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Telma Guerra, Adélia Sequeira and Jorge Tiago*

(Communicated by Hugo Beirão da Veiga and José Francisco Rodrigues)
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Abstract. Variational approaches have been used successfully as a strategy to take advan-
tage from real data measurements. In several applications, this approach allows to increase
the accuracy of numerical simulations. In the particular case of fluid dynamics, it leads to
optimal control problems with non-standard cost functionals which, when subject to the
Navier-Stokes equations, require a non-standard theoretical frame to ensure the existence
of solution. In this work, we prove the existence of solution for a class of such type of
optimal control problems. Before doing that, we ensure the existence and uniqueness
of solution for the 3D stationary Navier-Stokes equations, with mixed-boundary condi-
tions, a particular type of boundary conditions very common in applications to biomedical
problems.
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1. Introduction

Optimal control problems associated to fluid dynamics have been studied by

several authors, during the last decades, motivated by the important applications

of such type of problems to the industry. In a natural way, most of the first works

were devoted to the case of distributed control as this is easier to handle. How-

ever, the most challenging problems in applications such as automobile or airplane
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design, and more recently, in bypass design or boundary reconstruction in medical

applications, are modeled by problems where the control is assumed to act on part

of the boundary. Actually, boundary control problems are usually harder to deal,

specially with respect to optimality conditions, since higher regularity for the

solutions is often required. The list of works on the subject is long, and here we

only mention a few references [1], [14], [8], [13], [5], [6] and [7].

In this work, and having in mind applications in biomedicine, we will consider

the steady Navier-Stokes equations with mixed boundary conditions

�nDuþ u � ‘uþ ‘p ¼ f in W;

‘ � u ¼ 0 in W;

gu ¼ g on Gin;

gu ¼ 0 on Gwall ;

nqnu� pn ¼ 0 on Gout;

8>>>>><
>>>>>:

ð1Þ

where n represents the viscosity of the fluid (possibly divided by its constant den-

sity), f the vector force acting on the fluid and g the function imposing the velocity

profile on Gin. The unknowns are the velocity vector field u and the pressure vari-

able p. These equations have been widely used to model and simulate the blood

flow in the cardiovascular system (see, for instance, [10] and the references cited

therein). In this type of applications it is often required to represent part of an

artery as the computational (bounded) domain W. In addition, for the numerical

simulations, we impose homogeneous Dirichlet boundary conditions on the sur-

face representing the vessel wall (Gwall) and Dirichlet non-homogeneous on the ar-

tificial boundary (Gin), which is used to truncate the vessel from the upstream

region. Besides, on the surface limiting the domain, in the downstream direction

(Gout), homogeneous Neumann boundary conditions are imposed. In Figure 1 we

can see a longitudinal section of such a domain, where the deformation of Gwall

could represent the presence of a plaque of atherosclerosis.

When facing this and other type of pathologies of the cardiovascular system, it

is important the evaluation of hemodynamical factors to predict, in a non invasive

way, either the evolution of the disease, or the e¤ect of possible therapies. This

can be done by relying on the numerical simulations obtained in the domain under

analysis. The main di‰culty in this strategy lies in the lack of accuracy of the

Figure 1. Representation of the domain W
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virtual simulations with respect to the real situation. In order to improve the

accuracy and make the simulations sound enough, it is possible to use data

from measurements of the blood velocity profile, obtained through medical imag-

ing in some smaller parts of the vessel. This can be done through a variational

approach, i.e., by setting an optimal control problem with a cost function (or a

class of cost functions) of the type

Jðu; gÞ ¼ b1

ð
Wpart

ju� ud j2 dxþ b2

ð
Gin

jgj2 dsþ b3

ð
Gin

j‘sgj2 ds; ð2Þ

where ud represents the data available only on a part of the domain called Wpart.

Note that, while fixing the weights b1, b2 and b3, we determine whether the mini-

mization of J emphasizes more a good approximation of the velocity vector to ud ,

a ‘‘less expensive’’ control g (in terms of the L2-norm), or a smoother control. An

example of ud , measured in Wpart, could be the velocity vectors obtained in several

cross sections of the vessel, as represented in Figure 2.

Solving the optimal control problem

ðPÞ Minimize Jðu; gÞ
subject to ð1Þ

�
ð3Þ

will give us the means of making blood flow simulations more reliable, using

known data.

This strategy is not new, and has already been used as a proof of concept in

[12] and [19], where both the Navier-Stokes and the Generalized Navier-Stokes

equations were considered to model the blood flow. Even if it proved to be suc-

cessful from the numerical point of view, problem ðPÞ has not yet been studied,

at least up to the authors knowledge, not even with respect to the existence of

solution. In fact, many authors have treated similar problems, considering the

same type of cost functionals constrained to the Navier-Stokes equations, but

for the case where Wpart ¼ W and without using mixed boundary conditions. In

[5] and [7] the case with only Dirichlet boundary conditions, and a similar cost

functional, was treated. In [14] and [17] the authors considered J as the cost

functional, with Wpart ¼ W, but again they just dealt with Dirichlet boundary

conditions. In [9] the authors considered a more complex set of mixed boundary

condition, but for a di¤erent cost functional.

Figure 2. Representation of ud over Wpart
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Here we prove the existence of solution for problem ðPÞ regarded in the weak

sense. We will make the distinction between di¤erent possibilities both for

Wpart and for the parameters b2 and b3. In order to do that, we will start by

setting the existence of a unique weak solution for the state equation (1). The

regularity of this solution remains an open problem and will not be treated

here. It is important to deal with this issue, before addressing the natural follow-

ing stages, namely the derivation of optimality conditions for problem ðPÞ and the

numerical approximation.

The organization of this paper reads as follows. In Section 2 we give some

notation and results needed for this work. The Navier-Stokes equations with

mixed boundary conditions are studied in Section 3. Finally, in Section 4, we

prove the existence of solution for a class of optimal control problems.

2. Notation and some useful results

We consider WHRn, with n ¼ 2; 3, an open bounded subset with Lipschitz

boundary.

The standard Sobolev spaces are denoted by

Wk;pðWÞ ¼
n
u a L= pðWÞ : kukp

W k; p ¼
X
jajak

kDaukp
Lp < l

o
;

where k a N and 1 < p < l. For s a R, W s;pðWÞ is defined by interpolation.

The dual space of W 1;p
0 ðWÞ is denoted by W�1;p 0 ðWÞ. We also use HsðWÞ to rep-

resent the Hilbert spaces W s;2ðWÞ. For GH qW with positive measure we denote

by HsðGÞ, sb 1
2 , the image of the unique linear continuous trace operator

gG : Hsþ1=2ðWÞ ! HsðGÞ;

such that gGu ¼ ujG for all u a Hsþ1=2ðWÞBC0ðWÞ. In particular, for s ¼ 0, H 0ðGÞ
is the subspace of L2ðGÞ corresponding to the image of the continuous functions

in H 1ðWÞ. The norm of HsðGÞ is defined similarly to the norm in H 1ðWÞ, except
that the tangential derivatives on G should be used (see, for instance, [14]). When-

ever Y is a space of functions u : W ! R, we will use the boldface notation

Y ¼ Y � Y � Y for the corresponding space of vector valued functions.

We will also make use of the following Sobolev embedding result:

Lemma 2.1. Let W be a bounded set of class C1. Assume that p < n and p� ¼ pn

n�p
.

Then

i) W 1;pðWÞHLq, Eq a ½1; p�½ with compact embedding.

ii) W 1;pðWÞHLp�, with continuous embedding.
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Proof. For the proof see, for instance, [2], Corollary IX.14 and Theorem IX.16—

Remark 14ii). r

We consider the spaces of divergence free functions defined by

H ¼ fu a H 1ðWÞ j‘ � u ¼ 0g;
Vwall ¼ fc a HGwall

ðWÞ j‘ � c ¼ 0g

and

VD ¼ fc a HGD
ðWÞ j‘ � c ¼ 0g;

where GD refers to the Dirichlet boundary GinAGwall . In these definitions, for

G a fGwall ;GDg, we represent by HG the set

HG ¼ fc a H 1ðWÞ j gGc ¼ 0g:

The corresponding norms are defined by

k:kH ¼ k:kVD
¼ k:kVwall

¼ k:kH 1ðWÞ:

We also define

H 1
0ðGÞ ¼ fv a L2ðGÞ j‘sv a L2ðGÞ; gqGv ¼ 0g

and

H
1=2
00 ðGÞ ¼ fg a L2ðGÞ j bv a H 1ðWÞ; vjqW a H 1=2ðqWÞ; gGv ¼ g; gqWnGv ¼ 0g

a closed subspace of H 1=2ðGÞ.
Note that we have the continuous embeddings H 1

0 ðGÞHH
1=2
00 ðGÞ and

H
1=2
00 ðGÞHL2ðGÞ ([4], pp. 397).
Finally, we set

ĤH 1=2ðG1AG2Þ ¼
n
ðg1; g2Þ a H

1=2
00 ðG1Þ�H

1=2
00 ðG2Þ j

ð
G1

g1 � n dsþ
ð
G2

g2 � n ds¼ 0
o
:

3. State equation

The well-posedness of system (1) concerning the existence and uniqueness for g

within an admissible class is required before studying the existence of solution of

the optimal control problem. In [16] the authors studied the evolutionary case
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setting the existence of a solution local in time, for the type of boundary condi-

tions considered here. Concerning the stationary case, in [15] and [10] the exis-

tence of solution for a similar system was proved. Both authors considered

Neumann conditions mixed with Dirichlet homogeneous conditions. In the later

it was mentioned that no additional di‰culties should be expected with non-

homogeneous boundary conditions. In [9], the existence was shown, in the 2D

case, for a system with mixed boundary conditions including Dirichlet non-

homogeneous. Again the authors mentioned that the 3D case could be proved

using the same techniques. For the sake of clearness, we show that system (1) is

in fact well-posed in the 3D case, following the ideas of [9].

We first start by considering the Stokes system

�nDuþ ‘p ¼ h in W;

‘ � u ¼ 0 in W;

gu ¼ g on Gin;

gu ¼ 0 on Gwall ;

nqnu� pn ¼ 0 on Gout;

8>>>>><
>>>>>:

ð4Þ

Definition 3.1. Let g a H1
0ðGinÞ, h a L3=2ðWÞ. We call u a Vwall a weak solution

of (4) if gGin
u ¼ g and

n

ð
W

‘u : ‘v dx ¼
ð
W

hv dx; ð5Þ

for all v a VD.

Theorem 3.2.

i) There exists a unique solution u a Vwall of problem ð5Þ. For such solution there

exists a distribution p a L3=2ðWÞ such that ðu; pÞ a Vwall � L2ðWÞ is a solution of

(4) in the sense of distributions. If u and p are smooth enough, then p is unique

and the boundary conditions in (4) are verified point-wise.

ii) On the other hand, if ðu; pÞ a HGwall
� L3=2ðWÞ is a solution of problem (4) in the

sense of distributions, then u is a solution of (5).

Proof. i) Consider the auxiliar minimization problem

min
A

EðuÞ :¼ 1

2
k‘vk2L2ðWÞ � ðh; uÞ

where

A ¼ fu a HGwall
; gGin

u ¼ gg:
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The functional E : H1ðWÞ ! R is continuous and convex on H1ðWÞ and thus

weakly lower semi-continuous with respect to the H1ðWÞ norm. Also, the

admissibility set A is sequentially weakly closed. Finally, since E verifies

the coercivity property, the classical theory of the calculus of variations en-

sures the existence of a unique solution u for the minimization problem.

Hence, u is also the unique solution of the necessary and su‰cient optimality

condition

n

ð
W

‘u : ‘v dx ¼
ð
W

hv dx; Ev a HGD

and therefore (5) has a unique solution.

If we take v a HGD
ACl

0 ðWÞ and integrate (5) by parts, we obtain

ð
W

ðnDuþ hÞ � v ¼ 0 () ðDuþ h; vÞ ¼ 0; Ev a HGD
ACl

0 ðWÞ:

Due to the inclusion L3=2ðWÞ ¼
�
L3ðWÞ

� 0
H

�
W

1;3
0 ðWÞ

� 0 ¼ W �1;3=2ðWÞ, we

have nDuþ h a W�1;3=2ðWÞ. Therefore by De Rham’s theorem ([18] Lemma

II.2.2.2) there exits a distribution p a L3=2ðWÞ such that ‘p a L3=2ðWÞ and

ðnDuþ h; vÞ ¼ ð‘p; vÞ that is, system (4) is verified in the sense of distributions.

Let us now assume that u and p are smooth and replace h by �nDuþ ‘p in (4).

Integrating by parts we obtain

ð
Gout

ðnqnu� pnÞ � v ds ¼ 0; Ev a VD:

Now consider w a Cl
0 ðGoutÞ such that

Ð
Gout

w � n ds ¼ 0. If we define

w ¼ 0 on GD ¼ GinAGwall

w on Gout;

�
ð6Þ

we have w a Cl
0 ðqWÞ and

Ð
qW w � n ds ¼ 0. As a result, there exists v a VD such

that gqWv ¼ w and gGout
v ¼ w. Consequently,

ð
Gout

ðnqnu� pnÞ � wds ¼ 0; Ew a Cl
0 ðGoutÞ such that

ð
Gout

w � n ds ¼ 0:

In view of a corollary of the fundamental lemma of the calculus of variations

([3] Corollary 1.25 p. 23), we have

nqnu� pn ¼ c0n on Gout;
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where c0 is a constant. Let us now take p ¼ pþ c as another distribution such

that (4) is verified. Then we have

0 ¼
ð
Gout

ðnqnu� pnÞ � v ¼
ð
Gout

ðc0 � cÞn � v ds Ev a VD:

Choosing v such that
Ð
Gout

n � v ds ¼ 1, we conclude that ðu; pÞ, with c ¼ c0, is the

unique solution of (4).

ii) If u a HGwall
is a solution of (4) then it is clear that u a Vwall and, as a result

of integration by parts, that (5) is verified. r

Before obtaining an estimate for the Stokes problem, we first recall some

related results.

Lemma 3.3. Let g a H1=2ðqWÞ be such that

ð
qWnG

g � n ds ¼
ð
G

g � n ds ¼ 0:

Then there exists v a H such that gv ¼ g.

Proof. See, for instance, [11]. r

It is now straightforward to prove the next lemma.

Lemma 3.4. Let ðg1; g2Þ a ĤH 1=2ðGinAGoutÞ. Then there is a bounded extension

operator E : ĤH 1=2ðGinAGoutÞ ! Vwall , Ev a Vwall , such that for v ¼ Eðg1; g2Þ we

have g1 ¼ gGin
v, g2 ¼ gGout

v.

As a result, we can obtain the following estimate for the solution.

Lemma 3.5. Let S : H
1=2
00 ðGinÞ � L3=2ðWÞ ! Vwall be the solution operator to (5).

Then, if v ¼ Sðg; hÞ, we have

kvk2Vwall
¼ kvk2H1ðWÞa cðkgk2

H
1=2

00
ðGinÞ

þ khk2
L3=2ðWÞÞ;

where c > 0 is independent of ðg; hÞ.

Proof. Using Lemma 3.4 we see that v ¼ Egþ v with v ¼ v� Eg a VD. Hence

k‘vk2L2ðWÞ ¼ ð‘v;‘EgÞ þ ð‘v;‘vÞ;
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which, in view of the definition of weak solution, can be written as

k‘vk2L2ðWÞ ¼ ð‘v;‘EgÞ þ 1

n
ðh; vÞ:

We deal with each term of the right-hand side separately. Using Young’s inequal-

ity, together with the fact that E is bounded, we have

jð‘v;‘EgÞja c1k‘vkL2ðWÞk‘EgkL2ðWÞa c2k‘vkL2ðWÞkEgkH1ðWÞ ð7Þ

a c3k‘vkL2ðWÞkgkH1=2

00
ðGinÞa ek‘vk2L2ðWÞ þ

c4

e
kgk2

H
1=2

00
ðGinÞ

; ð8Þ

for e > 0. Moreover, using Poincaré and Young inequalities and the Sobolev em-

bedding H1ðWÞHL3ðWÞ (see Lemma 2.1.i), we have

jðh; vÞja c5khkL3=2ðWÞk‘vkL2ðWÞa ek‘vk2L2ðWÞ þ
c6

e
khk2

L3=2ðWÞ: ð9Þ

And, by similar arguments,

k‘vk2L2ðWÞ ¼ k‘v� ‘Egk2L2ðWÞa c7ðk‘vk2L2ðWÞ þ kEgk2H1ðWÞÞ ð10Þ

a c8ðk‘vk2L2ðWÞ þ kgk2
H

1=2

00
ðGinÞ

Þ: ð11Þ

Therefore

k‘vk2L2ðWÞa eð1þ c8Þk‘vk2L2ðWÞ þ
c6

e
khk2

L3=2ðWÞ þ
c4

e
þ c8e

� �
kgk2

H
1=2

00
ðGinÞ

and consequently

kvk2H1ðWÞa c9k‘vk2L2ðWÞa cðkhk2
L3=2ðWÞ þ kgk2

H
1=2

00
ðGinÞ

Þ

for a certain constant c > 0. r

We can now prove the existence of a solution for the Navier-Stokes system (1).

Definition 3.6. Let g a H1
0ðGinÞ, f a L3=2ðWÞ. We say that u a Vwall is a weak

solution of (1) if gGin
u ¼ g and

n

ð
W

‘u : ‘v dxþ
ð
W

ðu � ‘Þuv dx ¼
ð
W

fv dx; ð12Þ

for all v a VD.
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We need the following result.

Lemma 3.7. If u a H1ðWÞ, then u � ‘u a L3=2ðWÞ and ku � ‘ukL3=2ðWÞa kuk2H1ðWÞ.

Proof. Using Hölder’s inequality ([2], IV.2, Remark 2.) and the Sobolev embed-

ding H 1ðWÞHL6ðWÞ (see Lemma 2.1.ii)) we have

ð
W

ju � ‘uj3=2 dxa kuk3=2
L6ðWÞk‘uk

3=2

L2ðWÞa ckuk3=2
H1ðWÞk‘uk

3=2

L2ðWÞa ckuk3H1ðWÞal:

r

Theorem 3.8. Let g a H1
0ðGinÞ such that kgkH1

0 ðGinÞa r, for r > 0 su‰ciently small,

and f a L3=2ðWÞ. Then, there exists a unique weak solution u a Vwall of the Navier-

Stokes system (1) which verifies

kuk2H1ðWÞa aðkgk2H1
0 ðGinÞÞ þ k f k2

L3=2ðWÞ; ð13Þ

where aðsÞ ¼ cðs2 þ sÞ.

Before proceeding to the proof of the theorem, let us introduce another

definition.

Definition 3.9. We define the projection operator P : L3=2ðWÞ ! L̂L3=2ðWÞ as the

solution of the equation

ðPh; vÞ ¼ ðh; vÞ; Ev a L̂L3ðWÞ;

where

L̂LpðWÞ ¼ fv a LpðWÞ j‘ � v ¼ 0; gGD
ðv � nÞ ¼ 0g:

Proof of Theorem 3.8. We look for h a L̂L3=2ðWÞ such that the corresponding solu-

tion to the Stokes system u ¼ Sðg; hÞ is also a solution of (12). For this purpose we

will use a fixed point argument. If we replace such u ¼ Sðg; hÞ in (12), we get

nð‘S;‘vÞ þ ðS � ‘S; vÞ ¼ ð f ; vÞ Ev a VD;

which, by definition of S, is equivalent to

ðh; vÞ þ ðS � ‘S; vÞ ¼ ð f ; vÞ Ev a VD

which is also equivalent to

ðhþ S � ‘S� f ; vÞ ¼ 0 Ev a VD: ð14Þ
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Using Lemma 3.7 and the fact that VD is dense in L̂L3ðWÞ, we can see that, from

equation (14), we have

�
Pðhþ S � ‘S� f Þ; v

�
¼ 0 Ev a L̂L3ðWÞ ()�

hþ PðS � ‘S� f Þ; v
�
¼ 0 Ev a L̂L3ðWÞ ()

�PðS � ‘S� f Þ ¼ h: ð15Þ

We should now prove that the operator C : L̂L3=2ðWÞ ! L3ðWÞ defined by

CðhÞ ¼ �P
�
Sðg; hÞ � ‘Sðg; hÞ � f

�

verifies the contraction property.

Let h1; h2 a Bd, where Bd H L̂L3=2ðWÞ is a given ball with respect to the L̂L3=2ðWÞ
metrics. Then, using Hölder’s inequality together with Poincaré’s inequality, we get

kCðh1Þ � Cðh2ÞkL̂L3=2ðWÞ

¼
��P�Sðg; h1Þ � ‘Sðg; h1Þ � Sðg; h2Þ � ‘Sðg; h2Þ

���
L̂L3=2ðWÞ

¼ kSðg; h1Þ � ‘Sðg; h1Þ � Sðg; h2Þ � ‘Sðg; h2ÞkL3=2ðWÞ

a kSðg; h1Þ � ‘Sðg; h1Þ � Sðg; h2Þ � ‘Sðg; h1ÞkL3=2ðWÞ

þ kSðg; h2Þ � ‘Sðg; h1Þ � Sðg; h2Þ � ‘Sðg; h2ÞkL3=2ðWÞ

¼ kSð0; h1 � h2Þ � ‘Sðg; h1ÞkL3=2ðWÞ þ kSðg; h2Þ � ‘Sð0; h1 � h2ÞkL3=2ðWÞ

a kSð0; h1 � h2ÞkL6ðWÞk‘Sðg; h1ÞkL2ðWÞ

þ kSðg; h2ÞkL6ðWÞk‘Sð0; h1 � h2ÞkL2ðWÞ

a c1
�
kSð0; h1 � h2ÞkH1ðWÞk‘Sðg; h1ÞkL2ðWÞ

þ kSðg; h2ÞkH1ðWÞk‘Sð0; h1 � h2ÞkL2ðWÞ
�

a c2k‘Sð0; h1 � h2ÞkL2ðWÞ
�
k‘Sðg; h1ÞkL2ðWÞ þ kSðg; h2ÞkH1ðWÞ

�
: ð16Þ

Using Lemma 3.5 and the continuous embedding H 1
0 ðGinÞHH

1=2
00 ðGinÞ, we can see

that

ð16Þa c3ðkh1 � h2k2L3=2ðWÞÞ
1=2

� ½ðkh1k2L3=2ðWÞ þ kgk2
H

1=2

00
ðGinÞ

Þ1=2 þ ðkh2k2L3=2ðWÞ þ kgk2
H

1=2

00
ðGinÞ

Þ1=2�

a c4kh1 � h2kL3=2ðWÞ½kh1kL3=2ðWÞ þ kh2kL3=2ðWÞ þ kgkH1
0ðGinÞ�

a ckh1 � h2kL3=2ðWÞ;
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where c depends on kh1kL3=2ðWÞ, kh2kL3=2ðWÞ and kgkH1
0ðGinÞ. But since h1; h2 a Bd, we

can choose d and r small enough so that c < 1. Therefore S maps Bd into itself

and hence it has a fixed point h. Since c is strictly smaller than 1, it is easy to see

that such fixed point is unique. As for the estimate (13), let us notice that the fixed

point can be obtained as the limit of a sequence ðhkÞ verifying

h1 ¼ Cð0Þ; h2 ¼ Cðh1Þ; . . . ; hk ¼ Cðhk�1Þ; . . .

Since we have hk ¼
Pk

i¼1ðhi � hi�1Þ ¼
Pk

i¼1½Cðhi�1Þ � Cðhi�2Þ� then, in virtue of

Lemma 3.7 and Lemma 3.5, we have

khkL3=2ðWÞ ¼
��� lim

k!l
hk

���
L3=2ðWÞ

a lim
k!l

Xk
i¼1

khk � hk�1kL3=2ðWÞ

a
Xl
i¼1

ci�1kCð0ÞkL3=2ðWÞ ¼
c

1� c
kSðg; 0Þ � ‘Sðg; 0Þ � f kL3=2ðWÞ

a c5
�
kSðg; 0Þk2H1ðWÞ þ k f kL3=2ðWÞ

�
a c6ðkgk2H1=2

00
ðGinÞ

þ k f kL3=2ðWÞÞ: ð17Þ

Consequently, the solution u ¼ Sðh; gÞ of system (12) is bounded by

kuk2H1ðWÞ ¼ kSðg; hÞk2H1ðWÞa c6ðkgk2H1=2

00
ðGinÞ

þ khk2
L3=2ðWÞÞ

a c7ðkgk2H1=2

00
ðGinÞ

þ kgk4
H

1=2

00
ðGinÞ

þ k f k2
L3=2ðWÞÞ

a c8ðkgk2H1
0 ðGinÞ þ kgk4H1

0 ðGinÞ þ k f k2
L3=2ðWÞÞ

¼ aðkgk2H1
0 ðGinÞÞ þ k f k2

L3=2ðWÞ: ð18Þ
r

Remark 3.10. In the proof of the previous theorem the fact that g a H1
0ðGinÞ

is not essential, and we could alternatively suppose that g a H
1=2
00 ðGinÞ verifies

kgk
H

1=2

00
ðGinÞa r. In this case the proof could follow in the same way, but we would

get the estimate

kuk2H1ðWÞa aðkgk2
H

1=2

00
ðGinÞ

Þ þ k f k2
L3=2ðWÞ; ð19Þ

instead of (13).

4. Existence results for the optimal control problem

Consider the admissible control set

U ¼ fg a H 1
0 ðGinÞ j kgkH 1

0
ðGÞa rg;
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where r is defined as in Theorem 3.8. We can define the weak version of problem

ðPÞ as follows: we look for g a U such that Jðu; gÞ is minimized, where u is the

unique weak solution of (12) corresponding to g.

Remark 4.1. Note that U is just an example of an admissible set, within the

abstract set

U0 ¼ fg a H 1
0 ðGinÞ : such that ð12Þ has a unique solutiong:

We can prove the following existence result:

Theorem 4.2. Assume that Wpart ¼ W, r is as described above and b2; b3A 0. Then

ðPÞ has an optimal solution ðu; gÞ a Vwall �U in the weak sense.

Proof. First see that for g ¼ 0 there is a corresponding unique solution to (12) so

that Vwall �U is nonempty. This implies that 0a Jaþl.

Let ðuk; gkÞk HVwall �U be a minimizing sequence, that is, such that

Jðuk; gkÞ ! I ; the infimum; when k ! þl:

Since UHH 1
0 ðGinÞ is bounded, there exists a subsequence of ðgkÞk which con-

verges weakly to a certain g a H 1
0 ðGinÞ. Due to (13) we have

kukk2H1ðWÞa aðkgkk2H1
0 ðGinÞÞ þ k f k2

L3=2ðWÞ; Ek;

and therefore there exists u such that uk ! u weakly in H1ðWÞ. Indeed, we have

u a Vwall , as both the divergence operator and the trace operator gGwall
: H 1ðWÞ !

H 1=2ðGwallÞ are bounded linear operators. Also, as gGin
uk ! gGin

u, weakly in

H1=2ðGinÞ, we have that gGin
uk ¼ gk converges weakly in L2ðGinÞ, both to gGin

u

and g. Thus, we must have gGin
u ¼ g. Finally, since the convective term in (12)

is weakly continuous in H1ðWÞ (see [11] p. 286) we conclude that u is the solu-

tion corresponding to g. Due to the fact that the functional J is both convex and

continuous, and therefore strong lower semi-continuous (l.s.c.), it is also l.s.c. with

respect to the weak topology ([2] Remark III.8.6). Consequently,

I ¼ lim
k

Jðuk; gkÞb lim inf
k

Jðuk; gkÞb Jðu; gÞb I ;

and we conclude that ðu; gÞ is a an optimal solution for ðPÞ. r

Remark 4.3. The fact that we assume U bounded in H 1
0 ðGinÞ is a very strong

assumption which allows us to prove the result even either if b2 ¼ 0 or b3 ¼ 0.

In this latter case, the l.s.c. property of J should be verified with respect to

H 1=2ðGinÞ rather than H 1
0 ðGinÞ.
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Remark 4.4. We can also choose an admissible set for the controls that is not

necessarily bounded. This is the case when U ¼ U0. Then, if b3A 0, from the

fact that for a minimizing sequence ðgkÞk we have

kgkkH 1
0
ðGinÞa Jðuk; gkÞaþl;

we can still extract a weakly convergent sequence in H 1
0 ðGinÞ, so that the proof

would follow as above. If b3 ¼ 0, in view of the properties of H 1
0 ðGinÞ (see for

instance [14]), we would get

kgkkH 1
0
ðGinÞ a kgkkL2ðGinÞa Jðuk; gkÞaþl;

and the proof could be attained similarly as above.

We will now consider another choice for Wpart more connected to the medical

applications we have in mind. Let W be a domain representing a blood vessel like

in Figure 1. Consider ðWpiÞi to be a monotone sequence of subsets of W, such that

Wp1 HWp2 � � �HWpm HW: ð20Þ

In addition, assume also that for all i a f1; . . . ;mg, we have

qWpi ¼ Gini AGwalli AGouti

where Gouti , i a f1; . . . ;mg, are disjoint surfaces corresponding to cross sections of

W, Gini ¼ Gin, and Gwalli ¼ Gwall BWpi A j: Note that the construction of each

Wpi in this way ensures that (20) is verified, and that each Wpi itself represents a

part of the vessel W.

Now consider Wpart ¼ 6m

i¼1 si where si ¼ Gouti , for all i a f1; . . . ;mg. An

example of such a situation is represented in Figure 2. We can still establish the

existence of solution in this case.

Theorem 4.5. Assume that Wpart in J is given by Wpart ¼ 6m

i¼1 si, as described

above. Then there is an optimal solution to problem ðPÞ.

Proof. Let gsi : H
1ðWpiÞ ! H1=2ðsiÞ be the family of linear, and bounded, trace

operators defining the boundary values, over each surface si, for functions defined

in Wpi . To prove that J is weakly l.s.c, we need to see that it verifies the continuity

and convexity properties. Let uk ! u in H1ðWÞ and consider gsi ud ¼ gi to be the

values of the known data over each si. In this case

���
ð
Wpart

ðuk � udÞ2 � ðu� udÞ2 ds
���
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is, in fact,

���Xm
i¼1

½kgsi uk � gik2L2ðsiÞ � kgsi u� gik2L2ðsiÞ�
���

a

���Xm
i¼1

½ðkgsi uk � gsiukL2ðsiÞ þ kgsi u� gikL2ðsiÞÞ
2 � kgsi u� gik2L2ðsiÞ�

���:

Due to the boundness of each gsi we have that the last term can be bounded from

above by

���Xm
i¼1

½ðcikuk � ukH1ðWpi
Þ þ kgsiu� gikL2ðsiÞÞ

2 � kgsi u� gik2L2ðsiÞ�
���

a

���Xm
i¼1

½ðcikuk � ukH1ðWÞ þ kgsi u� gikL2ðsiÞÞ
2 � kgsi u� gik2L2ðsiÞ�

���; ð21Þ

which goes to zero when k ! l.

The convexity follows directly from the fact that

ð
Wpart

u1 þ u2

2
� ud

� �2

ds ¼
Xm
i¼1

1

4

ð
si

ðgsi u1 � gi þ gsi u2 � giÞ2 ds

a
Xm
i¼1

1

4

ð
si

21½ðgsi u1 � giÞ2 þ ðgsi u2 � giÞ2� ds

a
1

2

ð
Wpart

ðu1 � udÞ2 dsþ
1

2

ð
Wpart

ðu2 � udÞ2 ds:

Therefore J is weakly l.s.c.. The rest of the proof follows as in Theorem 4.2. r

Lastly, another case that can also be interesting from the applications point

of view.

Theorem 4.6. If we consider now Wpi as a family of disjoint subdomains of W and

we take Wpart ¼ 6m

i¼1
Wpi in J, then problem ðPÞ also has an optimal solution.

Proof. To prove this statement, we will check, once more, that J remains convex

and strongly continuous. Concerning the convexity, it follows directly as in

Theorem 4.5. As for the continuity, let ðukÞk be a convergent sequence to u in

H1ðWÞ, then
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���
ð
Wpart

ðuk � udÞ2 � ðu� udÞ2 dx
���

a

���Xm
i¼1

½ðkuk � ukL2ðWpi
Þ þ ku� udkL2ðWpi

ÞÞ
2 � ku� udk2L2ðWpi

Þ�
���

a

���Xm
i¼1

½ðkuk � ukL2ðWÞ þ ku� udkL2ðWpi
ÞÞ

2 � ku� udk2L2ðWpi
Þ�
���

which tends to zero when k ! l. r
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Birkhäuser Advanced Texts: Baslera Lehrbucher, Birkhäuser Verlag, Basel, 2001.
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versidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

E-mail: adelia.sequeira@math.ist.utl.pt
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