Portugal. Math. (N.S.) Portugaliae Mathematica
Vol. 72, Fasc. 4, 2015, 309-355 © European Mathematical Society
DOI 10.4171/PM/1970

Dispersive effects and high frequency behaviour for the
Schrodinger equation in star-shaped networks

Felix Ali Mehmeti, Kais Ammari, Serge Nicaise

(Communicated by Enrique Zuazua)

Abstract. We prove the time decay estimates L'(%) — L* (%), where Z is an infinite star-
shaped network, for the Schrodinger group e(~4*/#*+V) for real-valued potentials V satis-
fying some regularity and decay assumptions. Further we show that the solution for initial
conditions with a lower cutoff frequency tends to the free solution, if the cutoff frequency
tends to infinity.
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1. Introduction

A characteristic feature of the Schrodinger equation is the loss of the localization
of wave packets during evolution, the dispersion. This effect can be measured by
L*-time decay, which implies a spreading out of the solutions, due to the time
invariance of the L?>-norm. The well known fact that the free Schrodinger group
in R" considered as an operator family from L' to L decays exactly as ¢ - t~"/?
follows easily from the explicit knowledge of the kernel of this group [23], p. 60.
For Schrédinger operators in one and three space dimensions with potentials
decaying sufficiently rapidly at infinity, similar estimates have been proved in [16]
for the projection of the group on the subspace corresponding to the absolutely
continuous spectrum (without optimality). This approach uses an expansion in
generalized eigenfunctions together with estimates developed in inverse scattering
theory [15]. We also refer to [27] for the Schrddinger equation on the half-line
with Dirichlet boundary conditions at 0.

In this paper we derive analogous L*-time decay estimates for Schrédinger
equations with decaying potentials on a one dimensional star shaped network.
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Further we state a perturbation result showing that high energy solutions behave
almost as free solutions. For this purpose we furnish an explicit estimate of the
difference in terms of the lower cutoff frequency, the potential and time. This
result seems to be new even on the line.

Before a precise statement of our main results, let us introduce some notation
which will be used throughout the rest of the paper.

LetR;,i=1,...,N,be N (N € N, N > 2) disjoint sets identified with (0, +o0)
and put # := U,ivzl Ry. We denote by f = (fi)yy..y = (fi,--., fw) the func-
tions on Z taking their values in C and let fj be the restriction of f to Ry.

Define the Hilbert space # = [, L*(Ry) with inner product ((uz), (vx))

Z,i\': 1 (K, v) 12(g,) and introduce the following transmission conditions:

N
v € [[ C(Ro) satisfies u;(0) = ux(0) ~ Vi,k =1,...,N, (L)
k=1

(k) =1

jerey

N duk

07) =0. 1.2
> H0) (12)

N
(Ur)j—r,. v € H C'(Ry) satisfies
k=1

Let Hy : Z(Hy) — A be the linear operator on # defined by:
N
D(Hy) = {(uk) e [[ H?(Re); () satisfies (1.1), (1.2)},
k=1

d*u
Ho(ux) = (Ho kt)jey, n = <— #) = —Agp(u).

This operator Hy is self-adjoint and its spectrum o(Hy) is equal to [0, +c0) (see [4]
for more details).

For any s € R, let us denote by L!(#) the space of all complex-valued measur-
able functions ¢ = (¢, ..., ¢y) defined on Z such that

N

16111y = L I dr =3 j ()| <> dx < oo,

k=1

where {x) = (1 + |x|2)l/2. This space is a Banach space with the norm || - || .1 ).

Let VV e L}(#). Denote by H the self-adjoint realization of the operator
2

—W—k V' together with the transmission conditions (1.1) and (1.2) on L?*(%).

From Chapter 2 of [12], we deduce that its spectrum satisfies

o(H) = [0,+00) U {a finite number of negative eigenvalues}.
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Dispersive effects and high frequency behaviour for the Schrodinger equation 311

We first verify that the free Schrodinger group on the star-shaped network # sat-
isfies the following dispersive estimate (see Section 3)

||eitH0||L1(%)—>L“«(2) <Cl'? 10

Our goal is then to assume non restrictive assumptions on the potential V" in terms
of decay or regularity in order to get a similar decay for the Schrodinger equation
with potential V. More precisely, we will prove the following theorem.

1.1 Theorem. Let V € L; (%) be real valued, with y > 5/2 and assume that (4.38)
below holds. Then for all t # 0,

le™ Puc(H) 1y < Cle| 712 (1.3)

where C is a positive constant and P,.(H) is the projection onto the absolutely con-
tinuous spectral subspace.

The assumption (4.38) is satisfied by a large choice of potentials (see
Lemma 4.3 below). It allows to built the kernel of the resolvent (see Definition
4.11 and Theorem 4.12) and takes into account the ramification character of the
problem.

At a first attempt, we have assumed that V' € Ly1 (%), with y > 5/2 (in order
to be able to apply some appropriate estimates on the derivatives of the Jost
functions, see for instance Corollary 4.9), while a similar result probably holds
under the assumption that V' € L}(2) (see [16] in the case N =2). This decay
of the potential implies that we do not need the so-called non resonance at zero
energy assumption (see [16], pp. 163-164). For potentials V' € L!(#) such an
assumption would appear but it is a difficult and delicate question. Furthermore,
up to our knowledge, if V e L}(#), it is unknown how to built the kernel of the
resolvent.

As a consequence, we have the following L? — L?’ estimate.

1.2 Corollary (L? — L?" estimate). Under the assumptions of Theorem 1.1, for

l§p§2and%+#:1wehaveforallt;éo,

||€i[HPac(H)||L1)(.o)?)ﬂu’(,o/z) < Cly 12, (1.4)
where C > 0 is a constant.

Moreover we have the following Strichartz estimates which have been used
in the context of the nonlinear Schrodinger equation to obtain well-posedness
results.
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1.3 Corollary (Strichartz estimates). Let the assumptions of Theorem 1.1 be
satisfied. Then for 2 < p,q < +o0 and%—i— % = 1 we have for all t,

le™ Puc(H) f|

Lo Loay < Cllfl,  Vf € LY(2) L (%), (L.5)
where C > 0 is a constant.

As a direct consequence, see [14], we have the following well-posedness result
for a nonlinear Schrodinger equation with potential. Let p € (0,4) and suppose
that V satisfies the assumptions of Theorem 1.1. Then, for any uy € L*(%), there
exists a unique solution

ue C(R;L*A)n () L]

loc

(R; L' (1))
(¢,r) admissible

of the equation

{iu,—Aﬂu—i— Vu+ [ulf’u=0, t+#0,

u(0) = u®. (16)

Recall that a pair (¢, r) is called admissible if (¢,r) satisfies that 2 <r,¢ < +o0
and 2+

1
5
1.4 Remark. Another direct consequence of the dispersive estimate (1.3) or of the

LP? — L?" estimate (1.4) is that we can construct, as in [26], the scattering operator
for the nonlinear Schrodinger equation with potential.

While proving Theorem 1.1 we obtain as results of independent interest the
L*-time decay for the high frequency part of the group and a high frequency per-
turbation estimate:

1.5 Theorem. Under the assumptions of Theorem 1.1 we have

~ ZAPE
i, (g <(4 BH—1 7Vt £0 1.7
e ()l < (4 + 81700z, (17)
ey, (H) — ey, (Ho)l,., < BLAL 72 20, (18)

Here y, is smoothly cutting off the frequencies below Ay. Expressions of A, B in
terms of the cutoff function but independent of Ay are given in Theorem 5.11.
In particular we have for any f € L'(#) that

ey (H)f — ey, (Ho)f  for dg — o0

uniformly on R for every fixed t > 0.
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Dispersive effects and high frequency behaviour for the Schrodinger equation 313

The perturbation estimate allows the simultaneous control of the smallness of
the difference between perturbed and unperturbed group in terms of the cutoff fre-
quency, the L'-Norm of the potential and time.

Because the reflection and refraction of wave packets for the unperturbed
Schrodinger equation on the star shaped network is known ([2] for the case of 3
branches), the above perturbation estimate furnishes an approximate spatial infor-
mation on the propagation of high frequency wave packets with explicit control
of the error. Note that the high frequency perturbation estimate seems to be new
even for the Schrodinger equation with potential on the line and represents in this
case an improvement of [16]. In [16], estimate (1.7) is furnished, but without
explicit control of the dependence of the coefficient of || “1/2 on 2. Without this
control estimate (1.8) is not useful to prove the convergence of the solution to the
free solution.

The paper is organized as follows. The second section deals with a counter-
example which shows that the decay of the Schrédinger operator from L'(%) to
L* () as |t| goes to infinity is not guaranteed for all infinite networks. In Section
3, we prove the dispersive estimate for the free Schréodinger operator on star-
shaped networks and we give some direct applications. The expansion in gener-
alized eigenfunctions needed for the proof of Theorem 1.1, is given in Section 4.
In the last section we give the proof of the main results of the paper (Theorems
1.1 and 1.5).

The main lines of our arguments are the following. The counter example (Sec-
tion 2) uses explicit formulas for eigenfunctions of the laplacian on infinite trees
from [22]. The L*-time decay of the free Schrédinger group on a star shaped net-
work is reduced to the corresponding estimate on R using an appropriate change
of variables (Section 3). The task of finding a complete family of generalized
eigenfunctions for the Schrodinger operator with potential on the star shaped net-
work is reduced to the case of the real line by separating the branches and extend-
ing the equations on R with vanishing potential. The generalized eigenfunctions
on R resulting from techniques from [15] are then combined to families on the
network by introducing correction terms to establish the transmission conditions.
Using results of [15] for the real line case, we derive estimates showing the depen-
dence of the generalized eigenfunctions on the potential. This enables us to prove
a limiting absorption principle and then to derive an expansion of the Schrédinger
group on the star in these generalized eigenfunctions (Section 4) following [5],
[6]. The proof of the L*-time decay is divided in the low frequency and high
frequency part, essentialy following the lines of [16]. For the high frequency
components, the potential appears as a small perturbation: the resolvent of the
Schrédinger operator can be expanded in a Neumann type series in terms of the
resolvent of the free Schrodinger operator. By inserting this in Stones formula
and exchanging the integration over the frequencies and the summation of the
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Neumann series, one reduces the estimate to the free case. For the low frequency
components one uses the expansion in generalized eigenfunctions derived in Sec-
tion 4, especially the qualitative knowledge of the dependence of the generalized
eigenfunctions on the potential. This enables us to construct a representation of
the solution as the free Schrodinger group acting on a well chosen (artificial) initial
condition, which encodes the influence of the potential. Then one concludes using
the results on the line.

Our approach does not furnish optimal results, as for example the estimate in
[23], p. 60 for the free Schrodinger group or the results of [7]. This is due to the
fact, that the use of Neumann type series and qualitative estimates from inverse
scattering theory are to rough for this purpose. We conjecture that optimal esti-
mates could be achieved in terms of an asymptotic expansion of first order follow-
ing the lines of [7], where this problem has been solved for initial conditions in
energy bands for the Klein Gordon equation with constant but different potentials
on a star shaped network. It might be useful to find a way to represent solutions
for general potentials by approximating these potentials by step functions, inspired
by [13].

Note that the general perturbation theory for semigroups [18], Ch. 9, Thm.
2.12, p. 502 is applicable but not useful for our purposes: it yields that the
difference between the (semi-)groups generated by the Schrodinger operator
with potential and the free one grows at most proportionally to ¢, which engulfs
the time decay at infinity. Nevertheless it furnishes additional information for
small 7.

The Trotter product formula [23], Thm. X.51, p. 245 is also applicable, but
cannot establish L*-time decay either: it consists of an approximation of the per-
turbed group by long alternating compositions of values of the free Schrodinger
group e and the group of multiplication operators with e’ but for small values
of . Thus even the explicit knowledge of the kernel of the free Schrédinger group
is not useful for time-decay, because the factor r~!/2 becomes effective only for
large 7.

The direct application of the variation of constants formula leads to the same
phenomenon as the perturbation for semigroups: without a refined study of the
superposition of the waves generated by the potential, the rough estimation of
the integral term leads to a bound growing as a constant times .

In [9] the authors prove dispersive estimates for Schrodinger equations on infi-
nite trees with semi-infinite ends with Kirchhoff conditions at the nodes. The
equations do not have a potential, but the operator has piecewise constant coeffi-
cients with finitely many discontinuities on each branch. The coefficients are
bounded between two values. Here the difficulty comes from the necessity to
give a recursive formula for the infinitely many terms of the resolvent of the
operator. The inverse of the Wronskian is estimated using the theory of almost
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Dispersive effects and high frequency behaviour for the Schrodinger equation 315

periodic functions. In [8], [11] the authors study the dispersion for the Schrodinger
equation on the line with irregular coefficients.

In [1] the authors consider Schrodinger equations with attractive cubic non-
linearities on a star-shaped network with three branches. At the node they con-
sider Kirchhoff-conditions, J- or é’-conditions. They indicate that the equation
arises in quantum field theory, in the description of the Bose-Einstein condensates
and electromagnetic pulse propagation in optical fibers. The Kirchhoff condi-
tion corresponds to a simple coupling (“beam splitter’’), whereas the d-condition
describes the interaction with a point-potential. The authors obtain charge and
energy conservation laws and deduce from these facts conditions for global in
time existence of solutions. Further they treat the existence life time of solitary
waves and prove that their transmission and reflection at the node is governed
by the associated linear laws, due to the shortness of the interaction time with a
point-shaped potential. However the authors do not consider variable poten-
tials on the branches as it is done in our paper. Therefore the linear part of their
paper has no substantial intersection with our setting but might motivate further
studies.

In [2] an analogous setting as in [1] is considered, but with nonlinearities of
order 2u + 1 and only the J-potential of strength o at the node. The existence
of stationary solitons in both the attractive (« < 0) and repulsive (« > 0) case is
proved. Again there is no significant interference with our results.

In [10] the authors consider free (linear) Schrédinger equations on tree-shaped
networks with d-potentials at the nodes. As a special case appears the star-shaped
network with a delta-potential at the center. In this setting a L' — L*-decay esti-
mate is proved. Due to the fact that the J-potential plays the role of a trans-
mission condition, the methods are those for a problem with constant coefficients,
and therefore there is only a marginal interference with our results. Nevertheless
the result is instructive. The authors add the existence and uniqueness of a global
in time solution of the same problem with a (attractive or repulsive) power non-
linearity of order p + 1.

The paper [20] deals with the general question of constructing generalized
eigenfunctions of all possible self adjoint extensions of the Laplacian on networks
with semi infinite ends. The result is formulated in terms of a so called scattering
matrix, which indicates the reflected and transmitted flow for the stationary
problem. For complicated networks the authors construct a product formula link-
ing the scattering matrices of sub networks to the scattering matrix of the original
network. The results of this article could serve to generalize our results to star
shaped networks with general transmission conditions.

The article [21] considers discrete analogs of nonlinear Schrédinger equations
on star-shaped networks including the existence of solitons, constants of motion
and the calculus of transmission probabilities.
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Finally [25] treats the stationary (cubic) nonlinear Schrodinger equation
for simple but more general networks as the star shaped ones as trees or helices.

Explicit solution formulas are obtained.

The last two papers are instructive for further developments of our approach.

Acknowledgements. The authors thank the referees for many valuable remarks

which helped us to improve the paper significantly.

2. A counterexample

Consider the infinite network 2 = ( J, _ s, where each edge e, = (n,n + 1) with

the set of vertices 7~ = (
real numbers o = (o)

neN

we define the Hilbert space L?(Z,«) as follows

neN>

L, o) = {u = (u),ony  tn € L*(e,) ¥n € N such that

S| ol de< o},

neN

equipped with the inner product

(u,0) = Z ocnj Uy (X)va(x) dx,  Yu,v € L*(R,0).

neN
Similarly for all £ € N*, we set
HR,0) = {u= (u,),.n € L*(R,0) : (Ltff))nEN e L*(#,0) V¢ € {1,2,...,k}},

where /) means the / derivative of u, with respect to x.
Now we consider the Laplace operator —A, (depending on «) as follows:

D(—A,) = {u= (u,), . € H*(R,0) : satisfying (2.9), (2.10), (2.11) below?},

uo(0) =0, (2.9)

uy(n+1)=u,p(n+1), VneN, (2.10)
dul’l _ dun+l

Otna(n‘i‘l)—(%wﬁ] dx (n+1), Vn e N. (211)

For all u € 2(—A,), we set

d*u
—Au= (— ") .
dx2 neN

vy, where v, = {n}. For a fixed sequence of positive
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By Section 1.5 of [22], this operator is a non negative self-adjoint operator in

L*(R, ).
Moreover in Theorem 1.13 of [22] it was shown the

2.1 Theorem. For all k € N*, —k*n? is a simple eigenvalue of —A, if and only if
s=) —< o (2.12)

In that case the associated orthonormal eigenvector Kl = (o) _ is given by

2 71 (ﬂ*l)k
Ik — /= =Nt sin(kn(x —n)), Vxee, neN.
s o

Now assuming that (2.12) holds, then for any k € N* we consider the solution
u of the Schrodinger equation

Ou — iAu =0,
u(t =0) = i,

or equivalently solution of

Oty — i@iun =0, ine, x R,
up(0,1) =0, on R,
uy(n+1,1) = up 1 (n+1,1) on R, Vne N,
oy (n+ 1, t)—oc,,+1un+1(n+1,t) on R, Vn e N,
This solution is given by u(f) = e*”kz’zzgo[k]. Moreover simple calculations show

that

2 2 1
00 = Esup L intent— ), = Zsup L
neN On S neN Uy

which is independent of 7 and then does not tend to zero as |7 goes to infinity. On
the other hand u(z = 0, ) belongs to L'(%), since we have

()23 JZHMM M|z,

neN Ofn

V2s.

IA

In other words, we have proved the
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2.2 Theorem. If (2.12) holds, then the norm of the Schrédinger operator e™: from
LY(R) to L* () does not tend to zero as |t| goes to infinity.

This counterexample shows that the decay of the norm of the Schrodinger
operator from L'(#) to L™ (%) as |t| goes to infinity is not guaranteed for all infi-
nite networks. Hence the remainder the paper is to give some examples where
such a case occurs.

Let us notice that our non dispersive property comes from the infinite numbers
of discontinuities of the coefficient, since for a finite number of discontinuities
or BV coefficient with a small variation of the coefficients, the dispersive property
holds, see [8], [11].

3. Dispersive estimate for free Schrodinger operator on star-shaped networks

In this section we state the L*-time decay estimate for the free Schrodinger equa-
tion (and some consequences) on star shaped networks. For completeness we give
the proof, although it is essentially the same as in [1], [17].

3.1 Theorem (Dispersive estimate). For all t # 0,
™1l 1 oty < Clel ™7, (3.13)

where C > 0 is a constant.
Proof. Letv;, j=1,...,N, asolution of the following problem

o0y = —idty;, RT x R,

vj(£,0) = v1(2,0), i@xvj(t, 0)=0, RT,

=1
v;(0,x) = v)(x), [Fé/+.

If we denote by w; = Zjﬁl vyand wy =v; — v, V, j=2,...,N.
Then w, satisfies

dwy = —id*w;, RT x RT,
owi(2,0) =0, R,
N

wi(0,x) = ZUJQ(X), R*,

=1

and w;, j =2,..., N, satisfies the following problem
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ow; = —idtw;, R x RY,
Wj(l, 0) =0, R+,
wi(0,x) = v (x) — ) (x), R*.

By an odd reflection transformation applied to w;, we obtain w;(f,x) =
wi(t,x), x>0, . .
1(5,) which verifies
—wi(t,—x), x<0,

~ 102 ~ 2
6tw1 = *laxwl, R s

N
Wi (O,x) = Zﬁj(')(x)a Ra
Jj=1

where 7; = 0 ,j=1,...,N. So, according to the dispersive

/ —v(=x), x<0,
estimate for Schrodinger operator on the line (see [18] or [23] for more details), we
have

0
0 {vj (x), x>0,

N
~ —1/2 ~
1lle ey < 191l gey < €280
=

V(v)) e L*(#) n L' (%), (3.14)

where C > 0 is a constant.
Which implies

N
-12 0 0 2/, 1
Wil e ) < 2C11 H;_l v; HLI(W)’ V(v)) € LY(#) n L ().

For j=2,..., N, we notice that w; is solution of the free Schrodinger equation on
the half-line, hence by Theorem 2.1 of [27], we get

—1)2 p
Will Lo my < Clel Pl = ol gy, Y0) € LX(#) ALY (#), (3.15)
where C > 0 is a constant. 1
Since, v; = w; +v1,Vj=2,...,N and v; + Zj]iz("vj +v)=w =0 = W
l —n
NZ/:z Wj-

Thus (3.14)—(3.15) imply that
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4C a0 0
HUIHL”(R*) =< WM Z(”U, ||L'(R+) + vy ||L1(R+))7
j=2

V(v)) e L*(#) n L' (%), (3.16)

where C > 0 is a constant.
According to the above we have

N
—1/2
o1l o ey < ACHT2 S 1001 e (3.17)
Jj=1
and

10ill L=y < Wil e ey + 011l e ety

—1/2
<2C107 (N0 ey + 00N )

N
+4Cl] TP N ey, V) € LA(@) ALY (2),  (3.18)
j=1

N
97l ) < 8CIT 2 ol ey, YP) € LA(R) ALY (2), ¥ = 2. (3.19)
j=1

Finally we obtain for all t # 0, (v)) € L*(%) n L (%),
1/2 a 1/2
@) oy < BCIT2D " Mo 1y = 8CI 21D 1wy (3:20)
j=1
which implies (3.13). ]

As a direct consequence of the dispersive estimate for the free Schrédinger op-
erator on a star-shaped network, we can obtain the following Strichartz estimates
(for a direct proof, see [17])

3.2 Corollary (L? — L”" estimate). For 1 < p <2 and % + # =1 we have for all
t#0,

HeirHo ||L1’(.‘7£)~>Ll)/(%) < C|l(|71/17+1/27 (3.21)

where C > 0 is a constant.
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Proof. According to (3.13) we have

Slilgltll/leei’H"flloo <Clfll,  Yf e L' (%) n LX)
t

Interpolating with the L? bound ||/ f|, = || f]|,, leads to

sup || V2P etthp) L, < ClI SN, Y e LY(R) A L), (3.22)

where 1 < p < 2. Itis well-known that via T*T argument (3.22) gives rise to the
class of Strichartz estimates

. 2 1 1
HeltHofHL;/(L;’) <1l V;-i-l—) =5 2<qg=<+4w,2<p<cw. (3.23)

The endpoint ¢ =2 is not captured by this approach but by the approach

develloped by Keel and Tao in [19] So the estimate (3.23) is valid for all
2<p,g< 4w satlsfylng +- 1_ =5 L and we have also,

|| emeryd],, , < CIFlL L,

HJ (=9t (5) ds‘ < CHF||L“(RA,LS’(9?))’

Li(®,L" (%))

for all admissible pairs (¢, p) and (r,s) satisfying 2+ =3,2 <¢,p<+o0. [

1
P

Corollary 1.3 can be proved in the same way.
According to (3.23) and [14], we have for p € (0,4), that for any uy € L*(%)
the equation

—Agu+ufu=0, t#0,u=uy t=0,

admits a unique solution u € C(R, L*(%)) N (), ) aamissible Live (R L (7).
For similar results about nonlinear Schrodinger equation on graphs, we refer
to [2], [21], [25].

4. Expansion in generalized eigenfunctions

The goal of this section is to find an explicit expression for the kernel of the re-
solvent of the operator H on the star-shaped network defined in Section 1. First
we separate the branches by extending the potential of the Schrédinger operator
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by zero on (—c0,0). Using [15], we construct N families of generalized eigenfunc-
tions of the resulting N Schrodinger operators on R, which we recombine on the
network. This approach can be compared with the ones developed for Klein-
Gordon equations in Z by [5], [6].

Foreach j =1,..., N, we recall that R; is identified to (0, +c0) and denote by
V; the restriction of ¥ to R;. Consider R; as a subset of R and denote by V; the
extension of V; by 0 outside R;.

Now according to [15] (see also [26], [27]) forallz € C* := {z; € C: Iz, = 0},
there exist two functions f; . (z,-) that satisfy the differential equation

~f;" (2, %) + Vi(x)fi+(z,x) = 22f.4(z,x)  on R, (4.24)
and that have the asymptotic behaviour
fi+(z,x) — e =0 asx — +oo. (4.25)
According to Section 1 of [15] (see also [26], p. 45) we write
S22, %) = €5y 4 (2, ),

to remove the oscillations of f; ; at infinity. The functions m; ;. are the unique
solutions of the Volterra integral equations:

+0o0 eZiz(yfx) —1~

mslen) =1+ | S ma e d, @20
x eliz(yfx) -1 -

mj _(z,x) =1 +J ST Vi(y)mj _(z,y)dy, (4.27)
o iz

and are called Jost functions (see [15], [24]). Recall that Lemma 1 of [15] (see also
(2.5) of [26]) implies that
Im; (z,x)| < C, Vxel0,0),zeC", (4.28)

1+x

P <l+C——
(29| = 14 O

Vx e [0,00),ze CY, (4.29)

for some C > 0. Accordingly as f; +(z, x) = e**m; 4 (z, x), we get
|fi+(z,x)| < C, Vxel0,00),zeC™, (4.30)
1fi—(z,x)] < C(1 +x)e>,  Vxe[0,00),zeC". (4.31)

Property (4.25) implies the existence of functions 7}, R; 1, R, j=1,...,N,
called transmission and reflection coefficients, such that
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1 e R; 2(}") .
f‘. (X, V) ~ e + /s e trx, X — —00
T;(r) T(r)
i R; 1(7‘) e
f‘,f(X, V) ~ e irx + /s enx, X — 0
8 Tj(r) Tj(r)

for r € R. For future purposes, for all real numbers r, we need the scattering ma-
trix S;(r) € C*** associated with (4.24) given by

s = (g0, )

and that is continuous on R. According to [15], 7; has a meromorphic extension
to C* (with a finite numbers of simple poles that are non zero purely imaginary
numbers) that is given by (see [15], p. 145)

1 1 [T% .
=1 % () - 432
T(z) QiZJOO Viy)mj y(z,y)dy VzeC (4.32)

Since V; has its support in (0, +0), by Remark 10 of [15] R; » admits also a mer-
omorphic extension on C*\R (with the same poles as the ones of 7}) that is given
by (compare [15], p. 145 when z is real)

R; 1 (T .. -
J"Z(z) J EVi(yym; (z,y)dy  VzeC™. (4.33)

Due to the fact that V; is zero on (—o0,0), the generalized eigenfunctions f; .
of the Schrodinger operators on the line have the following properties.

4.1 Lemma. Forallze Ct, z # 0, we have

fi-(z,x) =e ™  ¥x<0, (4.34)
1 i R“z(Z) —iy

fii(z,x) = P —— e ™ Vx<O. 4.35

J +( ) 7—}(2) 7—}(2) ( )

In particular, it holds

fi-(2,0) =1, (4.36)

(2,0 = 1 R2()

() (4.37)
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Proof. From the expression (4.27), we directly get (4.34) and (4.36). The situation
is more complicated for f; ;. Indeed from the expression (4.26), we see that

+0o0 eZiz(y—x) —1

M) =1+ | Vi(m (2, ) dy,  ¥x <0,

0 2iz

This is equivalent to

1 o —2izx p+o0 o
mH(Z’x)_lZiZJo Vilyom (2 v)dy + =5 JO Vi (y)my 4 (2, y) dy
1 (7% -
=1 _EJ_OC Vi(y)m; +(z, ) dy
ef2izx +o0 o
T J I Vy(y)my 1 (z,y)dy,  ¥x <0.

ﬁ Rﬁg given in (4.32) and (4.33), we

obtain (4.35). According to this identity we trivially have

Hence according to the expression of and

1+ Rjs(2)

SO =)

For our next considerations, we need that

fj,+(27 0) 7é 07
at least for all z € C* close to the real axis.

Therefore we make the following assumption:

+0o0
1 —|—J xVi(x)m; +(0,x)dx #0, Vj=1,...,N, (4.38)
0

that allows to obtain the next result.

4.2 Lemma. [f the assumption (4.38) holds, then there exists x > 0 small enough
and two positive constants Cy, Cy such that

C <f;+(z,0) <G Vze B, (4.39)
where B, = {z; € C" : 0 < Sz; <k}
Proof. Recall that

1+ Rj,z(Z)

SO =)
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By (4.32) and (4.33) we see that (see property IV of Theorem 1 in [15], p. 147)
there exist R, C > 0 such that

C
[ T5(2) = 1+ [R;2(2)] < Ek

Hence (4.39) holds for all |z| > Ry, with R, large enough.

Hf_’{f)(Z) is different from zero for all

z € R\{0} by using the properties II and V of/ Theorem 1 in [15], p. 146. Further-
more using (4.32) and (4.33), one easily checks that

V)z| > R. (4.40)

Now for |z| small, we remark that

. 1+ Rja(z) T

Consequently our assumption garantess that the continuous function f; . (-,0) is
different fom zero on the whole compact [— Ry, Roy] and therefore (4.39) holds for
all real numbers z € [~ Ry, Ro]. By the continuity of f; (-,0) on By for ¢’ small
enough, we deduce that (4.39) holds for all z € B, n{z; € C: Rz, € [-Ro, Ro]},
by choosing x small enough. O

The assumption (4.38) is technical but it is satified by a large choice of
potentials. Let us list some specific examples.

4.3 Lemma. 1. In the generic case, namely if

+o0
J Vi(x)my - (0, x) dx # 0,
0

then we have

+00
L | om 0.3) dx %0, (4.42)
0

if V; is non negative or if

+ 00
| viela<,
0

where p is the unique positive number such that pe’ = 1.

2. In the exceptional case, namely if

+o0
|, vitom 05 ax =0,
0

then (4.42) always holds.
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Proof. In the exceptional case, by Theorem 1 of [15], there exists a constant
C € (0,1) such that

|Ri2(r)] <C, VreR.

Hence
1+ R;
lim 1+ Rja(r) >1-C,
o= LAY

which implies that (4.42) holds.

In the generic case and if ¥ is non negative, then m; ;(0,-) is a non negative
function and therefore (4.42) directly holds.

In the generic case and if V; has no sign, then the considerations of Lemma 1
of [15], p. 133 shows that

m;,1(0,0)] = 1 — y;e”,

where y; = o 1|V;(0)| dt. Henceif 1 — y;e”r > 0, we deduce that m; , (0,0) is dif-
ferent from zero. This yields the conclusion since

mj+(0,0) = £,+(0,0) = lim £ (2, 0). O

Note that ; = 0 is an exceptional case.
We now prove that R; »(z) is continuous and uniformly bounded in B, if x > 0
small enough (suggested by Remark 10 of [15]).

4.4 Lemma. Forall j=1,...,N, there exists a positive constant C; such that
|Ri2(2)| < Cj,  Vze By, (4.43)
for k > 0 small enough.
Proof. By Theorem 1 of [15], there exists C; > 0 such that
|T;(z)| < Ci, VzeBy,

for > 0 small enough. Hence by (4.33) we deduce that (4.43) holds for all
|z| > €, for any € > 0.

For z in the ball |z| < e, we distinguish the generic case from the exceptional
one. In the generic case, by part V of Theorem 1 of [15], p. 150, we know that

Ti(z) =oiz+0(z), forz—0

with o; # 0 and again using (4.33) we deduce that (4.43) for |z| <.
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In the exceptional case, by (4.33) we may write

7(2)

Ria®) =22 (| @ = 0y

" Jo B ) = 0,) ),

because j0+ “ Vi(t)m; 1(0,7) dt = 0. Therefore we obtain that

400 eZi:y -1

R < (] Vim (=) dy|

0 2iz

+0o0
- mj,+(zvy)_mj,+(0ay)
+H0 Vi) 2iz dyD‘

For the first term of this right hand side, due to (4.28) we can directly apply the
dominated convergence theorem to conclude that

+0o0 eZizy -1 +o0
L “n Vi(y)mj o (z,y) dy — JO yVi(y)m; (0,y)dy asz— 0.

Since this limit is finite, we deduce that

+o0 eZizy -1
| St rm e <
0 1z

for |z| small enough.

For the second term, we use the same argument. Namely since I;} belongs to
LI(R), by Remark 3 of [15], the derivative ry . of my . with respect to k exists
and is continuous on C*. Moreover by Lemma 2.1 of [26], p. 46, there exists
C, > 0 such that

[, 4 (z,9)| < G2, Yx>0. (4.44)

Consequently by using the mean value theorem we have

m; (2, 9) —m; (0, y)  rin (02, y)
2iz 2i ’

for some 0 € (0,1) and therefore

m; (2, y) — m; (0, y) - G
2iz - 27
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The application of dominated convergence theorem yields

+o0

o m; (z,y) —m; (0, )
[ 22 O gy | 0,0y asz 0

The conclusion follows since this right-hand side is finite. O

We are now ready to give the different families of generalized eigenfunctions
of H.

4.5 Lemma. Under the assumption (4.38), then for all : €B., z#0 and all je
{1,..., N}, there exist two generalized eigenfunctions F TR — C of H defined

by
Fi() = FEL) vxe R,
where F j is in the form
{F;,’f:(x) ¢ +.1(2)f1.+(2,%) + ¢ +.2(2) f. 7 (2, %), 4.45)
Fil(x) = die () fex(zx), Yk #J,

and ¢j +,1(2), ¢ +,2(z)and d; i 1 (z) are given by (modulo N)

ARIEAGS (2,0
6a(2) = L2ED) (g1 0) 1 £ (.0) 3y Jex0) >)

Wjx(z) \F = fix(2,0)
. - __ﬁJrl,?(ZJO) " (2 , fk+ )
G207) = Wi +(2) <f 5:0)+ 52(50) ;fk+ ))
djk+(z) = fjf/tlf(iz’og), Vk # J,

Wi +(z) is the Wronskian relatively to f; ., namely

I/V]}i(z> = »fj:vi(z’ x)fj.',/i(z7 X) - fj.',?(z7 x)fjfi(za X),
that is constant in x and different from 0 (since z # 0).

Proof. We look for generalized eigenfunctions in the form (4.45), the constants
¢ +1(2), cj +2(z) and d; x,+(z) will be fixed below in order to guarantee the conti-
nuity of F 7 at 0 and the Klrchoff law. This will show that F 7 are generalized
elgenfunctlons of H since F satlsﬁes

d2

—@F ( )+V( ) Ik(z X) = ZFJ;rlJc on Ry.
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Since each branch j plays the same rule, we can take j=1 and write
c1,+,1(2) = c1, ¢1,4.2(2) = ¢z and d, k., +(z) = di. The continuity at 0 is equivalent
to

clfl,i(zao)_‘_czfl-,?(zvo) defk_;(Z,O) Vk # 1,
while the Kirchoff law is equivalent to

N

ef) 1 (2,0) + o ff £(z,0) + > defi £(z,0) = 0.

k=2
Since by Lemma 4.1 f; +(z,0) is different from 0, we will get

d2f2‘¢(27 O)
fk,?(za 0) ’

and the continuity and the Kirchoff law reduce to

lel,J_r(Z; 0) + C2f1-,$(27 O) = d2f2 +(Z O)
7420
Aff 1(2,0) + e2ff £(2,0) = —do f5,5(2,0) iy 75y
This 2 x 2 linear system in ¢; and ¢, has a unique solution since its determinant is

exactly W +(z). The resolution of this system leads to the conclusion with the
choice d, = 1. |

d, = Vk # 1,

4.6 Remark. The choice (4.45) was guided by the simple case when N = 2 and
Vi =0, k =1,2. Inthat case, we recover the standard generalized eigenfunctions,
namely

as well as

According to Lemma 4.1, we see that

¢on(z) = __izN
sl Wii(2)
which is always different from 0 if z € C*, z # 0, while

lZf+1 ( z,
W;-(2)

¢,-1(2) =

k=1

is not clearly different from zero. This is investigated in the next Lemma
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4.7 Lemma. Under the assumption (4.38), there exists k > 0 small enough such
that

satisfies
|s(z)| = C, VzeB,, (4.46)
for some C > 0.

Proof. Clearly s is continuous on B,:\{0} for x small enough, hence we first ana-
lyze the behaviour of s near z = 0.
Forz e B\{0} and k € {1,..., N}, we write

1 — Rkﬁz(z) - 1 — Rk’z(z) Tk(Z)
1+ Rkﬁz(z) N Tk(z) 1+ Rkﬁz(z) '

si(z) ==

The absolute value of the second factor is uniformly bounded from below on B,
thanks to Lemmas 4.1 and 4.2.

For the first factor, we distinguish between the generic and the exceptional
case: In the exceptional case,

|Ti(2)| = ¢k, Vze B,

for some ¢, > 0 (and x small enough) and therefore s; is continuous on B,.
In the generic case, using (4.32) and (4.33), we may write

1— Rk.Z(Z) +oo 1 + eZizy _
e 1 _ e N .
Te(2) JO 5 Ve o (z,)dy  ¥zeCPz#0

As underlined before, the derivative . ;. of my 4 with respect to k exists, is con-
tinuous on C*and satisfies (4.44). Accordingly, using the mean value theorem and
the dominated convergence theorem, we get for all z # 0 small enough

1 — Rk z Vi

R
Ty (z) iz

where r is a continuous function at z = 0 and v, = j0+ “ Vi()ymy (0, 1) dt (that is

different from zero because we are in the generic case).
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In the same manner we can refine (4.41) and prove that

1+ Ri2(z) (1)
—— L =yt zr,(2),
Tk(Z) Vi k ( )

where (1) is a continuous function at z =0 and y, = 1 + foﬂo tVi(t)my +(0, ) dt
that is a real number different from 0 by our hypothesis (4.38). Consequently for
z small enough we will get

Ty(z) )
—_— = +zr,”’(z), 4.47
1 +Rk12(z) yk k ( ) ( )
where @ is a continuous function at z = 0.

The two previous expansions show that for all z # 0 small enough
__ Y .0
w(2) =~ (o)
where () is a continuous function at z = 0.
In summary, we have obtained that for all z # 0 small enough

§(2) = -+ S X,

1z k generic Tk

where r is a continuous function at z = 0.
Now we can distinguish two cases:

. Vi . . . .
1) If 374 seneric — = 0, then s is continuous at z = 0, and therefore s is continuous
on B T
e

i) IfK:=>", generiC;—Z # 0, then s blows up at z = 0 and therefore there exists dy
small enough such that

5G)| = = V2| < . (4.48)

2|

Now for |z| large, by (4.40) we have

lim s(z) =1,
|z|=+00

hence there exists Ry large enough such that

N
Rs(z) > 5 Vz € By :|z| > Ry. (4.49)
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For small value of |z|, we first restrict ourselves on the real line. First we notice
that

- B 2
Rsi(z) = ml Ria(z) 1 |Rk’2(z)|2.
L+ Ri2(z) |1+ Rpa(2)]

But according to parts I and V of Theorem 1 of [15],
|Ri2(z)| <1, VzeR,z#0,
and therefore
Rsp(z) >0, VzeR,z#0.
Now thanks to (4.41) and to the relation
L= [Rix(9)* = | Tw (=),
valid for all real numbers z, we deduce that

1 [Reo(2) 1
e 2 2
S+ Rea(2)[7 %k
where y, = 1 4+ f0+ “ tVi(t)mj (0, ) dt that by hypothesis is a real number different

from 0.
This shows that

N
lim Rs(z) = Y,

z—

zeR k=1

and consequently as s is a continuous function on R that is different from zero
for all real numbers, due to (4.49), it satisfies

Rs(z) > C, VzeR, (4.50)

for some C > 0.

In the first case mentioned before, namely if K = 0, then by the uniform con-
tinuity of $s on the compact set B, n{z; € C:0 <z < Ry}, where Ry is the
parameter introduced above, we deduce that

Rs(z) = C/2, VzeBon{zieC:lz1] <R}, (4.51)
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if k' is chosen small enough. In that case the conclusion directly follows from
(4.49) and (4.51).

In the case when K # 0, we use the uniform continuity of Rs on the compact
set B.n{z eC :‘% <l|z1| < Ro} (where R, do are the parameter introduced
above), and (4.50) to conclude that

0
Rs(z) = C/2, VzeBen {Zl eC: ?0 <zl < Ro}, (4.52)

if k' is chosen small enough.
In this second case the conclusion follows from (4.48), (4.49) and (4.51). [J

4.8 Corollary. Under the assumption (4.38), for k > 0 small enough there exist two
positive constants ¢y, ¢ such that

lcj—1(z)W; —(2)| = c1]z|, Vz € By, (4.53)
lcj—2(2)| < e2ls(z)|, Vze B (4.54)

Proof. As

_ i2ﬁ+1,+(27 O)

¢j,—1(2) T7%E)

5(2),

by the previous Lemma and Lemma 4.2, we deduce that (4.53) holds.
By its definition and Lemma 4.1, we may write

¢ a(2) = Z.ZJ?;VT_((ZZ,)O) (1 - Rk(2)>7

hence thanks to the definition of s(z), we obtain

. Sin+(20) (2R 5(2)
¢j,-2(z) =iz W, _(2) <1 + R 5(2) +S<Z)>'

Now recalling that

W, (2) = =Wl =~
we can write
o) = LB (FROVE o). @y
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By Lemmas 4.1, 4.2, 4.4 and 4.7 we deduce that there exists C; > 0 such that

201 < 1+ < (‘o+ @ )bl

with the constant C from (4.46). O

4.9 Corollary. Under the assumption (4.38), and if V. € L}l, (0, 00) with y > 5/2,
forallk =1,...,N, then for all R > 0, s~ belongs to H'(—R, R).

Proof. With the notation from the previous Lemma, we see that r is given by

r(z) = Jo ’ V;(Zy) (2my,+(0, ) — (1 + X my 4 (z, y)) dy,

and is continuous on R. Moreover for z € R* = R\ {0} we easily see that ry is dif-
ferentiable at z and that

o) == [ 0ms0.9) — 0 ) + 2 )

where for shortness we have set
g1 (2,9) = (1+EP)my 4 (2, 9).
But the mean value theorem implies that
Ir, +(2, ) = 2my (0, y) + zgy . (0z, y),

for some 0 € (0, 1) and therefore

. Rl 4 ) ) .
ik(z) = Jo él(zy) (gk&(ﬁz, ) — g,c7+(z7 y)) dy, VzeR".

Gr+ (2, ) = 20y mye (2, ) + (1 + )iy 1. (2, ),
the previous identity can be equivalently written

+o0 eZi()zy _ eZizy

) = [ 1) (02

0
- m BZ, —m 2, e2i92y _ e2izy )
+ye2tzy k,+( y) k,+( y)_|_ : mk,+(27 y)
z 2iz
' . 0 .
+a +ez,e:y)mk,+( z, y)z. miy 4 (2, y)> &y, VzeR'.
1z
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Again by the mean value theorem we get

+oo
we) = | Vuw@w%%A&waww—w
+ ye* iy (0", y)(0 — 1)
+ pe? (0 — Vi 4 (2, )

mk,+<92a y) - mk,+(2, y)
2iz

+ (1 + &%) ) dy, VzeR",

for some 6',0" € (0,1). Note that we cannot apply the mean value theorem to the
last term since ., is not differentiable. But according to Lemma 2.2 of [26] we
have

|mk,+(z7 y) _mk,+(07 y)l =< C|Z|y727 vy > Ov (456)

for some C > 0 independent of z and y. This estimate, (4.28) and (4.44)
lead to

+o0

m@nscj Ve O? 4y + 17D dy, ¥z R
0

for some C > 0. Hence according to our hypothesis on Vj, we get
li(2)] < CI(1+|z]77?),  Vze R,

for some C; > 0.

This estimate and the continuity of r; imply that r; belong to H!(—R, R) for
any R > 0 due to the hypothesis y > 5/2.

In the same way we need to precise the splitting (4.47) on the real line (actually
near 0). For that purpose, we consider

gi(z) = M (2,0) ; mi+(0,0) . VzeR,

and show that g, belongs to H'(—R, R) for any R > 0. First g is continuous at 0
because my. , (z,0) is in C'(R). Second by Leibniz’s rule we have

_ my 1 (2,0)z — (Wlk,+(270) —my, (0, 0))

gk(z) 22
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and therefore by the mean value theorem we get

_ i (2,0) = iy 4 (02,0)

gi(2) . ;

for some 6 € (0, 1) and we conclude by (4.56).
But we see that

(e (20) ™ (- (0,0))”" () = ()
z z ViZ

with

h (Z) _ mkHr(Zv O) - mk,+(0a0) _ gk(Z)
g 2y (2,0)my. +(0,0) g+ (z,0)my +(0,0)

According to the previous considerations, g; belongs to H'(—R, R), for any R > 0
and since my.  (-,0) belongs to C'(R) and is uniformly bounded from below (due
to Lemmas 4.1 and 4.2), m is also in C'(R). Therefore /; also belongs to
H'(—R,R), forany R > 0.

Coming back to s, recalling that

=3 (142 ) ) 00

k=1

we have finally shown that
s(z) = iE + r4(2),
y4

where 7, belongs to H'(—R, R), for any R > 0.

Now we distinguish the case K = 0 to the other one: In the first case, we have
that s = r, belongs to H'(—R, R), for any R > 0 and since s is uniformly bounded
from below by the previous Lemma, we deduce that % belongs to H'(—R, R), for
any R > 0.

If K # 0, then

| z
s(z) K+ zrg(z)’

that is a continuous function in R and moreover for z € R*, we have after elemen-
tary calculations
d 1 ( iK — 2%7(2)
—_— ) ) ==
. 2
dz s (iK + zry(z))
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Since this right-hand side is in L>(—R, R), for any R > 0 (because the denomina-
tor is different from zero near z = 0, while by the previous Lemma, for any z € R*
s(z) > C is equivalent to [iK + zry(z)| > C|z]), we still conclude that 1 belongs to
H'(—=R,R), for any R > 0. O

4.10 Corollary. Under the assumption (4.38), and if V. € Ly1 (0, +00) withy > 5/2,
then the function

¢,-2(2)

R—-C:iz——2"————,
fj+1,+(270)5(2)

belongs to H'(—R, R) for all R > 0.

Proof. By (4.55), we see that

_ g2 1 2Ra(0)Ti(2) ) L 2RuB)
(2 0sz) 2 <(1 FRaE)s) )> 2 (ﬁ,+(z,o)s(z) I ))'

But according to Remark 10 of [15], 7} is analytic in a neighbourhood of the real
line, hence it is at least in C'(R). On the other hand f; ,(z,0) = m; .(z,0) is
C'(R) due to Remark 3 of [15], hence ﬁ has the same property due to Lemma
4.2. Finally the identity (4.37) of Lemma 4.1 yields

Rjo(2) = f;,+(z,0)T;(2) — 1,

hence it also belongs to C'(R).
The conclusion follows from the previous Corollary and these regularity prop-
erties (the product of a C! function with a H' function is still in H!). O

4.11 Definition (Kernel of the resolvent). Let the assumption (4.38) be satisfied,
then for all z € B,z # 0, all j e {1,..., N}, and all x € R;, we define (modulo N)

1 F?’j:(x)FZ’;.‘Jrl(x’), SJor x" € R;, x' > x,
J\E) 27 k

Wi(z) " z2,j z2,
K(x,x',2%) = W}(7) F;’;H(x)F_;’j(x’), Jor x' e R;, x' < x,
Jj\Z <7, )
e ol (FL(x'), for x' € Re, k #

where W)(z) = ¢;— 1 (2)djen. - (2) W (2).

4.12 Theorem. Let the assumption (4.38) be satisfied and let f € #. Then, for
x € R and z € B, such that 3z > 0, we have

[R(z%, H)f](x) :J K(x,x', 2% f(x") dx'. (4.57)

(AutoPDF V7 8/9/15 10:06) EMS (170x240mm) Tmath J-3037 PMS, 72:4 () PMU: (IDP) 27/8/2015 pp. 309-3556 PMS_72-4_01

(p. 337)




338 F. A. Mehmeti, K. Ammari, S. Nicaise

Proof. Fix je {l,...,N}, and z as in the statement. Then we notice that the
Wronskian W;(z) between F;; and FZZ:'-J’.H is different from zero, namely by
Lemma 4.5 we have ' '
—J p—Jtl
Wi(z) = [Fzz,j/‘aFZ{ﬁ J(x)

= FJ0ER 0 = () (F7 ()

= (CJ',—~1(Z)];‘,/7(Z)X) + Cfl'.,—,2(z)fj,/+(za X))‘ij+1,.i,—(z)ﬁ,+(zv x)
~ (6= 1) ;- (2, %) + ¢;,— 2(2) fj, 4 (2, %) )y, j, - (2) £+ (2, %)
GOy W ().

Hence by Lemma 4.2 and Corollary 4.8 this Wronskian is different from zero.
Consequently the same arguments than in Proposition 3.2 of [5] show that
(4.57) holds. The main ingredient is that we can apply the dominated convergence

theorem because the generalized eigenfunction F_,’/ is in L*(Ry) if j # k. ]

4.13 Remark. The choice of the kernel comes from this Theorem because Fti is
not in L*(Ry) if j # k. '

Here and below the complex square root is chosen in such a way that
Vr-eit = \/re®? with r > 0 and ¢ € [-7, 7). Accordingly for any positive real
number A and any ¢ > 0, we will define

that will be in C™.

4.14 Theorem (Limiting absorption principle). Let the assumption (4.38) be
satisfied. Let 6 > 0 be fixed. Then for all real numbers A >0, 0 <& <o and
(x,x') € #* we have

1. lim, o K(x,x',22) = K(x,x', ),

o

o>0
2. |K(x,x',22)| < %ey<x+x'), where 0 < y < max{1,d}.

Proof. The first part of the Theorem is direct since 4 + io tends to 4 as o > 0 tends
to 0 and consequently

VA io— ﬁ,

as o >0 tends to 0. We further use the fact that the functions f; .(-,x) and
J;'+(+, x) are continuous in C* for any fixed x € R.
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For the second part of the Theorem, we first use the estimates (4.30) and (4.31),
this last one implying

i (26, X)| < C(1 + x)e¥ < C(1 + x)e™ 0¥ yx e [0, +00), (4.58)
where we have used the property
Qz, = |SVA + ie] <max{l, (4 +ie)} = max{l,e}.

Notice that by the definition Wj(z) = ¢j _ 1(2)djs1,;,-(2)Wj _(z) and by
Lemma 4.2 and Corollary 4.8, we get
[W;(2)| = Clz, (4.59)

for some C > 0.
Now we distinguish between the following three cases:

1. If x,x" € R; with x’ > x, then

K(x,x', zf)

= (C./'-, —1(2) 1.~ (2, X) + ¢, - 2(2e) f,+ (22 x))d./“rl-,.i, —(2ze) S+ (22, x')

1 ¢,-,2(2)

= 4%7_(28)]‘(]",7(2;:7 x)fij(Zm X ) + I.ZSfj-H,-ﬁ-(ZS: O)S(Zg)

f/’, + (Zé.'a x)f/’., + (Zm x,) :

As there exists ¢ > 0 such that
W,-()| = clzl, VzecCt,
by Lemma 4.2 and Corollary 4.8, we obtain

< Ui o) 1 o)) 2]

K !
K (2] <

The estimates (4.30) and (4.58) then yields

C . N
|K(x,x',z2)| < B (14 (1 + x)emaxtlolr), (4.60)

2. If x,x" € R; with x” > x, then

1 .
—.J+l1
g

K(x, x’,zsz) = i
( I/VJ'(ZS) 2

X)FL (),
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and the above arguments (by simply exchanging the role of x and x’) yields

C ‘ ,
|K(x,x',z,)| < o (1+ (1 + x)emailold’y, (4.61)

3. If x € R; and x’ € R, with k # j, we have

1 . .
N —J+l —J (¥
Kooxsm) =gy s D)

= m@+1,_p(2£)ﬁ‘+(zs, X)dji1 k,—(2e) fi, + (2e, X).

Hence by Lemma 4.2 and the estimates (4.30) and (4.59), we obtain

C
K< S 4.6
Zg

The estimates (4.60), (4.61) and (4.62) imply the conclusion since |z,| > /4.
|

4.15 Theorem. Take f € # with a compact support and let 0 < a < b < +c0.
Then for any continuous scalar function h defined on the real line and for all
x € R;, we have

N
(h(H)E(a,b)f)(x) = 1 J( b)h(;L)ZJR F()SK(x,x', 2) dx’ di,

where E is the resolution of the identity of H.

Proof. The proof is similar to the one of Lemma 3.13 of [3] (see also Proposition
4.5 of [6]) and is therefore omitted. The main ingredients are the use of Stone’s
formula, Theorem 4.12 and the limiting absorption principle Theorem 4.14 (that
allows to apply the dominated convergence theorem). O

4.16 Remark. Theorem 4.15 directly implies that
o(HE[0,+0)) = 64.(HE[0,+0)) = [0,4+0) and  0,,(H) = (—©,0),

where g, is the absolutely continuous spectrum and o, the pure point spectrum.
The additional informations that

o(HE(—,0)) = 6,,(H)

and that this set is finite follow from Chapter 2 of [12].
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5. Proof of Theorems 1.1 and 1.5

The proof of the L -time decay will be carried out by manipulating the solution
formula in a way to reduce the problem to the well known case of the free Schro-
dinger equation on the line [23], p. 60.

We shall decompose an general initial conditions into a part with a spectral
representation with compact support and a part with a sufficiently high lower cut-
off energy (frequency). The technique will be different in the two cases.

5.1. High energy limit. For high energy (frequency) initial conditions, we can
use an expansion (called Born series) of the resolvent of the Hamiltonian with
potential in terms of the free resolvent (Proposition 5.1). To this end we use a for-
mula for the free resolvent established in [5]. This leads to a corresponding expan-
sion of the Schrédinger group via Stone’s formula. Then we adapt a technique of
[16] to extract the expression corresponding to the Schrodinger group on the line
to the formulas of the transmission problem, see Theorem 5.11, part 1. While
doing this, we improve the calculations of [16] in the sense that we find an explicit
expression for the coefficient of the time decay in terms of the cutoff frequency and
the potential. This explicit knowledge is essential to deduce from this the pertur-
bation Theorem 5.11, part 3, using the fact that the free Schrodinger group is the
first term of the expansion. The results of this section are of independent interest
and Theorem 5.11, part 3 seems to be new even on the line.

; -1
5.1 Proposition. Let Ro(A+ic) = (—;— — (A + ie)) and Ry (i +ic) =
(H = (A+ie)) ' Then we have

1. the representation

lim [Ro(A+ie)f](x) = [Ro(4+i0)f](x) = J Ko(x,x', A +i0) f(x") dx’

e—0,e>0 R

for almost all x € R and f € L*(#) with

Ko(x,x', A +i0)

T (1= W)erie VI Nowie VI e R
=—F o o _ (5.63)
N\/Z (1 _ %)eil(,‘ﬁ—x Wi 4 %eil(x—x )\//_1’ X' e Rk’ k +# j7
2. the estimate
|Ko(x,x", 2 +0)| < V(x,x") e #°, (5.64)
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. the followzng expansion: suppose N >2, let 0<gq., <1 and 7>, =

4N N;q*lwnl_ Then

Ry (24 10)f,9> = 3 (Ro(% £ i0) (= VRy(%. £ i0)) f . )
k>0

for any V,f,ge LN(#). The +(—) sign is valid, if Ii >0 (respectively

S < 0).
Proof.
Direct consequence of [5].
Follows from 1.
From 2. and the assumption on Vit follows
VR £ i0)f], < =1 V1A
Y/ v
Due to (4.25) we see, that the Jost functions are bounded for fixed 2. Therefore
one has
Ry(A—1i0)ge L*(#) for 2> 0.
Hence

[(Ry (2 + i0) (VRo(2 + 10)) £, g)| < || (VRo(2 +i0)) ||, | Rv (2 — i0)g].,

N .
< (N \f) WVIAI L R G — i0)g]l,

= () |/ IRy (2 = i0)g]|.

with ¢(1) := 4=, Our assumption 4. < 2 implies
4(N 1)
L) < ————=V|l; =g« < 1.
Therefore the series from the statement of 3. converges. The equality comes from
simple calculations. [

Note that the factor 4 in the definition of A, is not necessary in this Proposi-
tion, but will be necessary later on.
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Now we shall estimate the L'-norm of the Fourier transform of a frequency
band cutoff function times all negative powers A~ of the frequency. These quan-
tities measure the influence of the cutoff function on the terms of the expansion of
the high frequency part of the solution. Note that in [16] it is claimed (only indi-
cating the steps of a proof), that there exists a bound which is independent of 7.
This does not seem to be rigorously correct: writing down the details of the proof
sketched in [16], we find an explicit bound in terms of certain norms of the cutoff
function, but which grows linearly in #. But this growth has no influence on the
convergence of the expansion of the solution. Nevertheless the explicitness of the
estimate will allow us to give an upper bound of the coefficient of the time decay
of the solution.

5.2 Definition. Let ¢ € C*(R) be such that 0 < ¢(4) <1 and ¢(1) =1 if [1| < 1
and ¢(1) =01if [4| > 2. Let 49 > 1 and L > 2/y. Define

I g, € C*([1,[) by 1, (2) == 1 — ¢(ﬁ), A1,
2. Xig L € Cm([la OOD by XAO,L(/I) = X),O(}“)qﬁ(fﬂo): A=1.
5.3 Theorem. Forn e N, Jg> 1, L > 2 it holds*:

10, L (PD)A Iy < elm)ig™,
with ¢(0) = Ny + N2, ¢(1) = 2(Ny + N2) 4+ 32V2N,, c(n) = -4 + 32V2Non, n > 2
and hence c¢(n) < Mn, n> 1, where Ny = ||[¢(J*)]"|,, N» = 1l cowy and M =
32v2max{N; + N, N,}.

Proof. The proof follows from Theorem 5.7 and Propositions 5.8 and 5.10 below.
U

5.4 Proposition. Suppose Ay, L > 1 and 24y < L. Then we have for all ). € R
)2
|)C;LO,L(/L )| = ﬂ{\/ggwg\/i}(i)a
d , 1 1
i (XAO,LU“ )) =< 2|’1| ||¢HC‘(R) l_oﬂ{\/gswsm}()“) Jrzﬂ{\/Zﬂllg\/Z_L}(}“) )

d? 22 2 4|z|21] ;
W(XAU,L(“)) < I¢llc2m) ,1_(]*1—3 (WVa<i<y/am P

2 4
T ) lwvizn=vn |-

*We write shortly f¥ = F~!f
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Proof. Clearly we have

d 12 22 d? 72 2., (22 4%,
() 2(E) e ()2

Further we have for Ay, L and 1 > 1

& agn i) = _Mj_) ¢<z> - (1 B ¢<ﬁ_>>

j—; (2,1 (2%) = _P (i—j)]«ﬁ(l{) - 2[(/5@—2)]
{-40)

We estimate for o« > 1 and 1 € R:

o)

due to % <2 & |A| < V2a. Similarly we have

2 22
1—¢<a> <Tp+ [(;) = Tymsiy(2):
d 22 2, (22
a7 (¢<—>) ‘ NP (‘)
d? 22 2 4|1\
2 (¢< >) < (OC B2V mepp < vimy-

The three stated estimates directly follow from the previous properties.

and

27 .
< ¢l cow) 1) oc2( ) 181l comy Uy < vamy (4)

Further

2|
2 gl cr ot a2y

and

OJ

5.5 Proposition. Let n € N* and let Jo, L > 1 with 2y < L. Then, recalling that

N, = ||¢HCZ(R)
10, LGB (O], < 16V2N225" " n,
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Proof. By standard properties of the Fourier transform we have
103, LG @7 0 = [1[(2, LG TN < Mt LA
Hence by Leibniz’s rule and the previous proposition, we find that
1z, (AT (@)

+o0 d2
‘|

s G )| 1

+o| 4 e +00 ) Y
+2J 2Bl ldi+J L D) n(n + DJ2| "7 di
- — o0
+o0 4|l|
= JOC Kio >|¢||c2 {\/—0<W<\/go}( )

2 4|2 “n g
+(L ")wmz wkwkfﬂ>bﬂ &7

+2J [2|i| 18l c1 () \/Z<W<\/27}( )

217 o
+ 22 0o 2o )|l

+0oo
—n—2
+Jwﬂ{ﬂgwgm}(i)n(n+l)|/l| d.

By using that for o > 0 we have

21k k/2
1A ae i <vam () < (2a) 2,

we obtain

Iz, (22T (@7,

10 n gy 10 .
<l (3] , | o pra)
\/—<\}\<\/ﬁ VL< |2 <V2L
2V2 e
+ 2l Oz | g
Ao " I w<lil=\/200
2V/2 -
mJ |/L| ld)u)
VL<|/|<V2L
+n(n+ 1)J A" da.
V<2 |<V2L

345
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Calculating these integrals we find

Il 122 ()7,
20 (-nt1)/2 )\ (—nt1)/2
— (4 —(2
SN2</10(H_1)( 0 ( /“0) )

20 L
+m(l‘( +1)/2 (2L)( +1)/2)
8v2

nv7o

+ n(/l(()fnfl)ﬂ . (2L)(nl)/2)) )

+

- 82
) n/2 2) (—=n+1)/2 + Lfn/z — (2L (=n+1)/2
( 0 ( 0) ) I’l\/z( ( ) )

This leads to the conclusion since this right-hand side is bounded by
16V2N,2 ", O
5.6 Proposition. Forn > 2, n € N we have

- 2 D/
102, L G2 < 2=

n—1
Proof. As
1020, G2 e < Ny LA
we conclude by simple calculations. O

5.7 Theorem. For n > 2 and N> = [|§|| c2(w), it holds

—nv —n/2 4
s, 2027 357 (2 + 323N ).

—1/2 ,-1/2
=172 =1

Proof. We split up the integral in R into an integral in [—A o '] and outside,

this yields

15, (27Tl

<l T e @ [

0
1

2\ 5 —mv 2
+ ||[X,10,L(}“ VA" (T)XR\[—AO’]/Z,A;/Z](T)T ||m~|\R\[_)‘Ol/2’AOI/2]? 7.

The conclusion then follows from Propositions 5.5 and 5.6. |
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5.8 Proposition.
15 LGOI < MG+ NBED]IE
Proof. By definition, we have

(o))

1, . 22071

1

(2] 2\ 2\
i LAl LGIRLGIN
i 22 v 42 v 22 v
<[] NN

For o > 1, the function 4 — ¢(%2) is in C*(R) and has compact support. This

justifes the above calculation. The right hand side of the last inequality is in fact
independent of L and /oy, as can be seen as follows: for « > 0 we have

L)

5.9 Proposition.

+o0

[9(2*)]" (o)

—00

= |22l

va| 7

1

1050, G2 e < MGG + NBEIR-

Proof. We may write

105 L 327 e = 10t LA A7

< M0, LGOI I e

due the fact that 4 +— y, L(/l2 ) is a test function and [27']"(7)
The conclusion follows from Proposition 5.8.

—isign(t), 7 € R.
O

5.10 Proposition. Let /g > 1,L > 2y. Then
10, A7l < (2(N1 + N7) +32v2N2) V7o,

recalling that Ny = ||[¢(2*)]"]|;, N2 = 21l c2(w) -
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Proof. As before, we write
o2

0
T N T ARG K AR R
0
2 B Vg oy (D S dr
Jo.L R\[-4, "%, ] PR 2
We finish the proof by using Propositions 5.5 and 5.9. O

Now we have all the ingredients to state and prove the L*-decay and the per-
turbation result.

5.11 Theorem. Let V., f,g € L' (%) be real valued, let V' satisfy the conditions of
4N=D7NIVI

Theorem 1.1, N >2,0< q, <1, > A = quandL > 249. Then we have
1.

[Ke" g0 L (DS 9
< /2N — D\F - -
= (Z(%) VI 5, (A7) k]||1>||f|h||g|1|t| 'z,

k=0
fort#0.

2. ||e"’H)(iO(H)||1OO£4<A+B%)|I|_1/2, t#0, where A= N;+ N with
: o

Ni= 7 g0 No= gl and  B=MUGE e with M=
32v2max{N; + NZ; N},

3. |le™y, (H) — ™oy, (Ho)ll, ., < 4B%|t|_l/2, t #0, with B as in 2. In par-
ticular we have !

€”HX,10(H)f — eitHOXZO(HO)f for 4y — o0
uniformly on & for every fixed t > 0 or also uniformly on R x [e, o0) with respect
to the weight |t|2 on the time axis for any positive e.

Proof.

At first we consider f € L'(#) n L*(%), the estimates then extend to f € L' ().
From Stone’s formula, the fact that the spectrum of H is absolutely continuous
on [0, o) (Remark 4.16) and the limiting absorption principle proved in Theorem
4.14 we deduce

. 1 (* .
My, L(H) 9> = ﬁjo ¢ 0 L) ((Ry(2+ 10) = Ry (7~ i0)) £, g) di.
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As V, f and g are real valued, we obtain

o0

. 1 . .
™y, (H)f.g> = ﬂjo "0 L(SCRY(A+10) £, g di.

Using Proposition 5.1 part 3. and the change of variables A = x> we find

"y L (H)f 9>
2 (* itn? - . . k
_;JO et )(}'07]4(/12)2%<R0(/12—I—lO)(—VRo(ﬂz—l—lO)) 1.9 ndu.
k=0

Fubini’s Theorem, whose hypotheses are fulfilled thanks to the inequality in the
proof of Proposition 5.1 part 3., leads to

<eitHX;%L(H)fv gy

2 o0 k
=S Ive |
iy PR A #

k=¥
j:
(JO e s LIN (X X1, Xk, 3, ) dﬂ) f(y)dydx ... dxpg(x)dx,
where N(x, xi, ..., xi, y, 1) is defined by

N(x,X1,. .., Xk, Ys 11)

k-1
= (_l)ks(KO(x7 xlnuz + lO) H KO(vaijrlnuz + iO)K()(Xk, ynuz + lO))
=1

Using again Proposition 5.1, after some elementary calculations, we find that

N(x, X1, .., Xk, Yo 1)

k
1 /2 N\ (NN idygt k —id,
:—’ukHNkHe / Zl 1*5 5 (e 4 (=1)Fe i),

with o,,0, € N such that o, +J, = k + 1 and d, are real numbers that depend on
x, yand x;, j = 1,... k. Using this expression in the previous one, we obtain

<eitHX;LO‘L<H)fvg>

1 o0 . k 2k N O N ﬁn
- —(k+1) ikr/2 . v e
EZN ¢ LzLe’fHV(x'/)J%Z(I 2) (2>

k=0 j=1 X p=1

(J O (W) R dp) £ () dy dx . dg(x) d.
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Noting  that  |(1-§)"F)"|= - 1" @ < (v -1 -1l =
(N — l)kﬂ, we find

k=0 =l
2K | oo
[N e, tretiont a7y dslgto s
A p=11J =0
Setting
©
Sk = sup J el(t,u +dﬂ)Xig,L(:u2)ﬂ_
deR'JO

we deduce that

itH 2k 2( 1)k+1 k
[Ke"™ x5, L (H)S 0l < —||f|| gl ZTHVHQ%

We observe that

+oo 5 B B B B
J eI(M +a).)X;‘01L(12)/1 kdl‘ < ||37 1[%,1(,‘1‘(/12))“ k]||1|l| 1/27 t;«éO,

— 00

Sy = sup

aeR
since the quantity inside the absolute value is the solution of the free Schrodinger
operator on R at time ¢ and position « for the initial condition .7 ~!| hon L(A“z)/lfk},
see for example [23], p. 60 Theorem 1X.30. The convergence of the series will
follow from the proof of 2.
2 .
First let f,g € L'(#) be real valued. With g(2) := and the assumptions
0 < ¢. <1land 4. < A it follows 0 < g(do) < g(A« ) =q. "< 1. Therefore

DIV,

(), kk:;
lq( 0) (1 —Q(ﬂo))z

converges. Thus we can apply Theorem 5.3 and obtain together with 1.

o) k
e (S0 < (Z(%) IV eli)i "‘”) 170l

-

hE

=~
Il

M8

(io)kC(k)) 1A i lglly 72

k=0
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8

= (c(0)+ " a) e() )11l gl 11~

k=1

< (c(0) + MY aC) k) 111 gl 1172
k=1

=G@+Ma—éjvymmmmﬁﬂ
e

1 _
s@@+MaﬁgﬂwmmmW”

for all  # 0. Since spectral measures are finite and since limy .., Lol =Xy point-
wise, we can replace LioL by Ly in the last inequality using dominated con-
vergence. By linearity a factor 4 appears for complex valued f and g. This ends
the proof of 2.

Stone’s formula applied to H yields

) 1(* . .
<ettHo){;~0.’L(Ho)f7 9> = ;L e’MXAmL(i)§<R0()» +10)f, 9> d4,

which is the first term in the expansion for (e y o, (H)f,g>. Therefore

<(eitHXi0,L(H) - eitHo)QO’L(HO))fv g>

2 N ' - o . "
= ;JO " 1 (1) IZ: S(Ro(1> + i0) (= VR (1 + 0))f, g udp.
k=1

Now the same proof as in 2. but without the first term yields the assertion. O

5.2. Low energy estimate. In this section we consider the case of initial condi-
tions with compact energy band with respect to the spectral representation. Again
we adapt the reasoning of [16] to the transmission situation.

For any smooth and compactly supported cut-off function y in R, by Theorem
4.15 we have for any x,x’ € R

+oo +oo
2mJ €1y (2) Eue(d2) (x, x) = —2inJ ey (1)K (x,x', 1) di,
0 0
and by the change of variables A = u”, we get
+oo +oo 5
2inJ " (A Ege(d)) (x,x") = —4inJ My (1)SK (x, x', 1) pdp.
0 0
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Now recalling the definition of K, we again distinguish between the following
three cases:

1. If x,x" € R; with x’ > x, then

K(xv x/”u2) = mﬁ,*(ﬂ? x)ﬁ.+(ﬂ7 xl)

G201 . | /
7 05y (o s (1 7).

As fi 1+ (u,x) = f;+(—u, x), we deduce

+0o0
2inJ0 "y (A) Ege(dA) (x, x")

+o0 ) 1
—<in | e (0 )

o Wi —(w)
— 2 T w2 ¢,—2(1) . . !
2 Jm e x(u >f1'+1.,+(ﬂa O)S(ﬂ)ﬁ,+(#7X)ﬁ,+(ﬂ,x )dp.

The first term of this right hand side was estimated in Lemma 4 of [16], hence it
remains to estimate the second term. For that purpose, we set

+o0

Tt o) i [ e () 2 ) )

i itu? 2\ iu(x+x") G, *12(/1) 1
= e x(u”)e ” mm/&(#’ﬂm’jﬁ(%x )dp.
—o0 J+1, )

Hence denoting by

R 107
p”"‘ﬁiﬂl&%@’

we have shown in Corollary 4.10 that this function belongs to H'(—R, R), for
all R > 0. Since the mapping

q = 7 (?)my (s )my 4 (1, X'),
has compact support and is in C'(R) with the property

lg(w)| +lg(w)| < C,

for some C > 0 independent of x and x’ due to (4.28) and (4.44), we deduce
that the product pq belongs to H'(R). By Plancherel theorem (see for instance
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[23], p. 60), we deduce that

+o0
Dot ') = |7 gk e N

—0o0
and consequently

+00
IBm%xNSVFmJ T (pg) (& + x4+ X)) de

1/2 +i;
SN I

—1/2
< Cl | pgll 1 sy

for some C > 0.
2. If x,x" € R; with x’ < x, then

K(x7 xlv ﬂ2) = mfjﬁ(:ua xl)ﬁﬂr(ﬂ? x)

¢,—2(1) v
iﬂﬁ+1,+(ﬂ,0)s(y)ﬁ*+(“’ )i+ (1, x7).

In that case the first term was treated in Lemma 4 of [16], while the second term
is the same as before.

3. If x € R; and x’ € Ry with k # j, then

1
K(x,x', 1) =

ipfi e (1,0)s(p) S+ (s X) fie, (2, X7).

Therefore in that case we have

+oo
2in J ey (A) Eqe(d2)(x, x")

0
= o[ ) g () ()
B R 1
Since 7 :(#‘ 5 is in C!(R), by Corollary 4.9, the function
1

o (1w 0)s(u)

belongs to H'!(—R, R), for all R > 0 and we conclude as for T»(t, x, x'). O
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