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Abstract. We revisit ‘‘minimal assumptions’’ on the data which guarantee that solutions to
the 2�D evolution Euler equations in a bounded domain are classical. Classical means
here that all the derivatives appearing in the equations and boundary conditions are contin-
uous up to the boundary. Following a well known device, the above problem led us to con-
sider this same regularity problem for the Poisson equation under homogeneous Dirichlet
boundary conditions. At this point, one was naturally led to consider the extension of this
last problem to more general linear elliptic boundary value problems, and also to try to ex-
tend the results to more general data spaces. Pursuing and developing results that remained
unpublished about thirty years, we survey the route followed in the study of these problems
and we consider new results and open problems. In particular, we extend some minimal
assumption results for the stationary Stokes system, and for and for the planar, evolution,
Euler equations, to larger data spaces.
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1. Notation and some helping remarks

In this section, apart from basic notation, we make some useful remarks to help

the reading of these notes. We start by notation. W is an open, bounded, con-

nected set in Rn, nb 2, locally situated on one side of its boundary G. We assume

that G is of class C2;lðWÞ, for some positive l. By CðWÞ we denote the Banach

space of all real continuous functions in W endowed with the classical norm

k f k ¼ sup
x AW

j f ðxÞj:



The classical spaces C1ðWÞ and C2ðWÞ are normalized by kuk1 ¼ kuk þ k‘uk, and
kuk2 ¼ kuk þ k‘2uk, with clear notation. Further, for each l a ð0; 1�, we define

the semi-norm

½ f �0;lC sup
x;y AW;xAy

j f ðxÞ � f ðyÞj
jx� yjl

; ð1:1Þ

and the Hőlder space C0;lðWÞC f f a CðWÞ : ½ f �0;l < lg, normalized by

k f k0;l ¼ k f k þ ½ f �0;l:

In particular, C0;1ðWÞ is the space of Lipschitz continuous functions in W: By

ClðWÞ we denote the set of all restrictions to W of indefinitely di¤erentiable func-

tions in Rn. Boldface symbols refer to vectors, vector spaces, and so on. Compo-

nents of a generic vector u are indicated by ui, with similar notation for tensors.

Norms in function spaces, whose elements are vector fields, are defined in the usu-

al way by means of the corresponding norms of the components.

The symbols c; c0; c1; . . . , denote positive constants depending at most on W

and n: We may use the same symbol to denote di¤erent constants.

Next we make some useful remarks, preliminary to the reading of these notes.

Concerning the space dimension n, it is worth noting, once and for all, that in

all the results stated for the Euler equations the assumption n ¼ 2 is strictly

necessarily. On the contrary, all the results stated for elliptic equations hold for

arbitrarily large values of n, at most with trivial modifications. Clearly, in refer-

ence [4], since the matter were the Euler equations, elliptic regularity results were

of interest only for n ¼ 2. Concerning this point, the following is an explanatory

example. Theorems 2.2 and 2.3 hold independently of the space dimension. How-

ever, the resolution of problem (2.4) by appealing to that of (2.9), shown in [4]

and recalled below, is strictly restricted to dimension n ¼ 2: Concerning planar

motions, in treating this particular situation we appeal to the distinct notation

Curl to indicate the curl of a scalar. To readers which want to consult reference

[4] we note that in this last reference we have appealed to the notation rot-Rot in-

stead of notation curl-Curl, followed here.

In these notes, in treating Stokes and other elliptic problems, to simplify nota-

tion, and also due to the author’s taste, we may assume that n ¼ 3, as done, for

instance, in the proof of Theorem 7.1. Proofs immediately apply to any dimension

nb 2, with standard modifications. Compare (5.4), where n may be arbitrarily

large, with (5.7), where n ¼ 3. Extension to arbitrary large dimensions of (5.7) is

well known (for n ¼ 2, the first equation gets the typical logarithmic form).

Acknowledgement. Reference [4] was partially prepared when the author was

Professor at the Mathematics Department and the ‘‘Mathematics Research
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Center’’, University of Wisconsin-Madison, (October 1981–March 1982), and at

the University of Minnesota–Minneapolis (March 1982–June 1982). The above

paper appears first in the 1982 reference [3]. The author is grateful to Professor

Robert E. L. Turner for the above invitation to Madison. The author would

also like to take this occasion to thank Robert (Bob) for the continuous help in

correcting the English of many papers (not the present version of this one), to-

gether with mathematical advice and remarks.

2. Preliminaries

To abbreviate, we say that solutions of stationary or evolution problems are clas-

sical if all derivatives appearing in equations and boundary conditions are contin-

uous up to the boundary on their domain of definition. Furthermore, seeking for

‘‘minimal assumptions’’ on the data which guarantee that solutions to a specific

stationary, or evolution, problem are classical, is called here the minimal assump-

tions problem.

This note originates from reference [4], where the main goal was looking for

minimal assumptions on the data which guarantee classical solutions to the 2�D

Euler equations in a bounded domain

qtvþ ðv � ‘Þvþ ‘p ¼ f in QCRþ �W;

div v ¼ 0 in Q;

v � n ¼ 0 on R� G;

vð0Þ ¼ v0 in W:

8>>><
>>>:

ð2:1Þ

For simplicity, every time we are concerned with 2�D Euler equations, we as-

sume that the domain W is simply connected.

The resolution of this problem appealed, in particular, to the minimal assump-

tions requirement for the elliptic boundary value problem (2.9) below. This opens

the way to the study of the minimal assumptions problem for elliptic equations

and systems (like Stokes, for instance). Here, pursuing and developing results

that remain unpublished about thirty years, we survey the route followed in the

study of these problems, and consider new results and open questions. We like

to remark that the 1984 reference [4] was published in 1982, as a preprint of the

well known Mathematics Research Center (MRC) series, see [3]. They totally

coincide. They originate from a preliminary, hand written version (still con-

served), denoted in the sequel by [UN]. At that time, some results and hints re-

mained unpublished. Recently, we turned back to the above manuscript, and pub-

lished part of the results and proofs. This origin will be sometimes recalled in the

sequel.
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After some attempts to individuate the best way to introduce this notes, we de-

cided to begin by showing the development of the main lines followed in reference

[4], simulating that we still are trying to solve the main open problem.

By considering CðWÞ as the curl’s data space, one has the following result,

proved in [4], Theorem 1.1. Here n ¼ 2:

Theorem 2.1. Let a divergence free vector field v0, tangent to the boundary, satisfy

curl v0 a CðWÞ, and let curl f a L1
�
Rþ;CðWÞ

�
: Then, the problem (2.1) is uniquely

solvable in the large,

curl v a C
�
Rþ;CðWÞ

�
; ð2:2Þ

and the estimate

kcurl vðtÞka kcurl v0k þ
ð t

0

kcurl f ðtÞk dt ð2:3Þ

holds. If curl f ¼ 0, then kcurl vðtÞk ¼ kcurl v0k:

The next step was to replace curl v by ‘v in the left hand side of estimate (2.3).

Note that the two last equations in the following elliptic system

curl v ¼ y in W;

div v ¼ 0 in W;

v � n ¼ 0 on G;

8<
: ð2:4Þ

are still included in (2.1). Furthermore, it is well known that solutions v of prob-

lem (2.4) are completely determined by the scalar quantity y (recall the assump-

tion W simply-connected), so by curl v. Hence, if one shows that solutions v of

problem (2.4) satisfy the estimate k‘vka ckyk, then we may replace curl v by ‘v

in the left hand side of estimate (2.3). Unfortunately, this is known to be false. In

other words, the data space CðWÞ is too wide. On the other hand, Hölder spaces

are here too narrow. In fact, in this case (see [13], [15], and also [2], [12]), the

above device works, since solutions of (2.4) satisfy the estimate

k‘vk0;la ckyk0;lC ckcurl vk0;l: ð2:5Þ

However this estimate is unnecessarily strong in the context of our ‘‘minimal

assumptions problem’’. So, we looked for a functional space C�ðWÞ, as large as

possible, satisfying the embedding

C0;lðWÞHC�ðWÞHCðWÞ; ð2:6Þ

and for which the following result holds.
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Theorem 2.2. Let y a C�ðWÞ, and v be the solution of problem (2.4). Then

‘v a CðWÞ, and k‘vka c0kyk�: Hence for divergence free, tangent to the bound-

ary, vector fields the estimate

k‘vka c0kcurl vk� ð2:7Þ
holds.

This result holds for arbitrary dimension. However, to go on, assume n ¼ 2:

In reference [4] the above result was claimed for a specific space C�ðWÞ. From

now on C�ðWÞ denotes this space. To avoid loosing the thread of the argument,

definition will be shown later on, in Section 4, to which the reader is referred

whenever necessary.

We remark that in Theorem 2.2 the loss of regularity going from the curl to the

gradient is deliberately allowed since in the minimal assumptions problem nothing

more than continuity should be required to ‘v.

To prove the Theorem 2.2 we showed how to confine the minimal regularity

problem for the elliptic system (2.4), treated in Theorem 2.2, to a similar, simpler,

regularity problem for equation (2.9) below. A classical argument shows that the

solution v of the linear elliptic system (2.4) can be obtained by setting

v ¼ Curlc; ð2:8Þ

where the scalar field c solves the problem

�Dc ¼ y in W;

c ¼ 0 on G:

�
ð2:9Þ

We appeal here to a typical approach in studying planar motions. For a scalar

function cðxÞ (identified here with the third component of a vector field, normal

to the plane of motion) we define the vector field Curlc ¼ ðq2c;�q1cÞ: For a

vector field v ¼ ðv1; v2Þ we define the scalar field curl v ¼ q1v2 � q2v1 (the normal

component of the curl). One has �D ¼ curl Curl. Note that Curlc is the rotation

of the gradient ‘c by p=2 in the counterclockwise direction. Roughly speaking,

in the usual three dimensional framework, we have work with three dimensional

vectors, namely ð0; 0;cÞ, and ðv1; v2; 0Þ: By applying the classical three dimen-

sional curl operator to these vector fields one easily understand the above, classi-

cal, simplification.

It follows that solutions v to the system (2.4) belong to C1ðWÞ if the solutions c
to the system (2.9) belong to C2ðWÞ: This situation led us to prove the following

result.

Theorem 2.3. Let y a C�ðWÞ and let c be the solution to problem (2.9). Then

c a C2ðWÞ, moreover, kck2a c0kyk�:
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Theorem 2.2 follows immediately from this result, by appealing to the explicit

expression (2.8) of the solution v of problem (2.4).

Theorem 2.3 was stated in [4] as Theorem 4.5. Actually, in this last reference

the result was claimed for more general linear elliptic boundary value problems.

However the proof remained unpublished. Recently, in reference [5], we followed

the same lines to obtain a corresponding result for the Stokes system, see Theorem

5.2 bellow (in Section 7 we show a partial extension of this theorem to larger func-

tional spaces).

With Theorem 2.2 in hands, we were still far from our goal since the estimate

(2.7) does not fit the estimate (2.3). Roughly speaking, one has to extend this

estimate from CðWÞ to C�ðWÞ. This was the more di‰cult point to reach in refer-

ence [4], in particular due to the very weak assumption made in relation to the ex-

ternal forces. We have proved (see Lemma 4.4 in [4]) the following statement,

may be the main result in that paper.

Theorem 2.4. Let C�ðWÞ be the Banach space defined in Section 4. Assume that

curl v0 a C�ðWÞ and curl f a L1
�
Rþ;C�ðWÞ

�
. Then, the curl of the global solution

v of problem (2.1) satisfies

curl v a C
�
Rþ;C�ðWÞ

�
:

Moreover

kcurl vðtÞk�a ec1Btðkcurl v0k� þ kcurl f k
L1ð0; t;C�ðWÞÞÞ; ð2:10Þ

where

B ¼ kcurl v0k þ kcurl f k
L1ð0; t;CðWÞÞ: ð2:11Þ

We advise readers which go back to [4] that in this reference they will find the

notation z ¼ curl v, f ¼ curl f , and z0 ¼ curl v0:

The above result, in the simpler case in which external forces vanish, has been

rediscovered, later on, by other authors.

Theorems 2.4 and 2.2 yield the following statement (Theorem 1.4 in [4]).

Theorem 2.5. Let C�ðWÞ be the Banach space defined in Section 4. Further, let

curl v0 a C�ðWÞ and curl f a L1
�
Rþ;C�ðWÞ

�
: Then, the global solution v to prob-

lem (2.1) is continuous in time with values in C1ðWÞ,

v a C
�
Rþ;C1ðWÞ

�
: ð2:12Þ

Furthermore, the estimate

kvðtÞk
C1ðWÞa cec1Btfkcurl v0kC�ðWÞ þ kcurl f k

L1ð0; t;C�ðWÞÞg ð2:13Þ

holds for all t a Rþ, where B is given by (2.11).
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Moreover, qtv and ‘p are continuous in Q if both terms f 0 and ‘F, in the canon-

ical Helmholtz decomposition f ¼ f 0 þ ‘F satisfy, separately, this same continuity

property. So, all derivatives that appear in equations (2.1) are continuous in Q (clas-

sical solution).

If W is not simply connected the results still apply. See the appendix 1 in [4].

3. Further developments and open problems

Study and resolution of the above problems opens the way to new problems. First

of all, problems related to the minimal assumptions problem for more general ellip-

tic boundary value problems. In [4], the minimal regularity problem for the ellip-

tic system (2.4) was confined to a similar regularity problem for equation (2.9)

since Theorem 2.2 was su‰cient for our purposes. However, at that time, as re-

marked in [4], we had proved an extension of this result to more general elliptic

boundary value problems (the proof remained unpublished, even though we were

not able to find it in the current literature). Further, in a recent paper, we ex-

tended the proof to the stationary Stokes system, see Theorem 5.2 below. Similar

results hold for more general linear elliptic problems, as the reader may verify,

since proofs depend only on the behavior of the associated Green’s functions.

See Section 5.

Another interesting research field is the extension of the results to larger data

spaces. In fact, there may be other significant functional spaces, possibly larger

then C�ðWÞ, satisfying the required properties. An attempt in this direction was

done in [UN], where a functional space B�ðWÞ was defined and studied. Below,

we turn back to this space, and to the even larger space D�ðWÞ. Unfortunately,

we merely obtained partial extensions of the results. As an example of this situa-

tion, compare Theorem 5.2 with Theorem 7.1.

Partial extensions of Theorems 2.4 and 2.5 to initial data in the functional

space B�ðWÞ are shown in Section 8, see Theorems 8.1 and 8.2.

Plan of the paper:

In Section 4 we recall definition and properties of the space C�ðWÞ and intro-

duce the new spaces B�ðWÞ and D�ðWÞ, which satisfy the inclusions

C�ðWÞHB�ðWÞHD�ðWÞ:

In Section 5 we consider Stokes and other elliptic problems with data in C�ðWÞ.
In Section 6 we consider, in particular, a family of Banach spaces D0;aðWÞ, a

kind of weak extension of the classical Hölder spaces.

In Section 7 the full aim would be to extend the results with data in C�ðWÞ to
data in the new spaces B�ðWÞ and D�ðWÞ: Some partial extension results are
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shown for solutions to the Stokes equations. Second order derivatives of solutions

are bounded but, possibly, not continuous. The proofs depend essentially on the

properties of the related Green’s functions.

In Section 8 we extend the results proved in reference [4] for the Euler equa-

tions with data in C�ðWÞ, to data in B�ðWÞ: The extension obtained is partial,

since continuity is replaced by boundedness, and external forces vanish.

4. The spaces C*(W), B*(W), and D*(W)

Spaces B�ðWÞ, and D�ðWÞ will be used later on, however it looks better to intro-

duce these spaces together with C�ðWÞ for comparision reasons. The space

C�ðWÞ was introduced in [4]. Main properties were refered in this reference, how-

ever proofs were not included in the paper. For complete proofs see [5].

Set

Iðx; rÞ ¼ fy : jy� xja rg; Wðx; rÞ ¼ WB Iðx; rÞ; Wcðx; rÞ ¼ W�Wðx; rÞ:

For f a CðWÞ define

of ðx; rÞ ¼ sup
y AWðx; rÞ

j f ðxÞ � f ðyÞj; of ðrÞC sup
x;y AWðx; rÞ

j f ðxÞ � f ðyÞj; ð4:1Þ

and introduce the semi-norm

½ f ��; d ¼
ð d

0

sup
x AW

of ðx; rÞ
dr

r
¼

ð d

0

of ðrÞ
dr

r
: ð4:2Þ

The finiteness of the above integral is known as Dini’s continuity condition, see

[11], equation (4.47). In this reference, problem 4.2, it is remarked that if f satis-

fies Dini’s condition in the whole space Rn, then its Newtonian potential is a C2

function in Rn.

We define

C�ðWÞC f f a CðWÞ : ½ f �� < lg: ð4:3Þ

A norm is introduced by setting

k f k�; dC ½ f ��; d þ k f k:
Since

½ f ��; d1 a ½ f ��; d2 a ½ f ��; d1 þ 2 log
d2

d1

� �
k f k; ð4:4Þ

for 0 < d1 < d2, norms are essentially independent of d:
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To fix ideas, we chose d ¼ R, where R denotes the diameter of W, and set

½ f �� ¼ ½ f ��;R:

The results obtained in the framework of C�ðWÞ spaces led to consider their

possible extension to larger functional spaces of continuous functions. We con-

sider functional spaces B�ðWÞ and D�ðWÞ, for which C�ðWÞHB�ðWÞHD�ðWÞ:
The space B�ðWÞ was considered in [UN] as follows. For each f a CðWÞ, we de-

fine the semi-norm

3 f 4� ¼ sup
x AW

ðR

0

of ðx; rÞ
dr

r
; ð4:5Þ

and the related functional space

B�ðWÞC f f a CðWÞ : 3 f 4� < þlg ð4:6Þ

endowed with the norm

k f k�C3 f 4� þ k f k: ð4:7Þ

The reader should compare (4.5) with (4.2). Obviously, 3 f 4�a ½ f ��. Actually,

the B�ðWÞ norm is ‘‘much weaker’’. In [UN] we have shown that the inclusion

C�ðWÞHB�ðWÞ is proper, by constructing oscillating functions which belong to

B�ðWÞ but not to C�ðWÞ: This construction was recently published in reference

[6]. Further, we may show that B�ðWÞ is compactly embedded in CðWÞ, and that

(4.4) still holds for the B�ðWÞ semi-norm.

The space D�ðWÞ is defined as follows. Set

Sðx; rÞ ¼ fy a W : jy� xj ¼ rg

and define, for f a CðWÞ, x a W, and r > 0, the quantity

~oof ðx0; rÞC sup
y ASðx; rÞ

j f ðyÞ � f ðxÞj: ð4:8Þ

Further, we define the semi-norm

ð f Þ�C sup
x AW

ðR

0

~oof ðx; rÞ
dr

r
; ð4:9Þ

and the related functional space

D�ðWÞC f f a CðWÞ : ð f Þ� < lg:
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A norm in D�ðWÞ is introduced by setting

k j f j k� ¼ ð f Þ� þ k f k: ð4:10Þ

We remark that (4.4) still holds for the D�ðWÞ semi-norm.

Note that, compared to B�ðWÞ, the space D�ðWÞ is defined by replacing in (4.5)

the expression of of ðx; rÞ shown in (4.2) by the expression given by (4.8). Sets

Wðx; rÞ are replaced by sets Sðx; rÞ: Note that Sðx; rÞ has no boundary points

even when the distance of x to the boundary is less than r:

It is worth noting that the above substitution in the definition of C�ðWÞ is irrel-
evant sinve it would leave this space invariant.

Main properties of C�ðWÞ are the following.

Theorem 4.1. C�ðWÞ is a Banach space.

Theorem 4.2. The embedding C�ðWÞHCðWÞ is compact.

Theorem 4.3. The set ClðWÞ is dense in C�ðWÞ.

It is worth noting that the crucial property required for the space C�ðWÞ in the

proofs of Theorems 2.3 and 5.2, is Theorem 4.3. This theorem is proved, see [5],

by appealing to the well known mollification technique. This density result up to

the boundary requires a previous, suitable extension, of the functions outside W:

The following result holds.

Theorem 4.4. Set WtC fx : distðx;WÞ < tg. There is a t > 0 such that the follow-

ing statement holds. There is a linear continuous map T from CðWÞ to CðWtÞ, such
that its restriction to C�ðWÞ is continuous from C�ðWÞ to C�ðWtÞ, and Tf , restricted

to W, coincides with f :

5. Stokes, and other elliptic problems, in C*(W)

In [4] it was remarked that, at that time, we have proved the Theorem 2.3 for solu-

tions to more general linear elliptic boundary value problems. In fact, in [UN] we

have obtained the following regularity result.

Theorem 5.1. For every f a C�ðWÞ the solution u to the problem

Lu ¼ f in W;

Bu ¼ 0 on G;

�
ð5:1Þ
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belongs to C2ðWÞ: Moreover, there is a constant c0 such that the estimate

kuk2a c0k f k�; Ef a C�ðWÞ: ð5:2Þ
holds.

Here, L is a second order partial di¤erential elliptic operator with smooth

coe‰cients, and B is a linear di¤erential operator, of order less or equal to one,

acting on the boundary G: We assumed that L, B, and W are such that, for

each f a CðWÞ, the problem (5.5) has a unique solution u a C1ðWÞ, given by

uðxÞ ¼
ð
W

gðx; yÞ f ðyÞ dy; ð5:3Þ

where g is the Green function associated with he above boundary value problem.

Our hypotheses on L, B, and W are given by assuming the following two require-

ments:

– For each f a CðWÞ the solution u of problem (5.5) is unique, belongs to C1ðWÞ,
and is given by (5.3). Furthermore, if f a ClðWÞ then u a C2ðWÞ:

– The above Green’s function gðx; yÞ satisfies the estimates

qg

qxi

����
����a k

jx� yjn�1
;

q2g

qxiqxj

����
����a k

jx� yjn ; ð5:4Þ

where i; j ¼ 1; . . . ; n:
These estimates are well known for long time, for a large class of problems.

The above setup, and related comments and proofs, may be shown in reference [6].

In particular, the proof of Theorem 5.1 may be extended to a larger class of

problems, like non-homogeneous boundary value problems, elliptic systems, in

particular the Stokes system, higher order problems, etc. The main point is that

solutions u are given by equations like (5.3), where the Green functions g satisfy

suitable estimates, which extend that shown in equation (5.4). Recently, we have

adapted the unpublished proof of Theorem 5.2 to show a similar regularity result

for solutions to the Stokes system (see, for instance, [10], [14], [20])

�Duþ ‘p ¼ f in W;

‘ � u ¼ 0 in W;

u ¼ 0 on G:

8<
: ð5:5Þ

If f a CðWÞ, this problem has a unique generalized solution ðu; pÞ a C 1ðWÞ �
CðWÞ, where p is defined up to a constant. The solution is given by

uiðxÞ ¼
ð
W

Gijðx; yÞ fjðyÞ dy; pðxÞ ¼
ð
W

gjðx; yÞ fjðyÞ dy; ð5:6Þ
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where G and g are respectively the Green’s tensor and vector associated with the

above boundary value problem. Furthermore, the following estimates hold.

jGijðx; yÞja
C

jx� yj ;

qGijðx; yÞ
qxk

����
����a C

jx� yj2
; jgjðx; yÞja

C

jx� yj2
;

q2Gijðx; yÞ
qxkqxl

�����
�����a

C

jx� yj3
;

qgjðx; yÞ
qxk

����
����a C

jx� yj3
;

ð5:7Þ

where the positive constant C depends only on W: For an overview on the classi-

cal theory of hydrodynamical potentials, and the construction of the Green func-

tions G and g, we refer to Chapter 3 of the classical treatise [14]. The estimates

(5.7) are contained in equations (46) and (47) in this last reference. They may

also be found in [16]; see also [9] and [21]. The estimates (5.7) are a particular

case of a set of much more general results, due to many authors. See, for instance,

[1], [16], [17], [18] and [19].

It is well known, see [9], that for every f a C 0;lðWÞ the solution ðv; pÞ to the

Stokes system (5.5) belongs to C 2;lðWÞ � C1;lðWÞ. Hence, as above, Hölder

spaces look too strong as data spaces for getting classical solutions. On the other

hand, as above, it is well known that f a CðWÞ does not guarantee classical

solutions. In reference [5], we proved the following result.

Theorem 5.2. For every f a C�ðWÞ the solution ðu; pÞ to the Stokes system (5.5)

belongs to C 2ðWÞ � C1ðWÞ. Moreover, there is a constant c0, depending only on

W, such that the estimate

kuk2 þ k‘pka c0k f k�; E f a C�ðWÞ; ð5:8Þ
holds.

A partial generalization of the above theorem to data in a larger space is pre-

sented in Section 7, see Theorem 7.1.

6. Elliptic problems in B*(W), D*(W), and D0,a(W)

In [UN] we considered the problem (2.9) with data in B�ðWÞ, and proved that the

first order derivatives of c are Lipschitz continuous in W: Hence, second order

derivatives are bounded. However we were (and are) not able to prove the conti-

nuity of these derivatives. Continuity would hold if the density Theorem 4.3 were

to hold with C�ðWÞ replaced by B�ðWÞ; an interesting open problem. This led us,
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at that time, to replace in the published work [4] the space B�ðWÞ by the more

handy space C�ðWÞ. Actually, in [UN], the result was proved for linear elliptic

boundary value problem whose solutions are given by

uðxÞ ¼
ð
W

Gðx; yÞ f ðyÞ dy;

where the scalar Green function Gðx; yÞ satisfies the estimates stated in (5.7). Re-

cently, in reference [6], we have published the proof of this result in a more general

form, since B�ðWÞ was replaced by the larger space D�ðWÞ, see below. In Section 7

we appeal to the same ideas to extend the result proved in [6] to the Stokes prob-

lem (5.5), see Theorem 7.1. Obviously, all the results proved for data in D�ðWÞ
hold for data in B�ðWÞ:

The results obtained in the framework of C�ðWÞ spaces also lead us to consider

the problem of their restriction to smaller functional spaces, instead of extension

to larger spaces. The main motivation, within the realm of solutions to second

order linear elliptic boundary value problems, can be illustrated as follows. If

f a C0;lðWÞ, the second order derivatives of the solution satisfy D2u a C0;lðWÞ.
Let’s say, for brevity, that they fully ‘‘remember’’ their origin. On the other hand,

if the data f is in C�ðWÞ, then the second order derivatives of the solution are

merely continuous. Roughly speaking, they completely ‘‘forget’’ that f produces

a finite the integral on the right hand side of (4.2). This situation leads us to

look for data spaces, between Hölder and C�ðWÞ spaces, for which solutions ‘‘re-

member’’, at least partially, their origin. The following is a significant example of

a functional space of ‘‘intermediate type’’. Define, for each a > 0, the semi-norm

½ f �0;aC sup
x;y AW 0<jx�yj<1

j f ðxÞ � f ðyÞj
ð�logjx� yjÞ�a ; ð6:1Þ

and the related norm k f k0;aC ½ f �0;a þ k f k: Next, define functional spaces

D0;aðWÞ in the obvious way. Roughly speaking, we have replaced in the definition

of Hölder spaces the quantity

1

jx� yj by log
1

jx� yj :

We call these spaces Log spaces. The family of Log spaces enjoys some typical,

significant property. For instance, D0;aðWÞ is a Banach space, and ClðWÞ is a

dense subspace. Furthermore, for 0 < b < 1 < a, and 0 < la 1, the following

strict embeddings

C0;lðWÞHD0;aðWÞHC�ðWÞHD0;bðWÞHCðWÞ ð6:2Þ

297On some regularity results for the stationary Stokes system



hold. Note that D0;1ðWÞHC�ðWÞ is false. The embeddings D0;aðWÞHD0;bðWÞH
CðWÞ, for a > b > 0, and the embeddings D0;aðWÞHC�ðWÞ, for a > 1, are

compact.

In reference [7] we have considered boundary value problems with data in

D0;aðWÞ. For a second order linear elliptic problem we show that if f a D0;aðWÞ,
for some a > 1, then D2u a D0; ða�1ÞðWÞ: Furthermore, this result is optimal.

In a forthcoming paper, see [8], we set the above distinct situations in a unique

framework by considering a more general family of data spaces DoðWÞ, satisfying
the inclusions C0;1ðWÞHDoðWÞHC�ðWÞ: Hölder and H-log spaces, and related

results, turn out to be particular cases.

7. The Stokes equations with data in D*(W). Uniform boundedness
of ‘2u and ‘p

In this section we consider the Stokes system and show that the first order deriva-

tives of the velocity u, and the pressure p, are Lipschitz continuous in W for given

external forces in D�ðWÞ (so, in particular, in B�ðWÞ). We prove the following

result.

Theorem 7.1. Let f a D�ðWÞ, and let ðu; pÞ be the solution to problem (5.5). There

is a constant C, which depends only on W, such that

kuk1;1 þ kpk0;1aCk j f j k�: ð7:1Þ

So ‘2u;‘p a LlðWÞ.

Proof. To fix ideas, we assume that n ¼ 3: Extension to space dimensions nA 3

is obvious. The point is merely writing (5.7) for the n-dimensional case. In the

following we merely consider the velocity, since the pressure is treated similarly

(see also [5]). Let eiðxÞ, i ¼ 1; 2; 3, denote three constant vector fields in R3, every-

where equal to the corresponding cartesian coordinate unit vector ei. Define the

auxiliary systems

�DviðxÞ þ ‘qiðxÞ ¼ eiðxÞ in W;

‘ � vi ¼ 0 in W;

vi ¼ 0 on G:

8<
: ð7:2Þ

Clearly, vi and qi are smooth. Fix a constant KðWÞ such that

kvik1;1 þ kqik0;1aKðWÞ; ð7:3Þ
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for i ¼ 1; 2; 3: Next, in correspondence to each point x0 a W, define the auxiliary

system (a kind of ‘‘tangent problem’’ at point x0)

�Dvðx0; xÞ þ ‘qðx0; xÞ ¼ f ðx0; xÞ in W;

‘ � v ¼ 0 in W;

v ¼ 0 on G;

8<
: ð7:4Þ

where f ðx0; xÞC f ðx0Þ, Ex a W, is a constant vector in W: Since

f ðx0; xÞ ¼
X
i

fiðx0ÞeiðxÞ;

the functions vðx0; xÞ and qðx0; xÞ are smooth for each fixed x0. Moreover,

kvðx0; �Þk1;1 þ kqðx0; �Þk0;1aK j f ðx0ÞjaKk f k: ð7:5Þ

Recall that K is independent of x0: For convenience set vðxÞ ¼ vðx0; xÞ, and so

on. By setting

wðxÞC uðxÞ � vðxÞ;

one has

wiðxÞ ¼
ð
W

Gijðx; yÞ
�
fjðyÞ � fjðx0Þ

�
dy:

Furthermore,

qkwiðxÞ � qkwiðx0Þ ¼
ð
W

�
qkGijðx; yÞ � qkGijðx0; yÞ

��
fjðyÞ � fjðx0Þ

�
dy;

where qk stands for di¤erentiation with respect to xk, and qkwiðx0Þ means the

value of qkwiðxÞ at the particular point x ¼ x0:

Clearly

jqkwiðxÞ � qkwiðx0Þja
ð
W

jqkGijðx; yÞ � qkGijðx0; yÞj j fjðyÞ � fjðx0Þj dy:

By setting r ¼ jx� x0j one gets
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jqkwiðxÞ � qkwiðx0Þj

a

ð
Wðx0;2rÞ

jqkGijðx; yÞ � qkGijðx0; yÞj j fjðyÞ � fjðx0Þj dy

þ
ð
Wcðx0;2rÞ

jqkGijðx; yÞ � qkGijðx0; yÞj j fjðyÞ � fjðx0Þj dy

C I1ðx0; x; rÞ þ I2ðx0; x; rÞ: ð7:6Þ

By appealing to (5.7) (to be adapted, if nA 3), we show that

I1ðx0; x; rÞaC
�ð

Wðx0;2rÞ

C

jx0 � yj2
j fjðyÞ � fjðx0Þj dy

þ
ð
Wðx;3rÞ

C

jx� yj2
j fjðyÞ � fjðx0Þj dy

�

C J1ðx0; x; rÞ þ J2ðx0; x; rÞ: ð7:7Þ

By setting r ¼ jx0 � yj, and by appealing to polar-spherical coordinates centered

in x0, one easily shows that J1ðx0; x; rÞaCr; ~oof

�
Wðx0; 2rÞ

�
, where C depends

only on W: Similarly, J2ðx0; x; rÞaCr ~oof

�
Wðx; 3rÞ

�
: It follows that (recall defini-

tion (4.8))

I1ðx0; x; rÞaCr ~oof ð3rÞ;

where C does not depend on the particular points x0; x a W, and r ¼ jx� x0j:
On the other hand, by appealing to the mean-value theorem and to (5.7), we

get

jqkGijðx; yÞ � qkGijðx0; yÞjaCrjx 0 � yj�3
aCr23jx0 � yj�3;

for each y a Wcðx0; 2rÞ, where the point x 0 belongs to the straight segment joining

x0 to x or, if necessary, to a smooth path g ¼ gðx0; xÞ, contained in W, joining x0
and x, and such that its lenght is bounded by Cr, where the constant Cb 1 does

not depend on the particular points x0 and x. Consequently,

I2ðx0; x; rÞa cr

ð
Wcðx0;2rÞ

j fjðyÞ � fjðx0Þj
dy

jx0 � yj3
a cr

ðR

2r

~oof ðrÞ
dr

r
:

Hence,

I2ðx0; x; rÞa cr

ðR

0

~oof ðrÞ
dr

r
aCrk j f j k�:
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Next, by appealing to equation (7.6), and to the estimates proved above for I1 and

I2, we show that

j‘wðxÞ � ‘wðx0ÞjaCr
�
k j f j k� þ ~oof ð3rÞ

�
:

Consequently,

j‘uðxÞ � ‘uðx0Þja j‘wðxÞ � ‘wðx0Þj þ j‘vðxÞ � ‘vðx0Þj
aCr

�
k j f j k� þ ~oof ð3rÞ þ Kk f k

�
:

So,

j‘uðxÞ � ‘uðx0Þj
jx� x0j

aCk j f j k�; Ex; x0 a W; xAx0: ð7:8Þ

This proves (7.1) for the velocity u: Similar calculations lead to the corresponding

result for the pressure. r

It is worth noting that the above proof depends only on having suitable esti-

mates for the Green’s functions. For instance, the argument applied in the above

proof to study the system (5.5) with data in D�ðWÞ can be applied to the system

(2.9) with data in D�ðWÞ, since the scalar Green’s function Gðx; yÞ related to this

last problem satisfies exactly the estimates claimed in equation (5.7) for the com-

ponents Gijðx; yÞ. It follows that Theorem 2.3 holds, in a similar ‘‘weak form’’,

for data in D�ðWÞ: Continuity of the second order derivatives should be replaced

by boundedness. This immediately leads to the following ‘‘weak form’’ of

Theorem 2.2.

Theorem 7.2. Let y a D�ðWÞ, and let v be the solution of problem (2.4). Then

‘v a LlðWÞ, and k‘vk
LlðWÞa c0k jyj k�: So, for divergence free vector fields, tan-

gent to the boundary, the estimate

k‘vk
LlðWÞa c0k jcurl vj k� ð7:9Þ

holds.

We state this specific case since it will be useful in considering the Euler equa-

tions with data in B�ðWÞ: For more results and comments on the above subject we

refer to [6].

8. The space B*(W) and the Euler equations

Concerning possible extensions of the results obtained for the 2�D evolution Eu-

ler equations, from C�ðWÞ to B�ðWÞ, we show here a partial result in this direction.
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We clearly pay the price of the loss of regularity for solutions to the auxiliary

elliptic system (2.4). This leads us to replace continuity in time by boundedness

in time.

Furthermore, we simplify our task, in a quite substantial way, by assuming that

external forces vanish, instead of assuming the very stringent condition curl f a
L1

�
Rþ;B�ðWÞ

�
.

Below, we prove the following weak extension of Theorem 2.4.

Theorem 8.1. Let v be the solution to the Euler equations (2.1), where the initial

data v0 is divergence free, tangential to the boundary, and satisfies curl v0 a B�ðWÞ:
Furthermore, suppose f ¼ 0. Then curl v a Ll

�
0;T ;B�ðWÞ

�
, and there is a con-

stant CT (an explicit expression can be easily obtained ) such that

kcurl vðtÞk�
aCTkcurl v0k�; ð8:1Þ

for a.a. t a ð0;TÞ:

A weak extension of Theorem 2.5 follows immediately from Theorem 8.1 to-

gether with Theorem 7.2. One has the following result.

Theorem 8.2. Under the assumptions of Theorem 8.1 the estimate

k‘vkLlðQT ÞaCTkcurl v0k� ð8:2Þ

holds almost everywhere in QT :

To prove Theorem 8.1, we appeal to some estimates previously obtained in a

more general form in reference [4]. For clarity, instead of stating these estimates

in the weakest form, strictly necessary to prove the Theorem 8.1 below, we rather

prefer to show some more general formulations of the estimates. This allows us to

present a short overview on the structure of the proof of Theorem 2.13, suitable

for readers interested in a deeper examination of reference [4]. In order to make

an easier link with this last reference, we appeal here to the notation used in [4]

(compare, for instance, (8.3) and (8.5) below with (2.4) and (2.9), respectively).

As already remarked, the velocity vðtÞ, at each time t, can be obtained from the

vorticity zðtÞC curl vðtÞ, by setting, for each fixed t, y ¼ zðtÞ in the elliptic system

curl v ¼ y in W;

div v ¼ 0 in W;

curl v � n ¼ 0 on G:

8<
: ð8:3Þ

On the other hand, the solution to this system is given by

v ¼ Curlc; ð8:4Þ
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where c is the solution of the elliptic problem

�Dc ¼ y in W;

c ¼ 0 on G:

�
ð8:5Þ

So, at least in principle, we may obtain the velocity from the vorticity. However,

since the vorticity is not a priori known, we start from a ‘‘fictitious vorticity’’

yðx; tÞ, and look for a fixed point y ¼ z: In the sequel we replace ‘‘fictitious vor-

ticity’’ simply by ‘‘vorticity’’, and so on for other quantities. From each suitable

‘‘vorticity’’ we obtain a ‘‘velocity’’, by appealing to (8.5) and (8.4). From this

‘‘velocity’’ we construct streamlines Uðs; t; xÞ, by appealing to Lagrangian

coordinates. Finally, a well know technique (here dimension 2 is crucial) gives a

correspondent fictitious ‘‘vorticity’’ z: So, a map y ! z is, formally, well defined.

A rigorous fixed point was obtained in reference [4] in the framework of CðWÞ
spaces, as follows:

Fix an arbitrary positive time T , an initial data v0, and an external force f . Set

z0C curl v0, fC curl f , and define (see (2.11))

B ¼ kz0k þ
ðT

0

kfðtÞk dt: ð8:6Þ

Further, define the convex, bounded, closed subset of CðQT Þ,

K ¼ fy a CðQT Þ : kykT aBg: ð8:7Þ

From now on, the symbol y ¼ yðx; tÞ denotes an arbitrary element of K. As al-

ready explained, the idea is to prove the existence and uniqueness of a fixed point

in K, for a suitable map F, such that to this fixed point there corresponds a solu-

tion of the Euler equation (2.1) with the above given data. The map F½y� ¼ z is

defined as the following composition of single maps:

F : y ! c ! v ! U ! z: ð8:8Þ

Given y ¼ yðx; tÞ a K we get c ¼ cðx; tÞ by solving the elliptic system (8.5), where

t is treated as a parameter. The crucial estimates for cðxÞ follow from

cðxÞ ¼
ð
W

gðx; yÞ dy;

where g is the Green function associated to problem (8.5). Knowing c, the veloc-

ity v is obtained by setting vðx; tÞ ¼ Curlcðx; tÞ:
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The next step is to get z, from v. We introduce the streamlines U associated

with the ‘‘velocity’’ vðx; tÞ obtained in the previous step. The streamlines

Uðs; t; xÞ are the solution to the system of ordinary di¤erential equations

d
ds
Uðs; t; xÞ ¼ v

�
s;Uðs; t; xÞ

�
; for s a ½0;T �;

Uðt; t; xÞ ¼ x:

�
ð8:9Þ

Uðs; t; xÞ denotes the position at time s of the physical particle which occupies

the position x at time t. A main tool is here the following estimate (see equation

(2.6) in [4]).

jUðs; t; xÞ �Uðs1; t1; x1Þj
a c1Bjs� s1j þ c2ð1þ c1BÞðjx� x1jr þ jt� t1jrÞ; ð8:10Þ

where c1 depends only on W, rC e�c1BT , and c2 ¼ maxf1; eRg, where R denotes

the diameter of W: Knowing U , we set ([4], equation (2.8))

zðt; xÞ ¼ z0
�
Uð0; t; xÞ

�
þ
ð t

0

f
�
s;Uðs; t; xÞ

�
ds

C z1ðt; xÞ þ z2ðt; xÞ; ð8:11Þ

where, as already remarked, z0C curl v0, and fC curl f : The curl of the solution

is here expressed separately in terms of the curls of the initial data and of the ex-

ternal forces. The main estimates for these two terms were proved in [4], respec-

tively in Lemmas 4.3 and 4.2. The reader may verify that the control of the exter-

nal forces term is much more involved than that of the initial data term.

The composition map F½y� ¼ z turns out to be well defined over K, by appeal-

ing to (8.8). In the proof of Theorem 2.1 in [4], we close the above scheme by

showing that FðKÞHK, and that there is a (unique) fixed point in K: Finally, it

was proved that this fixed point is the curl of the solution to the Euler equations

(2.1). The velocity follows from the curl by appealing to (8.3).

After this flying visit to the proof of Theorem 2.1, we prove the Theorem 8.1.

Proof of Theorem 8.1. A main tool in proving the regularity Theorem 2.4 for data

in C�ðWÞ was the following result, see the Lemma 4.1 in [4].

Lemma 8.3. Let a a C�ðWÞ and U a C0;RðW;WÞ, 0 < Ra 1: Then a �U a
C�ðWÞ; moreover

½a �U ��a
1

R
½a��: ð8:12Þ
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Note that the need for property (8.12) narrows the possible choice of spaces,

candidate to replace C�ðWÞ.
Actually, in our preliminary version [UN] the above lemma is written in terms

of metric spaces. However, at that time, it seemed to us a little ‘‘out of place’’ to

present a so simple result in an abstract form.

The absence of external forces f lead us to revive below, directly, the simple

idea used in the proof of Lemma 8.3, without appealing to the original statement

itself.

We deal with solutions whose existence is already guaranteed by Theorem 2.1.

We merely want to show the additional regularity claimed in Theorem 8.1. Since

in this theorem the external forces vanish, the following very simplified form of

(8.10) holds.

jUð0; t; xÞ �Uð0; t; yÞjaK jx� yjr; ð8:13Þ

where B ¼ kz0k. Following (8.11), and taking into account that z2 vanishes, one

has z ¼ z1: So the curl of the solution v to the Euler equation (2.1) is simply given

by

zðt; xÞ ¼ z0
�
Uð0; t; xÞ

�
:

It follows that

ozðtÞðx; rÞ ¼ sup
y AWðx; rÞ

jzðt; xÞ � z1ðt; yÞj

¼ sup
y AWðx; rÞ

��z0�Uð0; t; xÞ
�
� z0

�
Uð0; t; yÞ

���: ð8:14Þ

Further, by appealing to (8.13), one gets

ozðtÞðx; rÞaoz0

�
Uð0; t; xÞ;Krr

�
: ð8:15Þ

So, by recalling definition (4.5), one has

3zðtÞ4�C sup
x AW

ðR

0

ozðtÞðx; rÞ
dr

r
a sup

x AW

ðR

0

oz0

�
Uð0; t; xÞ;Krr

� dr
r
: ð8:16Þ

Since

fUð0; t; xÞ : x a Wg ¼ W;

it follows, by appealing to the change of variables t ¼ Krr, that
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3zðtÞ4�a sup
x AW

ðR

0

oz0ðx;KrrÞ
dr

r

¼ 1

r
sup
x AW

ðKR r

0

oz0ðx; tÞ
dt

t
C

1

r
3z04�;KR r ; ð8:17Þ

with obvious notation. On the other hand, kzðtÞk ¼ kz0k, for all t: Since (4.4) also

applies for B� semi-norms, one shows that

kzðtÞk�
aCTkz0k�;

for all t a ½0;T �: Theorem 8.1 is proved. Theorem 8.2 follows by appealing to

Theorem 7.2.

It would be interesting to prove Theorem 8.1 in the presence of external forces,

even in a simplified version, for instance, curl f a C
�
Rþ;B�ðWÞ

�
. We believe that

a (possibly modified) version of this result holds by appealing to the measure pre-

serving properties of the streamlines, together with the control of the linear dimen-

sions of figures in finite time.
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