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A multiparameter family of irreducible representations
of the quantum plane and of the quantum Weyl algebra
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Abstract. We construct a family of irreducible representations of the quantum plane and of
the quantum Weyl algebra over an arbitrary field, assuming the deformation parameter is
not a root of unity. We determine when two representations in this family are isomorphic,
and when they are weight representations, in the sense of [1].
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1. Introduction

Assume throughout that F is a field of arbitrary characteristic, not necessarily

algebraically closed, with group of units F�. Fix q a F� with qA 1. The quantum

plane is the unital associative algebra

Fq½x; y� ¼ Ffx; yg=ðyx� qxyÞ ð1:1Þ

with generators x and y subject to the relation yx ¼ qxy.

Consider the operators tq and qq defined on the polynomial algebra F½t� by

tqðpÞðtÞ ¼ pðqtÞ; and qqðpÞðtÞ ¼
pðqtÞ � pðtÞ

qt� t
; for p a F½t�: ð1:2Þ
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Then the assignment x 7! tq, y 7! qq yields a (reducible) representation Fq½x; y� !
EndFðF½t�Þ of Fq½x; y�, which is faithful if and only if q is not a root of unity. The

operators tq and qq are central in the theory of linear q-di¤erence equations and

qq is also known as the Jackson derivative, as it appears in [4]. See e.g. [6], Chap.

IV of [5] and references therein for further details.

The irreducible representations of the quantum plane Fq½x; y� have been clas-

sified in [1] using results from [2]. Following [1] we say that a representation of

Fq½x; y� is a weight representation if it is semisimple as a representation of the

polynomial subalgebra F½H � generated by the element H ¼ xy. When q is a root

of unity all irreducible representations of Fq½x; y� are finite-dimensional weight

representations, and these are well understood. For example, if F is algebrai-

cally closed and q is a primitive n-th root of unity then the irreducible represen-

tations of Fq½x; y� are either 1 or n dimensional. When q is not a root of unity

there are irreducible representations of Fq½x; y� that are not weight representa-

tions, and in particular are not finite dimensional. These turn out to be the F½H �-
torsionfree irreducible representations of Fq½x; y�, as they remain irreducible (i.e.

nonzero) upon localizing at the nonzero elements of F½H �. In [1], Cor. 3.3 the

torsionfree representations of Fq½x; y� are classified in terms of elements satis-

fying certain conditions, but no explicit construction of these representations is

given.

We assume q is not a root of unity, and we give an explicit construction of a

3-parameter family V
m;n
f of infinite-dimensional representations of Fq½x; y� having

the following properties (compare Propositions 2.4, 2.6 and 2.7):

• m and n are positive integers, and f : Z ! F� satisfies condition (2.1) below,

which essentially encodes n independent parameters from F�;

• V
m;n
f is irreducible if and only if gcdðm; nÞ ¼ 1;

• if ðm; nÞA ðm 0; n 0Þ then V
m;n
f and V

m 0;n 0

f 0 are not isomorphic;

• V
m;n
f is a weight representation if and only if m ¼ n;

• if F is algebraically closed and V is an irreducible weight representation of

Fq½x; y� that is infinite dimensional, then V UV
1;1
f for some f : Z ! F�.

Thus, in some sense weight and non-weight representations of Fq½x; y� are rejoined
in the family V

m;n
f .

The localization of Fq½x; y� at the multiplicative set generated by x contains a

copy of the q-Weyl algebra, which is the algebra

A1ðqÞ ¼ FfX ;Yg=ðYX � qXY � 1Þ ð1:3Þ

with generators X and Y subject to the relation YX � qXY ¼ 1 (see (3.1) for

details about this embedding). This is used in Subsection 3.1 to regard the repre-
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sentations V
m;n
f as infinite-dimensional irreducible representations of A1ðqÞ. In

contrast with the action of Fq½x; y� on V
m;n
f when m ¼ n, it turns out that Vm;n

f is

never a weight representation of A1ðqÞ in the sense of [1]. In Subsection 3.2 we

pursue a dual approach by constructing representations Wn
g of A1ðqÞ and then re-

stricting the action from the q-Weyl algebra to two distinct subalgebras of A1ðqÞ
isomorphic to Fq½x; y�.

2. A family V
m,n
f of infinite-dimensional irreducible representations

of Fq[x, y] for q not a root of unity

Assume q a F� is not a root of unity. We introduce a family V
m;n
f of infinite-

dimensional representations of Fq½x; y� which are not in general weight repre-

sentations in the sense of [1], but which includes all irreducible infinite-

dimensional weight representations of Fq½x; y� if we further assume F to be

algebraically closed.

2.1. Structure of the representations Vm,n
f . Fix positive integers m; n a Z>0 and

a function f : Z ! F� satisfying

f ði þ nÞ ¼ qf ðiÞ; for all i a Z: ð2:1Þ

Such functions are in one-to-one correspondence with elements of ðF�Þn. Let Vm;n
f

denote the representation of Fq½x; y� on the space F½te1� of Laurent polynomials in

t given by

x:t i ¼ t iþn; y:ti ¼ f ðiÞti�m; for all i a Z: ð2:2Þ

Condition (2.1) ensures that the expressions (2.2) do define an action of Fq½x; y� on
F½te1� as, for all i a Z,

ðyx� qxyÞ:t i ¼
�
f ði þ nÞ � qf ðiÞ

�
t iþn�m ¼ 0:

Example 2.1. Fix m a F� and m; n a Z>0. For i a Z let f ðiÞ ¼ mqbi=nc, where i
n

� �
denotes the largest integer not exceeding i

n
. Then f : Z ! F� satisfies condition

(2.1) and thus there is a representation V
m;n
f of Fq½x; y� on F½te1� with action

x:t i ¼ t iþn; y:t i ¼ mqbi=ncti�m; for all i a Z:

We begin the study of the representations Vm;n
f by first considering the case that

the parameters m and n are coprime. The following consequence of (2.1) will be

helpful.
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Lemma 2.2. Assume gcdðm; nÞ ¼ 1 and f : Z ! F� satisfies (2.1). For k a Z

define

sf ðkÞ ¼
Yn�1

i¼0

f ðk � imÞ: ð2:3Þ

Then sf ðkÞ ¼ sf ð0Þqk.

Proof. For j a Z let 0a | < n be the unique integer such that |C j mod n. Then

the formula f ð jÞ ¼ f ð|Þqð j�|Þ=n can be verified by induction on
j�|
n

���
���. Thus,

sf ðkÞ ¼
Yn�1

i¼0

f ðk � imÞ ¼
Yn�1

i¼0

f ðk � {mÞ
Yn�1

i¼0

qðk�im�k�{mÞ=n:

Since m and n are coprime, the set fk � {m j 0a i < ng consists of all the integers

from 0 to n� 1, and is thus independent of k. Moreover,

Xn�1

i¼0

k � im� k � {m

n
¼ k þ

Xn�1

i¼0

�im� k � {m

n
¼ k þ

Xn�1

i¼0

�im� ð�{mÞ
n

:

Hence,

sf ðkÞ ¼ qk
Yn�1

i¼0

f ð�{mÞ
Yn�1

i¼0

qð�im�ð�{mÞÞ=n ¼ qksf ð0Þ: r

Proposition 2.3. Assume gcdðm; nÞ ¼ 1 and f : Z ! F� satisfies (2.1). Then the

representation V
m;n
f defined by (2.2) is an irreducible representation of Fq½x; y�.

Proof. We begin with a computation: for k a Z we have, by Lemma 2.2,

xmyn:tk ¼ xm
�Yn�1

i¼0

f ðk � imÞ
�
tk�nm ¼ sf ðkÞtk ¼ sf ð0Þqktk: ð2:4Þ

Hence, xmyn:pðtÞ ¼ sf ð0ÞpðqtÞ for all p a F½te1�.
Let WJV

m;n
f be a nonzero subrepresentation. If pðtÞ a W then also

pðqtÞ a W, by (2.4). As q is not a root of unity, the latter implies that tl a W for

some l a Z. The coprimeness of m and n shows the existence of integers a and

b so that an� bm ¼ 1. By replacing a and b with aþ jm and bþ jn for a suf-

ficiently large integer j, we can assume a; b a Z>0. Then xayb:tk ¼ lkt
kþ1 for
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some lk a F�, showing that tk a W for all kb l. A similar argument shows that

tk a W for all ka l. Hence W ¼ V
m;n
f , establishing the irreducibility of Vm;n

f . r

Next we describe V
m;n
f in terms of a maximal left ideal of Fq½x; y�. Recall that

for a representation V of Fq½x; y� and an element v a V, the annihilator of v in

Fq½x; y� is annFq½x;y�ðvÞ ¼ fr a Fq½x; y� j r:v ¼ 0g, a left ideal of Fq½x; y�.

Proposition 2.4. Assume gcdðm; nÞ ¼ 1 and f : Z ! F� satisfies (2.1).

(a) For 1 a V
m;n
f , annFq½x;y�ð1Þ ¼ Fq½x; y�

�
xmyn � sf ð0Þ

�
and

V
m;n
f UFq½x; y�=Fq½x; y�

�
xmyn � sf ð0Þ

�
:

(b) For positive integers m 0, n 0, and f 0 : Z ! F� satisfying (2.1) (with n replaced

by n 0), we have V
m;n
f UV

m 0;n 0

f 0 if and only if m ¼ m 0, n ¼ n 0 and sf 0 ð0Þ ¼
qksf ð0Þ for some k a Z.

Proof. (a) Let y ¼ xmyn. First we show that

annFq½x;y�ð1Þ ¼ Fq½x; y�
�
F½y�B annFq½x;y�ð1Þ

�
: ð2:5Þ

The inclusion K is clear, so suppose u a annFq½x;y�ð1Þ. Write u ¼
P

ib0 mix
aiybi

¼
P

k AZ uk, where uk ¼
P

nai�mbi¼k mix
aiybi . Since uk:1 is in Ftk, it follows

that uk a annFq½x;y�ð1Þ for all k a Z, and it su‰ces to prove uk a
Fq½x; y�

�
F½y�B annFq½x;y�ð1Þ

�
.

If nai �mbi ¼ naj �mbj then, as gcdðm; nÞ ¼ 1, we deduce that ðai; biÞ ¼
ðaj; bjÞ þ xðm; nÞ for some x a Z. Thus, by the q-commutativity of x and y, there

are a; bb 0 with na�mb ¼ k such that uk ¼ xaybw0, where w0 ¼
P

jb0 njx
xjmyxjn

a F½y�. Notice that for any l a Z, xayb:tl is a nonzero scalar multiple of tlþk,

so xaybw0 ¼ uk a annFq½x;y�ð1Þ implies that w0 a annFq½x;y�ð1Þ. Hence, uk a
Fq½x; y�

�
F½y�B annFq½x;y�ð1Þ

�
and (2.5) is established.

Now (2.4) implies that y� sf ð0Þ a F½y�B annFq½x;y�ð1Þ. Since F½y�
�
y� sf ð0Þ

�
is

a maximal ideal of F½y� it follows that F½y�B annFq½x;y�ð1Þ ¼ F½y�
�
y� sf ð0Þ

�
and

annFq½x;y�ð1Þ ¼ Fq½x; y�
�
y� sf ð0Þ

�
. This proves (a) as 1 a V

m;n
f generates Vm;n

f .

(b) We observe that the arguments above also show that for tk a V
m;n
f ,

annFq½x;y�ðtkÞ ¼ Fq½x; y�
�
y� qksf ð0Þ

�
and

V
m;n
f UFq½x; y�=Fq½x; y�

�
xmyn � qksf ð0Þ

�
;

for any k a Z. This establishes the if part of (b). For the direct implication, sup-

pose V
m;n
f UV

m 0;n 0

f 0 . We have, for a; bb 0 and tk a V
m;n
f ,

xayb:tk ¼
�Yb�1

i¼0

f ðk � imÞ
�
tkþna�mb
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and
Qb�1

i¼0 f ðk � imÞA 0. This implies that xayb is diagonalizable on V
m;n
f if and

only if na ¼ mb. As gcdðm; nÞ ¼ 1 this amounts to having ða; bÞ ¼ xðm; nÞ for

some xb 0.

Since V
m;n
f UV

m 0;n 0

f 0 , then xm 0
yn 0

is diagonalizable on V
m;n
f and similarly xmyn is

diagonalizable on V
m 0;n 0

f 0 . By the relation above we conclude that ðm; nÞ ¼ ðm 0; n 0Þ.
Moreover, the eigenvalues of xmyn on V

m;n
f are of the form qksf ð0Þ, whereas sf 0 ð0Þ

is an eigenvalue of xm 0
yn 0 ¼ xmyn on V

m 0;n 0

f 0 . Hence sf 0 ð0Þ ¼ qksf ð0Þ for some

k a Z, which concludes the proof. r

Remark 2.5. By Proposition 2.4 above, for gcdðm; nÞ ¼ 1 and f : Z ! F� sat-

isfying (2.1), the isomorphism class of V
m;n
f depends only on m, n and

sf ð0Þ a F�.
Fix l a F�. Since gcdðm; nÞ ¼ 1 there is a unique fl : Z ! F� such that (2.1)

holds and flðkmÞ ¼ l if k ¼ 0 and flðkmÞ ¼ 1 if �ðn� 1Þa ka�1. Then

sflð0Þ ¼ l, Vm;n
fl

UFq½x; y�=Fq½x; y�ðxmyn � lÞ and, for l 0 a F�, Vm;n
fl

UV
m;n
fl 0

if and

only if l=l 0 a 3q4, where 3q4 is the subgroup of F� generated by q.

If F contains an n-th root of l, say m, there is a more natural construction for

the irreducible representation Fq½x; y�=Fq½x; y�ðxmyn � lÞ. Define f mðiÞ ¼ mqbi=nc,
as in Example 2.1. Then sf mð0Þ ¼ qkmn ¼ qkl, for some k a Z. It follows from

Proposition 2.4 that Vm;n
f m UFq½x; y�=Fq½x; y�ðxmyn � lÞ and V

m;n
f m depends only on

m, n and l, and not on the particular n-th root of l that was chosen.

Finally we consider the general case of arbitrary m; n a Z>0.

Proposition 2.6. Let m; n a Z>0 be arbitrary, with d ¼ gcdðm; nÞ, and assume

f : Z ! F� satisfies (2.1). Then there is a direct sum decomposition

V
m;n
f U 0

d�1

k¼0

V
m=d;n=d
fk

ð2:6Þ

into irreducible representations, where fkðiÞ ¼ f ðk þ idÞ, for 0a k < d and i a Z.

Moreover, suppose m 0; n 0 a Z>0, and f 0 : Z ! F� satisfies (2.1) (with n replaced

by n 0). If V
m;n
f UV

m 0;n 0

f 0 then m ¼ m 0 and n ¼ n 0.

Proof. For 0a k < d, the subspace tkF½ted � of Vm;n
f is readily seen to be invariant

under the actions of x and y, and we have V
m;n
f ¼ 0d�1

k¼0
tkF½ted �. Thus, next we

argue that the subrepresentation tkF½ted � is isomorphic to V
m=d;n=d
fk

, where fkðiÞ ¼
f ðk þ idÞ for all i a Z. First notice that fkði þ n=dÞ ¼ f ðk þ id þ nÞ ¼ qf ðk þ idÞ
¼ qfkðiÞ, so V

m=d;n=d
fk

is defined. Consider the map f : V
m=d;n=d
fk

! tkF½ted � given by

fðpÞðtÞ ¼ tkpðtdÞ, for all p a F½te1�. In particular, fðtiÞ ¼ tkþid for i a Z. Still

viewing tkF½ted � as a subrepresentation of Vm;n
f , we have:
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fðx:tiÞ ¼ fðtiþn=dÞ ¼ tkþidþn ¼ x:tkþid ¼ x:fðt iÞ;

fðy:tiÞ ¼ f
�
fkðiÞt i�m=d

�
¼ f ðk þ idÞtkþid�m ¼ y:tkþid ¼ y:fðtiÞ:

Since f is clearly bijective, the calculations above show that f is an iso-

morphism of representations, and V
m;n
f U0d�1

k¼0
V
m=d;n=d
fk

. The fact that each

summand V
m=d;n=d
fk

is irreducible follows from gcdðm=d; n=dÞ ¼ 1 and Prop-

osition 2.3.

Finally, assume V
m;n
f UV

m 0;n 0

f 0 for positive integers m 0 and n 0, and f 0 : Z ! F�

satisfying f 0ði þ n 0Þ ¼ qf 0ðiÞ, for all i a Z. Then, up to isomorphism, Vm;n
f and

V
m 0;n 0

f 0 have the same composition factors, and in particular the same composi-

tion length. This proves that d ¼ gcdðm; nÞ ¼ gcdðm 0; n 0Þ and that V
m=d;n=d
f0

U

V
m 0=d;n 0=d
f 0
k

for some k. By Proposition 2.4, we have m=d ¼ m 0=d and n=d ¼ n 0=d,
so m ¼ m 0 and n ¼ n 0. r

2.2. Weight representations of the form V
m,n
f . Let us now determine when V

m;n
f

is a weight representation in the sense of [1]. Recall that this occurs when V
m;n
f

is semisimple as a representation over the polynomial subalgebra F½H �, where
H ¼ xy. Assume first that m ¼ n ¼ 1 and fix l a F�. The map fl defined in

Remark 2.5 is given by flðiÞ ¼ lqi for all i a Z, and the corresponding representa-

tion V
1;1
fl

UFq½x; y�=Fq½x; y�ðH � lÞ is irreducible. Since H:ti ¼ xy:ti ¼ lqiti for

all i, the decomposition V
1;1
fl

¼ 0
i AZ Ft

i shows that V1;1
fl

is semisimple over F½H �.
Moreover, for n a F�, V1;1

fl
UV

1;1
fn

if and only if l=n a 3q4, the multiplicative sub-

group of F� generated by q, by Proposition 2.4. In case F is algebraically closed,

these are all the infinite-dimensional irreducible weight representations of Fq½x; y�,
by [1], Cor. 3.2. Combined with Proposition 2.4(b) the above yields the classifica-

tion of irreducible weight representations in the family V
m;n
f .

Proposition 2.7. Assume gcdðm; nÞ ¼ 1 and f : Z ! F� satisfies (2.1). Then V
m;n
f

is a weight representation if and only if m ¼ n ¼ 1.

For completeness, we include a brief and direct proof of Proposition 2.7 not

assuming that F is algebraically closed, a condition that was used implicitly at

the end of the previous paragraph.

Proof. Assume first that m ¼ n ¼ 1. Then since f satisfies (2.1) we have f ¼ fl
for l ¼ f ð0Þ and the discussion above shows that Vm;n

f is a weight representation

of Fq½x; y�. Conversely, suppose V
m;n
f is a weight representation of Fq½x; y�. Then

clearly dimF F½H �:v < þl for any v a V
m;n
f . Notice that, for all i a Z, H:ti ¼

xy:t i ¼ f ðiÞt iþn�m. Thus, for l a Z, H l:t i ¼ zt iþlðn�mÞ for some z a F�. But then

the condition dimF F½H �:1 < þl immediately implies m ¼ n, and hence m ¼ n ¼
1, as gcdðm; nÞ ¼ 1. r
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Remark 2.8. Given arbitrary positive integers m and n, and f satisfying (2.1), the

representation V
m;n
f is a weight representation if and only if m ¼ n. The direct im-

plication follows from the proof of Proposition 2.7. For the converse implication,

recall that V
m;m
f is the direct sum of m representations of the form V

1;1
fk

, for

0a k < m, by Proposition 2.6, so the claim follows as each of these is a weight

representation.

3. Connections with the representation theory of the q-Weyl algebra A1(q)

We continue to assume q a F� is not a root of unity. Let A1ðqÞ be the q-Weyl

algebra given by generators X and Y and defining relation YX � qXY ¼ 1, as in

(1.3). It is straightforward to show that fxk j kb 0g is a right and left Ore set con-

sisting of regular elements of Fq½x; y�, and we denote the corresponding localiza-

tion by Fq½xe1; y�. The calculation

�
x�1ðy� 1Þ

�
x� qx

�
x�1ðy� 1Þ

�
¼ x�1yx� qðy� 1Þ � 1

¼ qy� qðy� 1Þ � 1 ¼ q� 1

shows that there is an algebra map

A1ðqÞ ! Fq½xe1; y�; with X 7! x; Y 7! 1

q� 1
x�1ðy� 1Þ: ð3:1Þ

To see that the map in (3.1) is injective we can argue as follows. The multiplica-

tive subset fX k j kb 0g of A1ðqÞ is a right and left Ore set of regular elements

and we denote the corresponding localization by ÂA1ðqÞ. Then the map in (3.1)

extends to a map ÂA1ðqÞ ! Fq½xe1; y�, which has an inverse Fq½xe1; y� ! ÂA1ðqÞ
with xe1 7! Xe1 and y 7! ðq� 1ÞXY þ 1. It follows that (3.1) induces an isomor-

phism ÂA1ðqÞUFq½xe1; y�, and in particular (3.1) is injective. In view of the above

we will identify X with x, Y with 1
q�1 x

�1ðy� 1Þ and A1ðqÞ with the correspond-

ing subalgebra of Fq½xe1; y�. Since y ¼ ðq� 1ÞXY þ 1 ¼ YX � XY , we have the

embeddings

Fq½x; y�JA1ðqÞJ Fq½xe1; y� ¼ ÂA1ðqÞ: ð3:2Þ

3.1. Extension of the representations Vm,n
f to A1(q). Our aim in this subsection

is to extend the action of Fq½x; y� on V
m;n
f to an action of the q-Weyl algebra A1ðqÞ.

Assume thus that m, n are positive integers and f : Z ! F� satisfies (2.1). If

rm;n
f : Fq½x; y� ! EndFðVm;n

f Þ is the representation of Fq½x; y� on V
m;n
f , we first ob-

serve that rm;n
f ðxÞ is an invertible linear map on V

m;n
f , a fact which is clear from

(2.2). Therefore rm;n
f extends to the localization Fq½xe1; y�, and V

m;n
f can be seen
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as a representation of Fq½xe1; y� with x�1:t i ¼ t i�n for all i a Z. Now we get an

action of A1ðqÞ on V
m;n
f ¼ F½te1� by restricting rm;n

f :

X :t i ¼ x:t i ¼ t iþn;

Y :t i ¼ 1

q� 1
x�1ðy� 1Þ:ti ¼ 1

q� 1

�
f ðiÞt i�m�n � ti�n

�
; for all i a Z: ð3:3Þ

In our next result we view V
m;n
f as a representation of A1ðqÞ, as above.

Proposition 3.1. Assume gcdðm; nÞ ¼ 1 and f : Z ! F� satisfies (2.1). Then:

(a) V
m;n
f defined by (3.3) is an irreducible representation of A1ðqÞ.

(b) For positive integers m 0, n 0, and f 0 : Z ! F� satisfying (2.1) (with n replaced

by n 0), we have V
m;n
f UV

m 0;n 0

f 0 as representations of A1ðqÞ if and only if

m ¼ m 0, n ¼ n 0 and sf 0 ð0Þ ¼ qksf ð0Þ for some k a Z.

(c) V
m;n
f is not semisimple as a representation over the polynomial subalgebra of

A1ðqÞ generated by XY; hence, V
m;n
f is not a weight representation of A1ðqÞ

in the sense of [1].

Proof. Part (a) and the direct implication in (b) follow from the embedding (3.2),

and from Propositions 2.3 and 2.4.

Suppose now f 0 : Z ! F� satisfies (2.1), and there is k a Z so that sf 0 ð0Þ ¼
qksf ð0Þ. Then by Proposition 2.4 there is an isomorphism f : Vm;n

f ! V
m;n
f 0 as

representations of Fq½x; y�. For v a V
m;n
f we have fðvÞ ¼ fðxx�1:vÞ ¼ x:fðx�1:vÞ,

thus fðx�1:vÞ ¼ x�1:fðvÞ. Whence f is an isomorphism of representations of

Fq½xe1; y�. The other implication in (b) now follows from (3.2).

Observe that XY ¼ 1
q�1 ðy� 1Þ, so the polynomial subalgebra of A1ðqÞ gener-

ated by XY is just F½y�. Given 0A v a V
m;n
f , the formula y:t i ¼ f ðiÞt i�m for i a Z

implies dimF F½y�:v ¼ þl. Hence, Vm;n
f is not semisimple over F½y� ¼ F½XY �, and

therefore it is not a weight representation of A1ðqÞ in the sense of [1]. r

Remark 3.2. In [3] the authors introduce Whittaker representations for gener-

alized Weyl algebras. For the cases covered in this note, a representation V is

a Whittaker representation for Fq½x; y� (respectively, for A1ðqÞ) if V is generated

by an element v a V which is an eigenvector for the action of x a Fq½x; y� (respec-
tively, for the action of X a A1ðqÞ). Since m; nb 1, it is immediate that the oper-

ators x; y a Fq½x; y� (respectively, X ;Y a A1ðqÞ) have no eigenvectors in V
m;n
f , so

V
m;n
f is not a Whittaker representation for the quantum plane (respectively, for the

q-Weyl algebra).

3.2. The representations Wn
g of A1(q) and their restriction to Fq[x, y]. We will

now use a similar idea to construct representations of the q-Weyl algebra on the
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Laurent polynomial algebra F½te1�. Fix positive integers m; n a Z>0 and a func-

tion g : Z ! F. Then the formulas

X :ti ¼ tiþn; Y :t i ¼ gðiÞt i�m; for all i a Z ð3:4Þ

yield a representation of A1ðqÞ on F½te1� if and only if m ¼ n and g satisfies

gði þ nÞ ¼ qgðiÞ þ 1; for all i a Z: ð3:5Þ

We denote the corresponding representation of A1ðqÞ by Wn
g . Notice that for all

i a Z

XY :t i ¼ gðiÞt i;

ðYX � XY Þ:t i ¼
�
gði þ nÞ � gðiÞ

�
ti ¼

�
ðq� 1ÞgðiÞ þ 1

�
ti; ð3:6Þ

so Wn
g is a weight representation of A1ðqÞ in the sense of [1].

Remark 3.3. It follows from the computations at the beginning of Section 3

that the element YX � XY is normal in A1ðqÞ and it is sometimes referred to as

a Casimir element, in spite of not being central. The equality YX � XY ¼
ðq� 1ÞXY þ 1 shows that YX � XY and XY generate the same unital subalgebra

of A1ðqÞ and thus a weight representation of A1ðqÞ could be defined in an equiva-

lent manner as a representation which is semisimple over the subalgebra generated

by the Casimir element YX � XY .

Our first observation is the analogue of Proposition 2.6.

Lemma 3.4. Let n a Z>0 and assume g : Z ! F satisfies (3.5). There is a direct

sum decomposition

Wn
g U 0

n�1

k¼0

W1
gk
; ð3:7Þ

where gkðiÞ ¼ gðk þ inÞ, for 0a k < n and i a Z.

Proof. For 0a k < n, the subspace tkF½ten� is invariant under the actions of X

and Y and Wn
g ¼ 0n�1

k¼0
tkF½ten�. Moreover, the map f : W1

gk
! tkF½ten� given by

fðpÞðtÞ ¼ tkpðtnÞ, for all p a F½te1� is easily checked to be an isomorphism. r

In view of the above, it is enough to study the structure of the representa-

tions W1
g , where g : Z ! F satisfies gði þ 1Þ ¼ qgðiÞ þ 1 for all i a Z. Equivalently,

gðiÞ ¼ gð0Þqi þ ½i�q, where ½i�q ¼
q i�1
q�1 for all i a Z.
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Proposition 3.5. Let g; g 0 : Z ! F satisfy (3.5) with n ¼ 1. Then:

(a) W1
g UW1

g 0 if and only if gð0Þ ¼ g 0ðiÞ for some i a Z;

(b) W1
g is irreducible if and only if gð0Þ B f½i�q j i a ZgA � 1

q�1

n o
.

Proof. For (a), suppose W1
g UW1

g 0 . By (3.6) the eigenvalues of XY on W1
g are gðiÞ,

for i a Z and similarly the eigenvalues of XY on W1
g 0 are g 0ðiÞ, for i a Z. Thus,

g and g 0 must have the same image and in particular gð0Þ ¼ g 0ðiÞ for some i a Z.

Conversely, if the latter holds then the map f : W1
g ! W1

g 0 given by fðpÞðtÞ ¼ t ipðtÞ
for all p a F½te1� is an isomorphism.

For (b), first observe that for i a Z we have gð0Þ ¼ ½i�q , gð�iÞ ¼ 0. Thus, if

gð0Þ ¼ ½i�q for some i a Z, then t�iF½t� is invariant under the actions of X and Y ,

so W1
g is not irreducible in this case. Next observe that gð0Þ ¼ � 1

q�1 , g is not

injective , g is constant. It follows that if gð0Þ ¼ � 1
q�1 , then ðt� 1ÞF½te1� is a

proper subrepresentation and hence W1
g is not irreducible. This proves the direct

implication in (b). For the converse, by the observations above, we can assume

that gðiÞA 0 for all i a Z and that g is injective. Let S be a nonzero subrepresen-

tation of W1
g . By repeatedly applying the operator X to a chosen nonzero element

of S, we will obtain a nonzero element of SBF½t�. Let p be one such element,

chosen so that it has minimum degree, say p ¼
Pd

k¼0 akt
k, with ad A 0. Since

gðiÞA 0 for all i a Z, the minimality of p implies that a0A 0. Then

SBF½t� C
�
XY � gðdÞ

�
:p ¼

Xd�1

k¼0

�
gðkÞ � gðdÞ

�
akt

k:

By the minimality of p we must have
�
XY � gðdÞ

�
:p ¼ 0. Hence, gð0Þ ¼ gðdÞ and

the injectivity of g gives d ¼ 0. It follows that t0 a S and thus S ¼ W1
g . r

Now that we understand the representations Wn
g , we will consider their restric-

tion to Fq½x; y� via each of the two embeddings

s : Fq½x; y� ! A1ðqÞ; x 7! X ; y 7! YX � XY ¼ ðq� 1ÞXY þ 1; ð3:8Þ
t : Fq½x; y� ! A1ðqÞ; x 7! YX � XY ¼ ðq� 1ÞXY þ 1; y 7! Y : ð3:9Þ

We consider first the restriction relative to s. In this case, the action of Fq½x; y�
on Wn

g is given by

x:ti ¼ tiþn; y:t i ¼
�
ðq� 1ÞgðiÞ þ 1

�
ti; for all i a Z: ð3:10Þ

Lemma 3.6. Consider the restriction map s given in (3.8) to view the representa-

tions Wn
g as representations of Fq½x; y�.
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(a) Let n a Z>0 and assume g : Z ! F satisfies (3.5). Then Wn
g U0n�1

k¼0 W
1
gk

as

representations of Fq½x; y�, where gkðiÞ ¼ gðk þ inÞ, for 0a k < n and i a Z.

(b) Let g; g 0 : Z ! F satisfy (3.5) with n ¼ 1. Then W1
g UW1

g 0 as representations

of Fq½x; y� if and only if gð0Þ ¼ g 0ðiÞ for some i a Z.

(c) Assume g : Z ! F satisfies (3.5) with n ¼ 1. Then W1
g has trivial socle as a rep-

resentation of Fq½x; y�, i.e., it has no irreducible Fq½x; y�-subrepresentations.

Proof. Part (a) follows directly from Lemma 3.4 and part (b) follows from the

proof of Proposition 3.5(a), as the argument for the direct implication in Proposi-

tion 3.5(a) used only the restriction of the action to the subalgebra generated by

XY , which coincides with the subalgebra generated by YX � XY .

For part (c), suppose by way of contradiction that S is an irreducible Fq½x; y�-
subrepresentation of W1

g . Let 0A s a S. Then x:sA 0 and thus Fq½x; y�x:s ¼ S,

which is a contradiction as s B Fq½x; y�x:s. r

Remark 3.7. In the conditions of Lemma 3.6, it can be checked that W1
g has max-

imal Fq½x; y�-subrepresentations if and only if g is constant.

Now we consider the restriction of Wn
g to Fq½x; y� relative to the map t defined

in (3.9). In this case, the action of Fq½x; y� on Wn
g is given by

x:ti ¼
�
ðq� 1ÞgðiÞ þ 1

�
t i; y:t i ¼ gðiÞt i�n; for all i a Z: ð3:11Þ

Lemma 3.8. Consider the restriction map t given in (3.9) to view the representa-

tions Wn
g as representations of Fq½x; y�.

(a) Let n a Z>0 and assume g : Z ! F satisfies (3.5). Then Wn
g U0n�1

k¼0 W
1
gk

as

representations of Fq½x; y�, where gkðiÞ ¼ gðk þ inÞ, for 0a k < n and i a Z.

(b) Let g; g 0 : Z ! F satisfy (3.5) with n ¼ 1. Then W1
g UW1

g 0 as representations

of Fq½x; y� if and only if gð0Þ ¼ g 0ðiÞ for some i a Z.

(c) Assume g : Z ! F satisfies (3.5) with n ¼ 1. If gð0Þ B f½i�q j i a Zg then W1
g has

trivial socle as a representation of Fq½x; y�, i.e., it has no irreducible Fq½x; y�-
subrepresentations. If gð0Þ ¼ ½i�q for some i a Z then Ft�i is the unique irre-

ducible Fq½x; y�-subrepresentation of W1
g .

Proof. The proof is the same as the proof of Lemma 3.6, except for part (c). For

this part, suppose that S is an irreducible Fq½x; y�-subrepresentation of W1
g . If there

is 0A s a S such that y:sA 0, then we obtain a contradiction as in the proof of

Lemma 3.6(c), showing that no such irreducible Fq½x; y�-subrepresentation of W1
g

exists. If gð0Þ B f½i�q j i a Zg then gðiÞA 0 for all i a Z, so y:sA 0 for all sA 0

and the first claim follows. Now suppose gð0Þ ¼ ½i�q for some i a Z. Then

gðkÞ ¼ 0 , k ¼ �i. In particular, x:t�i ¼ t�i and y:t�i ¼ 0, so that Ft�i is an
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irreducible Fq½x; y�-subrepresentation of W1
g . If S is any irreducible Fq½x; y�-

subrepresentation of W1
g , then the argument above implies that y:s ¼ 0 for all

s a S, and this in turn implies that SJ Ft�i, which establishes the second claim

in (c). r
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Centre de Recherches Mathématiques, Montreal, QC, 1988.

Received July 24, 2014; revised January 18, 2015

S. A. Lopes, CMUP, Faculdade de Ciências, Universidade do Porto, Rua do Campo
Alegre 687, 4169-007 Porto, Portugal

E-mail: slopes@fc.up.pt

J. N. P. Lourenço, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre
687, 4169-007 Porto, Portugal

E-mail: jnunolour@gmail.com

419Irreducible representations of the quantum plane and of the quantum Weyl algebra


