectively. Consequently, for 6 € Z(R), 0 <6 < I, using the lower
semicontinuity of the norm with respect to the weak convergence and Fatou’s

Lemma, we obtain

b 1) — bm;
11m1an (9<a(yo+et)|(pé|2+( (y0+6)2 mm)po gﬂf) de
R €

€—

b//
JL oo + 20 gy ).

Letting 6 — 1 we get

Y

lim (i)I}f G(p.)

Y

e—0*

lim v o> hmmf G(p.) = J (a(y0)|(p'| —l—b (2;V0)p0t ) )dzz Vo,
R

which concludes the proof of (i).

(ii) We prove that limsup,_,: v. o < vo. Itis enough to prove the existence of a
sequence {¢p} in H}(Y.) such that [0l r2(v,) = 1 and Ge(p,) — vo.

Defining

Yo(0)s(yo + €?)
[Wos(vo + €l 2y,

(1) ==
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where V), is the first eigenmode of the harmonic oscillator and ¢ € C;°(0, 1) is the
cut-off function such that 0 <¢ < 1, and ¢(y) = | in a neighbourhood of y,, we

obtain, using the definitions of ¥, and ¢,

lim Ge(o.)

= Jim (ﬁ [ (a0 oy OB =bmnlin 2 O(G)D

b//
= JR (a(yo)llﬁél2 + (2y0) p012¢§> dt = .

Step 3. The asymptotic expansion (1.14) is an immediate consequence of
Propositions 2.1 and 2.2, applied to the rescaled problem (1.6) with 6 =¢7, of
Remark 2.3, which yields (see 2.3)

(0) Ko
eV T
Aok = Aok = 20 T Voo

and of formula 3.4, obtained in Step 1.

SteP 4. It remains to prove that vi, — 0,ase¢ — 0", forany k =0,1,.... In
fact, v}, converge to zero exponentially. By the max-min principle we have

2
. X3
vy o= inf max ol —
? Sk IPGS I ’ &

165 0l 2 =1
where the infimum is taken over all (k + 1)-dimensional subspaces Sy of H.

For a fixed k >0 let £ e C°(0,L/(k + 1)) be a positive function such that
1€l 220,y = 1. Denote by &, a piece-wise linear approximation of this function
constructed in the following way. In the (¢/10)-neighborhoods of the minimum
points of b(3), which are ey, ey +¢,..., the derivative of &, is equal to 0. In
the complement to these intervals, |E/(7)| < C. Moreover, |¢ — &,| < Ce. Consid-
ering the structure of ¢; ,(»), one can easily check that

;0©@<-)

where o(1) tends to zero, as ¢ — 0", and

{[ o2

aa|‘pl2dx3}a

= 1+o(1), (3.24)

L2

a£|f;|2dx3} < Ce= 4 exp (—c(y %“), (3.25)
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where ¢(yo) = vo/a(yo) has been defined in (3.11). Shifting the argument of &, by
L/(k+1),2L/(k+ 1), etc., we arrive at an orthogonal family of k& + 1 functions
which satisfy (3.24) and (3.25). This yields the desired statement. O

References

[1] G. Allaire and F. Malige, Analyse asymptotique spectrale d’un probléme de diffusion
neutronique. C. R. Acad. Sci. Paris Sér. I Math. 324, 8 (1997), 939-944.

[2] D. Borisov and P. Freitas, Asymptotics of Dirichlet eigenvalues and eigenfunctions
of the Laplacian on thin domains in RY. J. Funct. Anal. 258, 3 (2010), 893-912.

[3] G. Bouchitte, M. L. Mascarenhas, and L. Trabucho, On the curvature and torsion
effects in one dimensional waveguides. ESAIM Control Optim. Calc. Var. 13, 4
(2007), 793-808 (electronic).

[4] G. Bouchitte, M. L. Mascarenhas, and L. Trabucho, Thin waveguides with robin
boundary conditions. J. Math. Phys. 53, 12 (December 2012).

[5] G. Cao, Nanostructures and Nanomaterials, Synthesis, Properties and Applications.
Imperial College Press, London, 2004.

.....

spectrum in curved tubes. Differential Geom. Appl. 23, 2 (2005), 95-105.

[7] R. Dautray and J.-L. Lions, Analyse mathématique et calcul numérique pour les
sciences et les techniques. Vol. 5. Masson, Paris, 1988.

[8] P. Duclos and P. Exner, Curvature-induced bound states in quantum waveguides in
two and three dimensions. Rev. Math. Phys. 7, 1 (1995), 73-102.

[9] R. Ferreira and M. L. Mascarenhas, Waves in a thin and periodically oscillating
medium. C. R. Math. Acad. Sci. Paris 346, 9—10 (2008), 579-584.

[10] R. Ferreira, M. L. Mascarenhas, and A. Piatnitski, Spectral analysis in a thin domain
with periodically oscillating characteristics. ESAIM Control Optim. Calc. Var. 18, 2
(2012), 427-451.

[11] L. Friedlander and M. Solomyak, On the spectrum of narrow periodic waveguides.
Russ. J. Math. Phys. 15,2 (2008), 238-242.

[12] D. Gilbarg and N. Trudinger, Elliptic partial differential equations of second order.
Springer-Verlag, Berlin-New York, 1977.

[13] S. Kozlov and A. Piatnitski, Effective diffusion for a parabolic operator with periodic
potential. STAM J. Appl. Math. 53, 2 (1993), 401-418.

[14] S. Kozlov and A. Piatnitski, Degeneration of effective diffusion in the presence of
periodic potential. Ann. Inst. H. Poincaré Probab. Statist. 32, 5 (1996), 571-587.

[15] C. Kreisbeck and M. L. Mascarenhas, Asymptotic spectral analysis in semiconductor
nanowire heterostructures. Appl. Anal. 94, 6 (2015), 1153—1191.

guides under mild regularity assumptions. Rev. Math. Phys. 24, 7 (2012), 1250018, 39.



266 R. Ferreira, M. L. Mascarenhas, and A. Piatnitski

[17] L. J. Lauhon, M. S. Gudiksen, and C. M. Lieber, Semiconductor nanowire hetero-
structures. Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci. 362, 1819
(2004), 1247-1260.

[18] L.J. Lauhon, M. S. Gudiksen, C. L. Wang, and C. M. Lieber, Epitaxial core-shell and
core-multishell nanowire heterostructures. Nature 420, 6911 (2002), 57-61.

[19] L. C. Lew Yan Voon and M. Willatzen, Electron states in modulated nanowires.
J. Appl. Phys. 93, 12 (2003), 9997-10000.

[20] O. A. Oleinik, A. S. Shamaev, and G. A. Yosifian, Mathematical problems in elasticity
and homogenization, vol. 26 of Studies in Mathematics and its Applications. North-
Holland Publishing Co., Amsterdam, 1992.

[21] Y. Qu and X. Duan, One-dimensional homogeneous and heterogeneous nanowires
for solar energy conversion. J. Mater. Chem. 22, 32 (2012), 16171-16181.

[22] M. Vanninathan, Homogenization of eigenvalue problems in perforated domains.
Proc. Indian Acad. Sci. Math. Sci. 90, 3 (1981), 239-271.

[23] M. L. Visik and L. A. Ljusternik, Regular degeneration and boundary layer for linear
differential equations with small parameter. Amer. Math. Soc. Transl. (2) 20 (1962),
239-364.

[24] H. Yan, H. S. Choe, S. Nam, Y. Hu, S. Das, J. F. Klemic, J. C. Ellenbogen, and
C. M. Lieber, Programmable nanowire circuits for nanoprocessors. Nature 470, 7333
(2011), 240-244.

[25] K. Young, Position-dependent effective mass for inhomogeneous semiconductors.
Phys. Rev. B 39, 18 (1989), 13434—-13441.

Received September 17, 2014

R. Ferreira, CEMSE Division & KAUST SRI, Uncertainty Quantification Center in Com-
putational Science and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia

E-mail: rita.ferreira@kaust.edu.sa

M. L. Mascarenhas, Departamento de Matematica & C.M.A., F.C.T./U.N.L., Quinta da
Torre, 2829-516 Caparica, Portugal

E-mail: mascar@fct.unl.pt

A. Piatnitski, Narvik University College, P.O. Box 385, 8505 Narvik, Norway & P.N. Leb-
edev Physical Institute RAS, Leninski prospect 53, Moscow 119991, Russia

E-mail: andrey@sci.lebedev.ru



