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Abstract. We revisit ‘“minimal assumptions” on the data which guarantee that solutions to
the 2 — D evolution Euler equations in a bounded domain are classical. Classical means
here that all the derivatives appearing in the equations and boundary conditions are contin-
uous up to the boundary. Following a well known device, the above problem led us to con-
sider this same regularity problem for the Poisson equation under homogeneous Dirichlet
boundary conditions. At this point, one was naturally led to consider the extension of this
last problem to more general linear elliptic boundary value problems, and also to try to ex-
tend the results to more general data spaces. Pursuing and developing results that remained
unpublished about thirty years, we survey the route followed in the study of these problems
and we consider new results and open problems. In particular, we extend some minimal
assumption results for the stationary Stokes system, and for and for the planar, evolution,
Euler equations, to larger data spaces.
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1. Notation and some helping remarks

In this section, apart from basic notation, we make some useful remarks to help
the reading of these notes. We start by notation.  is an open, bounded, con-
nected set in R”, n > 2, locally situated on one side of its boundary I'. We assume
that T is of class C%#(Q), for some positive 2. By C(Q) we denote the Banach
space of all real continuous functions in Q endowed with the classical norm

If1l = sup |/ (x)]-

xeQ
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The classical spaces C'(Q) and C?(Q) are normalized by ||ul|, = ||u|| + ||Vu]|, and

l|ul|, = ||u|| + ||V?u||, with clear notation. Further, for each A € (0, 1], we define
the semi-norm

, (1.1)

and the Hélder space C**(Q) =

1Mo = A1+ [ o2
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In particular, C%!(Q) is the space of Lipschitz continuous functions in Q. By
C*(Q) we denote the set of all restrictions to Q of indefinitely differentiable func-
tions in R”. Boldface symbols refer to vectors, vector spaces, and so on. Compo-
nents of a generic vector u are indicated by u;, with similar notation for tensors.
Norms in function spaces, whose elements are vector fields, are defined in the usu-
al way by means of the corresponding norms of the components.

The symbols ¢, ¢g, ¢, ..., denote positive constants depending at most on Q
and n. We may use the same symbol to denote different constants.

Next we make some useful remarks, preliminary to the reading of these notes.
Concerning the space dimension 7, it is worth noting, once and for all, that in
all the results stated for the Euler equations the assumption n =2 is strictly
necessarily. On the contrary, all the results stated for elliptic equations hold for
arbitrarily large values of n, at most with trivial modifications. Clearly, in refer-
ence [4], since the matter were the Euler equations, elliptic regularity results were
of interest only for n = 2. Concerning this point, the following is an explanatory
example. Theorems 2.2 and 2.3 hold independently of the space dimension. How-
ever, the resolution of problem (2.4) by appealing to that of (2.9), shown in [4]
and recalled below, is strictly restricted to dimension n = 2. Concerning planar
motions, in treating this particular situation we appeal to the distinct notation
Curl to indicate the curl of a scalar. To readers which want to consult reference
[4] we note that in this last reference we have appealed to the notation rot-Rot in-
stead of notation curl-Curl, followed here.

In these notes, in treating Stokes and other elliptic problems, to simplify nota-
tion, and also due to the author’s taste, we may assume that n = 3, as done, for
instance, in the proof of Theorem 7.1. Proofs immediately apply to any dimension
n > 2, with standard modifications. Compare (5.4), where n may be arbitrarily
large, with (5.7), where n = 3. Extension to arbitrary large dimensions of (5.7) is
well known (for n = 2, the first equation gets the typical logarithmic form).

Acknowledgement. Reference [4] was partially prepared when the author was
Professor at the Mathematics Department and the ‘“Mathematics Research
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Center”, University of Wisconsin-Madison, (October 1981-March 1982), and at
the University of Minnesota—Minneapolis (March 1982—June 1982). The above
paper appears first in the 1982 reference [3]. The author is grateful to Professor
Robert E. L. Turner for the above invitation to Madison. The author would
also like to take this occasion to thank Robert (Bob) for the continuous help in
correcting the English of many papers (not the present version of this one), to-
gether with mathematical advice and remarks.

2. Preliminaries

To abbreviate, we say that solutions of stationary or evolution problems are clas-
sical if all derivatives appearing in equations and boundary conditions are contin-
uous up to the boundary on their domain of definition. Furthermore, seeking for
“minimal assumptions’ on the data which guarantee that solutions to a specific
stationary, or evolution, problem are classical, is called here the minimal assump-
tions problem.

This note originates from reference [4], where the main goal was looking for
minimal assumptions on the data which guarantee classical solutions to the 2 — D
Euler equations in a bounded domain

ow+(-Vio+Va=f inQ=R"xQ,

dive=0 1in Q; 2.1)
v-n=0 onRxT;
v(0) =y in Q.

For simplicity, every time we are concerned with 2 — D Euler equations, we as-
sume that the domain Q is simply connected.

The resolution of this problem appealed, in particular, to the minimal assump-
tions requirement for the elliptic boundary value problem (2.9) below. This opens
the way to the study of the minimal assumptions problem for elliptic equations
and systems (like Stokes, for instance). Here, pursuing and developing results
that remain unpublished about thirty years, we survey the route followed in the
study of these problems, and consider new results and open questions. We like
to remark that the 1984 reference [4] was published in 1982, as a preprint of the
well known Mathematics Research Center (MRC) series, see [3]. They totally
coincide. They originate from a preliminary, hand written version (still con-
served), denoted in the sequel by [UN]. At that time, some results and hints re-
mained unpublished. Recently, we turned back to the above manuscript, and pub-
lished part of the results and proofs. This origin will be sometimes recalled in the
sequel.
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After some attempts to individuate the best way to introduce this notes, we de-
cided to begin by showing the development of the main lines followed in reference
[4], simulating that we still are trying to solve the main open problem.

By considering C(Q) as the curl’s data space, one has the following result,
proved in [4], Theorem 1.1. Here n = 2.

Theorem 2.1. Let a divergence free vector field vo, tangent to the boundary, satisfy
curlvg € C(Q), and let curl f € L'(R*; C(Q)). Then, the problem (2.1) is uniquely
solvable in the large,

curlv e C(R*; C(Q)), (2.2)

and the estimate

1
[lcurlv(z)|| < [[curl vy|| +J |lcurl £ ()] d= (2.3)
0

holds. If curl f =0, then ||curlv(z)|| = ||curl vy]|.

The next step was to replace curl v by Vo in the left hand side of estimate (2.3).
Note that the two last equations in the following elliptic system

curlv =60 in Q,
dive=0 1inQ, (2.4)
v-n=0 onT,

are still included in (2.1). Furthermore, it is well known that solutions v of prob-
lem (2.4) are completely determined by the scalar quantity 0 (recall the assump-
tion Q simply-connected), so by curlv. Hence, if one shows that solutions v of
problem (2.4) satisfy the estimate ||Vv|| < ¢||0||, then we may replace curlv by Vv
in the left hand side of estimate (2.3). Unfortunately, this is known to be false. In
other words, the data space C(Q) is too wide. On the other hand, Holder spaces
are here too narrow. In fact, in this case (see [13], [15], and also [2], [12]), the

above device works, since solutions of (2.4) satisfy the estimate
IVollg,, < cllbllp,, = c||curlv||0’/1. (2.5)

However this estimate is unnecessarily strong in the context of our “minimal

assumptions problem”. So, we looked for a functional space C.(Q), as large as
possible, satisfying the embedding

CHHQ) = C.(Q) = C(DQ), (2.6)

and for which the following result holds.
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Theorem 2.2. Let 0 e C.(Q), and v be the solution of problem (2.4). Then

Vv e C(Q), and ||Vv|| < ¢||0]],. Hence for divergence free, tangent to the bound-
ary, vector fields the estimate

[IVo|| < co|curl]|, (2.7)
holds.

This result holds for arbitrary dimension. However, to go on, assume n = 2.

In reference [4] the above result was claimed for a specific space C.(€2). From
now on C,(Q) denotes this space. To avoid loosing the thread of the argument,
definition will be shown later on, in Section 4, to which the reader is referred
whenever necessary.

We remark that in Theorem 2.2 the loss of regularity going from the curl to the
gradient is deliberately allowed since in the minimal assumptions problem nothing
more than continuity should be required to Vo.

To prove the Theorem 2.2 we showed how to confine the minimal regularity
problem for the elliptic system (2.4), treated in Theorem 2.2, to a similar, simpler,
regularity problem for equation (2.9) below. A classical argument shows that the
solution v of the linear elliptic system (2.4) can be obtained by setting

v = Curly, (2.8)

where the scalar field i solves the problem

{A¢:0 in Q,

=0 onT. (29)

We appeal here to a typical approach in studying planar motions. For a scalar
function (x) (identified here with the third component of a vector field, normal
to the plane of motion) we define the vector field Curlyy = (0,4, —01y). For a
vector field v = (vy, v,) we define the scalar field curl v = 0,0, — dv; (the normal
component of the curl). One has —A = curl Curl. Note that Curly is the rotation
of the gradient Vi) by 7/2 in the counterclockwise direction. Roughly speaking,
in the usual three dimensional framework, we have work with three dimensional
vectors, namely (0,0,v), and (v;,v2,0). By applying the classical three dimen-
sional curl operator to these vector fields one easily understand the above, classi-
cal, simplification.

It follows that solutions v to the system (2.4) belong to C'(Q) if the solutions i/
to the system (2.9) belong to C*(Q). This situation led us to prove the following
result.

Theorem 2.3. Let 0 € C.(Q) and let \y be the solution to problem (2.9). Then
W e CHQ), moreover, |||, < o0,
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Theorem 2.2 follows immediately from this result, by appealing to the explicit
expression (2.8) of the solution v of problem (2.4).

Theorem 2.3 was stated in [4] as Theorem 4.5. Actually, in this last reference
the result was claimed for more general linear elliptic boundary value problems.
However the proof remained unpublished. Recently, in reference [5], we followed
the same lines to obtain a corresponding result for the Stokes system, see Theorem
5.2 bellow (in Section 7 we show a partial extension of this theorem to larger func-
tional spaces).

With Theorem 2.2 in hands, we were still far from our goal since the estimate
(2.7) does not fit the estimate (2.3). Roughly speaking, one has to extend this
estimate from C(Q) to C.(Q). This was the more difficult point to reach in refer-
ence [4], in particular due to the very weak assumption made in relation to the ex-
ternal forces. We have proved (see Lemma 4.4 in [4]) the following statement,
may be the main result in that paper.

Theorem 2.4. Let C.(Q) be the Banach space defined in Section 4. Assume that
curlvg € C.(Q) and curl f € L'(RT; C.(Q)). Then, the curl of the global solution
v of problem (2.1) satisfies

curlv e C(RT; C,(Q)).
Moreover
leurl ()] < e (Jeurl o]l + lourl fll e @) (210)
where

B = [lcurlwo|| + [leurl fl,10 . c@))- (2.11)

We advise readers which go back to [4] that in this reference they will find the
notation { = curlv, ¢ = curl f, and {, = curl vy.

The above result, in the simpler case in which external forces vanish, has been
rediscovered, later on, by other authors.

Theorems 2.4 and 2.2 yield the following statement (Theorem 1.4 in [4]).

Theorem 2.5. Let C.(Q) be the Banach space defined in Section 4. Further, let
curlvg € C.(Q) and curl f € L'(R™; C.(Q)). Then, the global solution v to prob-
lem (2.1) is continuous in time with values in C'(Q),

ve C(RCY(Q)). (2.12)
Furthermore, the estimate
ol < e {leurl ool g+ lleurl fll i @y} (213)

holds for all t € R, where B is given by (2.11).
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Moreover, 0,v and Vr are continuous in Q if both terms f, and VF, in the canon-
ical Helmholtz decomposition f = f, + VF satisfy, separately, this same continuity
property. So, all derivatives that appear in equations (2.1) are continuous in Q (clas-
sical solution).

If Q is not simply connected the results still apply. See the appendix 1 in [4].

3. Further developments and open problems

Study and resolution of the above problems opens the way to new problems. First
of all, problems related to the minimal assumptions problem for more general ellip-
tic boundary value problems. In [4], the minimal regularity problem for the ellip-
tic system (2.4) was confined to a similar regularity problem for equation (2.9)
since Theorem 2.2 was sufficient for our purposes. However, at that time, as re-
marked in [4], we had proved an extension of this result to more general elliptic
boundary value problems (the proof remained unpublished, even though we were
not able to find it in the current literature). Further, in a recent paper, we ex-
tended the proof to the stationary Stokes system, see Theorem 5.2 below. Similar
results hold for more general linear elliptic problems, as the reader may verify,
since proofs depend only on the behavior of the associated Green’s functions.
See Section 5.

Another interesting research field is the extension of the results to larger data
spaces. In fact, there may be other significant functional spaces, possibly larger

then C.(Q), satisfying the required properties. An attempt in this direction was

done in [UN], where a functional space B.(Q) was defined and studied. Below,
we turn back to this space, and to the even larger space D,(Q). Unfortunately,
we merely obtained partial extensions of the results. As an example of this situa-
tion, compare Theorem 5.2 with Theorem 7.1.

Partial extensions of Theorems 2.4 and 2.5 to initial data in the functional

space B.(Q) are shown in Section 8, see Theorems 8.1 and 8.2.

Plan of the paper: B
In Section 4 we recall definition and properties of the space C.(€2) and intro-
duce the new spaces B.(Q) and D,(Q), which satisfy the inclusions

C*(f_!) c B, (ﬁ) c D*(ﬁ)
In Section 5 we consider Stokes and other elliptic problems with data in C*_(ﬁ).
In Section 6 we consider, in particular, a family of Banach spaces D**(Q), a
kind of weak extension of the classical Holder spaces. B
In Section 7 the full aim would be to extend the results with data in C,(Q) to

data in the new spaces B.(Q) and D,(Q). Some partial extension results are
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shown for solutions to the Stokes equations. Second order derivatives of solutions
are bounded but, possibly, not continuous. The proofs depend essentially on the
properties of the related Green’s functions.

In Section 8 we extend the results proved in reference [4] for the Euler equa-

tions with data in C,(Q), to data in B.(Q). The extension obtained is partial,
since continuity is replaced by boundedness, and external forces vanish.

4. The spaces C.(Q), B.(Q), and D.(Q)

Spaces B.(Q), and D, (Q) will be used later on, however it looks better to intro-

duce these spaces together with C,(Q) for comparision reasons. The space

C.(Q) was introduced in [4]. Main properties were refered in this reference, how-
ever proofs were not included in the paper. For complete proofs see [5].
Set

Ix;r)={y:|ly—x|<r}, Qx;r)=QnI(x;r), Qx;r)=Q—Q(x;r).

For f € C(Q) define

op(r)= sup |f(x)=f)l,  o)= sup [fx)=S)], (41)

yeQ(x;r) x,yeQ(x;r)
and introduce the semi-norm

0 o
1.5= |, sop oy = [ o 42)

The finiteness of the above integral is known as Dini’s continuity condition, see
[11], equation (4.47). In this reference, problem 4.2, it is remarked that if f satis-
fies Dini’s condition in the whole space R”, then its Newtonian potential is a C>
function in R”.

We define

C.(Q)={feCQ):[f], <o} (4.3)

A norm is introduced by setting

1S 1ls = s+ 11

Since
%)
Ul <UL, < s + 2(1og 5—) 171, (4.4)

for 0 < J; < d,, norms are essentially independent of o.
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To fix ideas, we chose 6 = R, where R denotes the diameter of Q. and set

The results obtained in the framework of C.(2) spaces led to consider their
possible extension to larger functional spaces of continuous functions. We con-
sider functional spaces B.(Q) and D.(Q), for which C.(Q) = B.(Q) = D.(Q).
The space B,(Q) was considered in [UN] as follows. For each f € C(Q), we de-
fine the semi-norm

R
= supj or(xir) & (45)
xeQJ0 r

and the related functional space
B.(Q)={f e C(Q): {f). < +o} (4.6)
endowed with the norm

A1 = <+ 1A (4.7)

The reader should compare (4.5) with (4.2). Obviously, (f), <[f],. Actually,

the B.(Q) norm is “much weaker”. In [UN] we have shown that the inclusion
C.(Q) < B.(Q) is proper, by constructing oscillating functions which belong to
B.(Q) but not to C,(Q). This construction was recently published in reference
[6]. Further, we may show that B.(Q) is compactly embedded in C(Q), and that
(4.4) still holds for the B.(Q) semi-norm.

The space D, (Q) is defined as follows. Set
Sxir)={yeQ:|y—x|l=r}
and define, for ' € C(Q), x € Q, and r > 0, the quantity

ar(xo;r) = sup |f(y) = f(x)]. (4.8)

yeS(x;r)

Further, we define the semi-norm

and the related functional space

D.(Q) ={feCQ):(f), <}
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A norm in D, (Q) is introduced by setting

AT = ).+ 17 (4.10)

We remark that (4.4) still holds for the D, (Q) semi-norm.

Note that, compared to B, (Q), the space D, (Q) is defined by replacing in (4.5)
the expression of w,(x;r) shown in (4.2) by the expression given by (4.8). Sets
Q(x;r) are replaced by sets S(x;r). Note that S(x;r) has no boundary points
even when the distance of x to the boundary is less than r.

It is worth noting that the above substitution in the definition of C.(Q) is irrel-
evant sinve it would leave this space invariant.

Main properties of C,(Q) are the following.

Theorem 4.1. C.(Q) is a Banach space.

Theorem 4.2. The embedding C.(Q) = C(Q) is compact.

Theorem 4.3. The set C*(Q) is dense in C,.(Q).

It is worth noting that the crucial property required for the space C.(Q) in the
proofs of Theorems 2.3 and 5.2, is Theorem 4.3. This theorem is proved, see [5],
by appealing to the well known mollification technique. This density result up o
the boundary requires a previous, suitable extension, of the functions outside Q.
The following result holds.

Theorem 4.4. Set Q. = {x : dist(x, Q) < t}. Thereis at > 0 such that the follow-

ing statement holds. There is a linear continuous map T from C(Q) to C(Q,), such

that its restriction to C,(Q) is continuous from C,(Q) to C.(.), and Tf, restricted
to Q, coincides with f.

5. Stokes, and other elliptic problems, in C,(Q)

In [4] it was remarked that, at that time, we have proved the Theorem 2.3 for solu-
tions to more general linear elliptic boundary value problems. In fact, in [UN] we
have obtained the following regularity result.

Theorem 5.1. For every f € C.(Q) the solution u to the problem

Lu=f inQ,
5.1
{ﬁu:O onT, (5-1)
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belongs to C*(Q). Moreover, there is a constant ¢ such that the estimate

ull, < collfIl.,  ¥f € C(Q). (52)

holds.
Here, % is a second order partial differential elliptic operator with smooth
coefficients, and # is a linear differential operator, of order less or equal to one,

acting on thE boundary I'.  We assumed that ¥, %, and Q are such that, for
each f e C(Q), the problem (5.5) has a unique solution u € C!(Q), given by

uu>=J;guMmfoowa (5.3)

where ¢ is the Green function associated with he above boundary value problem.
Our hypotheses on %, 4, and Q are given by assuming the following two require-
ments:

— For each f e C(Q) the solution u of problem (5.5) is unique, belongs to C'(Q),
and is given by (5.3). Furthermore, if / € C*(Q) then u € C*(Q).

— The above Green’s function g(x, y) satisfies the estimates

k

T -yt

g
ﬁx,-ﬁxj

k

T x ="

%1

o (5.4)

where i, j=1,...,n.

These estimates are well known for long time, for a large class of problems.
The above setup, and related comments and proofs, may be shown in reference [6].

In particular, the proof of Theorem 5.1 may be extended to a larger class of
problems, like non-homogeneous boundary value problems, elliptic systems, in
particular the Stokes system, higher order problems, etc. The main point is that
solutions u are given by equations like (5.3), where the Green functions g satisfy
suitable estimates, which extend that shown in equation (5.4). Recently, we have
adapted the unpublished proof of Theorem 5.2 to show a similar regularity result
for solutions to the Stokes system (see, for instance, [10], [14], [20])

—Au+Vp=f inQ
V-u=0 inQ, (5.5)
u=0 onT.

If fe C(Q), this problem has a unique generalized solution (u, p) € C'(Q) x
C(Q), where p is defined up to a constant. The solution is given by

M@=L@mwmwm pm=mewmww (5.6)
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where G and g are respectively the Green’s tensor and vector associated with the
above boundary value problem. Furthermore, the following estimates hold.

C

Gi' X,y < )
| j( ) |X—y|
Gj(x, y)’ C C

< , )| < ———,
< s aels 57
0*Gy(x, y) C ‘5%‘(9@ y)’ ._ ¢

Oxedx; | |x =y N

where the positive constant C depends only on Q. For an overview on the classi-
cal theory of hydrodynamical potentials, and the construction of the Green func-
tions G and g, we refer to Chapter 3 of the classical treatise [14]. The estimates
(5.7) are contained in equations (46) and (47) in this last reference. They may
also be found in [16]; see also [9] and [21]. The estimates (5.7) are a particular
case of a set of much more general results, due to many authors. See, for instance,
[1], [16], [17], [18] and [19].

It is well known, see [9], that for every f € C**(Q) the solution (v, p) to the
Stokes system (5.5) belongs to C**(Q) x C'*(Q). Hence, as above, Holder
spaces look too strong as data spaces for getting classical solutions. On the other
hand, as above, it is well known that f € C(Q) does not guarantee classical
solutions. In reference [5], we proved the following result.

Theorem 5.2. For every f e C (Q) the solution (u, p) to the Stokes system (5.5)
belongs to C*(Q) x CY(Q). Moreover, there is a constant co, depending only on
Q, such that the estimate

lull, + Vol < coll fll.,  Vf e CQ), (5.8)
holds.

A partial generalization of the above theorem to data in a larger space is pre-
sented in Section 7, see Theorem 7.1.

6. Elliptic problems in B.(Q), D.(Q), and D**(Q)

In [UN] we considered the problem (2.9) with data in B,(Q), and proved that the
first order derivatives of ¥ are Lipschitz continuous in Q. Hence, second order
derivatives are bounded. However we were (and are) not able to prove the conti-
nuity of these derivatives. Continuity would hold if the density Theorem 4.3 were
to hold with C,(Q) replaced by B.(Q); an interesting open problem. This led us,
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at that time, to replace in the published work [4] the space B.({2) by the more

handy space C.(Q). Actually, in [UN], the result was proved for linear elliptic
boundary value problem whose solutions are given by

u(x) = jﬂ Glx, y) () dy,

where the scalar Green function G(x, y) satisfies the estimates stated in (5.7). Re-
cently, in reference [6], we have published the proof of this result in a more general
form, since B.(Q) was replaced by the larger space D, (Q), see below. In Section 7
we appeal to the same ideas to extend the result proved in [6] to the Stokes prob-

lem (5.5), see Theorem 7.1. Obviously, all the results proved for data in D, (Q)
hold for data in B.(Q).

The results obtained in the framework of C,(Q) spaces also lead us to consider
the problem of their restriction to smaller functional spaces, instead of extension
to larger spaces. The main motivation, within the realm of solutions to second
order linear elliptic boundary value problems, can be illustrated as follows. If
f e C%(Q), the second order derivatives of the solution satisfy D*u € C%*(Q).
Let’s say, for brevity, that they fully “remember” their origin. On the other hand,
if the data f is in C,.(Q), then the second order derivatives of the solution are
merely continuous. Roughly speaking, they completely ““forget” that f produces
a finite the integral on the right hand side of (4.2). This situation leads us to
look for data spaces, between Holder and C,(Q) spaces, for which solutions “re-
member”’, at least partially, their origin. The following is a significant example of

a functional space of “intermediate type”. Define, for each ¢ > 0, the semi-norm

()~ 1) o)

—0o )

oo = sup
7 x.,yef_l 0<‘x—y|<] (_log|x - y|)

and the related norm ||/, = [flo,, +[l/ll. Next, define functional spaces

D%*(Q) in the obvious way. Roughly speaking, we have replaced in the definition
of Holder spaces the quantity

1 1
—— by log——.
Ix — X —

We call these spaces Log spaces. The family of Log spaces enjoys some typical,
significant property. For instance, D%*(Q) is a Banach space, and C*(Q) is a
dense subspace. Furthermore, for 0 < f <1 < o, and 0 < 4 < 1, the following
strict embeddings

C(Q) = D"*(Q) = C.(Q) = DM(Q) = C(Q) (6.2)
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hold. Note that D*!(Q) = C,(Q) is false. The embeddings D**(Q) = D*F(Q) =
C(Q), for « > >0, and the embeddings D**(Q) = C.(Q), for « > 1, are
compact.

In reference [7] we have considered boundary value problems with data in
D%*(Q). For a second order linear elliptic problem we show that if f € D**(Q),
for some o > 1, then D*u € D%~ (Q). Furthermore, this result is optimal.

In a forthcoming paper, see [8], we set the above distinct situations in a unique
framework by considering a more general family of data spaces D,,(Q), satisfying
the inclusions C%!'(Q) = D, (Q) = C.(Q). Holder and H-log spaces, and related
results, turn out to be particular cases.

7. The Stokes equations with data in D,(Q). Uniform boundedness
of VZu and Vp

In this section we consider the Stokes system and show that the first order deriva-
tives of the velocity u, and the pressure p, are Lipschitz continuous in Q for given
external forces in D,(Q) (so, in particular, in B,(Q)). We prove the following
result.

Theorem 7.1. Let f € D.(Q), and let (u, p) be the solution to problem (5.5). There
is a constant C, which depends only on Q, such that

llulli, + llpllo,r < CIHATIL- (7.1)

So V’u,Vp € L*(Q).

Proof. To fix ideas, we assume that n = 3. Extension to space dimensions n # 3
is obvious. The point is merely writing (5.7) for the n-dimensional case. In the
following we merely consider the velocity, since the pressure is treated similarly
(see also [S]). Let e;(x), i = 1,2,3, denote three constant vector fields in R*, every-
where equal to the corresponding cartesian coordinate unit vector ¢;. Define the
auxiliary systems

—Avi(x) + Vgi(x) = ei(x) inQ,
V.y;=0 inQ, (7.2)
v,=0 onT.

Clearly, v; and ¢; are smooth. Fix a constant K(Q) such that

oilly 1+ llgillo < K(L), (7.3)
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for i =1,2,3. Next, in correspondence to each point xy € Q, define the auxiliary
system (a kind of “‘tangent problem” at point x;)

—Av(xg, x) + Vg(xo,x) = f(x0,x) inQ,
V-v=0 inQ, (7.4)

v=0 onT,

where f(xo,x) = f(x0), Vx € Q, is a constant vector in Q. Since
f(X(),X) = Zﬁ(xo)ei(x)a

the functions v(xo, x) and ¢(xy, x) are smooth for each fixed xy. Moreover,

l[o(x0, )11 + llg(xo, )Mo, < KIf (xo)| < KIS (7.5)

Recall that K is independent of xy. For convenience set v(x) = v(xg, x), and so
on. By setting

w(x) = u(x) —v(x),

one has
i) = [ Gyte ) (500) = ftx))
Furthermore,
don(x) = domi(xa) = [ (@G (x.2) = 0G0, D) (3) = i)

where 0y stands for differentiation with respect to xi, and Jxw;(xo) means the
value of 0pw;(x) at the particular point x = xj.
Clearly

|0kwi(x) — Oxwi(xo)| < JQ 10k Gy (x, y) — 0k Gyp(x0, V)| 11i(¥) — fi(x0)| dy.

By setting p = |x — x| one gets
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[0k wi(x) — Orwi(x0)|

< JQ( ) |0k Gii(x, ) — 0k Gi(x0, ¥)| | £i(¥) — fi(x0)| dy
X05 4P,

4{ 106Gy (x, 7) — Gy LA — fi(xo)] dy
Qc(x032p)
EIl(XO,X,/))+12(X0,X,p). (76)

By appealing to (5.7) (to be adapted, if n # 3), we show that

heaxp) < (| Sl - Sl

Q(x0;2p) |X() — y|

+JQ‘C3/) |X— | |fj( > fj(xo)ldy)
= Ji(xo0, X, p) + J2(x0, X, p). (7.7)

By setting r = |xo — y|, and by appealing to polar-spherical coordinates centered
in xo, one easily shows that J;(xo, x,p) < Cp, @y (Q(x0;2p)), where C depends
only on Q. Similarly, J>(xo, x, p) < Cpayy(Q(x;3p)). It follows that (recall defini-
tion (4.8))

I (X(),X, p) < C/)be(3p)7

where C does not depend on the particular points xq, x € Q, and p = |x — xo|.
On the other hand, by appealing to the mean-value theorem and to (5.7), we
get

|0k Gyi(x, ¥) — O Gy(x0, ¥)| < Cplx’ — y| > < Cp23|xg — ¥| 7,

for each y € Q.(x¢;2p), where the point x’ belongs to the straight segment joining
Xo to x or, if necessary, to a smooth path y = y(xy, x), contained in Q, joining xo
and x, and such that its lenght is bounded by Cp, where the constant C > 1 does
not depend on the particular points xy and x. Consequently,

d dr
biwoxp) e[ 10)- ool T <o | a0
Q(x0;29) [x0 — ¥l 2 r

Hence,

dr
anMéwLwU—<QMﬂH
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Next, by appealing to equation (7.6), and to the estimates proved above for I; and
I, we show that

[Viw(x) = Vw(xo)l < Cp (Il A1l + @ (3p))-

Consequently,

[Vu(x) — Va(xo)| < [Vw(x) — Vw(xo)| + [Vo(x) = Vo(xo)|
< Cp(I 11l + @r(3p) + KII£11)-
So,

|Vu(x) — Vau(xo)|
|x — xo]

< CIfls Vx,xo € Q, X # xo. (7.8)

This proves (7.1) for the velocity u. Similar calculations lead to the corresponding
result for the pressure. |

It is worth noting that the above proof depends only on having suitable esti-
mates for the Green’s functions. For instance, the argument applied in the above

proof to study the system (5.5) with data in D.(Q) can be applied to the system
(2.9) with data in D.(Q), since the scalar Green’s function G(x, y) related to this
last problem satisfies exactly the estimates claimed in equation (5.7) for the com-
ponents Gy (x, y). It follows that Theorem 2.3 holds, in a similar “weak form”,
for data in D,(Q). Continuity of the second order derivatives should be replaced
by boundedness. This immediately leads to the following “weak form” of

Theorem 2.2.

Theorem 7.2. Let 0 € D.(Q), and let v be the solution of problem (2.4). Then

Vv e L*(Q), and ||Vv||Lx(ﬁ) <ol |0] |l So, for divergence free vector fields, tan-
gent to the boundary, the estimate

1V0],.. ) < coll lcurlo] | (1.9)
holds.

We state this specific case since it will be useful in considering the Euler equa-

tions with data in B,(Q). For more results and comments on the above subject we
refer to [6].

8. The space B.(Q) and the Euler equations

Concerning possible extensions of the results obtained for the 2 — D evolution Eu-
ler equations, from C,(Q) to B..(Q), we show here a partial result in this direction.
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We clearly pay the price of the loss of regularity for solutions to the auxiliary
elliptic system (2.4). This leads us to replace continuity in time by boundedness
in time.

Furthermore, we simplify our task, in a quite substantial way, by assuming that
external forces vanish, instead of assuming the very stringent condition curl f €
L'(R™; B.(Q)).

Below, we prove the following weak extension of Theorem 2.4.

Theorem 8.1. Let v be the solution to the Euler equations (2.1), where the initial
data v is divergence free, tangential to the boundary, and satisfies curl vy € B, (Q).
Furthermore, suppose f =0. Then curlv e L* (07 T; B, (ﬁ)), and there is a con-

stant Cy (an explicit expression can be easily obtained) such that

|curlv(2)]|* < Crllcurl |, (8.1)
foraa te (0,T).

A weak extension of Theorem 2.5 follows immediately from Theorem 8.1 to-
gether with Theorem 7.2. One has the following result.

Theorem 8.2. Under the assumptions of Theorem 8.1 the estimate
IVl 1+ g,y < Crllcurlvo||* (8.2)
holds almost everywhere in Qr.

To prove Theorem 8.1, we appeal to some estimates previously obtained in a
more general form in reference [4]. For clarity, instead of stating these estimates
in the weakest form, strictly necessary to prove the Theorem 8.1 below, we rather
prefer to show some more general formulations of the estimates. This allows us to
present a short overview on the structure of the proof of Theorem 2.13, suitable
for readers interested in a deeper examination of reference [4]. In order to make
an easier link with this last reference, we appeal here to the notation used in [4]
(compare, for instance, (8.3) and (8.5) below with (2.4) and (2.9), respectively).

As already remarked, the velocity v(7), at each time ¢, can be obtained from the
vorticity {(¢) = curl v(¢), by setting, for each fixed ¢, @ = {(¢) in the elliptic system

curlv =0 1in Q,
dive=0 inQ, (8.3)
curlv-n=0 onT.

On the other hand, the solution to this system is given by

v = Curly, (8.4)
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where  is the solution of the elliptic problem
Ay =0 inQ, (8.5)
=0 onTI.

So, at least in principle, we may obtain the velocity from the vorticity. However,
since the vorticity is not a priori known, we start from a ‘“fictitious vorticity”
0(x,t), and look for a fixed point = {. In the sequel we replace “fictitious vor-
ticity” simply by “vorticity”’, and so on for other quantities. From each suitable
“vorticity” we obtain a “velocity”, by appealing to (8.5) and (8.4). From this
“velocity” we construct streamlines U(s,z,x), by appealing to Lagrangian
coordinates. Finally, a well know technique (here dimension 2 is crucial) gives a
correspondent fictitious “vorticity” {. So, a map 0 — ( is, formally, well defined.
A rigorous fixed point was obtained in reference [4] in the framework of C(Q)
spaces, as follows:

Fix an arbitrary positive time 7', an initial data vy, and an external force f. Set
{o = curlwy, ¢ = curl £, and define (see (2.11))

B—KM+LIﬂMMt (8.6)

Further, define the convex, bounded, closed subset of C(Q7),
K={0¢eC(07): 0l <B}. (8.7)

From now on, the symbol 6 = (x, t) denotes an arbitrary element of K. As al-
ready explained, the idea is to prove the existence and uniqueness of a fixed point
in K, for a suitable map ®, such that to this fixed point there corresponds a solu-
tion of the Euler equation (2.1) with the above given data. The map ®[0] = ( is
defined as the following composition of single maps:

D: 0y —-v—->U—C (8.8)

Given 0 = 0(x,t) € K we get y = (x, 1) by solving the elliptic system (8.5), where
t is treated as a parameter. The crucial estimates for /(x) follow from

ww=Lm%w@,

where g is the Green function associated to problem (8.5). Knowing /, the veloc-
ity v is obtained by setting v(x, 7) = Curly/(x, ).
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The next step is to get {, from v. We introduce the streamlines U associated
with the “velocity” wv(x,7) obtained in the previous step. The streamlines
U(s, t, x) are the solution to the system of ordinary differential equations

ds

iU(Sa tvx) :D(S, U(S,Z,X)), fors e [()7 T],
{ U(t,t,x) = x. (8.9)

U(s, 1, x) denotes the position at time s of the physical particle which occupies
the position x at time 7. A main tool is here the following estimate (see equation
(2.6) in [4]).

|U(S7 Z x) - U(S17 Z],X1)|

<c¢Bls=si|+c(l+ceB)(|]x— X1|/} +|t— ll|p), (8.10)
where ¢; depends only on Q, p = e~ “87 and ¢, = max{1,eR}, where R denotes
the diameter of Q. Knowing U, we set ([4], equation (2.8))

t

(1, x) = & (U(0,1,x)) + J ¢(s, U(s, t,x)) ds

0
ECl(t>x)+C2(t7x)7 (811)

where, as already remarked, {, = curl vy, and ¢ = curl f. The curl of the solution
is here expressed separately in terms of the curls of the initial data and of the ex-
ternal forces. The main estimates for these two terms were proved in [4], respec-
tively in Lemmas 4.3 and 4.2. The reader may verify that the control of the exter-
nal forces term is much more involved than that of the initial data term.

The composition map ®[0] = { turns out to be well defined over K, by appeal-
ing to (8.8). In the proof of Theorem 2.1 in [4], we close the above scheme by
showing that ®(K) < K, and that there is a (unique) fixed point in K. Finally, it
was proved that this fixed point is the curl of the solution to the Euler equations
(2.1). The velocity follows from the curl by appealing to (8.3).

After this flying visit to the proof of Theorem 2.1, we prove the Theorem 8§.1.

Proof of Theorem 8.1. A main tool in proving the regularity Theorem 2.4 for data

in C.(Q) was the following result, see the Lemma 4.1 in [4].

Lemma 8.3. Let ac C.(Q) and Ue C*®(Q:Q), 0<R<1. Then aoUce

C.(Q); moreover

[ao U], < %[a]*. (8.12)
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Note that the need for property (8.12) narrows the possible choice of spaces,
candidate to replace C.(Q).

Actually, in our preliminary version [UN] the above lemma is written in terms
of metric spaces. However, at that time, it seemed to us a little “out of place’ to
present a so simple result in an abstract form.

The absence of external forces f lead us to revive below, directly, the simple
idea used in the proof of Lemma 8.3, without appealing to the original statement
itself.

We deal with solutions whose existence is already guaranteed by Theorem 2.1.
We merely want to show the additional regularity claimed in Theorem 8.1. Since
in this theorem the external forces vanish, the following very simplified form of
(8.10) holds.

|U(O,[,X)—U(0,l,y)| SK|X—y|p, (813)

where B = ||{y]|. Following (8.11), and taking into account that {, vanishes, one
has { = {;. So the curl of the solution v to the Euler equation (2.1) is simply given
by

(e, x) = & (U(0,1,x)).

It follows that

o (x;r) = sup [{(1,x) = Gi(1,p)]
yeQ(x;r)

= sup |L(U(0,1,x)) = &o(U(0,1, )] (8.14)
yeQ(x;r)
Further, by appealing to (8.13), one gets
oy (x;7) < o, (U(0, 1, x); Kr”). (8.15)

So, by recalling definition (4.5), one has

R dr R N dr
K1), = Supj () (x57) — < supj g, (U(0,1,x); Kr’) —.  (8.16)
xe0Jo I eq r

Since

it follows, by appealing to the change of variables © = Kr”, that
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R
L)), < supJ e, (%; Kr”)@
1eQJ0 r

1 KR? dr 1
- supJ we, (x;7)— = =Dy krrs 8.17
P ocglo Co( )T P 0/%,KR ( )

with obvious notation. On the other hand, ||{(?)|| = ||o||, for all z. Since (4.4) also
applies for B, semi-norms, one shows that

IEOI™ < Crlidoll,

for all 1 € [0, T]. Theorem 8.1 is proved. Theorem 8.2 follows by appealing to
Theorem 7.2.

It would be interesting to prove Theorem 8.1 in the presence of external forces,
even in a simplified version, for instance, curl f € C(R"; B.(Q)). We believe that
a (possibly modified) version of this result holds by appealing to the measure pre-
serving properties of the streamlines, together with the control of the linear dimen-
sions of figures in finite time.
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