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Abstract. We prove the time decay estimates L1ðRÞ ! LlðRÞ, where R is an infinite star-

shaped network, for the Schrödinger group eitð�d 2=dx2þVÞ for real-valued potentials V satis-
fying some regularity and decay assumptions. Further we show that the solution for initial
conditions with a lower cuto¤ frequency tends to the free solution, if the cuto¤ frequency
tends to infinity.
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1. Introduction

A characteristic feature of the Schrödinger equation is the loss of the localization

of wave packets during evolution, the dispersion. This e¤ect can be measured by

Ll-time decay, which implies a spreading out of the solutions, due to the time

invariance of the L2-norm. The well known fact that the free Schrödinger group

in Rn considered as an operator family from L1 to Ll decays exactly as c � t�n=2

follows easily from the explicit knowledge of the kernel of this group [23], p. 60.

For Schrödinger operators in one and three space dimensions with potentials

decaying su‰ciently rapidly at infinity, similar estimates have been proved in [16]

for the projection of the group on the subspace corresponding to the absolutely

continuous spectrum (without optimality). This approach uses an expansion in

generalized eigenfunctions together with estimates developed in inverse scattering

theory [15]. We also refer to [27] for the Schrödinger equation on the half-line

with Dirichlet boundary conditions at 0.

In this paper we derive analogous Ll-time decay estimates for Schrödinger

equations with decaying potentials on a one dimensional star shaped network.
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Further we state a perturbation result showing that high energy solutions behave

almost as free solutions. For this purpose we furnish an explicit estimate of the

di¤erence in terms of the lower cuto¤ frequency, the potential and time. This

result seems to be new even on the line.

Before a precise statement of our main results, let us introduce some notation

which will be used throughout the rest of the paper.

Let Ri, i ¼ 1; . . . ;N, be N ðN a N;Nb 2Þ disjoint sets identified with ð0;þlÞ
and put R :¼ 6N

k¼1 Rk. We denote by f ¼ ð fkÞk¼1;...;N ¼ ð f1; . . . ; fNÞ the func-

tions on R taking their values in C and let fk be the restriction of f to Rk.

Define the Hilbert space H ¼
QN

k¼1 L
2ðRkÞ with inner product

�
ðukÞ; ðvkÞ

�
H

¼PN
k¼1ðuk; vkÞL2ðRkÞ and introduce the following transmission conditions:

ðukÞk¼1;...;N a
YN
k¼1

CðRkÞ satisfies uið0Þ ¼ ukð0Þ Ei; k ¼ 1; . . . ;N; ð1:1Þ

ðukÞk¼1;...;N a
YN
k¼1

C1ðRkÞ satisfies
XN
k¼1

duk

dx
ð0þÞ ¼ 0: ð1:2Þ

Let H0 : DðH0Þ ! H be the linear operator on H defined by:

DðH0Þ ¼
n
ðukÞ a

YN
k¼1

H 2ðRkÞ; ðukÞ satisfies ð1:1Þ; ð1:2Þ
o
;

H0ðukÞ ¼ ðH0;kukÞk¼1;...;N ¼ � d 2uk

dx2

� �
k¼1;...;N

¼ �DRðukÞ:

This operator H0 is self-adjoint and its spectrum sðH0Þ is equal to ½0;þlÞ (see [4]
for more details).

For any s a R, let us denote by L1
s ðRÞ the space of all complex-valued measur-

able functions f ¼ ðf1; . . . ; fNÞ defined on R such that

kfkL1
s ðRÞ :¼

ð
R

jfðxÞj3x4s dx ¼
XN
k¼1

ð
Rk

jfkðxÞj3x4s dx < l;

where 3x4 ¼ ð1þ jxj2Þ1=2. This space is a Banach space with the norm k � kL1
s ðRÞ.

Let V a L1
1ðRÞ. Denote by H the self-adjoint realization of the operator

� d 2

dx2
þ V together with the transmission conditions (1.1) and (1.2) on L2ðRÞ.

From Chapter 2 of [12], we deduce that its spectrum satisfies

sðHÞ ¼ ½0;þlÞA fa finite number of negative eigenvaluesg:
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We first verify that the free Schrödinger group on the star-shaped network R sat-

isfies the following dispersive estimate (see Section 3)

keitH0kL1ðRÞ!LlðRÞaCjtj�1=2; tA 0:

Our goal is then to assume non restrictive assumptions on the potential V in terms

of decay or regularity in order to get a similar decay for the Schrödinger equation

with potential V . More precisely, we will prove the following theorem.

1.1 Theorem. Let V a L1
g ðRÞ be real valued, with g > 5=2 and assume that (4.38)

below holds. Then for all tA 0,

keitHPacðHÞkL1ðRÞ!LlðRÞaCjtj�1=2 ð1:3Þ

where C is a positive constant and PacðHÞ is the projection onto the absolutely con-

tinuous spectral subspace.

The assumption (4.38) is satisfied by a large choice of potentials (see

Lemma 4.3 below). It allows to built the kernel of the resolvent (see Definition

4.11 and Theorem 4.12) and takes into account the ramification character of the

problem.

At a first attempt, we have assumed that V a L1
g ðRÞ, with g > 5=2 (in order

to be able to apply some appropriate estimates on the derivatives of the Jost

functions, see for instance Corollary 4.9), while a similar result probably holds

under the assumption that V a L1
2ðRÞ (see [16] in the case N ¼ 2). This decay

of the potential implies that we do not need the so-called non resonance at zero

energy assumption (see [16], pp. 163–164). For potentials V a L1
1ðRÞ such an

assumption would appear but it is a di‰cult and delicate question. Furthermore,

up to our knowledge, if V a L1
1ðRÞ, it is unknown how to built the kernel of the

resolvent.

As a consequence, we have the following Lp � Lp 0
estimate.

1.2 Corollary (Lp � Lp 0
estimate). Under the assumptions of Theorem 1.1, for

1a pa 2 and 1
p
þ 1

p 0 ¼ 1 we have for all tA 0,

keitHPacðHÞkL pðRÞ!L p 0 ðRÞ aCjtj�1=pþ1=2; ð1:4Þ

where C > 0 is a constant.

Moreover we have the following Strichartz estimates which have been used

in the context of the nonlinear Schrödinger equation to obtain well-posedness

results.
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1.3 Corollary (Strichartz estimates). Let the assumptions of Theorem 1.1 be

satisfied. Then for 2a p; qaþl and 1
p
þ 2

q
¼ 1

2 we have for all t,

keitHPacðHÞ f kLqðR;L pðRÞÞaCk f k2; Ef a LpðRÞBL2ðRÞ; ð1:5Þ

where C > 0 is a constant.

As a direct consequence, see [14], we have the following well-posedness result

for a nonlinear Schrödinger equation with potential. Let p a ð0; 4Þ and suppose

that V satisfies the assumptions of Theorem 1.1. Then, for any u0 a L2ðRÞ, there
exists a unique solution

u a C
�
R;L2ðRÞ

�
B 7

ðq; rÞ admissible

L
q
loc

�
R;LrðRÞ

�
of the equation

iut � DRuþ Vue jujpu ¼ 0; tA 0;

uð0Þ ¼ u0:

�
ð1:6Þ

Recall that a pair ðq; rÞ is called admissible if ðq; rÞ satisfies that 2a r; qaþl
and 2

q
þ 1

r
¼ 1

2 .

1.4 Remark. Another direct consequence of the dispersive estimate (1.3) or of the

Lp � Lp 0
estimate (1.4) is that we can construct, as in [26], the scattering operator

for the nonlinear Schrödinger equation with potential.

While proving Theorem 1.1 we obtain as results of independent interest the

Ll-time decay for the high frequency part of the group and a high frequency per-

turbation estimate:

1.5 Theorem. Under the assumptions of Theorem 1.1 we have

keitHw
l0
ðHÞk1;la Aþ B

kVk1ffiffiffiffiffi
l0

p
� �

jtj�1=2; tA 0; ð1:7Þ

keitHw
l0
ðHÞ � eitH0w

l0
ðH0Þk1;laB

kVk1ffiffiffiffiffi
l0

p jtj�1=2; tA 0: ð1:8Þ

Here w
l0

is smoothly cutting o¤ the frequencies below l0: Expressions of A, B in

terms of the cuto¤ function but independent of l0 are given in Theorem 5.11.

In particular we have for any f a L1ðRÞ that

eitHw
l0
ðHÞ f ! eitH0w

l0
ðH0Þ f for l0 ! l

uniformly on R for every fixed t > 0.
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The perturbation estimate allows the simultaneous control of the smallness of

the di¤erence between perturbed and unperturbed group in terms of the cuto¤ fre-

quency, the L1-Norm of the potential and time.

Because the reflection and refraction of wave packets for the unperturbed

Schrödinger equation on the star shaped network is known ([2] for the case of 3

branches), the above perturbation estimate furnishes an approximate spatial infor-

mation on the propagation of high frequency wave packets with explicit control

of the error. Note that the high frequency perturbation estimate seems to be new

even for the Schrödinger equation with potential on the line and represents in this

case an improvement of [16]. In [16], estimate (1.7) is furnished, but without

explicit control of the dependence of the coe‰cient of jtj�1=2 on l0. Without this

control estimate (1.8) is not useful to prove the convergence of the solution to the

free solution.

The paper is organized as follows. The second section deals with a counter-

example which shows that the decay of the Schrödinger operator from L1ðRÞ to
LlðRÞ as jtj goes to infinity is not guaranteed for all infinite networks. In Section

3, we prove the dispersive estimate for the free Schrödinger operator on star-

shaped networks and we give some direct applications. The expansion in gener-

alized eigenfunctions needed for the proof of Theorem 1.1, is given in Section 4.

In the last section we give the proof of the main results of the paper (Theorems

1.1 and 1.5).

The main lines of our arguments are the following. The counter example (Sec-

tion 2) uses explicit formulas for eigenfunctions of the laplacian on infinite trees

from [22]. The Ll-time decay of the free Schrödinger group on a star shaped net-

work is reduced to the corresponding estimate on R using an appropriate change

of variables (Section 3). The task of finding a complete family of generalized

eigenfunctions for the Schrödinger operator with potential on the star shaped net-

work is reduced to the case of the real line by separating the branches and extend-

ing the equations on R with vanishing potential. The generalized eigenfunctions

on R resulting from techniques from [15] are then combined to families on the

network by introducing correction terms to establish the transmission conditions.

Using results of [15] for the real line case, we derive estimates showing the depen-

dence of the generalized eigenfunctions on the potential. This enables us to prove

a limiting absorption principle and then to derive an expansion of the Schrödinger

group on the star in these generalized eigenfunctions (Section 4) following [5],

[6]. The proof of the Ll-time decay is divided in the low frequency and high

frequency part, essentialy following the lines of [16]. For the high frequency

components, the potential appears as a small perturbation: the resolvent of the

Schrödinger operator can be expanded in a Neumann type series in terms of the

resolvent of the free Schrödinger operator. By inserting this in Stones formula

and exchanging the integration over the frequencies and the summation of the
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Neumann series, one reduces the estimate to the free case. For the low frequency

components one uses the expansion in generalized eigenfunctions derived in Sec-

tion 4, especially the qualitative knowledge of the dependence of the generalized

eigenfunctions on the potential. This enables us to construct a representation of

the solution as the free Schrödinger group acting on a well chosen (artificial) initial

condition, which encodes the influence of the potential. Then one concludes using

the results on the line.

Our approach does not furnish optimal results, as for example the estimate in

[23], p. 60 for the free Schrödinger group or the results of [7]. This is due to the

fact, that the use of Neumann type series and qualitative estimates from inverse

scattering theory are to rough for this purpose. We conjecture that optimal esti-

mates could be achieved in terms of an asymptotic expansion of first order follow-

ing the lines of [7], where this problem has been solved for initial conditions in

energy bands for the Klein Gordon equation with constant but di¤erent potentials

on a star shaped network. It might be useful to find a way to represent solutions

for general potentials by approximating these potentials by step functions, inspired

by [13].

Note that the general perturbation theory for semigroups [18], Ch. 9, Thm.

2.12, p. 502 is applicable but not useful for our purposes: it yields that the

di¤erence between the (semi-)groups generated by the Schrödinger operator

with potential and the free one grows at most proportionally to t, which engulfs

the time decay at infinity. Nevertheless it furnishes additional information for

small t.

The Trotter product formula [23], Thm. X.51, p. 245 is also applicable, but

cannot establish Ll-time decay either: it consists of an approximation of the per-

turbed group by long alternating compositions of values of the free Schrödinger

group eitH0 and the group of multiplication operators with eitV but for small values

of t. Thus even the explicit knowledge of the kernel of the free Schrödinger group

is not useful for time-decay, because the factor t�1=2 becomes e¤ective only for

large t.

The direct application of the variation of constants formula leads to the same

phenomenon as the perturbation for semigroups: without a refined study of the

superposition of the waves generated by the potential, the rough estimation of

the integral term leads to a bound growing as a constant times t.

In [9] the authors prove dispersive estimates for Schrödinger equations on infi-

nite trees with semi-infinite ends with Kirchho¤ conditions at the nodes. The

equations do not have a potential, but the operator has piecewise constant coe‰-

cients with finitely many discontinuities on each branch. The coe‰cients are

bounded between two values. Here the di‰culty comes from the necessity to

give a recursive formula for the infinitely many terms of the resolvent of the

operator. The inverse of the Wronskian is estimated using the theory of almost
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periodic functions. In [8], [11] the authors study the dispersion for the Schrödinger

equation on the line with irregular coe‰cients.

In [1] the authors consider Schrödinger equations with attractive cubic non-

linearities on a star-shaped network with three branches. At the node they con-

sider Kirchho¤-conditions, d- or d 0-conditions. They indicate that the equation

arises in quantum field theory, in the description of the Bose-Einstein condensates

and electromagnetic pulse propagation in optical fibers. The Kirchho¤ condi-

tion corresponds to a simple coupling (‘‘beam splitter’’), whereas the d-condition

describes the interaction with a point-potential. The authors obtain charge and

energy conservation laws and deduce from these facts conditions for global in

time existence of solutions. Further they treat the existence life time of solitary

waves and prove that their transmission and reflection at the node is governed

by the associated linear laws, due to the shortness of the interaction time with a

point-shaped potential. However the authors do not consider variable poten-

tials on the branches as it is done in our paper. Therefore the linear part of their

paper has no substantial intersection with our setting but might motivate further

studies.

In [2] an analogous setting as in [1] is considered, but with nonlinearities of

order 2mþ 1 and only the d-potential of strength a at the node. The existence

of stationary solitons in both the attractive (a < 0) and repulsive (a > 0) case is

proved. Again there is no significant interference with our results.

In [10] the authors consider free (linear) Schrödinger equations on tree-shaped

networks with d-potentials at the nodes. As a special case appears the star-shaped

network with a delta-potential at the center. In this setting a L1 � Ll-decay esti-

mate is proved. Due to the fact that the d-potential plays the role of a trans-

mission condition, the methods are those for a problem with constant coe‰cients,

and therefore there is only a marginal interference with our results. Nevertheless

the result is instructive. The authors add the existence and uniqueness of a global

in time solution of the same problem with a (attractive or repulsive) power non-

linearity of order pþ 1.

The paper [20] deals with the general question of constructing generalized

eigenfunctions of all possible self adjoint extensions of the Laplacian on networks

with semi infinite ends. The result is formulated in terms of a so called scattering

matrix, which indicates the reflected and transmitted flow for the stationary

problem. For complicated networks the authors construct a product formula link-

ing the scattering matrices of sub networks to the scattering matrix of the original

network. The results of this article could serve to generalize our results to star

shaped networks with general transmission conditions.

The article [21] considers discrete analogs of nonlinear Schrödinger equations

on star-shaped networks including the existence of solitons, constants of motion

and the calculus of transmission probabilities.
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Finally [25] treats the stationary (cubic) nonlinear Schrödinger equation

for simple but more general networks as the star shaped ones as trees or helices.

Explicit solution formulas are obtained.

The last two papers are instructive for further developments of our approach.

Acknowledgements. The authors thank the referees for many valuable remarks

which helped us to improve the paper significantly.

2. A counterexample

Consider the infinite network R ¼ 6
n AN en, where each edge en ¼ ðn; nþ 1Þ with

the set of vertices V ¼ 6
n AN vn, where vn ¼ fng. For a fixed sequence of positive

real numbers a ¼ ðanÞn AN, we define the Hilbert space L2ðR; aÞ as follows

L2ðR; aÞ ¼
n
u ¼ ðunÞn AN : un a L2ðenÞ En a N such that

X
n AN

an

ð
en

junðxÞj2 dx < l
o
;

equipped with the inner product

ðu; vÞ ¼
X
n AN

an

ð
en

unðxÞvnðxÞ dx; Eu; v a L2ðR; aÞ:

Similarly for all k a N�, we set

HkðR; aÞ ¼ fu ¼ ðunÞn AN a L2ðR; aÞ : ðuðlÞn Þn AN a L2ðR; aÞ El a f1; 2; . . . ; kgg;

where u
ðlÞ
n means the l derivative of un with respect to x.

Now we consider the Laplace operator �Da (depending on a) as follows:

Dð�DaÞ ¼ fu ¼ ðunÞn AN a H 2ðR; aÞ : satisfying ð2:9Þ; ð2:10Þ; ð2:11Þ belowg;
u0ð0Þ ¼ 0; ð2:9Þ
unðnþ 1Þ ¼ unþ1ðnþ 1Þ; En a N; ð2:10Þ

an
dun

dx
ðnþ 1Þ ¼ anþ1

dunþ1

dx
ðnþ 1Þ; En a N: ð2:11Þ

For all u a Dð�DaÞ, we set

�Dau ¼ � d 2un

dx2

� �
n AN

:
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By Section 1.5 of [22], this operator is a non negative self-adjoint operator in

L2ðR; aÞ.
Moreover in Theorem 1.13 of [22] it was shown the

2.1 Theorem. For all k a N�, �k2p2 is a simple eigenvalue of �Da if and only if

s ¼
X
n AN

1

an
< l: ð2:12Þ

In that case the associated orthonormal eigenvector j½k� ¼ ðj½k�Þn AN is given by

j½k�
n ¼

ffiffiffi
2

s

r
ð�1Þðn�1Þk

an
sin
�
kpðx� nÞ

�
; Ex a en; n a N:

Now assuming that (2.12) holds, then for any k a N� we consider the solution
u of the Schrödinger equation

qtu� iDau ¼ 0;

uðt ¼ 0Þ ¼ j½k�;

�

or equivalently solution of

qtun � iq2xun ¼ 0; in en � R;

u0ð0; tÞ ¼ 0; on R;

unðnþ 1; tÞ ¼ unþ1ðnþ 1; tÞ on R; En a N;

anu
0
nðnþ 1; tÞ ¼ anþ1u

0
nþ1ðnþ 1; tÞ on R; En a N;

uðt ¼ 0; �Þ ¼ j½k� on R:

8>>>>><
>>>>>:

This solution is given by uðtÞ ¼ e�itk2p2

j½k�. Moreover simple calculations show

that

kuðtÞkl;R ¼
ffiffiffi
2

s

r
sup
n AN

1

an

��sin�kpð� � nÞ
���

l; en
¼

ffiffiffi
2

s

r
sup
n AN

1

an
;

which is independent of t and then does not tend to zero as jtj goes to infinity. On

the other hand uðt ¼ 0; �Þ belongs to L1ðRÞ, since we have

kuðtÞkL1ðRÞ ¼
ffiffiffi
2

s

r X
n AN

1

an

��sin�kpð� � nÞ
���

L1ðenÞa
ffiffiffiffiffi
2s

p
:

In other words, we have proved the
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2.2 Theorem. If (2.12) holds, then the norm of the Schrödinger operator eitDa from

L1ðRÞ to LlðRÞ does not tend to zero as jtj goes to infinity.

This counterexample shows that the decay of the norm of the Schrödinger

operator from L1ðRÞ to LlðRÞ as jtj goes to infinity is not guaranteed for all infi-

nite networks. Hence the remainder the paper is to give some examples where

such a case occurs.

Let us notice that our non dispersive property comes from the infinite numbers

of discontinuities of the coe‰cient, since for a finite number of discontinuities

or BV coe‰cient with a small variation of the coe‰cients, the dispersive property

holds, see [8], [11].

3. Dispersive estimate for free Schrödinger operator on star-shaped networks

In this section we state the Ll-time decay estimate for the free Schrödinger equa-

tion (and some consequences) on star shaped networks. For completeness we give

the proof, although it is essentially the same as in [1], [17].

3.1 Theorem (Dispersive estimate). For all tA 0,

keitH0kL1ðRÞ!LlðRÞaCjtj�1=2; ð3:13Þ

where C > 0 is a constant.

Proof. Let vj , j ¼ 1; . . . ;N, a solution of the following problem

qtvj ¼ �iq2xvj; Rþ � Rþ;

vjðt; 0Þ ¼ v1ðt; 0Þ;
XN
j¼1

qxvjðt; 0Þ ¼ 0; Rþ;

vjð0; xÞ ¼ v0j ðxÞ; Rþ:

8>>>><
>>>>:

If we denote by w1 ¼
PN

j¼1 vj and wj ¼ vj � v1, E, j ¼ 2; . . . ;N:

Then w1 satisfies

qtw1 ¼ �iq2xw1; Rþ � Rþ;

qxw1ðt; 0Þ ¼ 0; Rþ;

w1ð0; xÞ ¼
XN
j¼1

v0j ðxÞ; Rþ;

8>>>><
>>>>:

and wj, j ¼ 2; . . . ;N, satisfies the following problem
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qtwj ¼ �iq2xwj; Rþ � Rþ;

wjðt; 0Þ ¼ 0; Rþ;

wjð0; xÞ ¼ v0j ðxÞ � v01ðxÞ; Rþ:

8><
>:

By an odd reflection transformation applied to w1, we obtain ~ww1ðt; xÞ ¼
w1ðt; xÞ; x > 0;

�w1ðt;�xÞ; x < 0;

�
which verifies

qt ~ww1 ¼ �iq2x ~ww1; R2;

~ww1ð0; xÞ ¼
XN
j¼1

~vv0j ðxÞ; R;

8>><
>>:

where ~vv0j ¼
v0j ðxÞ; x > 0;

�v0j ð�xÞ; x < 0;

(
, j ¼ 1; . . . ;N: So, according to the dispersive

estimate for Schrödinger operator on the line (see [18] or [23] for more details), we

have

kw1kLlðRþÞa k~ww1kLlðRÞaCjtj�1=2
���XN

j¼1

~vv0j

���
L1ðRÞ

;

Eðv0j Þ a L2ðRÞBL1ðRÞ; ð3:14Þ

where C > 0 is a constant.

Which implies

kw1kLlðRþÞa 2Cjtj�1=2
���XN

j¼1

v0j

���
L1ðRþÞ

; Eðv0j Þ a L2ðRÞBL1ðRÞ:

For j ¼ 2; . . . ;N, we notice that wj is solution of the free Schrödinger equation on

the half-line, hence by Theorem 2.1 of [27], we get

kwjkLlðRþ
x ÞaCjtj�1=2kv0j � v01kL1ðRþÞ; Eðv0j Þ a L2ðRÞBL1ðRÞ; ð3:15Þ

where C > 0 is a constant.

Since, vj ¼ wj þ v1, Ej ¼ 2; . . . ;N and v1 þ
PN

j¼2ðwj þ v1Þ ¼ w1 ) v1 ¼
1

N
w1 �

1

N

PN
j¼2 wj.

Thus (3.14)–(3.15) imply that
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kv1kLlðRþÞa
4C

N
jtj�1=2

XN
j¼2

ðkv0j kL1ðRþÞ þ kv01kL1ðRþÞÞ;

Eðv0j Þ a L2ðRÞBL1ðRÞ; ð3:16Þ

where C > 0 is a constant.

According to the above we have

kv1kLlðRþÞ a 4Cjtj�1=2
XN
j¼1

kv0j kL1ðRþÞ; ð3:17Þ

and

kvjkLlðRþÞ a kwjkLlðRþÞ þ kv1kLlðRþÞ

a 2Cjtj�1=2ðkv0j kL1ðRþÞ þ kv01kL1ðRþÞÞ

þ 4Cjtj�1=2
XN
j¼1

kv0j kL1ðRþÞ; Eðv0j Þ a L2ðRÞBL1ðRÞ; ð3:18Þ

)

kvjkLlðRþÞa 8Cjtj�1=2
XN
j¼1

kv0j kL1ðRþÞ; Eðv0j Þ a L2ðRÞBL1ðRÞ; Ejb 2: ð3:19Þ

Finally we obtain for all tA 0, ðv0j Þ a L2ðRÞBL1ðRÞ,

kðvjÞkLlðRÞa 8Cjtj�1=2
XN
j¼1

kv0j kL1ðRþÞ ¼ 8Cjtj�1=2kðv0j ÞkL1ðRÞ; ð3:20Þ

which implies (3.13). r

As a direct consequence of the dispersive estimate for the free Schrödinger op-

erator on a star-shaped network, we can obtain the following Strichartz estimates

(for a direct proof, see [17])

3.2 Corollary (Lp � Lp 0
estimate). For 1a pa 2 and 1

p
þ 1

p 0 ¼ 1 we have for all

tA 0,

keitH0kL pðRÞ!L p 0 ðRÞaCjtj�1=pþ1=2; ð3:21Þ

where C > 0 is a constant.
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Proof. According to (3.13) we have

sup
tA0

jtj1=2keitH0 f klaCk f k1; Ef a L1ðRÞBL2ðRÞ:

Interpolating with the L2 bound keitH0 f k2 ¼ k f k2, leads to

sup
tA0

jtj�1=2þ1=pkeitH0 f kp 0 aCk f kp; Ef a L1ðRÞBL2ðRÞ; ð3:22Þ

where 1a pa 2. It is well-known that via T �T argument (3.22) gives rise to the

class of Strichartz estimates

keitH0 f kLq
t ðL

p
x ÞaCk f k2; E

2

q
þ 1

p
¼ 1

2
; 2 < qaþl; 2a pal: ð3:23Þ

The endpoint q ¼ 2 is not captured by this approach but by the approach

develloped by Keel and Tao in [19]. So the estimate (3.23) is valid for all

2a p; qaþl satisfying 2
q
þ 1

p
¼ 1

2 and we have also,

���ð
R

e�itH0Fðs; :Þ ds
���
L2ðRÞ

aCkFkLq 0 ðR;L p 0 ðRÞÞ;

���ð t
0

eiðt�sÞH0FðsÞ ds
���
LqðR;Lr 0 ðRÞÞ

aCkFkLr 0 ðR;Ls 0 ðRÞÞ;

for all admissible pairs ðq; pÞ and ðr; sÞ satisfying 2
q
þ 1

p
¼ 1

2 , 2a q; paþl. r

Corollary 1.3 can be proved in the same way.

According to (3.23) and [14], we have for p a ð0; 4Þ, that for any u0 a L2ðRÞ
the equation

iut � DRue jujpu ¼ 0; tA 0; u ¼ u0; t ¼ 0;

admits a unique solution u a C
�
R;L2ðRÞ

�
B7ðq; rÞ admissible

L
q
loc

�
R;LrðRÞ

�
:

For similar results about nonlinear Schrödinger equation on graphs, we refer

to [2], [21], [25].

4. Expansion in generalized eigenfunctions

The goal of this section is to find an explicit expression for the kernel of the re-

solvent of the operator H on the star-shaped network defined in Section 1. First

we separate the branches by extending the potential of the Schrödinger operator
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by zero on ð�l; 0Þ. Using [15], we construct N families of generalized eigenfunc-

tions of the resulting N Schrödinger operators on R, which we recombine on the

network. This approach can be compared with the ones developed for Klein-

Gordon equations in R by [5], [6].

For each j ¼ 1; . . . ;N, we recall that Rj is identified to ð0;þlÞ and denote by

Vj the restriction of V to Rj. Consider Rj as a subset of R and denote by ~VVj the

extension of Vj by 0 outside Rj.

Now according to [15] (see also [26], [27]) for all z a Cþ :¼ fz1 a C : =z1b 0g,
there exist two functions fj;eðz; �Þ that satisfy the di¤erential equation

�f 00
j;eðz; xÞ þ ~VVjðxÞ fj;eðz; xÞ ¼ z2fj;eðz; xÞ on R; ð4:24Þ

and that have the asymptotic behaviour

j fj;eðz; xÞ � eeizxj ! 0 as x !el: ð4:25Þ

According to Section 1 of [15] (see also [26], p. 45) we write

fj;eðz; xÞ ¼ eeizxmj;eðz; xÞ;

to remove the oscillations of fj;e at infinity. The functions mj;e are the unique

solutions of the Volterra integral equations:

mj;þðz; xÞ ¼ 1þ
ðþl

x

e2izðy�xÞ � 1

2iz
~VVjðyÞmj;þðz; yÞ dy; ð4:26Þ

mj;�ðz; xÞ ¼ 1þ
ð x
�l

e2izðy�xÞ � 1

2iz
~VVjðyÞmj;�ðz; yÞ dy; ð4:27Þ

and are called Jost functions (see [15], [24]). Recall that Lemma 1 of [15] (see also

(2.5) of [26]) implies that

jmj;þðz; xÞjaC; Ex a ½0;lÞ; z a Cþ; ð4:28Þ

jmj;�ðz; xÞja 1þ C
1þ x

1þ jzj ; Ex a ½0;lÞ; z a Cþ; ð4:29Þ

for some C > 0. Accordingly as fj;eðz; xÞ ¼ eeizxmj;eðz; xÞ; we get

j fj;þðz; xÞjaC; Ex a ½0;lÞ; z a Cþ; ð4:30Þ

j fj;�ðz; xÞjaCð1þ xÞe=zx; Ex a ½0;lÞ; z a Cþ: ð4:31Þ

Property (4.25) implies the existence of functions Tj;Rj;1;Rj;2; j ¼ 1; . . . ;N,

called transmission and reflection coe‰cients, such that
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fj;þðx; rÞP
1

TjðrÞ
eirx þ Rj;2ðrÞ

TjðrÞ
e�irx; x ! �l

fj;�ðx; rÞP
1

TjðrÞ
e�irx þ Rj;1ðrÞ

TjðrÞ
eirx; x ! l

for r a R. For future purposes, for all real numbers r, we need the scattering ma-

trix SjðrÞ a C2�2 associated with (4.24) given by

SjðrÞ ¼
TjðrÞ Rj;2ðrÞ
Rj;1ðrÞ TjðrÞ

� �

and that is continuous on R. According to [15], Tj has a meromorphic extension

to Cþ (with a finite numbers of simple poles that are non zero purely imaginary

numbers) that is given by (see [15], p. 145)

1

TjðzÞ
¼ 1� 1

2iz

ðþl

�l

~VVjðyÞmj;þðz; yÞ dy Ez a Cþ: ð4:32Þ

Since ~VVj has its support in ð0;þlÞ, by Remark 10 of [15] Rj;2 admits also a mer-

omorphic extension on CþnR (with the same poles as the ones of Tj) that is given

by (compare [15], p. 145 when z is real)

Rj;2ðzÞ
TjðzÞ

¼ 1

2iz

ðþl

�l
e2izy ~VVjðyÞmj;þðz; yÞ dy Ez a Cþ: ð4:33Þ

Due to the fact that ~VVj is zero on ð�l; 0Þ, the generalized eigenfunctions fj;e
of the Schrödinger operators on the line have the following properties.

4.1 Lemma. For all z a Cþ, zA 0, we have

fj;�ðz; xÞ ¼ e�izx Exa 0; ð4:34Þ

fj;þðz; xÞ ¼
1

TjðzÞ
eizx þ Rj;2ðzÞ

TjðzÞ
e�izx Exa 0: ð4:35Þ

In particular, it holds

fj;�ðz; 0Þ ¼ 1; ð4:36Þ

fj;þðz; 0Þ ¼
1þ Rj;2ðzÞ

TjðzÞ
: ð4:37Þ
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Proof. From the expression (4.27), we directly get (4.34) and (4.36). The situation

is more complicated for fj;þ. Indeed from the expression (4.26), we see that

mj;þðz; xÞ ¼ 1þ
ðþl

0

e2izðy�xÞ � 1

2iz
~VVjðyÞmj;þðz; yÞ dy; Exa 0:

This is equivalent to

mj;þðz; xÞ ¼ 1� 1

2iz

ðþl

0

~VVjðyÞmj;þðz; yÞ dyþ
e�2izx

2iz

ðþl

0

e2izy ~VVjðyÞmj;þðz; yÞ dy

¼ 1� 1

2iz

ðþl

�l

~VVjðyÞmj;þðz; yÞ dy

þ e�2izx

2iz

ðþl

�l
e2izy ~VVjðyÞmj;þðz; yÞ dy; Exa 0:

Hence according to the expression of 1
TjðzÞ and

Rj; 2ðzÞ
TjðzÞ given in (4.32) and (4.33), we

obtain (4.35). According to this identity we trivially have

fj;þðz; 0Þ ¼
1þ Rj;2ðzÞ

TjðzÞ
: r

For our next considerations, we need that

fj;þðz; 0ÞA 0;

at least for all z a Cþ close to the real axis.

Therefore we make the following assumption:

1þ
ðþl

0

xVjðxÞmj;þð0; xÞ dxA 0; Ej ¼ 1; . . . ;N; ð4:38Þ

that allows to obtain the next result.

4.2 Lemma. If the assumption (4.38) holds, then there exists k > 0 small enough

and two positive constants C1, C2 such that

C1a j fj;þðz; 0ÞjaC2 Ez a Bk; ð4:39Þ

where Bk ¼ fz1 a Cþ : 0a=z1akg.

Proof. Recall that

fj;þðz; 0Þ ¼
1þ Rj;2ðzÞ

TjðzÞ
:
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By (4.32) and (4.33) we see that (see property IV of Theorem 1 in [15], p. 147)

there exist R;C > 0 such that

jTjðzÞ � 1j þ jRj;2ðzÞja
C

jzj ; Ejzj > R: ð4:40Þ

Hence (4.39) holds for all jzj > R0, with R0 large enough.

Now for jzj small, we remark that
1þRj; 2ðzÞ

TjðzÞ is di¤erent from zero for all

z a Rnf0g by using the properties II and V of Theorem 1 in [15], p. 146. Further-

more using (4.32) and (4.33), one easily checks that

lim
z!0

1þ Rj;2ðzÞ
TjðzÞ

¼ 1þ
ðþl

0

tVjðtÞmj;þð0; tÞ dt: ð4:41Þ

Consequently our assumption garantess that the continuous function fj;þð�; 0Þ is

di¤erent fom zero on the whole compact ½�R0;R0� and therefore (4.39) holds for

all real numbers z a ½�R0;R0�. By the continuity of fj;þð�; 0Þ on Bd 0 for d
0 small

enough, we deduce that (4.39) holds for all z a BkB fz1 a C : <z1 a ½�R0;R0�g,
by choosing k small enough. r

The assumption (4.38) is technical but it is satified by a large choice of

potentials. Let us list some specific examples.

4.3 Lemma. 1. In the generic case, namely if

ðþl

0

VjðxÞmj;þð0; xÞ dxA 0;

then we have

1þ
ðþl

0

xVjðxÞmj;þð0; xÞ dxA 0; ð4:42Þ

if Vj is non negative or if ðþl

0

xjVjðxÞj dxa r

where r is the unique positive number such that rer ¼ 1.

2. In the exceptional case, namely if

ðþl

0

VjðxÞmj;þð0; xÞ dx ¼ 0;

then (4.42) always holds.
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Proof. In the exceptional case, by Theorem 1 of [15], there exists a constant

C a ð0; 1Þ such that

jRj;2ðrÞjaC; Er a R:

Hence

lim
r!0
r AR

1þ Rj;2ðrÞ
TjðrÞ

����
����b 1� C;

which implies that (4.42) holds.

In the generic case and if Vj is non negative, then mj;þð0; �Þ is a non negative

function and therefore (4.42) directly holds.

In the generic case and if Vj has no sign, then the considerations of Lemma 1

of [15], p. 133 shows that

jmj;þð0; 0Þjb 1� gje
gj ;

where gj ¼
Ð þl
0 tjVjðtÞj dt. Hence if 1� gje

gj > 0, we deduce that mj;þð0; 0Þ is dif-
ferent from zero. This yields the conclusion since

mj;þð0; 0Þ ¼ fj;þð0; 0Þ ¼ lim
z!0

fj;þðz; 0Þ: r

Note that Vj ¼ 0 is an exceptional case.

We now prove that Rj;2ðzÞ is continuous and uniformly bounded in Bk if k > 0

small enough (suggested by Remark 10 of [15]).

4.4 Lemma. For all j ¼ 1; . . . ;N, there exists a positive constant Cj such that

jRj;2ðzÞjaCj; Ez a Bk; ð4:43Þ

for k > 0 small enough.

Proof. By Theorem 1 of [15], there exists C1 > 0 such that

jTjðzÞjaC1; Ez a Bk;

for k > 0 small enough. Hence by (4.33) we deduce that (4.43) holds for all

jzj > �, for any � > 0.

For z in the ball jzja �, we distinguish the generic case from the exceptional

one. In the generic case, by part V of Theorem 1 of [15], p. 150, we know that

TjðzÞ ¼ ajzþ oðzÞ; for z ! 0

with aj A 0 and again using (4.33) we deduce that (4.43) for jzja �.
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In the exceptional case, by (4.33) we may write

Rj;2ðzÞ ¼
TjðzÞ
2iz

	ðþl

0

ðe2izy � 1ÞVjðyÞmj;þðz; yÞ dy

þ
ðþl

0

VjðyÞ
�
mj;þðz; yÞ �mj;þð0; yÞ

�
dy


;

because
Ð þl
0 VjðtÞmj;þð0; tÞ dt ¼ 0. Therefore we obtain that

jRj;2ðzÞjaC1

	���ðþl

0

e2izy � 1

2iz
VjðyÞmj;þðz; yÞ dy

���
þ
���ðþl

0

VjðyÞ
mj;þðz; yÞ �mj;þð0; yÞ

2iz
dy
���
:

For the first term of this right hand side, due to (4.28) we can directly apply the

dominated convergence theorem to conclude that

ðþl

0

e2izy � 1

2iz
VjðyÞmj;þðz; yÞ dy !

ðþl

0

yVjðyÞmj;þð0; yÞ dy as z ! 0:

Since this limit is finite, we deduce that

���ðþl

0

e2izy � 1

2iz
VjðyÞmj;þðz; yÞ dy

���aC;

for jzj small enough.

For the second term, we use the same argument. Namely since ~VVj belongs to

L1
2ðRÞ, by Remark 3 of [15], the derivative _mmk;þ of mk;þ with respect to k exists

and is continuous on Cþ. Moreover by Lemma 2.1 of [26], p. 46, there exists

C2 > 0 such that

j _mmk;þðz; yÞjaC2; Exb 0: ð4:44Þ

Consequently by using the mean value theorem we have

mj;þðz; yÞ �mj;þð0; yÞ
2iz

¼ _mmk;þðyz; yÞ
2i

;

for some y a ð0; 1Þ and therefore

mj;þðz; yÞ �mj;þð0; yÞ
2iz

����
����a C2

2
; Exb 0:
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The application of dominated convergence theorem yieldsðþl

0

VjðyÞ
mj;þðz; yÞ �mj;þð0; yÞ

2iz
dy !

ðþl

0

VjðyÞ _mmj;þð0; yÞ dy as z ! 0:

The conclusion follows since this right-hand side is finite. r

We are now ready to give the di¤erent families of generalized eigenfunctions

of H.

4.5 Lemma. Under the assumption (4.38), then for all z a Bk, zA 0 and all j a
f1; . . . ;Ng, there exist two generalized eigenfunctions F

e; j
z2

: R ! C of H defined

by

F
e; j
z2

ðxÞ :¼ F
e; j
z2;k

ðxÞ Ex a Rk;

where F
e; j
z2;k

is in the form

F
e; j
z2; j

ðxÞ ¼ cj;e;1ðzÞ fj;eðz; xÞ þ cj;e;2ðzÞ fj;Hðz; xÞ;
F
e; j
z2;k

ðxÞ ¼ dj;k;eðzÞ fk;Hðz; xÞ; EkA j;

(
ð4:45Þ

and cj;e;1ðzÞ, cj;e;2ðzÞand dj;k;eðzÞ are given by (modulo N)

cj;e;1ðzÞ ¼
fjþ1;Hðz; 0Þ
Wj;eðzÞ

	
f 0
j;Hðz; 0Þ þ fj;Hðz; 0Þ

X
kAj

f 0
k;Hðz; 0Þ
fk;Hðz; 0Þ



;

cj;e;2ðzÞ ¼ � fjþ1;Hðz; 0Þ
Wj;eðzÞ

	
f 0
j;eðz; 0Þ þ fj;eðz; 0Þ

X
kAj

f 0
k;Hðz; 0Þ
fk;Hðz; 0Þ



;

dj;k;eðzÞ ¼
fjþ1;Hðz; 0Þ
fk;Hðz; 0Þ

; EkA j;

Wj;eðzÞ is the Wronskian relatively to fj;e, namely

Wj;eðzÞ ¼ fj;eðz; xÞ f 0
j;Hðz; xÞ � fj;Hðz; xÞ f 0

j;eðz; xÞ;

that is constant in x and di¤erent from 0 (since zA 0).

Proof. We look for generalized eigenfunctions in the form (4.45), the constants

cj;e;1ðzÞ, cj;e;2ðzÞ and dj;k;eðzÞ will be fixed below in order to guarantee the conti-

nuity of Fe; j
z2

at 0 and the Kircho¤ law. This will show that Fe; j
z2

are generalized

eigenfunctions of H since Fe; j
z2;k

satisfies

� d 2

dx2
F
e; j
z2;k

ðxÞ þ ~VVjðxÞFe; j
z2;k

ðz; xÞ ¼ z2F
e; j
z2;k

on Rk:
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Since each branch j plays the same rule, we can take j ¼ 1 and write

c1;e;1ðzÞ ¼ c1, c1;e;2ðzÞ ¼ c2 and d1;k;eðzÞ ¼ dk. The continuity at 0 is equivalent

to

c1 f1;eðz; 0Þ þ c2 f1;Hðz; 0Þ ¼ dk fk;Hðz; 0Þ EkA 1;

while the Kircho¤ law is equivalent to

c1 f
0
1;eðz; 0Þ þ c2 f

0
1;Hðz; 0Þ þ

XN
k¼2

dk f
0
k;Hðz; 0Þ ¼ 0:

Since by Lemma 4.1 fk;Hðz; 0Þ is di¤erent from 0, we will get

dk ¼
d2 f2;Hðz; 0Þ
fk;Hðz; 0Þ

; EkA 1;

and the continuity and the Kircho¤ law reduce to

c1 f1;eðz; 0Þ þ c2 f1;Hðz; 0Þ ¼ d2 f2;Hðz; 0Þ;

c1 f
0
1;eðz; 0Þ þ c2 f

0
1;Hðz; 0Þ ¼ �d2 f2;Hðz; 0Þ

PN
k¼2

f 0
k;Hðz;0Þ
fk;Hðz;0Þ :

(

This 2� 2 linear system in c1 and c2 has a unique solution since its determinant is

exactly W1;eðzÞ. The resolution of this system leads to the conclusion with the

choice d2 ¼ 1. r

4.6 Remark. The choice (4.45) was guided by the simple case when N ¼ 2 and

Vk ¼ 0, k ¼ 1; 2. In that case, we recover the standard generalized eigenfunctions,

namely

F
e;1
z2;1

ðxÞ ¼ eeizx; Ex > 0;

as well as

F
e;1
z2;2

ðxÞ ¼ eHizx; Ex > 0:

According to Lemma 4.1, we see that

cj;þ;1ðzÞ ¼ � izN

Wj;þðzÞ
;

which is always di¤erent from 0 if z a Cþ, zA 0, while

cj;�;1ðzÞ ¼
izfjþ1;þðz; 0Þ
Wj;�ðzÞ

XN
k¼1

1� Rk;2ðzÞ
1þ Rk;2ðzÞ

;

is not clearly di¤erent from zero. This is investigated in the next Lemma
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4.7 Lemma. Under the assumption (4.38), there exists k > 0 small enough such

that

sðzÞ :¼
XN
k¼1

1� Rk;2ðzÞ
1þ Rk;2ðzÞ

;

satisfies

jsðzÞjbC; Ez a Bk; ð4:46Þ

for some C > 0.

Proof. Clearly s is continuous on Bknf0g for k small enough, hence we first ana-

lyze the behaviour of s near z ¼ 0.

For z a Bknf0g and k a f1; . . . ;Ng, we write

skðzÞ :¼
1� Rk;2ðzÞ
1þ Rk;2ðzÞ

¼ 1� Rk;2ðzÞ
TkðzÞ

TkðzÞ
1þ Rk;2ðzÞ

:

The absolute value of the second factor is uniformly bounded from below on Bk

thanks to Lemmas 4.1 and 4.2.

For the first factor, we distinguish between the generic and the exceptional

case: In the exceptional case,

jTkðzÞjb ck; Ez a Bk;

for some ck > 0 (and k small enough) and therefore sk is continuous on Bk.

In the generic case, using (4.32) and (4.33), we may write

1� Rk;2ðzÞ
TkðzÞ

¼ 1�
ðþl

0

1þ e2izy

2iz
~VVkðyÞmk;þðz; yÞ dy Ez a Cþ; zA 0:

As underlined before, the derivative _mmk;þ of mk;þ with respect to k exists, is con-

tinuous on Cþand satisfies (4.44). Accordingly, using the mean value theorem and

the dominated convergence theorem, we get for all zA 0 small enough

1� Rk;2ðzÞ
TkðzÞ

¼ 1� nk

iz
þ rkðzÞ;

where rk is a continuous function at z ¼ 0 and nk ¼
Ð þl
0 VkðtÞmk;þð0; tÞ dt (that is

di¤erent from zero because we are in the generic case).
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In the same manner we can refine (4.41) and prove that

1þ Rk;2ðzÞ
TkðzÞ

¼ gk þ zr
ð1Þ
k ðzÞ;

where rð1Þ is a continuous function at z ¼ 0 and gk ¼ 1þ
Ð þl
0 tVkðtÞmk;þð0; tÞ dt

that is a real number di¤erent from 0 by our hypothesis (4.38). Consequently for

z small enough we will get

TkðzÞ
1þ Rk;2ðzÞ

¼ g�1
k þ zr

ð2Þ
k ðzÞ; ð4:47Þ

where rð2Þ is a continuous function at z ¼ 0.

The two previous expansions show that for all zA 0 small enough

skðzÞ ¼ � nk

igkz
þ r

ð3Þ
k ðzÞ;

where rð3Þ is a continuous function at z ¼ 0.

In summary, we have obtained that for all zA 0 small enough

sðzÞ ¼ � 1

iz

X
k generic

nk

gk
þ rðzÞ;

where r is a continuous function at z ¼ 0.

Now we can distinguish two cases:

i) If
P

k generic

nk

gk
¼ 0, then s is continuous at z ¼ 0, and therefore s is continuous

on Bk.

ii) If K :¼
P

k generic

nk

gk
A 0, then s blows up at z ¼ 0 and therefore there exists d0

small enough such that

jsðzÞjb K

2jzj ; Ejzj < d0: ð4:48Þ

Now for jzj large, by (4.40) we have

lim
jzj!þl

skðzÞ ¼ 1;

hence there exists R0 large enough such that

<sðzÞb N

2
; Ez a Bk : jzj > R0: ð4:49Þ
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For small value of jzj, we first restrict ourselves on the real line. First we notice

that

<skðzÞ ¼ < 1� Rk;2ðzÞ
1þ Rk;2ðzÞ

¼ 1� jRk;2ðzÞj2

j1þ Rk;2ðzÞj2
:

But according to parts II and V of Theorem 1 of [15],

jRk;2ðzÞj < 1; Ez a R; zA 0;

and therefore

<skðzÞ > 0; Ez a R; zA 0:

Now thanks to (4.41) and to the relation

1� jRk;2ðzÞj2 ¼ jTkðzÞj2;

valid for all real numbers z, we deduce that

lim
z!0
z AR

1� jRk;2ðzÞj2

j1þ Rk;2ðzÞj2
¼ 1

g2k
;

where gk ¼ 1þ
Ð þl
0 tVjðtÞmj;þð0; tÞ dt that by hypothesis is a real number di¤erent

from 0.

This shows that

lim
z!0
z AR

<sðzÞ ¼
XN
k¼1

1

g2k
;

and consequently as <s is a continuous function on R that is di¤erent from zero

for all real numbers, due to (4.49), it satisfies

<sðzÞbC; Ez a R; ð4:50Þ

for some C > 0.

In the first case mentioned before, namely if K ¼ 0, then by the uniform con-

tinuity of <s on the compact set BkB fz1 a C : 0a z1aR0g, where R0 is the

parameter introduced above, we deduce that

<sðzÞbC=2; Ez a Bk 0 B fz1 a C : jz1jaR0g; ð4:51Þ
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if k 0 is chosen small enough. In that case the conclusion directly follows from

(4.49) and (4.51).

In the case when KA 0, we use the uniform continuity of <s on the compact

set BkB z1 a C : d02 a jz1jaR0

� �
(where R0, d0 are the parameter introduced

above), and (4.50) to conclude that

<sðzÞbC=2; Ez a Bk 0 B z1 a C :
d0

2
a jz1jaR0

� 
; ð4:52Þ

if k 0 is chosen small enough.

In this second case the conclusion follows from (4.48), (4.49) and (4.51). r

4.8 Corollary. Under the assumption (4.38), for k > 0 small enough there exist two

positive constants c1, c2 such that

jcj;�;1ðzÞWj;�ðzÞjb c1jzj; Ez a Bk; ð4:53Þ
jcj;�;2ðzÞja c2jsðzÞj; Ez a Bk: ð4:54Þ

Proof. As

cj;�;1ðzÞ ¼
izfjþ1;þðz; 0Þ
Wj;�ðzÞ

sðzÞ;

by the previous Lemma and Lemma 4.2, we deduce that (4.53) holds.

By its definition and Lemma 4.1, we may write

cj;�;2ðzÞ ¼ iz
fjþ1;þðz; 0Þ
Wj;�ðzÞ

	
1þ

X
kAj

1� RkðzÞ
1� RkðzÞ



;

hence thanks to the definition of sðzÞ, we obtain

cj;�;2ðzÞ ¼ iz
fjþ1;þðz; 0Þ
Wj;�ðzÞ

2Rj;2ðzÞ
1þ Rj;2ðzÞ

þ sðzÞ
� �

:

Now recalling that

Wj;�ðzÞ ¼ �Wj;þðzÞ ¼ � 2iz

TjðzÞ
;

we can write

cj;�;2ðzÞ ¼ � fjþ1;þðz; 0Þ
2

2Rj;2ðzÞTjðzÞ
1þ Rj;2ðzÞ

þ sðzÞTjðzÞ
� �

: ð4:55Þ
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By Lemmas 4.1, 4.2, 4.4 and 4.7 we deduce that there exists C1 > 0 such that

jcj;�;2ðzÞjaC1

�
1þ jsðzÞj

�
a

C1

C
þ C1

� �
jsðzÞj;

with the constant C from (4.46). r

4.9 Corollary. Under the assumption (4.38), and if Vk a L1
g ð0;lÞ with g > 5=2,

for all k ¼ 1; . . . ;N, then for all R > 0, s�1 belongs to H 1ð�R;RÞ.

Proof. With the notation from the previous Lemma, we see that rk is given by

rkðzÞ ¼
ðþl

0

VkðyÞ
2iz

�
2mk;þð0; yÞ � ð1þ e2izyÞmk;þðz; yÞ

�
dy;

and is continuous on R. Moreover for z a R� ¼ Rnf0g we easily see that rk is dif-

ferentiable at z and that

_rrkðzÞ ¼ �
ðþl

0

VkðyÞ
2iz2

�
2mk;þð0; yÞ � gk;þðz; yÞ þ z _ggk;þðz; yÞ

�
dy:

where for shortness we have set

gk;þðz; yÞ :¼ ð1þ e2izyÞmk;þðz; yÞ:

But the mean value theorem implies that

gk;þðz; yÞ ¼ 2mk;þð0; yÞ þ z _ggk;þðyz; yÞ;

for some y a ð0; 1Þ and therefore

_rrkðzÞ ¼
ðþl

0

VkðyÞ
2iz

�
_ggk;þðyz; yÞ � _ggk;þðz; yÞ

�
dy; Ez a R�:

As

_ggk;þðz; yÞ ¼ 2iye2izymk;þðz; yÞ þ ð1þ e2izyÞ _mmk;þðz; yÞ;

the previous identity can be equivalently written

_rrkðzÞ ¼
ðþl

0

VkðyÞ
�
ymk;þðyz; yÞ

e2iyzy � e2izy

z

þ ye2izy
mk;þðyz; yÞ �mk;þðz; yÞ

z
þ e2iyzy � e2izy

2iz
_mmk;þðz; yÞ

þ ð1þ e2iyzyÞ _mmk;þðyz; yÞ � _mmk;þðz; yÞ
2iz

�
dy; Ez a R�:
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Again by the mean value theorem we get

_rrkðzÞ ¼
ðþl

0

VkðyÞ
�
2iy2mk;þðyz; yÞe2iy

0zyðy� 1Þ

þ ye2izy _mmk;þðy 00z; yÞðy� 1Þ

þ ye2iy
0zyðy� 1Þ _mmk;þðz; yÞ

þ ð1þ e2iyzyÞ _mmk;þðyz; yÞ � _mmk;þðz; yÞ
2iz

�
dy; Ez a R�;

for some y 0; y 00 a ðy; 1Þ. Note that we cannot apply the mean value theorem to the

last term since _mmk;þ is not di¤erentiable. But according to Lemma 2.2 of [26] we

have

j _mmk;þðz; yÞ � _mmk;þð0; yÞjaCjzjg�2; Eyb 0; ð4:56Þ

for some C > 0 independent of z and y. This estimate, (4.28) and (4.44)

lead to

j _rrkðzÞjaC

ðþl

0

jVkðyÞjðy2 þ yþ jzjg�2Þ dy; Ez a R�:

for some C > 0. Hence according to our hypothesis on Vk, we get

j _rrkðzÞjaC1ð1þ jzjg�3Þ; Ez a R�;

for some C1 > 0.

This estimate and the continuity of rk imply that rk belong to H 1ð�R;RÞ for
any R > 0 due to the hypothesis g > 5=2.

In the same way we need to precise the splitting (4.47) on the real line (actually

near 0). For that purpose, we consider

gkðzÞ :¼
mk;þðz; 0Þ �mk;þð0; 0Þ

z
; Ez a R;

and show that gk belongs to H 1ð�R;RÞ for any R > 0. First gk is continuous at 0

because mk;þðz; 0Þ is in C1ðRÞ. Second by Leibniz’s rule we have

_ggkðzÞ ¼
_mmk;þðz; 0Þz�

�
mk;þðz; 0Þ �mk;þð0; 0Þ

�
z2
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and therefore by the mean value theorem we get

_ggkðzÞ ¼
_mmk;þðz; 0Þ � _mmk;þðyz; 0Þ

z
;

for some y a ð0; 1Þ and we conclude by (4.56).

But we see that�
mk;þðz; 0Þ

��1

z
¼
�
mk;þð0; 0Þ

��1

z
þ hkðzÞ ¼

1

gkz
þ hkðzÞ

with

hkðzÞ ¼
mk;þðz; 0Þ �mk;þð0; 0Þ
zmk;þðz; 0Þmk;þð0; 0Þ

¼ gkðzÞ
mk;þðz; 0Þmk;þð0; 0Þ

:

According to the previous considerations, gk belongs to H 1ð�R;RÞ, for any R > 0

and since mk;þð�; 0Þ belongs to C1ðRÞ and is uniformly bounded from below (due

to Lemmas 4.1 and 4.2), 1
mk;þð�;0Þ

is also in C1ðRÞ. Therefore hk also belongs to

H 1ð�R;RÞ, for any R > 0.

Coming back to s, recalling that

sðzÞ ¼
XN
k¼1

1þ ink

z
þ rkðzÞ

� ��
mk;þðz; 0Þ

��1
;

we have finally shown that

sðzÞ ¼ i
K

z
þ rsðzÞ;

where rs belongs to H 1ð�R;RÞ, for any R > 0.

Now we distinguish the case K ¼ 0 to the other one: In the first case, we have

that s ¼ rs belongs to H 1ð�R;RÞ, for any R > 0 and since s is uniformly bounded

from below by the previous Lemma, we deduce that 1
s
belongs to H 1ð�R;RÞ, for

any R > 0.

If KA 0, then

1

sðzÞ ¼
z

iK þ zrsðzÞ
;

that is a continuous function in R and moreover for z a R�, we have after elemen-

tary calculations

d

dz

1

s
ðzÞ ¼ iK � z2 _rrsðzÞ�

iK þ zrsðzÞ
�2 :
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Since this right-hand side is in L2ð�R;RÞ, for any R > 0 (because the denomina-

tor is di¤erent from zero near z ¼ 0, while by the previous Lemma, for any z a R�

sðzÞbC is equivalent to jiK þ zrsðzÞjbCjzj), we still conclude that 1
s
belongs to

H 1ð�R;RÞ, for any R > 0. r

4.10 Corollary. Under the assumption (4.38), and if Vk a L1
g ð0;þlÞ with g > 5=2,

then the function

R ! C : z ! cj;�;2ðzÞ
fjþ1;þðz; 0ÞsðzÞ

;

belongs to H 1ð�R;RÞ for all R > 0.

Proof. By (4.55), we see that

cj;�;2ðzÞ
fjþ1;þðz; 0ÞsðzÞ

¼ � 1

2

2Rj;2ðzÞTjðzÞ�
1þ Rj;2ðzÞ

�
sðzÞ

þ TjðzÞ
 !

¼ � 1

2

2Rj;2ðzÞ
fj;þðz; 0ÞsðzÞ

þ TjðzÞ
� �

:

But according to Remark 10 of [15], Tj is analytic in a neighbourhood of the real

line, hence it is at least in C1ðRÞ. On the other hand fj;þðz; 0Þ ¼ mj;þðz; 0Þ is

C1ðRÞ due to Remark 3 of [15], hence 1
fj;þðz;0Þ has the same property due to Lemma

4.2. Finally the identity (4.37) of Lemma 4.1 yields

Rj;2ðzÞ ¼ fj;þðz; 0ÞTjðzÞ � 1;

hence it also belongs to C1ðRÞ.
The conclusion follows from the previous Corollary and these regularity prop-

erties (the product of a C1 function with a H 1 function is still in H 1). r

4.11 Definition (Kernel of the resolvent). Let the assumption (4.38) be satisfied,

then for all z a Bk, zA 0, all j a f1; . . . ;Ng, and all x a Rj, we define (modulo N)

Kðx; x 0; z2Þ ¼

1
WjðzÞF

�; j
z2; j

ðxÞF �; jþ1
z2; j

ðx 0Þ; for x 0 a Rj; x
0 > x;

1
WjðzÞF

�; jþ1
z2; j

ðxÞF �; j
z2; j

ðx 0Þ; for x 0 a Rj; x
0 < x;

1
WjðzÞF

�; jþ1
z2; j

ðxÞF �; j
z2;k

ðx 0Þ; for x 0 a Rk; kA j;

8>>><
>>>:

where WjðzÞ ¼ cj;�;1ðzÞdjþ1; j;�ðzÞWj;�ðzÞ.

4.12 Theorem. Let the assumption (4.38) be satisfied and let f a H. Then, for

x a R and z a Bk such that =z > 0, we have

½Rðz2;HÞ f �ðxÞ ¼
ð
R

Kðx; x 0; z2Þ f ðx 0Þ dx 0: ð4:57Þ
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Proof. Fix j a f1; . . . ;Ng, and z as in the statement. Then we notice that the

Wronskian WjðzÞ between F
�; j
z2; j

and F
�; jþ1
z2; j

is di¤erent from zero, namely by

Lemma 4.5 we have

WjðzÞ ¼ ½F �; j
z2; j

;F �; jþ1
z2; j

�ðxÞ

¼ F
�; j
z2; j

ðxÞðF �; jþ1
z2; j

Þ0ðxÞ � ðF �; j
z2; j

Þ0ðxÞF �; jþ1
z2; j

ðxÞ

¼
�
cj;�;1ðzÞ f 0

j;�ðz; xÞ þ cj;�;2ðzÞ f 0
j;þðz; xÞ

�
djþ1; j;�ðzÞ fj;þðz; xÞ

�
�
cj;�;1ðzÞ fj;�ðz; xÞ þ cj;�;2ðzÞ fj;þðz; xÞ

�
djþ1; j;�ðzÞ f 0

j;þðz; xÞ

¼ cj;�;1ðzÞdjþ1; j;�ðzÞWj;�ðzÞ:

Hence by Lemma 4.2 and Corollary 4.8 this Wronskian is di¤erent from zero.

Consequently the same arguments than in Proposition 3.2 of [5] show that

(4.57) holds. The main ingredient is that we can apply the dominated convergence

theorem because the generalized eigenfunction F
�; j
z2;k

is in L2ðRkÞ if jA k. r

4.13 Remark. The choice of the kernel comes from this Theorem because F þ; j
z2;k

is

not in L2ðRkÞ if jA k.

Here and below the complex square root is chosen in such a way thatffiffiffiffiffiffiffiffiffiffiffi
r � eif

p
¼

ffiffi
r

p
eif=2 with r > 0 and f a ½�p; pÞ. Accordingly for any positive real

number l and any e > 0, we will define

ze ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
lþ ie

p

that will be in Cþ.

4.14 Theorem (Limiting absorption principle). Let the assumption (4.38) be

satisfied. Let d > 0 be fixed. Then for all real numbers l > 0, 0 < e < d and

ðx; x 0Þ a R2 we have

1. lima!0
a>0

Kðx; x 0; z2aÞ ¼ Kðx; x 0; lÞ,
2. jKðx; x 0; z2e Þja Cffiffi

l
p egðxþx 0Þ, where 0 < g < maxf1; dg.

Proof. The first part of the Theorem is direct since lþ ia tends to l as a > 0 tends

to 0 and consequently ffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ ia

p
!

ffiffiffi
l

p
;

as a > 0 tends to 0. We further use the fact that the functions fj;eð�; xÞ and

f 0
j;eð�; xÞ are continuous in Cþ for any fixed x a R.
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For the second part of the Theorem, we first use the estimates (4.30) and (4.31),

this last one implying

j fj;�ðze; xÞjaCð1þ xÞe=zexaCð1þ xÞemaxf1; dgx; Ex a ½0;þlÞ; ð4:58Þ

where we have used the property

=ze ¼ j=
ffiffiffiffiffiffiffiffiffiffiffiffi
lþ ie

p
jamaxf1;=ðlþ ieÞg ¼ maxf1; eg:

Notice that by the definition WjðzÞ ¼ cj;�;1ðzÞdjþ1; j;�ðzÞWj;�ðzÞ and by

Lemma 4.2 and Corollary 4.8, we get

jWjðzÞjbCjzj; ð4:59Þ
for some C > 0.

Now we distinguish between the following three cases:

1. If x; x 0 a Rj with x 0 > x, then

Kðx; x 0; z2e Þ

¼ 1

WjðzeÞ
F

�; j
z2e ; j

ðxÞF �; jþ1
z2e ; j

ðx 0Þ

¼ 1

WjðzeÞ
�
cj;�;1ðzeÞ fj;�ðze; xÞ þ cj;�;2ðzeÞ fj;þðze; xÞ

�
djþ1; j;�ðzeÞ fj;þðze; x 0Þ

¼ 1

Wj;�ðzeÞ
fj;�ðze; xÞ fj;þðze; x 0Þ þ cj;�;2ðzeÞ

ize fjþ1;þðze; 0ÞsðzeÞ
fj;þðze; xÞ fj;þðze; x 0Þ:

As there exists c > 0 such that

jWj;�ðzÞjb cjzj; Ez a Cþ;

by Lemma 4.2 and Corollary 4.8, we obtain

jKðx; x 0; zeÞja
C

jzej
�
j fj;�ðze; xÞj þ j fj;þðze; xÞj

�
j fj;þðze; x 0Þj:

The estimates (4.30) and (4.58) then yields

jKðx; x 0; z2e Þja
C

jzej
�
1þ ð1þ xÞemaxf1; dgx�: ð4:60Þ

2. If x; x 0 a Rj with x 0 > x, then

Kðx; x 0; z2e Þ ¼
1

WjðzeÞ
F

�; jþ1
z2e ; j

ðxÞF �; j
z2e ; j

ðx 0Þ;
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and the above arguments (by simply exchanging the role of x and x 0) yields

jKðx; x 0; zeÞja
C

jzej
�
1þ ð1þ x 0Þemaxf1; dgx 0�

: ð4:61Þ

3. If x a Rj and x 0 a Rk with kA j, we have

Kðx; x 0; z2e Þ ¼
1

WjðzeÞ
F

�; jþ1
z2e ; j

ðxÞF �; j
z2e ;k

ðx 0Þ

¼ 1

WjðzeÞ
djþ1; j;�ðzeÞ fj;þðze; xÞdjþ1;k;�ðzeÞ fk;þðze; xÞ:

Hence by Lemma 4.2 and the estimates (4.30) and (4.59), we obtain

jKðx; x 0; z2e Þja
C

jzej
: ð4:62Þ

The estimates (4.60), (4.61) and (4.62) imply the conclusion since jzej >
ffiffiffi
l

p
.

r

4.15 Theorem. Take f a H with a compact support and let 0a a < b < þl.

Then for any continuous scalar function h defined on the real line and for all

x a Rj, we have

�
hðHÞEða; bÞ f

�
ðxÞ ¼ � 1

p

ð
ða;bÞ

hðlÞ
XN
k¼1

ð
Rk

f ðx 0Þ=Kðx; x 0; lÞ dx 0 dl;

where E is the resolution of the identity of H.

Proof. The proof is similar to the one of Lemma 3.13 of [3] (see also Proposition

4.5 of [6]) and is therefore omitted. The main ingredients are the use of Stone’s

formula, Theorem 4.12 and the limiting absorption principle Theorem 4.14 (that

allows to apply the dominated convergence theorem). r

4.16 Remark. Theorem 4.15 directly implies that

s
�
HE½0;þlÞ

�
¼ sac

�
HE½0;þlÞ

�
¼ ½0;þlÞ and sppðHÞH ð�l; 0Þ;

where sac is the absolutely continuous spectrum and spp the pure point spectrum.

The additional informations that

s
�
HEð�l; 0Þ

�
¼ sppðHÞ

and that this set is finite follow from Chapter 2 of [12].
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5. Proof of Theorems 1.1 and 1.5

The proof of the Ll-time decay will be carried out by manipulating the solution

formula in a way to reduce the problem to the well known case of the free Schrö-

dinger equation on the line [23], p. 60.

We shall decompose an general initial conditions into a part with a spectral

representation with compact support and a part with a su‰ciently high lower cut-

o¤ energy (frequency). The technique will be di¤erent in the two cases.

5.1. High energy limit. For high energy (frequency) initial conditions, we can

use an expansion (called Born series) of the resolvent of the Hamiltonian with

potential in terms of the free resolvent (Proposition 5.1). To this end we use a for-

mula for the free resolvent established in [5]. This leads to a corresponding expan-

sion of the Schrödinger group via Stone’s formula. Then we adapt a technique of

[16] to extract the expression corresponding to the Schrödinger group on the line

to the formulas of the transmission problem, see Theorem 5.11, part 1. While

doing this, we improve the calculations of [16] in the sense that we find an explicit

expression for the coe‰cient of the time decay in terms of the cuto¤ frequency and

the potential. This explicit knowledge is essential to deduce from this the pertur-

bation Theorem 5.11, part 3, using the fact that the free Schrödinger group is the

first term of the expansion. The results of this section are of independent interest

and Theorem 5.11, part 3 seems to be new even on the line.

5.1 Proposition. Let R0ðlþ ieÞ ¼ � d 2

dx2 � ðlþ ieÞ
	 
�1

and RV ðlþ ieÞ ¼�
H � ðlþ ieÞ

��1
: Then we have

1. the representation

lim
e!0; e>0

½R0ðlþ ieÞ f �ðxÞ ¼ ½R0ðlþ i0Þ f �ðxÞ ¼
ð
R

K0ðx; x 0; lþ i0Þ f ðx 0Þ dx 0

for almost all x a R and f a L2ðRÞ with

K0ðx; x 0; le i0Þ

¼ Hi

N
ffiffiffi
l

p 1� N
2

� �
eeiðxþx 0Þ

ffiffi
l

p
þ N

2 e
eijx�x 0j

ffiffi
l

p
; x 0 a Rj;

1� N
2

� �
eeiðxþx 0Þ

ffiffi
l

p
þ N

2 e
eiðx�x 0Þ

ffiffi
l

p
; x 0 a Rk; kA j;

(
ð5:63Þ

2. the estimate

jK0ðx; x 0; le 0Þja N � 1

N
ffiffiffi
l

p ; Eðx; x 0Þ a R2; ð5:64Þ
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3. the following expansion: suppose Nb 2, let 0 < q� < 1 and l > l� ¼
4ðN�1Þ2kVk21

N 2q2�
. Then

3RV ðle i0Þ f ; g4 ¼
X
kb0

�
R0ðle i0Þ

�
�VR0ðle i0Þ

�k
f ; g
�

for any V ; f ; g a L1ðRÞ. The þð�Þ sign is valid, if =l > 0 (respectively

=l < 0).

Proof.

1.:

Direct consequence of [5].

2.:

Follows from 1.

3.:

From 2. and the assumption on V it follows

kVR0ðle i0Þ f k1a
N � 1

N
ffiffiffi
l

p kVk1k f k1:

Due to (4.25) we see, that the Jost functions are bounded for fixed l: Therefore

one has

RV ðl� i0Þg a LlðRÞ for l > 0:

Hence

���RV ðlþ i0Þ
�
VR0ðlþ i0Þ

�k
f ; g
���a���VR0ðlþ i0Þ

�k
f
��
1
kRV ðl� i0Þgkl

a
N � 1

N
ffiffiffi
l

p
� �k

kVkk
1 k f k1kRV ðl� i0Þgkl

¼ qðlÞkk f k1kRV ðl� i0Þgkl

with qðlÞ :¼ N�1
N
ffiffi
l

p : Our assumption l� < l implies

qðlÞ < 4ðN � 1Þ
N

ffiffiffiffiffi
l�

p kVk1 ¼ q� < 1:

Therefore the series from the statement of 3. converges. The equality comes from

simple calculations. r

Note that the factor 4 in the definition of l� is not necessary in this Proposi-

tion, but will be necessary later on.
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Now we shall estimate the L1-norm of the Fourier transform of a frequency

band cuto¤ function times all negative powers l�n of the frequency. These quan-

tities measure the influence of the cuto¤ function on the terms of the expansion of

the high frequency part of the solution. Note that in [16] it is claimed (only indi-

cating the steps of a proof ), that there exists a bound which is independent of n:

This does not seem to be rigorously correct: writing down the details of the proof

sketched in [16], we find an explicit bound in terms of certain norms of the cuto¤

function, but which grows linearly in n. But this growth has no influence on the

convergence of the expansion of the solution. Nevertheless the explicitness of the

estimate will allow us to give an upper bound of the coe‰cient of the time decay

of the solution.

5.2 Definition. Let f a ClðRÞ be such that 0afðlÞa 1 and fðlÞ ¼ 1 if jlja 1

and fðlÞ ¼ 0 if jljb 2: Let l0b 1 and L > 2l0: Define

1. w
l0

a Clð½1;l½Þ by w
l0
ðlÞ :¼ 1� f l

l0

	 

, lb 1,

2. w
l0;L

a Clð½1;l½Þ by w
l0;L

ðlÞ :¼ w
l0
ðlÞf l

l0

	 

, lb 1:

5.3 Theorem. For n a N, l0b 1, L > 2l0 it holds*:

k½w
l0;L

ðl2Þl�n�4k1a cðnÞl�n=2
0 ;

with cð0Þ ¼ N1 þN 2
1 , cð1Þ ¼ 2ðN1 þN 2

1 Þ þ 32
ffiffiffi
2

p
N2, cðnÞ ¼ 4

n�1 þ 32
ffiffiffi
2

p
N2n, nb 2

and hence cðnÞaMn, nb 1, where N1 ¼ k½fðl2Þ�4k1, N2 ¼ kfkC 2ðRÞ and M ¼
32

ffiffiffi
2

p
maxfN1 þN 2

1 ;N2g:

Proof. The proof follows from Theorem 5.7 and Propositions 5.8 and 5.10 below.

r

5.4 Proposition. Suppose l0;Lb 1 and 2l0 < L. Then we have for all l a R

jw
l0;L

ðl2Þja 1f
ffiffiffiffi
l0

p
ajlja

ffiffiffiffi
2L

p
gðlÞ;

d

dl

�
w
l0;L

ðl2Þ
�����
����a 2jlj kfkC 1ðRÞ

1

l0
1f

ffiffiffiffi
l0

p
ajlja

ffiffiffiffiffi
2l0

p
gðlÞ þ

1

L
1f
ffiffiffi
L

p
ajlja

ffiffiffiffi
2L

p
gðlÞ

� �
;

d 2

dl2
�
w
l0;L

ðl2Þ
�����
����a kfkC 2ðRÞ

0
@ 2

l0
þ 4jlj2

l20

 !
1f

ffiffiffiffi
l0

p
ajlja

ffiffiffiffiffi
2l0

p
gðlÞ

þ 2

L
þ 4jlj2

L2

 !
1f
ffiffiffi
L

p
ajlja

ffiffiffiffi
2L

p
g

1
A:

*We write shortly f _ ¼ F�1f
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Proof. Clearly we have

d

dl

0
@f

l2

a

 !1A¼ 2l

a
f 0 l2

a

 !
and

d 2

dl2

0
@f

l2

a

 !1A¼ 2l

a
f 0 l2

a

 !
þ 4l2

a2
f 00 l2

a

 !
:

Further we have for l0, L and lb 1

d

dl

�
w
l0;L

ðl2Þ
�
¼ � f

l2

l0

 !" #0
f

l2

L

 !
þ

0
@1� f

l2

l0

 !1A f
l2

L

 !" #0

and

d 2

dl2
�
w
l0;L

ðl2Þ
�
¼ � f

l2

l0

 !" #00
f

l2

L

 !
� 2 f

l2

l0

 !" #0
f

l2

L

 !" #0

þ

0
@1� f

l2

l0

 !1A f
l2

L

 !" #00
:

We estimate for ab 1 and l a R:

f
l2

a

 !�����
�����a kfkC 0ðRÞ1��l;2�

l2

a

 !
¼ kfkC 0ðRÞ1fjlja

ffiffiffiffi
2a

p
gðlÞ

due to l2

a
a 2 , jlja

ffiffiffiffiffi
2a

p
: Similarly we have

1� f
l2

a

 !�����
�����a 1½1;þl½

l2

a

 !
¼ 1f

ffiffi
a

p
ajljgðlÞ:

Further

d

dl

0
@f

l2

a

 !1A
������

������ ¼
2l

a
f 0 l2

a

 !�����
�����a 2jlj

a
kfkC 1ðRÞ1f

ffiffi
a

p
ajlja

ffiffiffiffi
2a

p
gðlÞ

and

d 2

dl2

0
@f

l2

a

 !1A
������

������a
2

a
þ 4jlj2

a2

 !
kfkC 2ðRÞ1f

ffiffi
a

p
ajlja

ffiffiffiffi
2a

p
g:

The three stated estimates directly follow from the previous properties. r

5.5 Proposition. Let n a N� and let l0;Lb 1 with 2l0aL: Then, recalling that

N2 ¼ kfkC 2ðRÞ,

k½w
l0;L

ðl2Þl�n�4ðtÞt2kla 16
ffiffiffi
2

p
N2l

ð�n�1Þ=2
0 n:
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Proof. By standard properties of the Fourier transform we have

k½w
l0;L

ðl2Þl�n�4ðtÞt2kl ¼
����w

l0;L
ðl2Þl�n

� 00�4��
l
a
���w

l0;L
ðl2Þl�n

� 00��
1
:

Hence by Leibniz’s rule and the previous proposition, we find that

k½w
l0;L

ðl2Þl�n�4ðtÞt2kl

a

ðþl

�l

d 2

dl2
�
w
l0;L

ðl2Þ
�����
���� jlj�n

dl

þ 2

ðþl

�l

d

dl
w
l0;L

ðl2Þ
����

����njlj�n�1
dlþ

ðþl

�l
jw

l0;L
ðl2Þjnðnþ 1Þjlj�n�2

dl

a

ðþl

�l

"
2

l0
þ 4jlj2

l20

 !
kfkC 2ðRÞ1f

ffiffiffiffi
l0

p
ajlja

ffiffiffiffiffi
2l0

p
gðlÞ

þ 2

L
þ 4jlj2

L2

 !
kfkC 2ðRÞ1f

ffiffiffi
L

p
a
ffiffi
l

p
a
ffiffiffiffi
2L

p
gðlÞ

#
jlj�n

dl

þ 2

ðþl

�l

�
2jlj
l0

kfkC 1ðRÞ1f
ffiffiffiffi
l0

p
ajlja

ffiffiffiffiffi
2l0

p
gðlÞ

þ 2jlj
L

kfkC 1ðRÞ1f
ffiffiffi
L

p
ajlja

ffiffiffiffi
2L

p
gðlÞ

�
njlj�n�1

dl

þ
ðþl

�l
1f

ffiffiffiffi
l0

p
ajlja

ffiffiffiffi
2L

p
gðlÞnðnþ 1Þjlj�n�2

dl:

By using that for a > 0 we have

jljk1f ffiffiap
ajlja

ffiffiffiffi
2a

p
gðlÞa ð2aÞk=2;

we obtain

k½w
l0;L

ðl2Þl�n�4ðtÞt2kl

a kfkC 2ðRÞ

	10
l0

ð
ffiffiffiffi
l0

p
ajlja

ffiffiffiffiffi
2l0

p jlj�n
dlþ 10

L

ð
ffiffiffi
L

p
ajlja

ffiffiffiffi
2L

p jlj�n
dl



þ 2kfkC 1ðRÞ

	2 ffiffiffi
2

p

l
1=2
0

ð
ffiffiffiffi
l0

p
ajlja

ffiffiffiffiffi
2l0

p jlj�n�1
dl

þ 2
ffiffiffi
2

p

L1=2

ð
ffiffiffi
L

p
ajlja

ffiffiffiffi
2L

p jlj�n�1
dl



þ nðnþ 1Þ
ð
ffiffiffiffi
l0

p
ajlja

ffiffiffiffi
2L

p jlj�n�2
dl:
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Calculating these integrals we find

k½w
l0;L

ðl2Þl�n�4ðtÞt2kl

aN2

 
20

l0ðn� 1Þ
�
l
ð�nþ1Þ=2
0 � ð2l0Þð�nþ1Þ=2�

þ 20

Lðn� 1Þ
�
Lð�nþ1Þ=2 � ð2LÞð�nþ1Þ=2�

þ 8
ffiffiffi
2

p

n
ffiffiffiffiffi
l0

p
�
l
�n=2
0 � ð2l0Þð�nþ1Þ=2�þ 8

ffiffiffi
2

p

n
ffiffiffiffi
L

p
�
L�n=2 � ð2LÞð�nþ1Þ=2�

þ n
�
l
ð�n�1Þ=2
0 � ð2LÞð�n�1Þ=2�!:

This leads to the conclusion since this right-hand side is bounded by

16
ffiffiffi
2

p
N2l

ð�n�1Þ=2
0 n: r

5.6 Proposition. For nb 2, n a N we have

k½w
l0;L

ðl2Þl�n�4kla
2l

ð�nþ1Þ=2
0

n� 1
:

Proof. As

k½w
l0;L

ðl2Þl�n�4kla kw
l0;L

ðl2Þl�nk1;

we conclude by simple calculations. r

5.7 Theorem. For nb 2 and N2 ¼ kfkC 2ðRÞ, it holds

k½w
l0;L

ðl2Þl�n�4k1a l
�n=2
0

4

n� 1
þ 32

ffiffiffi
2

p
N2n

� �
:

Proof. We split up the integral in R into an integral in ½�l
�1=2
0 ; l

�1=2
0 � and outside,

this yields

k½w
l0;L

ðl2Þl�n�4k1

a k½w
l0;L

ðl2Þl�n�4ðtÞw½�l
�1=2

0
;l

�1=2

0
�ðtÞkl

ð l�1=2

0

�l
�1=2

0

dt

þ k½w
l0;L

ðl2Þl�n�4ðtÞw
Rn½�l

�1=2

0
;l

�1=2

0
�ðtÞt

2kl
ð
Rn½�l

�1=2

0
;l

�1=2

0
�

1

t2
dt:

The conclusion then follows from Propositions 5.5 and 5.6. r
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5.8 Proposition.

k½w
l0;L

ðl2Þ�4k1a k½fðl2Þ�4k1 þ k½fðl2Þ�4k21 :

Proof. By definition, we have

k½w
l0;L

ðl2Þ�4k1 ¼

0
@1� f

l2

l0

 !1Af
l2

L

 !2
4

3
5
4������
������
1

a f
l2

L

 !" #4�����
�����
1

þ f
l2

l0

 !" #4
? f

l2

L

 !" #4�����
�����
1

a f
l2

L

 !" #4�����
�����
1

þ f
l2

l0

 !" #4�����
�����
1

f
l2

L

 !" #4�����
�����
1

:

For ab 1, the function l 7! f l2

a

	 

is in ClðRÞ and has compact support. This

justifes the above calculation. The right hand side of the last inequality is in fact

independent of L and l0, as can be seen as follows: for a > 0 we have

f
l2

a

 !" #4�����
�����
1

¼
ffiffiffi
a

p ðþl

�l
j½fðl2Þ�4ðsÞj dsffiffiffi

a
p ¼ k½fðl2Þ�4k1: r

5.9 Proposition.

k½w
l0;L

ðl2Þl�1�4kla k½fðl2Þ�4k1 þ k½fðl2Þ�4k21 :

Proof. We may write

k½w
l0;L

ðl2Þl�1�4kl ¼ k½w
l0;L

ðl2Þ�4? ½l�1�4kl
a k½w

l0;L
ðl2Þ�4k1k½l

�1�4kl:

due the fact that l 7! w
l0;L

ðl2Þ is a test function and ½l�1�4ðtÞ ¼ �i signðtÞ, t a R:

The conclusion follows from Proposition 5.8. r

5.10 Proposition. Let l0b 1;Lb 2l0: Then

k½w
l0;L

ðl2Þl�1�4k1a
�
2ðN1 þN 2

1 Þ þ 32
ffiffiffi
2

p
N2

� ffiffiffiffiffi
l0

p
;

recalling that N1 ¼ k½fðl2Þ�4k1, N2 ¼ kfkC 2ðRÞ:
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Proof. As before, we write

k½w
l0;L

ðl2Þl�1�4k1a k½w
l0;L

ðl2Þl�1�4w½�l
�1=2

0
;l

�1=2

0
�kl

ð l�1=2

0

�l
�1=2

0

dt

þ k½w
l0;L

ðl2Þl�1�4w
Rn½�l

�1=2

0
;l

�1=2

0
�ðtÞt

2kl
ð
Rn½�l

�1=2

0
;l

�1=2

0
�

1

t2
dt:

We finish the proof by using Propositions 5.5 and 5.9. r

Now we have all the ingredients to state and prove the Ll-decay and the per-

turbation result.

5.11 Theorem. Let V ; f ; g a L1ðRÞ be real valued, let V satisfy the conditions of

Theorem 1.1, Nb 2, 0 < q� < 1, l0 > l� ¼ 4ðN�1Þ2kVk21
N 2q2�

and L > 2l0: Then we have

1.

j3eitHw
l0;L

ðHÞ f ; g4j

a

 Xl
k¼0

2ðN � 1Þ
N

� �k

kVkk
1 kF�1½w

l0;L
ðl2Þjlj�k�k1

!
k f k1kgk1jtj

�1=2;

for tA 0:

2. keitHw
l0
ðHÞk1;la 4 Aþ B

kVk1ffiffiffiffi
l0

p
� �

jtj�1=2
, tA 0, where A ¼ N1 þN 2

1 with

N1 :¼ kF�1½fðl2Þ�j1, N2 :¼ kf�j2 and B ¼ M
ðN�1Þ

N
1

ð1�q�Þ2
with M :¼

32
ffiffiffi
2

p
maxfN1 þN 2

1 ;N2g,
3. keitHw

l0
ðHÞ � eitH0w

l0
ðH0Þk1;la 4B

kVk1ffiffiffiffi
l0

p jtj�1=2
, tA 0, with B as in 2. In par-

ticular we have

eitHw
l0
ðHÞ f ! eitH0w

l0
ðH0Þ f for l0 ! l

uniformly on R for every fixed t > 0 or also uniformly on R� ½�;lÞ with respect

to the weight jtj2 on the time axis for any positive �.

Proof.

1.:

At first we consider f a L1ðRÞBL2ðRÞ, the estimates then extend to f a L1ðRÞ.
From Stone’s formula, the fact that the spectrum of H is absolutely continuous

on ½0;lÞ (Remark 4.16) and the limiting absorption principle proved in Theorem

4.14 we deduce

3eitHw
l0;L

ðHÞ f ; g4 ¼ 1

2ip

ðl
0

eitlw
l0;L

ðlÞ
��
RV ðlþ i0Þ � RV ðl� i0Þ

�
f ; g
�
dl:
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As V , f and g are real valued, we obtain

3eitHw
l0;L

ðHÞ f ; g4 ¼ 1

p

ðl
0

eitlw
l0;L

ðlÞ=3RV ðlþ i0Þ f ; g4 dl:

Using Proposition 5.1 part 3. and the change of variables l ¼ m2 we find

3eitHw
l0;L

ðHÞ f ; g4

¼ 2

p

ðl
0

eitm
2

w
l0;L

ðm2Þ
Xl
k¼0

=
�
R0ðm2 þ i0Þ

�
�VR0ðm2 þ i0Þ

�k
f ; g
�
m dm:

Fubini’s Theorem, whose hypotheses are fulfilled thanks to the inequality in the

proof of Proposition 5.1 part 3., leads to

3eitHw
l0;L

ðHÞ f ; g4

¼ 2

p

Xl
k¼0

ð
R

ð
Rk

Yk
j¼1

VðxjÞ
ð
R	ðl

0

eitm
2

w
l0;L

ðm2ÞNðx; x1; . . . ; xk; y; mÞm dm


f ðyÞ dy dx1 . . . dxkgðxÞ dx;

where Nðx; x1; . . . ; xk; y; mÞ is defined by

Nðx; x1; . . . ; xk; y; mÞ

¼ ð�1Þk=
	
K0ðx; x1; m2 þ i0Þ

Yk�1

j¼1

K0ðxj; xjþ1; m
2 þ i0ÞK0ðxk; y; m2 þ i0Þ



:

Using again Proposition 5.1, after some elementary calculations, we find that

Nðx; x1; . . . ; xk; y; mÞ

¼ � 1

mkþ1Nkþ1
eikp=2

X2k

n¼1

1�N

2

� �an N

2

� �bn�
eidnm þ ð�1Þke�idnm

�
;

with an; dn a N such that an þ dn ¼ k þ 1 and dn are real numbers that depend on

x, y and xj, j ¼ 1; . . . ; k. Using this expression in the previous one, we obtain

3eitHw
l0;L

ðHÞ f ; g4

¼ � 1

p

Xl
k¼0

N�ðkþ1Þeikp=2
ð
R

ð
Rk

Yk
j¼1

VðxjÞ
ð
R

X2k

n¼1

1�N

2

� �an N

2

� �bn

	ðl
�l

eitm
2

w
l0;L

ðm2Þeidnmm�k dm


f ðyÞ dy dx1 . . . dxkgðxÞ dx:
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Noting that 1� N
2

� �an N
2

� �bn��� ��� ¼ N
2 � 1
� �an N

2

� �bn a ðN � 1ÞanðN � 1Þbn ¼
ðN � 1Þkþ1, we find

j3eitHw
l0;L

ðHÞ f ; g4j

a
1

p

Xl
k¼0

ðN � 1Þkþ1

Nkþ1

ð
R

ð
Rk

Yk
j¼1

jVðxjÞj

ð
R

X2k

n¼1

ðl
�l

eitm
2

w
l0;L

ðm2Þeidnmm�k dm

����
���� j f ðyÞj dy dx1 . . . dxkjgðxÞj dx:

Setting

Sk ¼ sup
d AR

���ðl
0

eiðtm
2þdmÞw

l0;L
ðm2Þm�k dm

���;
we deduce that

j3eitHw
l0;L

ðHÞ f ; g4ja 1

p
k f k1kgk1

Xl
k¼0

2kþ2ðN � 1Þkþ1

Nkþ1
kVkk

1Sk:

We observe that

Sk ¼ sup
a AR

���ðþl

�l
eiðtl

2þalÞw
l0;L

ðl2Þl�k dl
���a kF�1½w

l0;L
ðl2Þl�k�k1jtj

�1=2; tA 0;

since the quantity inside the absolute value is the solution of the free Schrödinger

operator on R at time t and position a for the initial condition F�1½w
l0;L

ðl2Þl�k�,
see for example [23], p. 60 Theorem IX.30. The convergence of the series will

follow from the proof of 2.

2.:

First let f ; g a L1ðRÞ be real valued. With ~qqðlÞ :¼ 2ðN�1ÞkVk1
N
ffiffi
l

p and the assumptions

0 < q� < 1 and l�a l0 it follows 0 < ~qqðl0Þ < ~qqðl�Þ ¼ q� < 1: Therefore

Xl
k¼1

~qqðl0Þkk ¼ 1�
1� ~qqðl0Þ

�2
converges. Thus we can apply Theorem 5.3 and obtain together with 1.

j3eitHw
l0
ðHÞ f ; g4ja

Xl
k¼0

2ðN � 1Þ
N

� �k

kVkk
1 cðkÞl

�k=2
0

 !
k f k1kgk1jtj

�1=2

¼
	Xl
k¼0

~qqðl0ÞkcðkÞ


k f k1kgk1jtj

�1=2
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¼
	
cð0Þ þ

Xl
k¼1

~qqðl0ÞkcðkÞ


k f k1kgk1jtj

�1=2

a

	
cð0Þ þM

Xl
k¼1

~qqðl0Þkk


k f k1kgk1jtj

�1=2

¼ cð0Þ þM
1�

1� ~qqðl0Þ
�2

 !
k f k1kgk1jtj

�1=2

a cð0Þ þM
1

ð1� q�Þ2

 !
k f k1kgk1jtj

�1=2

for all tA 0. Since spectral measures are finite and since limL!l w
l0;L

¼ w
l0
point-

wise, we can replace w
l0;L

by w
l0

in the last inequality using dominated con-

vergence. By linearity a factor 4 appears for complex valued f and g: This ends

the proof of 2.

3.:

Stone’s formula applied to H0 yields

3eitH0w
l0;L

ðH0Þ f ; g4 ¼ 1

p

ðl
0

eitlw
l0;L

ðlÞ=3R0ðlþ i0Þ f ; g4 dl;

which is the first term in the expansion for 3eitHw
l0;L

ðHÞ f ; g4: Therefore��
eitHw

l0;L
ðHÞ � eitH0w

l0;L
ðH0Þ

�
f ; g
�

¼ 2

p

ðl
0

eitm
2

w
l0;L

ðm2Þ
Xl
k¼1

=
�
R0ðm2 þ i0Þ

�
�VR0ðm2 þ i0Þ

�k
f ; g
�
m dm:

Now the same proof as in 2. but without the first term yields the assertion. r

5.2. Low energy estimate. In this section we consider the case of initial condi-

tions with compact energy band with respect to the spectral representation. Again

we adapt the reasoning of [16] to the transmission situation.

For any smooth and compactly supported cut-o¤ function w in R, by Theorem

4.15 we have for any x; x 0 a R

2ip

ðþl

0

eitlwðlÞEacðdlÞðx; x 0Þ ¼ �2ip

ðþl

0

eitlwðlÞ=Kðx; x 0; lÞ dl;

and by the change of variables l ¼ m2, we get

2ip

ðþl

0

eitlwðlÞEacðdlÞðx; x 0Þ ¼ �4ip

ðþl

0

eitm
2

wðm2Þ=Kðx; x 0; m2Þm dm:
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Now recalling the definition of K , we again distinguish between the following

three cases:

1. If x; x 0 a Rj with x 0 > x, then

Kðx; x 0; m2Þ ¼ 1

Wj;�ðmÞ
fj;�ðm; xÞ fj;þðm; x 0Þ

þ cj;�;2ðmÞ
imfjþ1;þðm; 0ÞsðmÞ

fj;þðm; xÞ fj;þðm; x 0Þ:

As fj;eðm; xÞ ¼ fj;eð�m; xÞ, we deduce

2ip

ðþl

0

eitlwðlÞEacðdlÞðx; x 0Þ

¼ �2ip

ðþl

�l
eitm

2

wðm2Þm 1

Wj;�ðmÞ
fj;�ðm; xÞ fj;þðm; x 0Þ dm

� 2p

ðþl

�l
eitm

2

wðm2Þ cj;�;2ðmÞ
fjþ1;þðm; 0ÞsðmÞ

fj;þðm; xÞ fj;þðm; x 0Þ dm:

The first term of this right hand side was estimated in Lemma 4 of [16], hence it

remains to estimate the second term. For that purpose, we set

T2ðt; x; x 0Þ :¼
ðþl

�l
eitm

2

wðm2Þ cj;�;2ðmÞ
fjþ1;þðm; 0ÞsðmÞ

fj;þðm; xÞ fj;þðm; x 0Þ dm

¼
ðþl

�l
eitm

2

wðm2Þeimðxþx 0Þ cj;�;2ðmÞ
fjþ1;þðm; 0ÞsðmÞ

mj;þðm; xÞmj;þðm; x 0Þ dm:

Hence denoting by

pðmÞ :¼ cj;�;2ðmÞ
fjþ1;þðm; 0ÞsðmÞ

;

we have shown in Corollary 4.10 that this function belongs to H 1ð�R;RÞ, for
all R > 0. Since the mapping

q : m ! wðm2Þmj;þðm; xÞmj;þðm; x 0Þ;

has compact support and is in C1ðRÞ with the property

jqðmÞj þ j _qqðmÞjaC;

for some C > 0 independent of x and x 0 due to (4.28) and (4.44), we deduce

that the product pq belongs to H 1ðRÞ. By Plancherel theorem (see for instance
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[23], p. 60), we deduce that

T2ðt; x; x 0Þ ¼ t�1=2

ðþl

�l
F�1ðpqÞðxþ xþ x 0Þe�ix2=t dx:

and consequently

jT2ðt; x; x 0Þja jtj�1=2

ðþl

�l
jF�1ðpqÞðxþ xþ x 0Þj dx

a jtj�1=2

ðþl

�l
jF�1ðpqÞðxÞj dx

aCjtj�1=2kpqkH 1ðRÞ;

for some C > 0.

2. If x; x 0 a Rj with x 0 < x, then

Kðx; x 0; m2Þ ¼ 1

Wj;�ðmÞ
fj;�ðm; x 0Þ fj;þðm; xÞ

þ cj;�;2ðmÞ
imfjþ1;þðm; 0ÞsðmÞ

fj;þðm; xÞ fj;þðm; x 0Þ:

In that case the first term was treated in Lemma 4 of [16], while the second term

is the same as before.

3. If x a Rj and x 0 a Rk with kA j, then

Kðx; x 0; m2Þ ¼ 1

imfjþ1;þðm; 0ÞsðmÞ
fj;þðm; xÞ fk;þðm; x 0Þ:

Therefore in that case we have

2ip

ðþl

0

eitlwðlÞEacðdlÞðx; x 0Þ

¼ 2p

ðþl

�l
eitm

2

wðm2Þ 1

fjþ1;þðm; 0ÞsðmÞ
fj;þðm; xÞ fj;þðm; x 0Þ dm:

Since 1
fjþ1;þðm;0Þ is in C1ðRÞ, by Corollary 4.9, the function

m ! 1

fjþ1;þðm; 0ÞsðmÞ

belongs to H 1ð�R;RÞ, for all R > 0 and we conclude as for T2ðt; x; x 0Þ. r
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