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Abstract. In this paper, we present the 3D-1D asymptotic analysis of the Dirichlet spectral
problem associated with an elliptic operator with axial periodic heterogeneities. We extend
to the 3D-1D case previous 3D-2D results (see [10]) and we analyze the special case where
the scale of thickness is much smaller than the scale of the heterogeneities and the planar
coe‰cient has a unique global minimum in the periodic cell. These results are of great
relevance in the comprehension of the wave propagation in nanowires showing axial heter-
ogeneities (see [17]).
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1. Introduction and main results

The motivation to manipulate matter on the nanometer scale arises not only from

the emergence of novel behaviors at small length-scales, but also from the appeal

of engineering material properties to building up from the nanoscale (see [5], [17],

[18], [19], [21], [24], [25], and references therein).

A true nanotechnology based on materials built from the bottom up requires a

rigorous mathematical analysis to obtain the corresponding e¤ective behavior.

With a diameter of the order of a nanometer, nanowires are almost one-
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dimensional objects, which have special physical and chemical properties di¤erent

from those of their bulk counterparts. Also composite thin structures presenting

fast periodic oscillations, localized curvature or torsion, are interesting features.

The study of their interactions is of the highest importance in applications.

Previous mathematical analysis has been performed concerning the relation

between the e¤ects of curvature, torsion, or transversal heterogeneities in wave

propagation through thin tubes (see, for instance, [2], [3], [4], [6], [8], [11], [15],

[16]).

The goal of this work is to analyze the interaction between thickness and axial

periodic heterogeneities in terms of their e¤ect on electron transport through a

thin tube-shaped domain. We present a sharp analysis of the corresponding levels

of energy. E¤ective one-dimensional limit problems are derived explicitly by

the use of analytical tools. Our rigorous analysis can serve as a basis for numeri-

cal simulations of sophisticated devices involving nanowires presenting axial

heterogeneities.

Ballistic transport in modulated semiconductor devices, such as nanowire

heterostructures, is governed by the e¤ective-mass Schrödinger equation

� �h2

2
div

1

mðzÞ‘cðzÞ
� �

þ VðzÞcðzÞ ¼ EcðzÞ; z a R3; ð1:1Þ

where V is a sharp potential that is zero inside the confinement imposed by the

device geometry and infinite outside. The quantities c and E stand for the wave

function and the energy, respectively. The spatial position-dependence of the

e¤ective mass m allows to model material consisting of di¤erent components. In

what follows, we use a notation that is more common in the mathematical litera-

ture and rewrite (1.1) as an elliptic Dirichlet eigenvalue problem of the form

�divðAe‘~vv
d
e Þ ¼ ld

e ~vv
d
e ; in do� I ;

~vvde a H 1
0 ðdo� IÞ;

(
ð1:2Þ

where o is an open bounded domain in R2, I is the interval ð0;LÞ, L > 0, and

where e and d are small parameters: d represents the thickness of the thin domain

and e the length scale of the heterogeneities. These heterogeneities are encoded in

a 3� 3 matrix Ae, which only depends on the third variable and is defined by

Aeðx3Þ :¼ A
x3

e

� �
; a:e: x3 a R:

As suggested by the e¤ective-mass Schrödinger equation, we consider the par-

ticular case of a diagonal and ð0; 1Þ-periodic matrix A ¼ ðaijÞ1ai; ja3 a ½LlðRÞ�3�3

such that:
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aabðyÞ ¼ bðyÞda;b; a33ðyÞ ¼ aðyÞ ð1:3Þ
ha aðyÞ; bðyÞa z; ð1:4Þ

a.e. y a Y :¼ ½0; 1�, and for some 0 < h < z.

The general case of a non-diagonal matrix requires a di¤erent treatment and

will be the subject of a separate paper.

For each e > 0, we set aeðx3Þ :¼ aðx3=eÞ and beðx3Þ :¼ bðx3=eÞ.
This paper deals with the asymptotic behavior of spectral problem (1.2) as both

positive parameters e and d tend to zero. The proofs and statements of Theorem

1.1 concerning the case eQd, Theorem 1.2 concerning the case ef d, and Theo-

rems 1.4 and 1.5 regarding the case eg d, are rather similar to those obtained in

[10] (see also [9]) for the 3D-2D setting. For the sake of completeness we state

these results, but we skip the details of their proofs. Here, the main result is Theo-

rem 1.9, where we consider the case eg d under di¤erent assumptions from those

in [10].

In Section 2, we present the principal auxiliary results, which give us the

general tools for the proofs of the statements stated below and, in Section 3, we

provide a detailed proof of Theorem 1.9.

Considering the quadratic energy ~EE d
e : L2ðdo� IÞ ! ½0;þl� associated with

the self-adjoint operator �divðAe‘�Þ from L2ðdo� IÞ into itself, we obtain

~EE d
e ð~vvÞ :¼

ð
do�I

Aeðxd
3Þ‘~vvðxdÞ‘~vvðxdÞ dxd; if ~vv a H 1

0 ðdo� IÞ;

þl; otherwise.

8<
: ð1:5Þ

To proceed with our analysis of the asymptotic behavior of problem (1.2) as d

and e go to zero, the first step is to perform a change of variables and a rescaling,

in order to transform the studied problem into an equivalent problem defined in

the fixed domain o� I .

Let x stand for ðx1; x2Þ. To each point xd ¼ ðxd; xd
3Þ a do� I we associate

the point x ¼ ðx; x3Þ ¼ ðd�1xd; xd
3Þ a o� I , and we define v a H 1

0 ðo� IÞ by

vðxÞ :¼ ~vvðxdÞ whenever ~vv a H 1
0 ðdo� IÞ. Accordingly, we rescale the energy in

(1.5) by dividing it by d2, so that the new energy becomes E d
e : H 1

0 ðo� IÞ ! R,

E d
e ðvÞ :¼

ð
o�I

aeðx3Þjq3vðxÞj2 þ
beðx3Þ
d2

j‘vðxÞj2 dx;

where ‘ stands for ðq=qx1; q=qx2Þ, �DD for q2=qx2
1 þ q2=qx2

2 , and q3 for q=qx3.

The rescaled spectral problem is then

�q3ðaeq3vÞ � be

d2
�DDv ¼ lv; in o� I ;

v a H 1
0 ðo� IÞ:

(
ð1:6Þ

249Spectral analysis in thin tubes with axial heterogeneities



We stress that problems (1.2) and (1.6) are equivalent.

Before stating the results, let us introduce some notations. Since we are inter-

ested in the cases eQd, ef d, and eg d, we consider d ¼ et for each t a ð0;þlÞ.
We introduce the first normalized eigenpair ðmt

e;0; f
t
e;0Þ for the one-dimensional

periodic spectral problem

�e2ðt�1Þ�aðft
e Þ

0� 0 þ br0f
t
e ¼ mt

e f
t
e ; a:e: in Y ;

ft
e a H 1

aðYÞ;

(
ð1:7Þ

where r0 is the first eigenvalue of the following bi-dimensional spectral problem

in o:

�Dy ¼ ry; a:e: in o;

y a H 1
0 ðoÞ:

�
ð1:8Þ

We recall that Cl
a ðYÞ (resp. CaðYÞ) represents the subspace of ClðRÞ (resp.

CðRÞ) of Y -periodic functions, and H 1
aðYÞ is the closure of Cl

a ðYÞ with respect to

the H 1ðYÞ-norm. Furthermore, the eigenvalues mt
e;0 and r0 are positive, and

simple, and the associated normalized eigenfunctions ft
e;0 and y0 may be chosen

to be strictly positive functions.

Since in the case eQd ðt ¼ 1Þ problem (1.7) does not depend on e, we write

ðm0; f0Þ to denote its normalized first eigenpair.

Theorem 1.1 ðeQd; t ¼ 1Þ. Under hypothesis (1.3) and (1.4), let ðle;k; ve;kÞ be the

sequence of normalized eigenpairs (with repetitions, according to multiplicity) to

problem (1.6) with e ¼ d. Let ðnk; jkÞ be the sequence of normalized eigenpairs to

the following one-dimensional homogenized spectral problem (whose eigenvalues

are simple)

�ð~aahj 0Þ 0 ¼ nj; a:e: in I ;

j a H 1
0 ðIÞ;

�
ð1:9Þ

where jY j stands for the length of Y, and

~aah :¼
� 1

jY j

ð
Y

1

½f0ðyÞ�
2
aðyÞ

dy
��1

is the homogenized coe‰cient of divergence form operators with coe‰cients

~aaeðx3Þ :¼ f0
x3

e

� �" #2
a

x3

e

� �
:
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Then, for any k a N0,

le;k ¼
m0
e2

þ ne;k; ve;kðx; x3Þ ¼ f0
x3

e

� �
ue;kðx; x3Þ;

a.e. ðx; x3Þ a o� I , where as e ! 0þ, ne;k ! nk and ue;k * uk weakly in H
1
0 ðo� IÞ.

Here, uk is the product of y0 (see (1.8)) with an eigenfunction associated with nk
(see (1.9)). Conversely, any eigenfunction uk ¼ jky0 is the weak limit of a particular

sequence of the form

ue;k ¼ f0
x3

e

� �� 	�1

ve;k:

Next, we describe the spectrum in the case ef d. For j a N0, define

gj :¼ r0

ð
Y

bðyÞcjðyÞ dy;

where c0C 1 in Y and, for jb 1, cj are the solutions of the recurrent problems

in H 1
aðYÞ

�
�
aðyÞc 0

j

� 0 ¼ �bðyÞr0cj�1 þ
Xj�1

l¼0

glcj�1�l;

ð
Y

cjðyÞ dy ¼ 0:

Theorem 1.2 ðef d; t < 1Þ. Suppose that hypotheses (1.3) and (1.4) are satisfied.

Let ðle;k; ve;kÞ be the sequence of normalized eigenpairs (with repetitions, according

to multiplicity) associated with problem (1.6) for d ¼ et and some t a ð0; 1Þ. Let

i a N be such that i�1
i
< ta i

iþ1 , and let ðmt
e;0; f

t
e;0Þ be the normalized first eigenpair

of (1.7). Finally, let ðnk; jkÞ be the sequence of normalized eigenpairs associated

with the following homogenized spectral problem

�ðahj 0Þ 0 ¼ nj; a:e: in I ;

j a H 1
0 ðIÞ;

�
ð1:10Þ

where

ah :¼ 1

jY j

ð
Y

1

aðyÞ dy
� ��1

:

Then, as e ! 0þ, mt
e;0 ! r0

Ð
Y
bðyÞ dy ¼ g0, f

t
e;0ðx3=eÞ ! 1 ¼ c0 uniformly in I ,

and

le;k ¼
Xi

j¼0

gj

etð2jþ2Þ�2j
þ rte þ nte;k; ve;kðx; x3Þ ¼ ft

e;0

x3

e

� �
ue;kðx; x3Þ;
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a.e. ðx; x3Þ a o� I , where nte;k, ue;k, and rte satisfy, as e ! 0þ : rte ! 0, nte;k ! nk,

and ue;k * uk weakly in H 1
0 ðo� IÞ. Here, uk is the product of the eigenfunction

associated with nk and y0. Conversely, any eigenfunction uk ¼ jky0 is the weak limit

of a sequence of the form

ue;k ¼ ft
e;0

x3

e

� �� 	�1

ve;k:

Remark 1.3. In the present 3D-1D case, no further regularity assumptions on the

coe‰cients are needed. This contrasts with the 3D-2D case, where we have to

impose uniform Lipschitz continuity on the planar coe‰cients in order to ensure

the continuity of the principal cell mode (see [10]).

The case eg d (t > 1) is more delicate to handle due to the degeneracy of the

corresponding problem (1.7). Indeed, in that case, the asymptotic behavior of mt
e;0

depends essentially on the behavior of the potential a (see, for instance, [13], [14]).

Next, we state a general theorem for the case eg d, which provides a charac-

terization of the limit behavior of spectrum in the Hausdor¤ sense. Then we

consider two specific cases, in which we are able to characterize the asymptotic

behavior of the eigenvalues. It is interesting to notice the di¤erences between

those two cases.

Theorem 1.4 ðeg d; t > 1Þ. Assume hypotheses (1.3)–(1.4) and, in addition, that b

attains a minimum value, bmin, at some y0 a Y such that a and b are continuous on

some neighborhood of y0. Then, denoting the spectrum of our initial problem by se,

he have

lim
e!0þ

ðe2tseÞ ¼ ½bminr0;þl�; ð1:11Þ

where the limit in (1.11) is to be understood in the sense of Hausdor¤, that is,

½bminr0;þl� is the set of all cluster points of sequences flege>0, le a e2tse.

Next we proceed with the first particular case.

Theorem 1.5 ðeg d; t > 1Þ. Let hypotheses (1.3)–(1.4) hold, and assume that a is a

smooth function and that there exists a nonempty open interval Q, QHHY, such

that b ¼ bmin in Q. Assume, furthermore, that on YnQ the function b is smooth

and satisfies the inequality bb bmin þ k for some k > 0. Let ðn0; q0Þ be the nor-

malized first eigenpair of the one-dimensional spectral problem on Q

�ðaq 0Þ 0 ¼ nq; a:e: in Q;

q a H 1
0 ðQÞ:

�
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Let i be an integer such that ib 2
t�1 , and let ðmt

e;0; f
t
e;0Þ be the normalized first

eigenpair of (1.7). Then mt
e;0 ! bminr0, f

t
e;0 * q0 weakly in H 1

aðYÞ as e ! 0þ,
where we identify q0 with its extension by zero to the whole Y. Moreover, for any

k a N0,

le;k ¼
bminr0
e2t

þ n0

e2
þ et�3m1 þ � � � þ e iðt�1Þ�2mi þ rt

e; i þ nte;k; ð1:12Þ

where mj , j a f1; . . . ; ig, are well-determined constants, rt
e; i satisfies jrt

e; ija
Ceðiþ1=2Þðt�1Þ�2, for some constant C independent of e, and nte;k ! 0, as e ! 0þ.

Remark 1.6. Theorem 1.5 is valid under weaker regularity hypotheses on the

coe‰cients. In fact, as it becomes clear within the proof (see [10]), it su‰ces to

assume that a is a Ciþ2 function and that on YnQ, b is also a Ciþ2 function, where

i is the smallest natural number satisfying ib 2
t�1 . In fact, the smaller t� 1 > 0

is, the more regularity is required for the coe‰cients.

Remark 1.7. Hypotheses of Theorem 1.5 cover the important case where b os-

cillates between two di¤erent values, but rule out the case where b is constant.

Nevertheless, it is easy to see that under the general hypotheses stated at the

beginning of this section, if b is constant, then for any t a ð0;þlÞ, mt
e;0C br0

and ft
e;0C 1. Moreover, if ðle;k; ve;kÞ is the sequence of normalized eigenpairs

associated to problem (1.6) for d ¼ et, then

le;k ¼
br0
e2t

þ ne;k;

where ne;k ! nk and ve;k * vk ¼ jky0 weakly in H 1
0 ðo� IÞ as e ! 0þ, ðnk; jkÞ

being associated with (1.10).

Remark 1.8. Theorem 1.5 deals with the case of b attaining its minimum in the

interval Q and jumping up at the endpoints of this interval so that b > bmin þ k on

YnQ for some k > 0. One can assume instead that b is continuous in Y , smooth

in YnQ, b ¼ bmin in Q, and b > bmin in YnQ. In this case, the first two terms in

(1.12) remain unchanged while the lower order terms should be introduced in a

di¤erent way. The structure of these terms depends on the behavior of b in the

vicinity of the endpoints of Q. If on both sides of Q the linear terms of the Taylor

series of ðb� bminÞ do not vanish, then

le;k ¼
bminr0
e2t

þ n0

e2
þ
XN0

i¼1

eð2iðt�1ÞÞ=3�2mi þ rt
e; i þ nte;k; N0 ¼ 2

3

2ðt� 1Þ

� 	
;
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here the symbol ½�� stands for the integer part. If all the terms of the referred

Taylor series up to order ðk � 1Þ vanish and the terms of order k do not, then

le;k ¼
bminr0
e2t

þ n0

e2
þ
XN0

i¼1

eð2iðt�1ÞÞ=ðkþ2Þ�2mi þ rt
e; i þ nte;k; N0 ¼ 2

k þ 2

2ðt� 1Þ

� 	
:

The method of determining mi relies on constructing boundary layer correctors

in the neighborhood of the endpoints of Q. The case when the degeneration of

ðb� bminÞ at the endpoints of Q is not of the same order can also be treated.

We now proceed with the case of a unique global minimum of b. We stress the

di¤erent behavior of the spectrum compared with the previous case.

Theorem 1.9 ðeg d; t > 1Þ. Under hypotheses (1.3)–(1.4), assume, in addition,

that b is continuous and attains a global minimum bmin at a unique point y0 a Y.

Suppose that a and b are smooth in a neighborhood of y0 and that, moreover,

b 00ðy0ÞA 0. Let se :¼ fle;k a Rþ : kb 0g be the spectrum of problem (1.6) for

d ¼ et and t a ð1;þlÞ, and let ðn0;c0Þ be the first normalized eigenpair of the

following quantum harmonic oscillator

�aðy0Þc 00 þ b 00ðy0Þr0
2 t2c ¼ nc; a:e: in R;

c a H 1ðRÞ:

(
ð1:13Þ

Then, for i a N, i > 3tþ1
t�1

,

le;k ¼ bminr0
e2t

þ n0

etþ1
þ m3
eðtþ3Þ=2 þ � � � þ eððiþ2Þ=2Þðt�1Þ�2tmiþ2 þ rt

e; i þ nte;k; ð1:14Þ

where r0 is the first eigenvalue of problem (1.8), mj , j a f3; . . . ; i þ 2g, are well-

determined constants, rt
e; i satisfies jrt

e; ijaCeððiþ1Þðt�1ÞÞ=2�2t, for a constant C inde-

pendent of e, and nte;k ! 0, as e ! 0þ.

Remark 1.10. Observe that in the case t > 1, due to the singular structure of

cell problem (1.7), the coe‰cients mj, j a f3; . . . ; i þ 2g, in (1.14) do not depend

on k.

2. Auxiliary results

In this section we present the auxiliary results that play an important role in the

sequel.

254 R. Ferreira, M. L. Mascarenhas, and A. Piatnitski



In the first statement we make a dimension reduction in eigenvalue problem

(1.6).

Proposition 2.1. Let a and b be two measurable functions in R satisfying almost

everywhere bounds (1.4), with 0 < z < h. For each nb 0, let flðnÞk gkb0 be the spec-

trum of the following eigenvalue problem:

�ðac 0Þ 0 þ brnc ¼ lc; a:e: in I ;

j a H 1
0 ðIÞ;

�
ð2:1Þ

where rn is the n-th eigenvalue in (1.8). Then the set flðnÞk gk;nb0 coincides with the

spectrum of the three-dimensional spectral problem

�q3ðaq3vÞ � b�DDv ¼ lv; a:e: in o� I ;

v a H 1
0 ðo� IÞ:

�
ð2:2Þ

In particular, l0 ¼ l
ð0Þ
0 .

Proof. Let ðrn; ynÞ be the normalized sequence of eigenpairs of problem (1.8) and

ðlðnÞk ;c
ðnÞ
k Þ the sequence of normalized eigenpairs of problem (2.1) (with repetitions

according to multiplicity). Then, it can be checked that

1) The family of functions fvðnÞk ¼ c
ðnÞ
k ðx3ÞynðxÞ; nb 0; kb 0g is an orthonormal

basis in L2ðo� IÞ;
2) ðlðnÞk ; v

ðnÞ
k Þ, k; n a N0, are eigenpairs of (2.2).

The domain of the operator �q3ðaq3Þ � b�DD is a linear subset of H 1
0 ðo� IÞ

which is dense in L2ðo� IÞ. Since this operator is coercive and self-adjoint in

L2ðo� IÞ and has a compact resolvent, in view of 1) and 2) and using the

Fredholm Theorem, we conclude that its spectrum coincides with flðnÞk gk;n AN0
.

This completes the proof. r

The second proposition regards a classical change of unknowns (c.f. [22]; see

also [1]).

Proposition 2.2. For fixed t; e > 0, consider the functions u and v related by the

formula

vðxÞ ¼ ft
e;0

x3

e

� �
uðxÞ; a:e: x ¼ ðx; x3Þ a o� I :

Then v a H 1
0 ðo� IÞ if and only if u a H 1

0 ðo� IÞ. Moreover, if v a H 1
0 ðo� IÞ, we

have
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ð
o�I

aeðx3Þjq3vðxÞj2 þ
beðx3Þ
e2t

r0v
2ðxÞ �

mt
e;0

e2t
v2ðxÞ dx

¼
ð
o�I

aeðx3Þ ft
e;0

x3

e

� �� 	2
jq3uðxÞj2 dx;

where ðmt
e;0; f

t
e;0Þ is the first normalized eigenpair of the cell problem (1.7).

Remark 2.3. Applying Propositions 2.1 and 2.2 to the rescaled problem (1.6) with

d ¼ et, we obtain that

l
ð0Þ
e;k ¼

mt
e;0

e2t
þ nte;k; ð2:3Þ

where

nte;k :¼ inf
Sk

max
c ASk

kft
e; 0ð �eÞckL2ðIÞ¼1

ð
I

ft
e;0

x3

e

� �









2

aeðx3Þjc 0ðx3Þj2 dx3

( )
;

and the infimum is taken over all ðk þ 1Þ-dimensional subspaces Sk of H 1
0 ðIÞ.

Since nte;k converges to nk, as e ! 0þ, for any kb 0 we have


lð0Þe;k �

mt
e; 0

e2t



aCk,

if e is small enough. On the other hand, from the variational representation for

the eigenvalues it easily follows that l
ð1Þ
e;0 � l

ð0Þ
e;0 b

r1�r0
e2t

bmin. Therefore, le; j ¼ l
ð0Þ
e; j

when 0a ja k, for su‰ciently small e.

Another important tool in our spectral analysis is the following proposition

(see [23] and [20], Lemma III.1.1).

Proposition 2.4. Let L : H ! H be a linear compact self-adjoint operator in a

Hilbert space H, and suppose that l > 0 and f a H are such that kLf � lf kH a g,

for some constant g a Rþ. Then there exists an eigenvalue l of L such that

jl� lja gk f k�1
H . Furthermore, for d > gk f k�1

H , there exists a f ; k f kH ¼ k f kH,
linear combination of eigenvectors associated with the eigenvalues lying in the

interval ½l� d; lþ d�, and satisfying k f � f kH a 2d�1g.

3. Proof of Theorem 1.9

As we have seen in the previous section, the asymptotic behavior of the eigen-

values and eigenmodes of the cell problem (1.7) is crucial for further con-

siderations. The study of problem (1.7) relies on blow up analysis in the vicinity

of y0.
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We recall, then, some classical results about the quantum harmonic oscillator.

Consider the Hamiltonian of the harmonic oscillator Ac ¼ �c 00 þ n20t
2cðn0 > 0Þ.

For c; j a DðRÞ, denote by 3 ; 4 the duality between D 0ðRÞ and DðRÞ. Then

3Ac; j4 ¼
ð
R

ðc 0j 0 þ n20t
2cjÞ dt ¼ aðc; jÞ: ð3:1Þ

Defining V as the completion of DðRÞ in the norm

kckV :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið
R

ðjc 0j2 þ t2jcj2Þ dt
s

;

relation (3.1) still holds for c, j in the Hilbert space V . Furthermore, denoting

H ¼ L2ðRÞ, we have V HH, with compact embedding (see, for instance, [7],

Propositions 25–26). Since V is dense in H, and aðc; jÞ is coercive on V , the

operator A is a positive self-adjoint operator in L2ðRÞ with compact resolvent.

So, the associated spectral problem:

�c 00 þ n20 t
2c ¼ nc; c a V ; ð3:2Þ

has its spectrum composed by simple eigenvalues, given by the sequence

nn ¼ n0ð1þ 2nÞ; nb 0:

Moreover, there exists an orthonormal basis of eigenfunctions in terms of Hermite

polynomials as follows:

cnðtÞ ¼ Cne
�n0ðt2=2ÞHnðt

ffiffiffiffiffi
n0

p Þ; Cn :¼
ffiffiffiffiffi
n04

p

½2nn!
ffiffiffi
p

p �1=2
;

HnðtÞ ¼ ð�1Þnet2 d
n

dtn
ðe�t2Þ:

In particular, the normalized fundamental mode is given by

c0ðtÞ :¼
ffiffiffiffiffi
n0

p

4

r
e�n0ðt2=2Þ: ð3:3Þ

Remark 3.1. An important property of the Hermite polynomials Hn is the

following orthogonality relation:

ð
R

tke�t2HnðtÞ dt ¼ 0; k ¼ 0; 1; . . . ; n� 1;

257Spectral analysis in thin tubes with axial heterogeneities



Proof of Theorem 1.9. We divide the proof into four steps. In Step 1, we describe

the asymptotic behavior of the first eigenpair of the cell problem. In Step 2, we

prove a claim used in Step 1. In Step 3, we establish the asymptotic expansion

(1.14) of the eigenvalues of problem (1.6) and, in Step 4, we prove that nte;k ! 0,

as e ! 0þ.
Step 1. We prove that the asymptotic expansion of the first eigenpair

ðmt
e;0; f

t
e;0Þ of the cell problem (1.7), with t > 1, takes the form, for i a N0, i > 1,

and e < e0:

mt
e;0 ¼ bminr0 þ et�1n0 þ e3ðt�1Þ=2m3 þ � � � þ eðiþ2Þðt�1Þ=2miþ2 þ rte; i; ð3:4Þ

ft
e;0ðyÞ ¼ e�ðt�1Þ=4

�
c0

y� y0ffiffiffiffiffiffiffiffiffi
et�1

p
� �

þ eðt�1Þ=2j1
y� y0ffiffiffiffiffiffiffiffiffi
et�1

p
� �

þ � � �

þ eiðt�1Þ=2ji
y� y0ffiffiffiffiffiffiffiffiffi
et�1

p
� �	

veðyÞ þ Rt
e; i; ð3:5Þ

where mj, j a f3; . . . ; i þ 2g, and fj, j a f1; . . . ; ig, are well-determined constants

and functions, ve is a convenient cut-o¤ function in Y , and

maxfjrte; ij; kRt
e; ikL2ðYÞga ceðiþ1Þðt�1Þ=2: ð3:6Þ

The proof is based on the asymptotic expansion techniques. We detail the

proof for i ¼ 1 and then explain how to extend it for other eigenpairs.

Recalling problem (1.7), where ft
e is determined up to a multiplicative

constant,

�e2ðt�1Þ�aðft
e Þ

0� 0 þ br0f
t
e ¼ mt

e f
t
e ; a:e: in Y ;

ft
e a H 1

aðYÞ;

(

we remark that it is well known (see [13], [14]) that mt
e;0 � bminr0 behaves like

eðt�1Þ. Also, from (3.2) and (3.3) we see that, when the coe‰cient n0 of the

harmonic oscillator is of order 1=eðt�1Þ, then the corresponding principal eigen-

mode c0 behaves like a function of the argument ðt=
ffiffiffiffiffiffiffiffiffi
et�1

p
Þ, and the normalization

constant is of order
ffiffiffiffiffiffiffiffiffi
et�14

p
.

Those facts justify the following change of variables, where we omit the fixed

index t:

� ¼
ffiffiffiffiffiffiffiffiffi
et�1

p
; t ¼ y� y0

�
; m�;0 ¼ mt

e;0;

j�ðtÞ ¼ ft
e ðy0 þ �tÞ; t a Y� :¼

�y0

�
;
1� y0

�

� 	
:

ð3:7Þ
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Without loss of generality we assume that y0 is an interior point of Y so that

y0 > 0 and 1� y0 > 0. Then, equation (1.7) takes the form:

��2
�
aðy0 þ �tÞðj�Þ

0� 0 þ bðy0 þ �tÞr0j� ¼ m�j�; a:e: in Y�;

j� a H 1
aðY�Þ:

(
ð3:8Þ

We assume the following expansions for the principal eigenpair of (3.8):

m�;0 ¼ bminr0 þ �2m2 þ �3m3 þ � � � þ � iþ2miþ2 þ � � � ;

j�;0ðtÞ ¼ j0ðtÞ þ �j1ðtÞ þ �2j2ðtÞ þ � � � þ � ijiðtÞ þ � � � ;

and write down the following Taylor series:

aðy0 þ �tÞ ¼ aðy0Þ þ �a 0ðy0Þtþ �2
a 00ðy0Þ

2
t2 þ � � � þ � iþ1 a

ðiþ1Þðy0Þ
ði þ 1Þ! tiþ1

þ � iþ1 a
ðiþ2ÞðyÞ
ði þ 2Þ! t

iþ2;

bðy0 þ �tÞ ¼ bmin þ �2
b 00ðy0Þ

2
t2 þ �3

b 000ðy0Þ
3!

t3 þ � � � þ � iþ1 b
ði�1Þðy0Þ
ði þ 1Þ! t iþ1

þ � iþ2 b
ðiþ2ÞðxÞ
ði þ 2Þ! t

iþ2;

where y, x a ðy0; y0 þ �tÞ. Then, substituting the above expansions in (3.8), col-

lecting power like terms in the resulting equation, and taking the terms of order

�2 we conclude that j0 should satisfy

�aðy0Þj000 þ
b 00ðy0Þr0

2
t2j0 ¼ m2j0; a:e: in R: ð3:9Þ

So (see (3.2) and (3.3)), m2 coincides with the first normalized eigenvalue of

problem (3.9), more precisely

m2 ¼ n0 :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðy0Þb 00ðy0Þr0

2

r
; ð3:10Þ

and we choose

j0 ¼ c0 :¼
ffiffiffiffiffiffiffiffiffiffiffi
cðy0Þ
p

4

r
e�cðy0Þðt2=2Þ with cðy0Þ :¼

n0

aðy0Þ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b 00ðy0Þr0
2aðy0Þ

s
ð3:11Þ

259Spectral analysis in thin tubes with axial heterogeneities



Collecting terms of order �3, we obtain that j1 satisfies

�aðy0Þj001 þ
b 00ðy0Þr0

2
t2j1 � n0j1 ¼ a 0ðy0Þc 0

0 þ a 0ðy0Þtc 00
0 þ m3c0; ð3:12Þ

a.e. in R. Using the compatibility conditions given by the Fredholm alternative,

we determine

m3 :¼ a 0ðy0Þ
ð
R

tjc 0
0j

2 dt; ð3:13Þ

so that problem (3.12) has a unique solution j1 orthogonal to c0.

Remark 3.2. We recall that the solution j1 of problem (3.13) can be represented

by the series (see [7] for details)

j1 ¼
X
nb1

ðg;cnÞH
nn � n0

cn; ð3:14Þ

where g ¼ a 0ðy0Þc 0
0 þ a 0ðy0Þtc 00

0 þ m3c0 and ð� ; �ÞH stands for the inner product in

H ¼ L2ðRÞ. Since g can be written as a finite sum of terms of the form ctkc0ðtÞ,
in view of Remark 3.1 the sum in (3.14) turns out to be finite and, consequently,

j1ðtÞ is also a finite linear combination of the terms tkc0ðtÞ.

Repeating the described procedure, we determine the coe‰cients mj up to the

order ði þ 2Þ ((3.10) and (3.13) for i ¼ 1) and jj, orthogonal to c0, up to order i

((3.9) and (3.12) for i ¼ 1).

We now prove estimates (3.4)–(3.6), using Proposition 2.4.

Considering, for fixed �, H ¼ L2
aðYÞ and A�f :¼ ��4

�
aðyÞf 0� 0 þ bðyÞr0f,

f a H 1
aðYÞ, we apply Proposition 2.4 to the operator L� : H 7! H that maps a

function g a H to the unique solution of equation A�f ¼ g. We define

~ww�ðyÞ :¼ c0

y� y0

�

� �
þ �j1

y� y0

�

� �
þ � � � þ � iji

y� y0

�

� �� 	
vðyÞ;

f� :¼ A� ~ww�, and

~mm� :¼ bminr0 þ �2n0 þ �3m3 þ � � � þ � iþ2miþ2;

where v a Cl
0 ð0; 1Þ is a cut-o¤ function such that 0a va 1, and vðyÞ ¼ 1 in a

neighbourhood of y0.
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Since L� f� � ~mm�1
� f� ¼ ~mm�1

� ð~mm� ~ww� �A� ~ww�Þ, using the definitions of fmjgj¼3;...; iþ2

and fjjgj¼1;...; i, the finite Taylor expansions of a and b, and the fact that (see

Remark 3.2), all the solutions jj and its derivatives are finite sums of terms of

the form PðtÞe�t2=2, where PðtÞ are polynomials, we conclude that, for � small

enough, there exists a constant C, independent of � (eventually di¤erent from line

to line), such that

kL� f� � ~mm�1
� f�kH aC� iþð3=2Þ:

This implies, by Proposition 2.4, the existence of an eigenvalue m�1
�;n of L� satisfying

jm�1
�;n � ~mm�1

� jaCk f�k�1
H � iþð3=2Þ: ð3:15Þ

Notice that n might depend on �.

Since k f�kH b bminr0k~ww�kH P
ffiffi
�

p
; from (3.15) we conclude that

jm�1
�;n � ~mm�1

� jaC� iþ1: ð3:16Þ

Because ~mm�1
� is uniformly bounded away from zero, we obtain

jm�;n � ~mm�jaC� iþ1: ð3:17Þ

Consequently, defining n�;n :¼
m�;n � bminr0

�2
, we get that, for a certain n,

jn�;n � ðn0 þ �m3 þ � � � þ � imiÞjaC� i�1: ð3:18Þ

We claim that for fixed n, as � goes to zero, n�;n converges to the eigenvalue nn of

problem (1.13). This statement is justified below, in Step 2. Then, for � small

enough, formulas (3.16)–(3.18) hold with n ¼ 0, that is

jm�;0 � ~mm�jaC� iþ1: ð3:19Þ

Proposition 2.4 also yields the existence, for � small enough, of an eigenfunction

w�;0 associated to m�;0, having the same norm as ~ww� and satisfying:

kA�w�;0 �A� ~ww�kH aC� iþð3=2Þ: ð3:20Þ

Since k~ww�kH P
ffiffi
�

p
and, for a constant C independent of �,

kw�;0 � ~ww�kH aCkA�w�;0 �A� ~ww�kH ;
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we conclude from (3.20) that

f�;0 �
1ffiffi
�

p ~ww�

����
����
H

aC� iþ1: ð3:21Þ

From the definitions of ~ww� and ~mm�, from (3.19) and (3.21), together with (3.7), we

conclude estimates (3.4)–(3.6), which completes Step 1.

Step 2. We prove that, for fixed n, n�;n converges, as � goes to zero, to the

eigenvalue nn of the harmonic oscillator (1.13). We present a proof for n ¼ 0.

For the higher order eigenpairs the arguments are similar. In fact, we only need

this statement for n ¼ 0 and n ¼ 1.

(i) We prove that lim inf �!0þ n�;0b n0. Suppose, up to restricting � to a fixed

sequence converging to zero, that lim inf �!0þ n�;0 ¼ lim�!0þ n�;0 and that the limit

is finite (otherwise (i) is immediate). Recalling (3.7), we have

n�;0 ¼
m�;0 � bminr0

�2
¼ inf

f AH 1
aðYÞ

kfk
L2ðYÞ¼1

ð
Y

�2ajf 0j2 þ ðb� bminÞr0
�2

f2

� �
dy

¼ inf
j AH 1

aðY�Þ
kjk

L2ðY�Þ¼1

ð
Y�

aðy0 þ �tÞjj 0j2 þ
�
bðy0 þ �tÞ � bmin

�
r0

�2
j2

� �
dt:

Define

G�ðjÞ :¼
ð
Y�

aðy0 þ �tÞjj 0j2 þ
�
bðy0 þ �tÞ � bmin

�
r0

�2
j2

� �
dt:

For each �, let j� a H 1
aðY�Þ be such that kj�kL2ðY�Þ ¼ 1 and n�;0 > G�ðj�Þ � �. Let-

ting j� ¼ 0 for y a RnY�, we extend j� from Y� to the whole R. For the extended

function we keep the same name j�. Since b attains a global minimum bmin at

a unique point y0 a Y , there exists h0 > 0 such that 0 < 1=h0 <
�
bðyÞ � bðy0Þ

�
=

ðy� y0Þ < h0 for all y a Y and, consequently,

t2h0 >
bðy0 þ �tÞ � bmin

�2
>

t2

h0
:

We have, then, the following uniform in � bounds:

0 < G�ðj�ÞaC;

ð
Y�

jj 0
�j
2 dtaC;

ð
Y�

t2j2
� dtaC;

ð
R

j2
� dt ¼ 1: ð3:22Þ
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Up to extracting a subsequence of fj�g, we may assume that j� * j weakly in

L2ðRÞ. Also, for every finite h > 0, fj�g is bounded in H 1ð�h; hÞ so that by

Rellich-Kondrachov Theorem, it holds

lim
�!0þ

ð
ð�h;hÞ

jj�j
2 dt ¼

ð
ð�h;hÞ

jjj2 dt: ð3:23Þ

Using the lower semicontinuity of the norm with respect to the weak topology,

the convergence (3.23), and exploiting the third inequality in (3.22), we obtain,

since j� ¼ 0 outside Y�,

ð
R

jjj2 dta lim inf
�!0þ

ð
Y�

jj�j
2 dta lim sup

�!0þ

ð
Y�

jj�j
2 dta

ð
jtjah

jjj2 dtþ C

h2
;

from which follows the strong convergence of j� in L2ðRÞ by sending h to infinity.

Then,

kjkL2ðRÞ ¼ 1; j 0
�1Y�

* j 0 in L2
locðRÞ;

where 1Y�
stands for the characteristic function of Y�. Furthermore, both se-

quences aðy0 þ �tÞ and bðy0þ�tÞ�bmin

�2
converge uniformly on compacts to aðy0Þ and

b 00ðy0Þ
2

t2, respectively. Consequently, for y a DðRÞ, 0a ya 1, using the lower

semicontinuity of the norm with respect to the weak convergence and Fatou’s

Lemma, we obtain

lim inf
�!0þ

G�ðj�Þb lim inf
�!0þ

ð
R

y aðy0 þ �tÞjj 0
�j
2 þ

�
bðy0 þ �tÞ � bmin

�
r0

�2
j2
�

� �
dt

b

ð
R

y aðy0Þjj 0j2 þ b 00ðy0Þ
2

r0t
2j2

� �
dt:

Letting y ! 1 we get

lim
�!0þ

n�;0b lim inf
�!0þ

G�ðj�Þb
ð
R

aðy0Þjj 0j2 þ b 00ðy0Þ
2

r0t
2j2

� �
dtb n0;

which concludes the proof of (i).

(ii) We prove that lim sup�!0þ n�;0a n0. It is enough to prove the existence of a

sequence fj�g in H 1
aðY�Þ such that kj�kL2ðY�Þ ¼ 1 and G�ðj�Þ ! n0:

Defining

j�ðtÞ :¼
c0ðtÞvðy0 þ �tÞ

kc0vðy0 þ ��ÞkL2ðY�Þ
;
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where c0 is the first eigenmode of the harmonic oscillator and v a Cl
0 ð0; 1Þ is the

cut-o¤ function such that 0a va 1, and vðyÞ ¼ 1 in a neighbourhood of y0, we

obtain, using the definitions of c0 and v,

lim
�!0þ

G�ðj�Þ

¼ lim
�!0þ

1

1þ oð�Þ

ð
R

aðy0 þ �tÞjc 0
0j

2 þ
�
bðy0 þ �tÞ � bmin

�
r0

�2
c2
0

� �
dtþ oð�Þ

� 	 !

¼
ð
R

aðy0Þjc 0
0j

2 þ b 00ðy0Þ
2

r0t
2c2

0

� �
dt ¼ n0:

Step 3. The asymptotic expansion (1.14) is an immediate consequence of

Propositions 2.1 and 2.2, applied to the rescaled problem (1.6) with d ¼ et, of

Remark 2.3, which yields (see 2.3)

le;k ¼ l
ð0Þ
e;k ¼

mt
e;0

e2t
þ nte;k;

and of formula 3.4, obtained in Step 1.

Step 4. It remains to prove that nte;k ! 0, as e ! 0þ, for any k ¼ 0; 1; . . . . In

fact, nte;k converge to zero exponentially. By the max-min principle we have

nte;k :¼ inf
Sk

max
c ASk

kft
e; 0ð �eÞckL2ðIÞ¼1

ð
I

ft
e;0

x3

e

� �









2

aejc 0j2 dx3

( )
;

where the infimum is taken over all ðk þ 1Þ-dimensional subspaces Sk of H.

For a fixed kb 0 let x a Cl
0

�
0;L=ðk þ 1Þ

�
be a positive function such that

kxkL2ð0;LÞ ¼ 1. Denote by xe a piece-wise linear approximation of this function

constructed in the following way. In the ðe=10Þ-neighborhoods of the minimum

points of b
� �
e

�
, which are ey0; ey0 þ e; . . . , the derivative of xe is equal to 0. In

the complement to these intervals, jx 0
eðtÞjaC. Moreover, jx� xejaCe. Consid-

ering the structure of ft
e;0ðyÞ, one can easily check that

ft
e;0

�
e

� �
xeð�Þ

����
����
L2ðIÞ

¼ 1þ oð1Þ; ð3:24Þ

where oð1Þ tends to zero, as e ! 0þ, and

ð
I

ft
e;0

x3

e

� �









2

aejx 0
ej
2 dx3

( )
aCeð1�tÞ=4 exp � cðy0Þ

200
e1�t

� �
; ð3:25Þ
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where cðy0Þ ¼ n0=aðy0Þ has been defined in (3.11). Shifting the argument of xe by

L=ðk þ 1Þ, 2L=ðk þ 1Þ, etc., we arrive at an orthogonal family of k þ 1 functions

which satisfy (3.24) and (3.25). This yields the desired statement. r
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