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Abstract. We study a singular one-dimensional parabolic problem with initial data in the
BV space, i.e. the energy space, for various boundary data. We pay special attention to
Dirichlet conditions, which need not be satisfied in a pointwise manner. The equation we
study has two singular slopes, so that in principle solutions to the value problems may have
an infinite number of oscillations, which seems surprising for a parabolic problem. We
investigate this issue. We also study the facet creation process and the stopping of solutions
caused by the evolution of facets. Our estimate of stopping time is based on the compari-
son principle for viscosity solutions. For this purpose we show that our solutions are vis-
cosity solutions in the sense of [10].
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1. Introduction

We study here a singular di¤usion problem

qu

qt
¼

�
LðuxÞ

�
x

in IT :¼ ða; bÞ � ð0;TÞ; ð1:1Þ

where the nonlinearity is given by the following formula,

LðpÞ ¼ sgn ðpþ 1Þ þ sgn ðp� 1Þ: ð1:2Þ

We consider various boundary conditions. We pay special attention to Dirichlet

data, which need not be satisfied in a pointwise manner.
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by the Warsaw Center of Mathematics and Computer Science through the program ‘Guests’. Both
authors enjoyed partial support of the NCN through 2011/01/B/ST1/01197 grant.



Let us explain our motivation to study such problems. There is a sizable

chunk of literature devoted to the role of curvature in the models of crystal

growth, see [5] for a summary or [17] for further development. In a series of

papers, [11], [12], [13], [14], [15], we studied the evolution of the so-called bent

rectangles by the weighted mean curvature flow,

bV ¼ kg þ s: ð1:3Þ

The point is, the corners of these bent rectangles were formed by the facets meet-

ing at the right angle. If we choose the local coordinate system in a proper way

then, after simplifications preserving the main di‰culties, system (1.3) looks like

(1.1), this is presented in [15]. The main point is that nonlinearity (1.2) supports

facets with di¤erent slopes.

Problem (1.1) is interesting even if LðpÞ ¼ sgn ðpÞ, see [3], [6], [8], [22], [23]

and the references therein. Particularly interesting is the approach to crystal

growth is presented by Spohn, [23], who discusses an equation like (1.1), but his

choice of L involves also a degenerate term, which we drop for the sake of the

simplicity of analysis.

The nonlinearity, we consider here, appears naturally, when we consider a

corner formed by two evolving facets, (see below, cf. [15]). By a facet we mean a

part of the graph of a solution to (1.1) with the slope corresponding to a jump

in L. In the present case, facets have slopee1. Facets will be defined rigorously

in Subsection 4.1.

Our main objective is to study interactions of facets, especially in the case of

oscillating data. In order to make equation (1.1) well-posed, we augment it with

initial condition

uðx; 0Þ ¼ u0ðxÞ for x a I :¼ ða; bÞ ð1:4Þ

and either Dirichlet,

uðaÞ ¼ A; uðbÞ ¼ B; ð1:5Þ

periodic

uðaÞ ¼ uðbÞ ð1:6Þ

or Neumann boundary data,

LðuxÞjqI ¼ 0: ð1:7Þ

We put a cap on the oscillatory behavior of the data by requiring that u0 a BV .

One of the emerging problems is the meaning of (1.5). It turns out that our

definition of solutions is too weak to guarantee that (1.5) is satisfied in a pointwise
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manner: the trace of solutions to (1.1), (1.4) and (1.5) need not be equal to the

boundary data, but is su‰ces to prove existence and uniqueness. We elaborate

on this in Definition 2.1 in Subsection 2.1 and §3, see also [1], [2], [20].

We notice that initial conditions from BV may have infinitely many facets of

di¤erent slopes. We would like to determine if this is possible for any solution at

t > 0. We shall see that most of the facet interactions are resolved instantly.

Thus, at t > 0, we may have only a finite number of facets with non-zero curva-

ture, see Theorem 4.5.

Our task involves re-examining the existence result of [21], because we consider

less regular data than there. It is helpful to observe that (1.1) is formally a gradi-

ent flow of functional E on L2ðIÞ, defined by

EðuÞ ¼
ð
I

W ðuxÞ ds;

where W ðpÞ ¼ jpþ 1j þ jp� 1j. Obviously, E is well-defined i¤ u a BVðIÞ.
Thus, we will seek solutions with finite energy if u0 a BVðIÞ.

We also have to discuss the notion of a solution to (1.1) defined in [21],

Theorem 1, because smooth solutions to the approximating system satisfying the

Dirichlet data need not satisfy them in the limit if the convergence is too weak. In

order to expose the issue of the Dirichlet boundary data, we will present explicit

solutions in Proposition 4.13. We make additional comments when we charac-

terize the steady states in Section 3.

We mention in passing that by a solution we mean a pair ðu;WÞ, where Wð�; tÞ
is a selection of the subdi¤erential qE

�
uð�; tÞ

�
. More details will be given in

Section 2. It turns out that due to continuity of W studying its values gives a lot

of information about solutions. In many instances, see Section 3, Subsection 4.1,

this is our major tool.

Once the existence of solutions is established, we will characterize the steady

states for all three boundary conditions. This is done in Section 3. In principle,

they belong to BV . We will see that if A does not di¤er much from B, then the

steady states are Lipschitz continuous functions satisfying (1.5) and such that

juxja 1: ð1:8Þ

In turns out however, that if the di¤erence B� A is big, then there are also discon-

tinuous steady states belonging to BV . In other words the BV regularity of the

steady states is optimal. On the other hand, we note that all steady states with

the homogeneous Neumann data are Lipschitz functions satisfying (1.8).

Condition (1.8) permits seemingly unchecked oscillations. This seems sur-

prising. We will present two justifications of this phenomenon. Namely, we

notice at all times t > 0 there are only finitely many facets with non-zero curva-
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ture, see Theorem 4.5. The other explanation is that our solutions are viscosity

solutions in the sense of [10]. We will see that in Section 5. In addition, the theory

of viscosity solutions gives us a powerful tool like the Comparison Principle, see

Theorem 5.3. It is used in the proof of the main result of Subsection 4.2, i.e. esti-

mates on the stopping time of solutions, i.e. the time, after which the solution no

longer changes. Results on the extinction times for solutions to the second-order

total variation flow, the fourth-order total variation flow and a fourth-order sur-

face di¤usion law are estblished in [9]. The authors of [9] use quite a di¤erent

approach, i.e. their main tools are energy estimates and Sobolev inequality.

In Section 4, we study the regularizing action of the flow when u0 a BV . We

constructed solutions in the energy space, i.e., uðtÞ a BV , by the way of examples,

see Section 4.3, we shall see that discontinuities in u0 persist. A more interesting

observation is that u0 a BVðIÞ implies that ut a L2ðIT Þ and this statement carries

a lot of information about regularity and oscillatory behavior of solutions.

Namely, for almost all t > 0 we have utð�; tÞ a L2ðIÞ. This implies that the num-

ber of facets with non-zero curvature is finite for almost all t > 0, see Theorem 4.5.

The argument is based on the observation that Wð�; tÞ a qE
�
uð�; tÞ

�
.

As we mentioned, uðtÞ may have jumps as well as uxðtÞ. We will see, see

Theorem 4.6, that jumps of the derivative may not be arbitrary. This fact is

well-known for the crystalline motion, see [7], [24] and the references therein. If

at x0 the interval with endpoints uþx ðx0Þ, u�x ðx0Þ contains any of the singular slopes

from f�1; 1g, then immediately the missing facet is created for t > 0. A similar

statement holds if u has a jump discontinuity at x0.

The conclusion that for almost all t > 0 solution uð�; tÞ has a finite number of

non-zero curvature facets permits more detailed studies of the equations of the

facet motion. In Section 4, we concentrate on estimates in terms of initial data.

We see that facet interaction is the main mechanism for the stopping of solutions.

Due to the fact that we have only a finite number of moving facets the task is

easier. Our main tool is the comparison principle, Theorem 5.3, for viscosity solu-

tions established in [10]. In particular, we give in Theorem 4.11 a simple (but not

a closed formula) estimate for the stopping time in terms of the data.

In the last Section we show that the solutions we constructed are also viscosity

solution in the sense of [10]. In the proof we consider all possible configurations of

the facets, as a result the argument is not short, so the limitations of this method

are clear.

2. Existence reexamined

We study (1.1) with either Dirichlet, periodic or Neumann boundary data. The

first type of data requires a bit di¤erent treatment than the remaining ones. We

introduce here the definition of solutions to (1.1) with various boundary data.
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Once we cast our problem as a gradient flow

ut a �qEðuÞ; uð0Þ ¼ u0: ð2:1Þ

for a proper convex and lower semicontinuous functional E, then we could invoke

the general results on nonlinear semigroups, see [4], to conclude existence, unique-

ness of solutions and their basic properties. This approach will work nicely if E is

one of the following functionals on L2,

E1ðuÞ ¼
Ð
I
WðDuÞ u a BVðIÞ;

þl u a L2ðIÞnBVðIÞ;

�

E2ðuÞ ¼
Ð
T
W ðDuÞ u a BVðTÞ;

þl u a L2ðTÞnBVðTÞ;

�
ð2:2Þ

where T is a flat one-dimensional torus identified with ½0; bÞ, because E is proper

convex and lower semicontinuous on L2. These two functionals correspond to

(1.1) with Neumann and periodic boundary data.

We stress that it is well-known, see [2] for the multidimensional case, that the

case of Dirichlet is more di‰cult and the boundary need not be satisfied pointwise.

This is so, because functional on L2ðIÞ, given by

EðuÞ ¼
Ð
I
jux � 1j þ jux þ 1j for u a BVðIÞ; guðaÞ ¼ A; guðbÞ ¼ B;

þl else;

�

is not lower semicontinuous on L2ðIÞ. In the formula above and throughout the

paper we denote by gu the trace of u as a function from BVðIÞ, see [25].
In these circumstances we prefer to use the regularization technique to show

existence of solutions to (1.1) with Dirichlet data. The advantage is that we see a

justifications of the definition of the solution we adopt here.

Definition 2.1. We shall say that function u a L2
�
0;T ;L2ðIÞ

�
is a solution to (1.1)

if u a Ll
�
0;T ;BVðIÞ

�
and ut a L2

�
0;T ;L2ðIÞ

�
and there is W a L2ð0;T ;W 1;2Þ,

which satisfy the identity

3ut; j4 ¼ �
ð
I

Wjx dx ð2:3Þ

for all test functions j a Cl
0 ðIÞ and for almost every t > 0.

(A) We shall say that u, a solution to (1.1), satisfies the Neumann data

(1.7), if

WjqI ¼ 0 for a:e: t > 0:
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(B) We shall say that u, a solution to (1.1), satisfies the Dirichlet data (1.5) at

x ¼ a and t > 0 if

guðaÞ ¼ A or
if guðaÞ > A; then gWðaÞ ¼ 2;

if guðaÞ < A; then gWðaÞ ¼ �2:

�

We shall say that u a solution to (1.1) satisfies the Dirichlet data (1.5) at x ¼ b and

t > 0 if

guðbÞ ¼ B or
if guðbÞ > B; then gWðbÞ ¼ �2;

if guðbÞ < B; then gWðbÞ ¼ 2:

�

We notice that the time regularity postulated in Definition 2.1 implies that

solutions to (1.1) are in C
�
½0;T �;L2ðIÞ

�
. Hence, we can impose initial conditions

(1.4). At this point we stress that W is a selection of the composition of multi-

valued operators L � ux.

Remark 2.2. We also notice that our definition of solutions to (1.1) with Dirichlet

boundary data coincides with that used in [1], [2] or [20].

Here is ou existence result. We note that we consider less regular initial con-

ditions than in [21].

Theorem 2.3. Let us suppose that u0 a BV, then

(1) there exists a unique solution to (1.1) with boundary conditions (1.5), where

A;B a R;

(2) there exists a unique solution to (1.1) with boundary conditions (1.7);

(3) there exists a unique solution to (1.1) with periodic boundary conditions (1.6).

Moreover, for almost all t > 0

ð
I

½W ðux þ hxÞ �W ðuxÞ� dxb
ð
I

Whx dx; ð2:4Þ

where h a Cl
0 ðIÞ.

Sketch of the proof. Parts (2) and (3) are conclusions from the classical semigroup

theory, see [4], applied to E1 and E2 defined in (2.2). We can do this, because it is

easy to check that E1 and E2 are proper, convex and lower semicontinuous. The

choice of Wð�; tÞ is made implicitely in the following property of solution dþ

dt
uðtÞ ¼

qEo
�
uðtÞ

�
, where qEo

�
uðtÞ

�
denotes the canonical selection of qE

�
uðtÞ

�
, hence

(2.4) follows.
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Below we present an argument for Dirichlet boundary data based on regular-

ization. It is valid for other boundary data too. Due the regularity of such solu-

tions and those obtained by the theory on nonlinear semigroups, it is easy to see

that these types of solutions coincide.

Step 1. After regularizing L and u0 we obtain a uniformly parabolic problem,

qu�

qt
¼

�
L�ðu�

xÞ
�
x
; ðx; tÞ a IT ;

u�ðx; 0Þ ¼ u�
0ðxÞ; x a I ;

u�ða; tÞ ¼ A; u�ðb; tÞ ¼ B; t > 0;

ð2:5Þ

where � is a regularizing parameter, L�ðpÞ ¼ ðL � h�ÞðpÞ þ �p and W �ðpÞ ¼
ðW � h�ÞðpÞ þ �

2 p
2. By the classical theory, see [18], we obtain existence and

uniqueness of smooth solutions to (2.5).

From (2.5) we reach the following conclusion

ðT

0

ð
I

ðu�
t Þ

2
dx dtþ

ð
I

W �
�
u�
xðx;TÞ

�
dx ¼

ð
I

W �ðu�
0;xÞ dx: ð2:6Þ

Now, we will pass to the limit. First of all, we notice that

ð
I

W �ðu�
0;xÞa 3jI j þ 2 sup

� A ½0;1�

ð
I

Wðu�
0;xÞ þ

ð
I

�

2
ju�

0;xj
2
dx ¼: M;

where we used that

�

2

ð
I

ju�
0;xj

2
dxaCku0k2BV :

Since our bound on the right-hand-side (RHS) of (2.6) is independent of � we

conclude that

ðT

0

ð
I

ðu�
t Þ

2
aM and

ð
I

W �
�
u�
xðx; tÞ

�
aM for all t a ½0;T �:

Thus, we can select a subsequence fu�g such that

u� * u in L2
�
0;T ;L2ðIÞ

�
and u�

t * ut in L2
�
0;T ;L2ðIÞ

�
:

Furthermore, by Aubin Lemma we deduce that u� converges to u in

Lp
�
0;T ;LqðIÞ

�
; where p, q are arbitrary from the interval ð1;lÞ. As a result,

ku�ð�; tÞ � uð�; tÞkLq ! 0, for almost all t a ð0;TÞ, when � goes to 0. By the lower
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semicontinuity of the BV norm and by

ð
I

W ðDvÞ ¼
ð
I

jDðvþ xÞj þ jDðv� xÞj; ð2:7Þ

we arrive at

ð t

0

ð
I

u2t ðx; sÞ dx dsþ
ð
I

W ðDuÞð�; tÞ
�
dxaM for almost all t a ð0;TÞ: ð2:8Þ

We note that (2.8) does not involve any statement on the boundary values of u.

Moreover, we have a bound on the BV norm of uð�; tÞ,
ð
I

jDuja 1

2

ð
I

jDðuþ xÞj þ 1

2

ð
I

jDðu� xÞj ¼ 1

2

ð
I

WðuxÞ dx:

We also have to indicate a candidate for W as required by the definition of a

solution. We set

W�ðx; tÞ :¼ L�
�
u�ðx; tÞ

�
:

Since u�
t ¼ W�

x, then due to (2.6) we deduce that

kW�kL2ð0;T ;H 1ðIÞÞaM1 < þl: ð2:9Þ

Hence, we can select a subsequence,

W� * W in L2
�
0;T ;H 1ðIÞ

�
:

Moreover,

ðT

0

ð
I

utj dx dt ¼
ðT

0

ð
I

Wxj dx dt for all j a Cl
0

�
ð0;TÞ � I

�
:

At this point, we may apply [21], Lemma 2.1 to conclude that (2.3) holds. More-

over, [21], Lemma 2.2 implies (2.4).

Step 2. We have to show that u, the limit of solutions to the regularized

problems, is a solution to (1.1) with boundary conditions, in the sense of

Definition 2.1.

Let us suppose that t is such that uð�; tÞ a BVðIÞ and Wð�; tÞ a W 1;2ðIÞ. We

consider first x ¼ a a boundary point of I . If guða; tÞ ¼ A, then u satisfies the

Dirichlet boundary data. Let us suppose that Aþ d :¼ guða; tÞ > A. This means

that for any sequence fxng, a > xn, converging to a, we have limn!l uðxn; tÞ ¼

8 M. Matusik and P. Rybka



Aþ d. Then, we select N such that for all n > N,

Aþ 1

2
d < uðxn; tÞ ¼ uðxn; tÞ � u�ðxn; tÞ þ u�ðxn; tÞ:

Smooth solutions u� satisfy the boundary conditions in the above inequality, this

implies that

1

2
d < uðxn; tÞ � u�ðxn; tÞ þ u�

xðcn; tÞðxn � aÞ; cn a ða; xnÞ:

Since u�ð�; tÞ are commonly bounded in BV , then we deduce with the help of

Helly’s theorem that there is a subsequence of u�ð�; tÞ, (we abstain from introduc-

ing a new notation), that converges to uð�; tÞ everywhere.
We fix n such that d

4ðxn�aÞ > 1. Next, we select � > 0 so that uðxn; tÞ�
u�ðxn; tÞ < 1

4 d: Combining these facts, we reach u�
xðcn; tÞ > 1, hence W�ðcn; tÞ ¼ 2.

As a result, we conclude that

gWða; tÞ ¼ 2;

as desired. The analysis of the remaining cases is similar, we leave it to the

interested reader. We conclude that u is indeed a solution to (1.1) satisfying

(1.5).

Step 3. We shall establish uniqueness of solutions in the case Dirichlet bound-

ary conditions. For the sake of simplicity of notation, we assume that ½a; b� ¼
½0; b�.

We notice that if u is a solution to (1.1), according to Definition 2.1, then

t 7! uðtÞ a L2ðIÞ is continuous, in particular it makes sense to evaluate u at t ¼ 0.

Let us suppose that u and v are solutions to (1.1) satisfying (1.5) with uð0Þ ¼
u0 ¼ vð0Þ. For the sake of simplicity we assume that A and B in (1.5) are zero.

We will extend u and v antisymetrcially to functions ~uu, ~vv, on ~II ¼ ½�b; b�. In the

same way we extend WðuÞ and WðvÞ, to ~II . We notice that ~uu, ~vv, ~WWð~uuÞ and ~WWð~vvÞ
may be extended as periodic functions with period 2b to the line R. We recall,

see e.g. [19], that if w a H 1ðIÞ, j a BVðIÞ, then
ð
I

wxj dx ¼ �
ð
I

wDjþ gðwjÞjba :

We conclude with the help of this formula that

1

2
k~uu� ~vvk2L2ð~IIÞðTÞ ¼ �

ðT

0

ð
~IIþd

�
~WWð~uu; x; tÞ � ~WWð~vv; x; tÞ

�
ð~uux � ~vvxÞ dx dt;
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x ¼ d is a point of continuity of ~uu� ~vv. On the other hand, monotonicity of L

yields

1

2
k~uu� ~vvk2L2ðIÞðtÞa 0: ð2:10Þ

We conclude that u ¼ v, as desired. r

The same argument yields the contraction property for solutions, u, v, to (1.1)

with data (1.5),

ku� vkL2ðt2Þa ku� vkL2ðt1Þ; kuðt2ÞkL2 a kuðt1ÞkL2 ; t2 > t1: ð2:11Þ

These facts for solutions (1.1) with either Neumann or period data follow from the

semigroup theory. We may summarize these observations in:

Corollary 2.4. If u and v are two solutions to (1.1) satisfying Neumann, periodic or

the same Dirichlet boundary conditions, then (2.11) hold. r

It is also easy to establish:

Corollary 2.5. (a) Let us suppose that un, Wn is a sequence of solutions to (1.1) such

that un ! u in L2ðIT Þ and Wn * W in L2
�
0;T ;H 1ðIÞ

�
, then u and W form a solu-

tion to (1.1).

(b) Let us suppose that un
0 a Cl, un

0 ! u0 in L2ðIÞ and sup kun
0kBV < l. If

un ! u is a sequence of solutions to (1.1) with initial data un
0 , then,

un ! u in L2ðIT Þ; Wn * W in L2
�
0;T ;H 1ðIÞ

�
:

Hence, u and W form a solution to (1.1) with initial data u0. r

The following estimate for ut is crucial for the rest of this paper.

Proposition 2.6. Suppose that u0 a BVðIÞ and u is the corresponding solution to

(1.1) with either (1.5), (1.6) or (1.7) boundary conditions. Then, for a.e. t a ð0;TÞ,

t

ð
I

u2t ðt; xÞ dxa
ð t

0

ð
I

u2t ðs; xÞ dx dsaM < l:

Proof. We proceed formally by di¤erentiating equation (1.1) with respect to t and

testing it with utj, where j is non-negative and it depends only on t and jð0Þ ¼ 0.

We have

uttutj ¼ LðuxÞxtutj:

10 M. Matusik and P. Rybka



Next, we integrate the above equation over I :

1

2

ð
I

j
d

dt
u2t ¼

ð
I

LðuxÞxtutj:

We integrate by parts the right hand side of the above equations, then

1

2

ð
I

j
d

dt
u2t ¼ �

ð
I

LðuxÞtutxj:

Notice that, due to monotonicity of L, we have LðuxÞtuxtj ¼ L 0ðuxÞu2xtjb 0.

Hence,

0b

ð
I

j
d

dt
u2t dx:

We integrate the above equation over ½0; t�, then

0b

ð t

0

ð
I

j
d

dt
u2t dx ds ¼ �

ð t

0

ð
I

j 0u2t dx dsþ
ð
I

ju2t ðtÞ dx

If jðtÞ ¼ t and u0 a BVðIÞ then

t

ð
I

u2t ðtÞ dxa
ð t

0

ð
I

u2t dx dsaM < l: ð2:12Þ

A rigorous argument is based on approximation. r

Definition 2.7. We shall say that t > 0 is typical if

ð
I

jutðx; tÞj2 dx < l and

ð
I

jWxðx; tÞj2 dx < l:

2.1. Discontinuous solutions. The type of initial conditions we consider permits

discontinuous solutions. We make an observation about it.

Proposition 2.8. Let us suppose that u0 a BVðIÞ and u is the corresponding solu-

tion to (1.1). If uð�; t0Þ has a jump discontinuity at x0 and t0 is typical, then

jWðx0; t0Þj ¼ 2.

Proof. Let us consider the solutions u� to the regularized problem, approximating

u. Since u�ð�; tÞ is a sequence of BV functions, then by Helly Theorem, we can

select a subsequence (denoted by u�) converging to u everywhere. If D is the abso-
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lute value of the jump, then for a given � we find d� such that

1

2
D < ju�ðx0 þ d�; t0Þ � u�ðx0 � d�; t0Þj ¼ 2ju�

xðc�; t0Þjd�:

Thus, ju�
xðc�; t0Þj > 1, as a result jW�ðc�; t0Þj ¼ 2. We can see that jW�ðc�; t0Þj !

jWðx0; t0Þj ¼ 2, because c� ! x0. r

In the next section, we will discuss steady states of (1.1). We will see that jump

discontinuities of the solution are allowed also in steady states.

3. Steady states

We describe the multitude of the steady states and we will consider all three

boundary conditions. We note that we frequently interchange symbols W and

LðuxÞ a H 1ðIÞ. Here is our first observation.

Proposition 3.1. (a) Let us suppose that a BV function u is a steady state solution

to (1.1), i.e. there is W a H 1, understood as LðuxÞ satisfying�
LðuxÞ

�
x
¼ 0;

then LðuxÞ is a constant from the set fe2;e1; 0g:
(b) Let us suppose that u a BVðIÞ is as in (a), but it is not Lipschitz continuous,

then LðuxÞ is a constant from the set f2;�2g.

Proof. We begin with part (a). Of course, LðuxÞ is a constant from interval

½�2; 2�. Let us suppose that ux > 0 on a set E of a positive measure. Thus, on

this set we have sgn ðux þ 1Þ ¼ 1, as a result LðuxÞb 0 independently of the

values of sgn ðux � 1Þ on E. Let us suppose that LðuxÞ a ð1; 2Þ on a set of positive

measure. We know that since LðuxÞ is in H 1, then it is a continuous function.

Since

1 < LðuxÞ ¼ sgn ðux þ 1Þ þ sgn ðux � 1Þ;

and sgn ðux þ 1Þ ¼ 1 on E, then 0 < sgn ðux � 1Þ < 1 and we deduce that ux ¼ 1.

Due to the continuity of LðuxÞ the set fx : LðuxÞ a ð1; 2ÞgHE is open and

we may consider one of its connected components, C. Since ux ¼ 1 on C, then

C is a pre-image of a facet, as a result sgn ðux � 1Þ may not be constant over C.

As a result LðuxÞ cannot be equal to any number in the interval ð1; 2Þ on any

open set.

Similarly, we deal with the case LðuxÞ a ð�2;�1Þ.
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Let us now suppose that LðuxÞ a ð0; 1Þ on a set of positive measure. In this

case we have

0 < sgn ðux þ 1Þ þ sgn ðux � 1Þ < 1:

But this implies an impossible situation of simultaneous ux þ 1 ¼ 0 and ux � 1 ¼ 0

on the same set or sgn ðux þ 1Þ ¼ 1 and sgn ðux � 1Þ < 0, i.e. ux þ 1 > 0 and

ux ¼ 1. The last situation occurs on a facet, where sgn ðux � 1Þ may not be

constant.

Similarly, we deal with the case LðuxÞ a ð�1; 0Þ.
Part (b) follows immediately from Proposition 2.8 and part (a). r

Our Proposition 3.1 states that the set of steady states may be very large. It

should be stressed that it does not give a full description of this set, because the

assumption is that u a BV conforms to Definition 2.1.

Proposition 3.2. Let us suppose that u a BV is a solution to (1.1) in the sense of

Definition 2.1 and it is time independent, i.e., function u satisfies

�
LðuxÞ

�
x
¼ 0 in ða; bÞ:

(a) If LðuxÞ ¼ 0 at x ¼ a and x ¼ b, then juxja 1. That is, u, a steady state of

(1.1) with homogeneous Neumann boundary conditions (1.7) is a Lipschitz con-

tinuous function with the Lipschitz constant not exceeding 1.

(b) If u is a steady state of (1.1) with (1.5) and AaB (the case BaA is analo-

gous), then:

(i) if ðB� AÞ=ðb� aÞ > 1, then any increasing function satisfying the bound-

ary data with uxb 1 is a steady state.

(ii) if ðB� AÞ=ðb� aÞ ¼ 1, then uðxÞ ¼ xþ A� a is the only steady state.

(iii) if ðB� AÞ=ðb� aÞ < 1, then any Lipschitz continuous function with

juxja 1 satisfying uðaÞ ¼ A, uðbÞ ¼ B is a steady state of (1.1) with (1.5).

(c) If u satisfies the periodic boundary condition, (1.6), then u is a periodic Lip-

schitz continuous function with juxja 1.

Proof. Part (a). Condition (1.7) and Proposition 3.1 jointly imply that WðxÞC 0.

This, in turn yields that

sgn ðux þ 1Þ ¼ �sgn ðux � 1ÞA 0:

We note that the case sgn ðux þ 1Þ ¼ 0 ¼ sgn ðux � 1Þ is impossible. Thus,

sgn ðux þ 1Þ ¼ 1 ¼ �sgn ðux � 1Þ:
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which implies

ux þ 1b 0 and ux � 1a 0

i.e. juxja 1. In particular, u is Lipschitz continuous.

Part (b). Condition AaB implies that ux must be non-negative on a set of

positive measure. If LðuxÞ ¼ 2, then sgn ðux þ 1Þ ¼ 1 ¼ sgn ðux � 1Þ, thus uxb 1.

This implies that any monotone increasing function with uxb 1 and

lim
x!aþ

uðxÞbA; lim
x!b�

uðxÞaB

is a steady state. In other words (i) holds.

If LðuxÞ ¼ 1, then sgn ðux þ 1Þ ¼ 1 and sgn ðux � 1Þ ¼ 0. This may occur only

when ux ¼ 1, i.e. uðxÞ ¼ xþ A� a, thus B ¼ b� aþ A.

If LðuxÞ ¼ 0, then sgn ðux þ 1Þ ¼ 1 and sgn ðux � 1Þ ¼ �1. This means that

ux þ 1b 0 a.e. and ux � 1a 0 a.e. equivalently,

juxja 1:

In particular uðaÞ ¼ A and uðbÞ ¼ B, for otherwise W would be equal to 2.

Part (c). Of course, W may not be equal toe2, because this would imply that u

is increasing (or decreasing) on I , which is not possible for a periodic function.

The argument presented above applies for the cases W ¼e1, thus only W ¼ 0 is

left. As a result, we have the same conclusion as in the case of Neumann data.

r

Remark 3.3. 1) We shall see that if u a solution to (1.1), then this fact imposes

restrictions of oscillations of ux, cf. Theorem 4.5.

2) It seems that, in case (iii) an arbitrary number of oscillations is possible.

3) If ðB� AÞ=ðb� aÞa 1, then all steady states are Lipschitz continuous. On

the other hand, if ðB� AÞ=ðb� aÞ > 1, then all increasing functions u, not neces-

sarily continuous, are steady states if uxb 1 (see Proposition 2.8). Thus, we see

that for u0 a BVðIÞ the regularity u a Ll
�
0;T ;BVðIÞ

�
is optimal.

4. Properties of solutions

We collect properties of solutions related to facets, defined in §4.1, and their

evolution. In §4.2 we study stopping times.

4.1. Facets. In this section we will resolve whether solutions may have infinitely

many facets. We will introduce necessary notions.
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Definition 4.1. Let us set P ¼ f�1; 1g.
(a) We shall say that subset F of the graph of a solution to (1.1) is a facet, if

F CFðx�; xþÞ ¼
��

x; uðxÞ
�
: uxj½x�;xþ�C p a P

�
:

We write uxj½x�;xþ� with the understanding that the one-sided derivatives of u exist

at xþ and x�.
Moreover, if ½x�; xþ�H J, J is an interval and uxjJ C p a P, then ½x�; xþ� ¼ J.

Interval ½x�; xþ� is called the pre-image of facet F or a faceted region of u,

(cf. Section 5).

(b) Facet Fðx�; xþÞ has zero curvature, if: (i) either W i.e. LðuxÞ have the same

value at x� and xþ or (ii) x� ¼ a or xþ ¼ b i.e. the facet hits the boundary (in the

case of Dirichlet boundary conditions).

Remark 4.2. We notice that if for a facet F ¼ F ðx�; xþÞ there is d such that

ujðx��d;x�Þ and ujðxþ;xþþdÞ are both on di¤erent sides of line lpðxÞ ¼ pðx� x�Þ þ
uðx�Þ, then F has zero curvature. We will see this in the proof of Lemma 4.7.

According to this definition jumps of solutions are not facets, because they do

not correspond to any jump singularity of L.

We begin our analysis with the following observation.

Lemma 4.3. Let us suppose that t > 0 is typical and Fðxl ; xrÞ is a facet, then

lim
x!xl

Wðx; tÞ ¼ o� a f�2; 0; 2g; lim
x!xr

Wðx; tÞ ¼ oþ a f�2; 0; 2g:

Proof. Step 1. We shall investigate the neighborhood of xr assuming that uðx; tÞ
is absolutely continuous. Then, there are two possibilities, (1) for all su‰ciently

� > 0, the derivative ux on ðxr; xr þ �Þ assumes values from set f�1; 1g; (2) there
is a sequence fxngln¼1 converging to xr such that xr < xn and uxðxn; tÞ exists and
uxðxn; tÞAe1.

If the first case occurs and there is d > 0 such that for all x a ðxr; xr þ dÞ we

have uxðx; tÞ ¼ �uxj½xl ;xr�, then one can see that

lim
x!xr

Wðx; tÞ ¼ 0:

If instead there are two sequences xþ
n , x

�
n converging to xr, such that xr < xþ

n ,

x�
n and uxðxþ

n ; tÞ ¼ 1, uxðx�
n ; tÞ ¼ �1, then

sgn
�
uxðxþ

n ; tÞ þ 1
�
þ sgn

�
uxðxþ

n ; tÞ � 1
�
¼ 1þ zþn ;

sgn
�
uxðx�

n ; tÞ þ 1
�
þ sgn

�
uxðx�

n ; tÞ � 1
�
¼ z�n � 1:
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Since the right limit of W exists at xr we deduce that ze :¼ limn!l zen satisfy

2 ¼ z� � zþ: As a result, z� ¼ 1 ¼ �zþ and we conclude that Wðxþ
n ; tÞ ¼ 0 ¼

Wðx�
n ; tÞ and

lim
x!xr

Wðx; tÞ ¼ 0:

Now, we consider the situation, when there is a sequence xn converging to xr,

such that xr < xn and uxðxn; tÞ exists and uxðxn; tÞAe1. If this happens, then

(a) uxðxn; tÞ > 1, (b) uxðxn; tÞ a ð�1; 1Þ or (c) uxðxn; tÞ < �1. Case (a) leads to the

conclusion, that Wðxn; tÞ ¼ 2; hence

lim
x!xr

Wðx; tÞ ¼ 2:

If (b) takes place, then Wðxn; tÞ ¼ 0 and limx!xr Wðx; tÞ ¼ 0.

Finally, (c) leads to Wðxn; tÞ ¼ �2. As a result, limx!xr Wðx; tÞ ¼ �2.

Step 2. Let us now suppose that the initial condition u0 is in BV , we may no

longer assume that uð�; tÞ is absolutely continuous for a.e. t. This solution may be

approximated by solutions un for which conclusions of Step 1 are valid. Indeed,

there is a sequence un
0 a Cl and such that

kun
0kBV ! ku0kBV and un

0 ! u0 in L2:

This assumptions guarantee that the corresponding solutions to (1.1) have the

property

un
x a Llð0;T ;BVÞ;

i.e. unð�; tÞ is absolutely continuous for a.e. t a ð0;TÞ. For Dirichlet boundary

data this is the content of [21], Theorem 1, for other boundary data this claim fol-

lows from the method of the proof of [21], Theorem 1.

Moreover, by Corollaries 2.4, 2.5 we know

un ! u in L2ðIT ÞBCð½0;T �;L2Þ; Wn * W in L2ð0;T ;H 1Þ:

We notice that for a.e. t sequence Wnð�; tÞ converges uniformly, hence our claim

follows for xr. A similar conclusion may be drawn for xl . r

We immediately deduce that: (see also [21]).

Proposition 4.4. For a typical t > 0, uðtÞ does not contain any degenerate

ðx� ¼ xþÞ facet with non-zero curvature.
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Proof. Continuity of W implies that Wðx�; tÞ ¼ Wðxþ; tÞ: Hence FðxÞ has zero

curvature. r

We present our main structural theorem.

Theorem 4.5. If u0 a BVðIÞ and u is the corresponding solution to (1.1) with either

Dirichlet (1.5), periodic (1.6) or Neumann (1.7) boundary conditions, then for almost

all t > 0 the number of facets with non-zero curvature is finite.

Proof. It is su‰cient to consider a typical t > 0. The argument is based on

the following estimate for the velocity of facet Fðx�; xþÞ. Once we set oe :¼
Wðxe; tÞ, then we notice,

Wxðx; tÞ ¼
oþ � o�

xþ � x�
; for x a Fðx�; xþÞ: ð4:1Þ

First we use the fact that W is the minimal section of qEðuÞ, established for

solutions satisfying Neumann or periodic boundary conditions. Thus, W mini-

mizes the functional

ð xþ

x�
jzxj2 dx

among H 1 functions with zðxeÞ ¼ Wðxe; tÞ. As a result, W is a linear function.

Thus (4.1) holds.

Now, we study eq. (1.1) with Dirichlet data and let us suppose that u is a solu-

tion to this problem. By reflection we may extend u to a periodic function. Thus,

we may apply results already established for periodic solutions, i.e. if F ðx�; xþÞ is
a facet, then W restricted to ½x�; xþ� is an a‰ne function.

By Proposition 2.6 we know that for almost all t > 0 we have

ð
I

u2t dxa
M

t
,

where M depends on data only. Thus, we square the RHS of (1.1) and integrate

u2t ¼ jWxj2 over I . We notice that

ð
I

u2t dx ¼
ð
I

jWxj2 dxb
X
FðIiÞ

ð
Ii

jWxj2 dx ¼
X
FðIiÞ

ðoþ � o�Þ2

xþi � x�i
:

Here, fF ðIiÞ : i a Jg is the collection of all non-zero curvature facets. We imme-

diately conclude that the number of facets with non-zero curvature is finite. r

After these preparations we are going to present the basic facts about the facet

creation process. Our main tool is the analysis of the continuity of Wð�; tÞ. The
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following theorem tells us that a solution u does not miss any of the preferred

directions �1; 1, even if the datum does.

Theorem 4.6. Let us suppose that u is a solution to (1.1), t > 0 is a typical time

instance, i.e. utð�; tÞ;Wxð�; tÞ a L2ðIÞ. If x0 a I and u�x ðx0; tÞ < uþx ðx0; tÞ, (resp.

uþx ðx0; tÞ < u�x ðx0; tÞ), then�
u�x ðx0; tÞ; uþx ðx0; tÞ

�
B f�1;þ1g ¼ j;

ðresp:
�
uþx ðx0; tÞ; u�x ðx0; tÞ

�
B f�1;þ1g ¼ jÞ:

Proof. First, we consider the case of uð�; tÞ being absolutely continuous.

Let us assume that the opposite happens, i.e. there is p from f�1; 1g such that

p a
�
u�x ðx0; tÞ; uþx ðx0; tÞ

�
:

For the sake of definiteness, we assume that p ¼ 1. In other words,

u�x ðx0; tÞ < 1 < uþx ðx0; tÞ:

Thus, for all x > x0 su‰ciently close to x0 we have

1 <
uðx; tÞ � uðx0; tÞ

x� x0
:

We conclude that there exists sequence xþ
n , converging to x0 such that x0 < xþ

n

and 1 < uxðxþ
n ; tÞ. Hence,

Wðxþ
n ; tÞ ¼ sgn

�
uxðxþ

n ; tÞ þ 1
�
þ sgn

�
uxðxþ

n ; tÞ � 1
�
¼ 2:

Continuity of W at x0 implies that Wðx0; tÞ :¼ limxþ
n !xþ

0
Wðxþ

n ; tÞ ¼ 2. On the

other hand, u�x ðx0; tÞ < 1 and we see that

uðx; tÞ � uðx0; tÞ
x� x0

< 1;

i.e. there exists a sequence x�
n < x0 converging to x0 such that uxðx�

n ; tÞ < 1. As a

result

Wðx�
n ; tÞ ¼ sgn

�
uxðx�

n ; tÞ þ 1
�
þ sgn

�
uxðx�

n ; tÞ � 1
�
¼ zn � 1:

We consider three cases depending on the behavior of uxðx�
n ; tÞ. We set, Wðx0; tÞ

¼ limx�
n !x0 Wðx�

n ; tÞ. Now, if uxðx�
n Þ < �1, then zn ¼ �1 and Wðx0; tÞ ¼ �2. If

uxðx�
n Þ > �1, then zn ¼ 1 and Wðx0; tÞ ¼ 0: Furthermore, if uxðx�

n Þ ¼ �1, then

zna 1 and then Wðx0; tÞa 0.

18 M. Matusik and P. Rybka



Let us consider the possibility that uþx ¼ 1. In this case, u�x < 1, but
uðxÞ�uðx0Þ

x�x0
> 1, thus Wðx0; tÞ ¼ 1þ zþ ¼ 2 and Wðx0; tÞ ¼ �1þ z�a 0.

Let us consider a general datum, i.e. uð�; tÞ a BVðIÞ. We may assume that

uð�; tÞ has a jump discontinuity at x0. It follows from Proposition 2.8 that

jWðx0; tÞj ¼ 2. In order to fix our attention we assume that Wðx0; tÞ ¼ 2. By the

continuity of W, there is neighborhood U of x0 such that Wðx; tÞ > 2� e for

x a U . Hence, there does not exist any x a U such that uxðx; tÞ < 1. Therefore,

uxðx; tÞb 1 for all x a U . Thus, the open interval with endpoints u�x , u
þ
x does not

contain þ1 nor �1. A similar result holds for Wðx0; tÞ ¼ �2. r

We introduce a piece of convenient notation. Let us suppose that t > 0 is

typical and uð�; tÞ a BVðJÞ, J ¼ ½a; b�, has a facet Fðx�; xþÞ, we assume that

a < x�a xþ < b. We introduce the transition numbers ws ¼ wsðu; xÞ, s ¼ l; r, by

the following formulas,

wl ¼
þ1 if ub lp in fx a J : xa x0g;
�1 if ua lp in fx a J : xa x0g;

�

wr ¼
þ1 if ub lp in fx a J : xbx0g;
�1 if ua lp in fx a J : xbx0g;

�
ð4:2Þ

where lp is the line with slope p containing facet F ðx�; xþÞ.
We notice that we can improve formula (4.1).

Lemma 4.7. If u is a solution to (1.1) and F ðx�; xþÞ is one of the facets, x�A a

and xþ � A b, then for a typical t > 0,

Wx ¼
wl þ wr
xþ � x�

: ð4:3Þ

Proof. We are going to find values of W at x�, xþ. We treat xþ first. Initially,

we assume that uð�; tÞ a ACðIÞ and t > 0 is a typical time instance. Moreover, at

t > 0 uð�; tÞ does not have any degenerate facets, as guaranteed by Proposition 4.4.

Thus, for facet F ðx�; xþÞ there is such � > 0 that ujðxþ;xþþ�Þ is either above lp, i.e.

the line containing F ðx�; xþÞ, or below it.

If u is above lp, then

uðx; tÞ � uðxþ; tÞ > pðx� xþÞ for all x a ðxþ; xþ þ �Þ;

where p is the slope of lp. This implies that there exists sequence xn a ðxþ; xþ þ �Þ,
converging to xþ such that uxðxnÞ > p. We notice that if p ¼ 1, then

Wðxn; tÞ ¼ sgn
�
uxðxn; tÞ þ 1

�
þ sgn

�
uxðxn; tÞ � 1

�
¼ 1þ 1 ¼ pþ wr:
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If p ¼ �1, then we know from Theorem 4.6 that uxðxn; tÞ a ð�1; 1Þ. Thus we see

that

Wðxn; tÞ ¼ sgn
�
uxðxn; tÞ þ 1

�
þ sgn

�
uxðxn; tÞ � 1

�
¼ 1� 1 ¼ pþ wr:

Since Wð�; tÞ is continuous, we conclude that

Wðxþ; tÞ ¼ pþ wr: ð4:4Þ

A similar reasoning performed for interval ðx� � �; x�Þ yields

Wðx�; tÞ ¼ p� wr; ð4:5Þ

provided that uð�; tÞ is continuous. Thus, (4.1) implies (4.3).

Let us suppose now that uð�; tÞ is no longer absolutely continuous in any neigh-

borhood of x0. What may happen is:

(a) uð�; tÞ has a jump discontinuity at x0, thus by Proposition 2.8 we know that

Wðx0; tÞ ¼ 2.

(b) uð�; tÞ is continuous at x0. We consider

uðxn; tÞ � uðx0; tÞ ¼ pð1þ dnÞðxn � x0Þ > pðxn � x0Þ:

If u� is the regularized solution, then we can find sequence �n converging to 0 such

that

u�nðxn; tÞ � u�nðx0; tÞb p 1þ 1

2
dn

� �
ðxn � x0Þ > pðxn � x0Þ:

Thus, we may use the argument from the first part. However, even if ukð�; tÞ con-
verges to uð�; tÞ in L2, then Wkð�; tÞ converges uniformly to Wð�; tÞ. Thus, (4.4) and

(4.5) remain valid for solutions with u0 a BV . Thus, in all cases, mentioned

above, we obtain that (4.3) holds. r

The two previous results are concerned with typical time instances. In partic-

ular, they do not preclude the possibility of shrinking a non-zero curvature facet to

a point at an exceptional time. Now, we present an improvement of Theorem 4.5.

The Proposition below is not a direct consequence of regularity.

We used x�, xþ to denote the endpoints of the facet pre-image. Now, it is

advantageous to show the dependence of x�, xþ on h the ‘distance’ of the facet

from the x1-axis. If t0 > 0 is a typical time instance, then we set uð�Þ ¼ uð�; t0Þ
and h0 ¼ uðx0; t0Þ. We have

x� ¼ inffx : uðx; tÞ ¼ pðx� x0Þ þ hg; ð4:6Þ
xþ ¼ supfx : uðx; tÞ ¼ pðx� x0Þ þ hg: ð4:7Þ
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We notice that xe are well-defined. Moreover, due to the argument in the above

proof,

dxþ

dh
b 0 and

dx�

dh
a 0 if wl þ wr > 0;

dxþ

dh
a 0 and

dx�

dh
b 0 if wl þ wr < 0:

ð4:8Þ

Proposition 4.8. No facet with non-zero curvature may shrink to a point at any

t > 0.

Proof. Step 1. We begin with one facet Fðx�; xþÞ with non-zero curvature. We

assume that Fðx�; xþÞ does not intersect other non-zero curvature facets. Let

L ¼ xþ � x�:

After taking the time derivative, we have

d

dt
ðxþ � x�Þ ¼ dxþ

dh
� dx�

dh

� �
dh

dt
:

We notice that due to (4.8) the RHS is always non-negative.

Step 2. Now we consider two intersecting facets F ðx�; xÞ ¼ F1, Fðx; xþÞ ¼ F2

with non-zero curvature (see Figure 1), i.e
�
x; uðxÞ

�
is the intersection point.

For facet F1 it is advantageous to use x� defined by (4.6) and for F2 to use xþ

defined by (4.7). Point x is the intersection of lines containing F1 and F2, i.e.,

x ¼ x1 þ x2

2
þ h2 � h1

2p
;

F1
F2

Figure 1. Two interacting facets.
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where ðxi; hiÞ a Fi, i ¼ 1; 2 are fixed and p is the slope of F1. If we set

L1 ¼ x� x�, L2 ¼ xþ � x, then we see that

d

dt
L1 ¼

dx

dt
� dx�

dh1

dh1

dt
¼ 1

2p

dh2

dt
� dh1

dt

� �
� dx�

dh1

dh1

dt
;

d

dt
L2 ¼

1

2p

dh1

dt
� dh2

dt

� �
þ dxþ

dh2

dh2

dt
:

We notice that the last terms are always non-negative. Moreover from the for-

mula for vertical velocity, (4.3), we calculate dh1
dt
, dh2

dt
and we have

d

dt
L1 ¼

wl þ wr
2p

L1 � L2

L1L2

� �
� dx�

dh1

dh1

dt
;

d

dt
L2 ¼

wl þ wr
2p

L2 � L1

L1L2

� �
þ dxþ

dh2

dh2

dt
:

We notice that if L1 ! 0 and L2b d > 0, then we see that dL1

dt
> 0, also if

L2 ! 0 and L1b d > 0, then dL2

dt
> 0, but this is impossible. Finally, we notice

that L1 þ L2 ! 0 is impossible too, because

d

dt
ðL1 þ L2Þ ¼

dxþ

dt
� dx�

dt
b 0: r

We see that only zero curvature facets may shrink to a point. On the other

hand zero curvature facets are created during collisions.

4.2. Stopping time. We notice that the di¤usion is so strong that for all initial

data u0 the solution stops evolving in finite time. The examples from Section 4.3

give explicit bounds in the case of initial data u0 a BVðIÞ. The explicit bounds

we give in Theorem 4.11 depend in a crucial way on the Comparison Principle,

Theorem 5.3, which is valid for viscosity solutions. Thus, we have to check that

our solution is indeed a solution in the viscosity sense. This is done in next

Section.

Definition 4.9. If u is a solution to (1.1), then a number Text > 0 is the stopping

time for u i¤ ut C 0 for all t > Text and for all � > 0 we have ut 2 0 on

ðText � �;TextÞ.

First, we establish the following proposition, which will be helpful in the next

theorem.

Proposition 4.10. Suppose that v and uk, k a N are solutions to (1.1), T k
ext is the

stopping time of uk. If uk ! v in L2ðITÞ, Wk * W and Text is the stopping time
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of v, then

Texta lim sup
k!l

T k
ext:

Proof. Set T :¼ lim supk!l T k
ext. It is su‰cient to show that if d > 0 and h a R

are such that jhj < d, then

vðT þ dþ hÞ � vðT þ dÞ ¼ 0:

Indeed, since uk a C
�
½0;T þ dþ h�;L2ðIÞ

�
and uk converges uniformly to v in

C
�
½0;T þ dþ h�;L2ðIÞ

�
, then we have

vðT þ dþ hÞ � vðT þ dÞ ¼ lim
k!l

½ukðT þ dþ hÞ � ukðT þ dÞ� ¼ 0: ð4:9Þ

The limit is in L2ðIÞ. This is so, because for su‰ciently large k a N, we have

T k
ext < minfT þ dþ h;T þ dg. This implies that ukðT þ dþ hÞ ¼ ukðT þ dÞ ¼

ukðT k
extÞ. Hence, (4.9) follows. r

Theorem 4.11. Let us suppose that d > 0 is any typical time. We set u0 :¼ uðdÞ,
where u is a solution to (1.1). We assume that u0 is di¤erentiable away from the

endpoint of the facets. Let us suppose that x1 and x2 are such points that

ðPÞ ðu0Þxðx1Þ ¼ ðu0Þxðx2Þ,
�
xi; u0ðxiÞ

�
a Fi, i ¼ 1; 2, facets F1, F2 are di¤erent,

there is no x0 a ½x1; x2� such that ðu0Þxðx0Þ ¼ �ðu0Þxðx1Þ

We denote the time after which F1 and F2 collide by Tðx1; x2Þ. Then, Tðx1; x2Þ is
finite and the stopping time Text of u0 can be estimated as

TextamaxfTðx1; x2Þ : x1; x2 satisfy ðPÞg:

Proof. By assuming that d > 0 is typical, in virtue of Proposition 4.4 and Proposi-

tion 4.8 we consider situation, when all facets have been already created and their

lengths are positive. It follows from Theorem 4.5 that for t > d > 0 we have

finitely many facets with non-zero curvature. Let

Fþ ¼ fF ðx�; xþÞ : uxj½x�;xþ� ¼ 1; wlðx�Þ þ wrðxþÞA 0g;
F� ¼ fFðx�; xþÞ : uxj½x�;xþ� ¼ �1; wlðx�Þ þ wrðxþÞA 0g:

Since the number of elements in FþAF� is finite, we can order them,

F1ðx�1 ; xþ1 Þ; . . . ;FNðx�N ; xþNÞ;
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where

aa x�1 < xþ1 a x�2 < xþ2 a � � � x�i < xþi a � � � x�N < xþN a b:

Facets occurring in this sequence can be grouped in the following way

Fi; . . . ;Fiþl ;

where Fj a Fþ, j ¼ i; . . . ; i þ l (or respectively, they belong to F�) and

Fi�1;Fiþlþ1 a F� (respectively, they are in Fþ) as far as i > 1, i þ l < N.

Let us consider a typical group Fi; . . . ;Fiþl , for the sake of definiteness, we

assume that Fj a Fþ, j ¼ i; . . . ; i þ l.

We prove our theorem by induction with respect to l. We notice that l is

always odd. Let l ¼ 1, We will estimate the stopping time using the following

procedure. We take

x1 a ½x�i ; xþi �; x2 a ½x�iþ1; x
þ
iþ1�;

such that uxðx1Þ ¼ uxðx2Þ ¼ 1 and we set

x0 ¼ maxfy : uxðyÞ ¼ �1by < x1g; x3 ¼ minfy : uxðyÞ ¼ �1bx2 < yg:

It follows from the definition of x0, x3 that the graph of u0 restricted to interval

½x0; x3� is contained in the strip limited by the tangents at the points x0; . . . ; x3
(see Figure 2). We denote these tangent lines by l0; . . . ; l3, i.e.

�
xi; u0ðxiÞ

�
a li,

i ¼ 0; . . . ; 3.

Figure 2. Case l ¼ 1.
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First, we calculate the upper and lower estimates of function u. We define

wb ub v in the following way:

wðx; dÞ ¼ minfl2; l3g; x a ½x2; x3�;
uðx; dÞ; x B ½x2; x3�;

�
vðx; dÞ ¼ maxfl0; l1g; x a ½x0; x1�;

uðx; dÞ; x B ½x0; x1�:

�

Consider solutions w, v of (1.1), tb d with initial conditions w0 ¼ wðx; dÞ,
v0 ¼ vðx; dÞ, respectively. By the comparison principle, we have

vðx; tÞa uðx; tÞawðx; tÞ for tb d; x a I :

We denote by p1ðtÞ, (resp. p2ðtÞ) the line parallel to l1, (resp. l2) and passing

through the point
�
x1; vðx1; tÞ

�
; (resp.

�
x1;wðx1; tÞ

�
. We can estimate the time t1

such that p1ðt1Þ ¼ p2ðt2Þ. Indeed, if dh1
dt
, dh2

dt
are vertical velocities of p1, p2, respec-

tively, then ð t1

d

dh1

dt
� dh2

dt

� �
¼ d; ð4:10Þ

where d ¼ l2ðx1Þ � l1ðx1Þ. We recall formula (4.1),

dh1

dt
¼ 2

L1
;

dh2

dt
¼ � 2

L2
;

where L1 is the length of facet at
�
x1; vðx1; tÞ

�
, L2 is the length of facet at�

x2;wðx2; tÞ
�
.

Note that L1 þ L2a l, where l is the distance between projections of points

l0B l1 and l2B l3 on the x1-axis. It follows from (4.10) that

d ¼
ð t1

d

dh1

dt
� dh2

dt

� �
¼

ð t1

d

2

L1
þ 2

L2

� �
b

ð t1

d

4

l
:

As a result,

Tðx1; x2Þa ðt1 � dÞa dl

4
¼ l

4

�
l2ðx1Þ � l1ðx1Þ

�
:

Next, we proceed inductively. Suppose that l > 1. We denote by lj lines contain-

ing facets Fj, j ¼ i; . . . ; i þ l. We choose k and m such that

jlkðxÞ � lmðxÞj ¼ maxfjlrðxÞ � lsðxÞj : r; s a fi; . . . ; i þ lgg:

This means that line lj containing Fj lies within the strip bounded by lk, lm.

There are two cases to consider:
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(i) there exists a facet Fj contained within the strip bounded by lk, lm;

(ii) all other facets are contained in the lk or lm. In such a case let m be the largest

and k the smallest index that fulfills this assumption.

We first consider case (i). Since Fj ¼ F ðx�j ; xþj Þ and for some � > 0, uj½x�j ��;xþj þ��
is in a half-plane with boundary lj, it follows that in the group Fi; . . . ;Fiþl , except

for Fj, Fk, Fm, there is one additional facet Fjþ� adjacent to Fj, where � ¼ 1 or

� ¼ �1. We are looking for a point of intersection of lj and the graph of u such

that

x ¼ maxf~xx < x�j : ljð~xxÞ ¼ uð~xx; dÞg if � ¼ �1

or

x ¼ minf~xx > xþj : ljð~xxÞ ¼ uð~xx; dÞg if � ¼ 1:

We consider

vðx; dÞ ¼
uðx; dÞ; x B ½x; x�j �;
ljðxÞ; x a ½x; x�j �:

�

Then v has l � 2 facets with non-zero curvature. Function wðx; dÞ is defined anal-

ogously, i.e. we set, if � ¼ �1

~xx ¼ minfy > xþj�1 : lj�1ðxÞ ¼ uðx; dÞ

Figure 3. Case (i).

26 M. Matusik and P. Rybka



or, if � ¼ 1,

~xx ¼ maxfy > xþjþ1 : ljþ1ðxÞ ¼ uðx; dÞ:

For � ¼ �1, we define,

wðx; dÞ ¼
uðx; dÞ; x B ½xþj�1; ~xx�;
ljðxÞ; x a ½xþj�1; ~xx�:

(

A similar definition is for � ¼ 1. We have

wðx; dÞb uðx; dÞb vðx; dÞ:

In case (ii) we proceed analogously, except that we now only have lines lk
and lm. (To define v we combine the facet, which creates lk, with the nearest facet

with the same curvature). We see that w and v have l � 2 facets with non-zero

curvature. We shall use the induction hypothesis that we have the estimate of

stopping time for function u in case l � 2. Thus, we arrive at an estimate for

Tðxk; xmÞ,

Tðxk; xmÞa
l

4

�
lmðxkÞ � lkðxkÞ

�
;

where l is the distance from the x1-coordinate of l0B lm to lmB lmþ1, where l0 is

the line passing through Fi�1 and lmþ1 is the line including Fiþlþ1.

First, we will estimate the time Tðxk; xmÞ after which v and w collide in the

strip bounded by lines lk and lm. For this purpose we take

va vaw; vawa w:

We notice that our estimates on Tðxk; xmÞ, we are developing here, depend

only on the parameters of the strip determined by the lines lk, lm bounding a

part of the graph of solution u. By construction, the same bounding box is for u

and v, w yielding the same estimate for collision time Tðxk; xmÞ. The estimate is

made on the premise that lines lk, lm sweep the strip.

We note that in the case of Dirichlet boundary conditions if facet F touches the

boundary, then F has zero curvature. We proceed as earlier with one di¤erence.

In equation (4.10) we have only one non-zero vertical velocity. But this in some

cases gives us even better stopping time. In the case of Neumann data we extend

u0 by odd reflection. This reflection does not lengthen the stopping time. Hence

the claim. r

Remark 4.12. The inspection of the proof shows that it does not require any

di¤erentiability of a solution. In our calculations we depended on the fact that
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for typical t > 0, all facets are created and there are no missing directions (see

Theorem 4.6 and Proposition 4.8). Thus, the argument remains valid also when

initial condition u0 is in BV and we consider the solution at a typical time d > 0.

4.3. Examples. Here, we present two examples highlighting the main issues

addressed in this paper.

We study solutions when the initial data are discontinuous at x ¼ a or x ¼ b.

We see that the solution does not satisfy the boundary condition in a pointwise

manner for t > 0.

Proposition 4.13. Let us suppose that I ¼ ð�1; 1Þ and uðt;�1Þ ¼ uðt; 1Þ ¼ 0.

(a) If u0ðxÞ ¼ �jxj þ d, where d > 1, then

uðx; tÞ ¼ �jxj þ d � 2min t;
d � 1

2

� �

and Wðu; x; tÞ ¼ �2x: In particular, Text ¼ d�1
2 and uðx;TextÞ ¼ 1� jxj.

(b) If u0ðxÞ ¼ �jxj þ e, where e < 1, then

uðx; tÞ ¼ max u0ðxÞ; jxj � 2þ eþ 2min
ffiffiffiffi
2t

p
;
ð1� eÞ

2

� �� �
ð4:11Þ

and Text ¼ ð1�eÞ2
8 . In particular,

uðx;TextÞ ¼

�x� 1; x a �1;� ð1þeÞ
2

h i
;

�jxj þ e; x a � ð1þeÞ
2 ;

ð1þeÞ
2

h i
;

x� 1; x a
ð1þeÞ
2 ; 1

h i
:

8>>>><
>>>>:

Proof. We conduct calculations similar to that in the proof of Proposition 4.8.

(a) We are interested in how long it takes for the facets to reach the stopping

time. We have hð0Þ ¼ d, hðTextÞ ¼ 1, the facets have constant length, LðhÞ ¼ 1.

We notice that Wðx; tÞ ¼ �2jxj, hence

dh

dt
ðtÞ ¼ �2

LðhÞ i:e:
dh

dt
ðtÞLðhÞ ¼ �2:

We integrate the above equation over ½0;Text�ðText

0

dh

dt
ðtÞLðhÞ dt ¼ �2Text:

We see that Text ¼ d�1
2 .
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(b) We see that due to Theorem 4.6 at points x ¼ �1, and x ¼ 1 two sym-

metric facets are created, Fð�1;�hÞ, Fðh; 1Þ. We will follow F ðh; 1Þ, hence we

have hð0Þ ¼ �1þ e, hðTextÞ ¼ 0. The length of the facet is LðhÞ ¼ 1
2 ð1þ h� eÞ.

At the same time L ¼ 1� hðtÞ, as a result,

Wðx; tÞ ¼

2x�2hðtÞ
1�hðtÞ ; x a ½hðtÞ; 1�;
0; x a ½�hðtÞ; hðtÞ�;
2xþ2hðtÞ
1�hðtÞ ; x a ½�1;�hðtÞ�:

8>><
>>:

Using this information we write equation for h,

dh

dt
ðtÞ ¼ 2

LðhÞ i:e:
dh

dt
ðtÞLðhÞ ¼ 2:

We integrate the above equation to get

hðtÞ ¼ 2
ffiffiffiffi
2t

p
� 1þ e and hðtÞ ¼ 1�

ffiffiffiffi
2t

p
:

Thus, we see that Text ¼ ð1�eÞ2
8 and (4.11) holds. r

Example 1. We look at a solution with oscillating initial data. Theorem 4.11

implies that facets close to zero get killed first, so that the stopping time is esti-

mated by using the parameters corresponding to the biggest humps in the data.

Let us consider u0ðxÞ ¼ x2 sinðx�1Þ a BVðIÞ, where I ¼ ð�1; 1Þ. We see that for

any t > 0 most of the facet interactions are over, only a finite number of facets

with non-zero curvature are left. We approximate u0 with

un
0 ðxÞ ¼

0; x a � 1
np
; 1
np


 �
;

x2 sinðx�1Þ; x a ½�1; 1�n � 1
np
; 1
np


 �
:

(

Due to Proposition 4.10 and Theorem 4.11 we have an estimate on the stopping

time for the evolution with initial condition u0. However, we provide no closed

formula for it.

5. Viscosity solutions

There are two main reasons for introducing the theory of viscosity solutions in this

paper. Firstly, we would like to check if the oscillatory behavior of solutions is

‘correct’. At the same time the theory of viscosity solutions will give us an addi-

tional tool like the comparison principle, see Theorem 5.3, which is used in the

proof of Theorem 4.11. This is the second reason for dealing with the theory of

viscosity solutions.
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Our exposition is based on [10], adapted to the setting of (1.1). It is clear that

we have to give meaning to
�
LðjxÞ

�
x
for a proper choice of test functions j. Our

experience with the theory of nonlinear semigroups suggests that it is advanta-

geous to work with
�
WpðjxÞ

�
x
, when W ðpÞ is a convex function.

We are going to present the necessary notions. A function f a CðIÞ is called
faceted at x0 with slope p a f�1; 1g ¼: P on I (or p-faceted at x0) if there is a

closed nontrivial finite interval ~II H I containing x0 such that f coincides with an

a‰ne function

lpðxÞ ¼ pðx� x0Þ þ f ðx0Þ in ~II

and f ðxÞA lpðxÞ for all x a Jn~II , where J is a neighborhood of ~II in I . Interval ~II is
denoted by Rð f ; x0Þ.

We will denote by C2
PðIÞ the set of f a C2ðIÞ such that f is p-faceted at x0

whenever f 0ðx0Þ a f�1; 1g. Let APðIT Þ be the set of all admissible functions c

on IT i.e. c is of the form

cðx; tÞ ¼ f ðxÞ þ gðtÞ; f a C2
PðIÞ; g a C1ð0;TÞ:

The definition of
�
WpðjxÞ

�
x
is non-local for p-faceted j a C2

PðIÞ. It involves a

solution of an obstacle problem, which we will describe momentarily.

We assume that D > 0, wl , wr a f1;�1g and J ¼ ½a; b�H I are given. We set

KZ
wlwr

ðJÞ ¼
�
z a H 1ðJÞ : jZðxÞ � zðxÞja D

2
; x a J;

ZðaÞ � wl
D

2
¼ zðaÞ;ZðbÞ þ wr

D

2
¼ zðbÞ

�
:

We also introduce

JZ
wlwr

ðz; JÞ ¼
Ð
J
jz 0ðxÞj2 dx if z a H 1ðJÞ;

þl if z a L2ðJÞnH 1ðJÞ:

(

Let us call by xZ;J
wlwr

the unique solution to the obstacle problem

minfJZ
wlwr

ðz; JÞ : z a KZ
wlwr

ðJÞg: ð5:1Þ

It is easy to see that for any a‰ne function Z, the minimizer is an a‰ne function

too. This is the case considered in this paper. But in general, even if Z a C2, then

it is well-known that the unique solution xZ;J
wlwr

belongs to C1;1ðJÞ, see [16].
Of course, Z is defined up to an additive constant, which we have to choose

properly. If F ¼ Fðx�; xþÞ is a facet, and uxjðx�;xþÞ ¼ p a P, then we set Z ¼ px

and D ¼ WpðpþÞ �Wpðp�Þ ¼ 2.
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We define LZ
W ðjÞ as follows. We stress that in [10] we denoted the same object

by LZ 0

W ðjÞ, but here we opt for a simpler notation.

If j a C2 and jx B P, then we set

LZ
W ðjÞðxÞ :¼

�
WpðjxÞ

�
x
:

If j a C2
P is p-faceted at x0, then we denote its faceted region Rðj; x0Þ by J. We

take Z :¼ p a P, then we set

LZ
W ðjÞðxÞ :¼ d

dx
xZ;J
wlwr

ðxÞ:

Transition numbers wl ; wr are defined by (4.2).

It turns out that the non-local definition of LZ
W ðjÞ has the desired property.

Proposition 5.1 ([10, Theorem 2.4]). Assume that I1 and I2 are bounded open inter-

vals and xZ; Ii
wlwr

, i ¼ 1; 2 is the solution to (5.1). We write Lwlwrðx; JÞ for d
dx
xZ;J
wlwr

ðxÞ.
(i) If I2 H I1, then

L��ðx; I2ÞaLeeðx; I1ÞaLþþðx; I2Þ for x a I2:

(ii) If aa c < ba d for I1 ¼ ða; bÞ, I2 ¼ ðc; dÞ, then for x a ðc; bÞ

Le�ðx; I1ÞaLþeðx; I2Þ; L�eðx; I2ÞaLeþðx; I1Þ:

After these preparations we may define the test functions and viscosity solu-

tions to (1.1).

Definition 5.2. A real-valued function u on IT is a (viscosity) subsolution of (1.1)

in IT if its upper-semicontinuous envelope u� is finite in IT and

ctðt̂t; x̂xÞ �L
Zðt̂t; �Þ
W

�
cðt̂tÞ

�
ðx̂xÞa 0 ð5:2Þ

whenever
�
c; ðt̂t; x̂xÞ

�
a APðIT Þ � IT fulfills

max
IT

ðu� � cÞ ¼ ðu� � cÞðt̂t; x̂xÞ: ð5:3Þ

Here, cðt̂tÞ is a function on W defined by cðt̂tÞ ¼ cðt̂t; �Þ and u� is defined by

u�ðt; xÞ ¼ lim
e#0

supfuðs; yÞ : js� tj < e; jx� yj < e; ðs; yÞ a ITg for ðt; xÞ a IT :

We also set u� ¼ ð�u�Þ.
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A (viscosity) supersolution is defined by replacing u�ð< lÞ by the lower-

semicontinuous envelope u�ð> �lÞ, max by min in (5.3) and the inequality (5.2)

by the opposite one. If u is both a sub- and supersolution, it is called a viscosity

solution. Hereafter, we avoid using the word viscosity, if there is no ambiguity.

Function c satisfying (5.3) is called a test function of u at ðt̂t; x̂xÞ.

The main tool we acquire from the theory of viscosity solutions is the Compar-

ison Principle.

Theorem 5.3 ([10, Theorem 4.1]). Let u and v be respectively sub- and supersolu-

tions of (1.1) in IT ¼ I � ð0;TÞ, where I is a bounded open interval. If u�a v� on

the parabolic boundary qpIT
�
¼ ½0;TÞ � qI A f0g � I

�
of IT , then u�a v� in IT .

In order to use Theorem 5.3, we have to check that the solutions we con-

structed in Theorem 2.3, are actually viscosity solutions.

Theorem 5.4. If u0 a BV and u is the corresponding solution to (1.1) with either

boundary condition (1.5), (1.6) or (1.7), then u is a viscosity solution to (1.1).

Before we engage into the proof, we make observations facilitating the argu-

ment. We set,

XðuÞ ¼ f½x�; xþ�H ½a; b� : ½x�; xþ� is the pre-image of facet Fðx�; xþÞ of ug:

Lemma 5.5. Let us suppose that uð�; t0Þ is continuous at x0 and ut exists at ðx0; t0Þ,
where t0 > 0. Then one of the following possibilities holds:

(a) x0 is in the complement of the sum of all pre-images of facets, i.e. x0 a
In6X

�
uð�; tÞ

�
. Hence, utðx0; t0Þ ¼ 0.

(b) x0 is in the interior of the pre-image of a facet, x0 a
�
x�ðt0Þ; xþðt0Þ

�
and either

(i) the length of the interval xþðtÞ � x�ðtÞ as a function of time is continuous at

t0 and wr þ wl is a non-zero constant for all t from a neighborhood of t0 or (ii)

wr þ wl ¼ 0 for all t from a neighborhood of t0.

(c) x0 a fx�ðt0Þ; xþðt0Þg and either (i) facet F
�
x�ðt0Þ; xþðt0Þ

�
has zero curvature

or (ii) wr þ wl A 0 and
�
x0; u0ðx0; t0Þ

�
a F

�
x�1 ðt0Þ; xþ1 ðt0Þ

�
BF

�
x�2 ðt0Þ; xþ2 ðt0Þ

�
and functions xþ1 ð�Þ � x�1 ð�Þ, xþ2 ð�Þ � x�2 ð�Þ are continuous at t ¼ t0 and equal

at t ¼ t0. We note that (i) includes the case of a facet passing through the

boundary data.

Proof. If utðx0; t0Þ exists, then this means that uþt ðx0; t0Þ ¼ u�t ðx0; t0Þ. We know

how to calculate uþt ðx0; t0Þ. First, we consider the case of x0 belonging to

In6X
�
uð�; t0Þ

�
. Since facets with a non-zero curvature are expanding, then
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x0 a In6X
�
uð�; tÞ

�
for all t < t0. Since utðx0; t0Þ exists, we deduce that it must be

zero. Thus, (a) holds.

Let us now assume that x0 belongs to the interior of the pre-image of a facet,

i.e. x0 a
�
x�ðt0Þ; xþðt0Þ

�
. Then always,

uþt ðx0; t0Þ ¼
wr þ wl

xþðt0Þ � x�ðt0Þ
: ð5:4Þ

Existence of derivative ut at t0 implies that (b) holds.

Let us suppose that not only x0 a fx�; xþg but also x0 a q
�
6X

�
uð�; t0Þ

��
. If

F
�
x�ðtÞ; xþðtÞ

�
have zero curvature for all t < t0 su‰ciently close to t0, then

u�t ðx0; t0Þ ¼ 0 and (5.4) imply that F
�
x�ðt0Þ; xþðt0Þ

�
must have zero curvature.

If wl
�
x�ðtÞ

�
þ wr

�
xþðtÞ

�
A 0 for t < t0 su‰ciently close to t0, then x0 a

In6X
�
uð�; tÞ

�
. In this case, (5.4) and u�t ðx0; t0Þ ¼ 0 imply again that wr þ wl ¼ 0,

i.e. facet F
�
x�ðt0Þ; xþ

�
ðt0Þ has zero curvature. This includes the case of a facet

satisfying the boundary conditions. Hence, utðx0; t0Þ ¼ 0.

If
�
x0; uðx0; t0Þ

�
a F

�
x�1 ðt0Þ; xþ1 ðt0Þ

�
BF

�
x�2 ðt0Þ; xþ2 ðt0Þ

�
, then uþt ðx0; t0Þ does

not exist unless xþ1 ð�Þ � x�1 ð�Þ ¼ xþ2 ð�Þ � x�2 ð�Þ and the transition numbers of

F
�
x�1 ðt0Þ; xþ1 ðt0Þ

�
and F

�
x�2 ðt0Þ; xþ2 ðt0Þ

�
are the same. Existence of utðx0; t0Þ and

(5.4) imply the continuity of functions xþ1 ð�Þ � x�1 ð�Þ, xþ2 ð�Þ � x�2 ð�Þ at t ¼ t0. Thus,

we showed that (c) takes place. r

We notice that fulfilling any of the conditions (a) to (c) is also su‰cient for the

existence of utðx0; t0Þ.
As important as Lemma 5.5 is understanding the behavior of u near ðx0; t0Þ,

when uðx0; �Þ is not di¤erentiable with respect to t at t0.

Lemma 5.6. Let us suppose that uð�; t0Þ is continuous at x0 and ut does not exist at

ðx0; t0Þ. Then one of the following possibilities holds:

(a) x0 is in the interior of a pre-image of a facet, x0 a
�
x�ðt0Þ; xþðt0Þ

�
and

wlðt0Þ þ wrðt0Þ ¼ 0, while wlðtÞ þ wrðtÞA 0 for t < t0 close to t0. This case

includes the situation when a facet hits the boundary of I at time t0.

(b) x0 is in the interior of a pre-image of a facet, x0 a
�
x�ðt0Þ; xþðt0Þ

�
and

wlðtÞ þ wrðtÞ ¼ constA 0, for ta t0 close to t0 and xþðtÞ � x�ðtÞ has a jump

at t ¼ t0.

(c) x0 belongs to the boundary of 6X
�
uð�; tÞ

�
, while for all t < t0 su‰ciently close

to t0, point x0 belongs to In6X
�
uð�; tÞ

�
. In this case uþt ðx0; t0Þ is given by

(5.4) and u�t ðx0; t0Þ ¼ 0.

(d) x0 a F
�
x�1 ðt0Þ; xþ1 ðt0Þ

�
BF

�
x�2 ðt0Þ; xþ2 ðt0Þ

�
and functions xþ1 ðt0Þ � x�1 ðt0ÞA

xþ2 ðt0Þ � x�2 ðt0Þ.
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Proof. Here, we listed cases complementary to those enumerated in Lemma 5.5,

thus no further argument is necessary. r

We notice that in case (d) function x 7! uþt ðx; t0Þ is discontinuous at x ¼ x0.

We are now ready for the proof of Theorem 5.4. We will show that u is a

subsolution. The argument that u is also a supersolution is similar and it will be

omitted. Let us take ðx0; t0Þ a IT and u� the upper semicontinuous envelope of u.

There are the following four cases to consider:

1) x0 is a point of continuity of uð�; tÞ, i.e. u�ðx0; t0Þ ¼ uðx0; t0Þ;
2) x0 is a point of discontinuity of uð�; tÞ. We note that jumps are the only pos-

sible discontinuities of BV functions.

In each of the above situations either:

a) x0 belongs to a pre-image of facet F , i.e. x0 a ½x�; xþ� or
b) the converse holds.

Step 1. We begin with case 1 a). Let us take a test function cðx; tÞ ¼
f ðxÞ þ gðtÞ such that cðx0; t0Þ ¼ uðx0; t0Þ and

maxðu� cÞ ¼ uðx0; t0Þ � cðx0; t0Þ: ð5:5Þ

We have to proceed according to the properties of the test function. Let us assume

first that utðx0; t0Þ exists. Then g 0ðt0Þ ¼ utðx0; t0Þ and we need to consider the fol-

lowing cases.

If F has zero curvature with slope p ¼ 1 (similarly if p ¼ �1), then we have the

following cases:

(i) F
�
Rð f ; x0Þ

�
has a non-zero curvature and x�ax� < xþaxþ (or

x�a x� < xþa xþ), where ½x�; xþ� ¼ Rð f ; x0Þ. Then Proposition 5.1

implies Lþ�ðx; ½x�; xþ�ÞaLþþ
�
x;Rð f ; x0Þ

�
(or L�þðx; ½x�; xþ�Þa

Lþþ
�
x;Rð f ; x0Þ

�
). Hence, (5.2) holds.

(ii) F
�
Rð f ; x0Þ

�
has zero curvature and x�ax� < xþaxþ (or x�a x� < xþa

xþ). Then Proposition 5.1 implies Lþ�ðx; ½x�; xþ�ÞaLþ�
�
x;Rð f ; x0Þ

�
(or

L�þðx; ½x�; xþ�ÞaLþþ
�
x;Rð f ; x0Þ

�
). Hence, (5.2) holds.

(iii) F
�
Rð f ; x0Þ

�
has a non-zero curvature and Rð f ; x0ÞH ½x�; xþ�. Then Propo-

sition 5.1 implies Lþ�ðx; ½x�; xþ�ÞaLþþ
�
x;Rð f ; x0Þ

�
. Hence, (5.2) holds.

Let us consider x0 a ½x�; xþ� and facet Fðx�; xþÞ has wl þ wr ¼ �2. In this

case Wxjðx�;xþÞ ¼ �2=ðxþ � x�Þ and Wx ¼ L��
�
x; ðx�; xþÞ

�
. If the graphs of u

and f are below the line lp passing through F ðx�; xþÞ, then the faceted region

Rð f ; x0Þ contains ½x�; xþ�. Then we consider L��
�
x;Rð f ; x0Þ

�
. We also
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notice that

L��
�
x;Rð f ; x0Þ

�
bL��

�
x; ðx�; xþÞ

�
:

Hence, (5.2) holds.

The other possible tangency configurations of u and f are analyzed as in

(i)–(iii) above. The details are left to the interested reader.

The case x0 a ½x�; xþ� when wl þ wr ¼ 2 is simpler, because there is just one

way how f may touch u. Namely, we have wl ¼ wr ¼ 1 and Rð f ; x0ÞH ½x�; xþ�.
Thus, Lþþ

�
x;Rð f ; x0Þ

�
bLþþ

�
x; ðx�; xþÞ

�
and (5.2) follows.

Step 2. Now, we work assuming that utðx0; t0Þ does not exist. We have two

major subcases:

x0 a ðx�; xþÞ; ð5:6Þ
x0 a fx�; xþg: ð5:7Þ

Our analysis is based on Lemma 5.6. If (5.6) and the case Lemma 5.6 (a) hold,

then Fðx�; xþÞ has zero curvature and there exist facets F
�
z�ðtÞ; zþðtÞ

�
, such that

lim
t!t�

0

zeðtÞ ¼: ze a ½x�; xþ�: ð5:8Þ

First, we consider

x0 a ðx�; xþÞnfz�; zþg:

We will separately study x0 a fz�; zþg. We have two obvious possibilities for

F
�
z�ðtÞ; zþðtÞ

�
, either wlðtÞ þ wrðtÞ < 0 or wlðtÞ þ wrðtÞ > 0, here we use the short-

hands, wlðtÞC wl
�
z�ðtÞ

�
, wrðtÞC wl

�
zþðtÞ

�
.

If wlðtÞ þ wrðtÞ < 0 for t < t0 close to t0, then there is no g a C1ð0;TÞ such that

f ðx0Þ þ gðt0Þ ¼ uðx0; t0Þ;
uðx; tÞa gðtÞ þ f ðxÞ in a neighbourhood of ðx0; t0Þ: ð5:9Þ

On the other hand, if wlðtÞ þ wrðtÞ > 0 for t < t0 close to t0, then there exists g sat-

isfying (5.9) with g 0ðt0Þ a ½0;A�.
If x0 a ½z�; zþ�, when ze are defined by (5.8), then by Lemma 5.6, we deduce

that A ¼ 2
zþ�z�

. We have further subcases to consider:

(a) zþ ¼ xþ, z� ¼ x�, i.e. facet Fðx�; xþÞ is a result of a collision of a facet

moving upward with the boundary of I .

(b) facet Fðx�; xþÞ is a result of a collision of a facet moving upward with a

facet passing through the boundary data.
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(g) facet Fðx�; xþÞ is a result of a collision of a facet moving upward with

another facet moving downward.

Let us consider the resulting limitations on f and Rð f ; x0Þ. Case (a) does not

bring any. If (b) occurs, then (5.9) implies that either

Rð f ; x0ÞH ½z�; zþ� ð5:10Þ
or

Rð f ; x0ÞQ ½z�; zþ� ð5:11Þ

but g 0ðt0Þ ¼ 0. Finally, (g) and (5.9) imply that Rð f ; x0ÞH ½z�; zþ�, because the

situation is similar to that studied in the lines above formula (5.9).

Let us check that u is a subsolution in these cases. We notice that

Wxðx0; t0Þ ¼ 0 ¼ uþt ðx0; t0Þ: ð5:12Þ

It will be easier if we start with (g) first. In this case we have Rð f ; x0ÞH ½z�; zþ�
and LZ

W ð f ; xÞ ¼ Lþþ
�
x;Rð f ; x0Þ

�
. Since g 0ðt0Þa 2

zþ�z�
¼ Lþþðx; ½z�; zþ�Þ, then

we infer from Proposition 5.1 that Lþþ
�
x;Rð f ; x0Þ

�
bLþþðx; ½z�; zþ�Þ, thus (5.2)

holds.

In case (a) there is no apparent restriction on Rð f ; x0Þ but it is not clear, which
minimization problem is the correct one if Rð f ; x0Þ intersects the boundary of I .

Since we developed ideas for the Dirichlet boundary condition through the peri-

odic boundary data, we first extend u antisymetrcially to get a periodic function.

We see that (a) corresponds to (g) considered above. Thus, we immediately con-

clude that if (a) holds, then (5.2) is satisfied as well. We also check it directly.

Since we extended u antisymetrcially, then (a) corresponds to the collision of

two facets, one is moving downward the other is moving upward. In this case,

LZ
W ð f ; xÞ ¼ Lþþ

�
x;Rð f ; x0Þ

�
. Since we have

Wxðx; t0Þ ¼ LZ
W ðu; xÞ ¼ 0;

and g 0ðt0Þa 2
zþ�z�

¼ Lþþðx; ½z�; zþ�Þ, then we infer from Proposition 5.1 that

Lþþ
�
x;Rð f ; x0Þ

�
bLþþðx; ½z�; zþ�Þ;

thus (5.2) indeed holds.

Now, we consider (b). If the subcase (5.10) holds, then Rð f ; x0ÞH ½z�; zþ� and
LZ

W ð f ; xÞ ¼ Lþþ
�
x;Rð f ; x0Þ

�
. Since g 0ðt0Þa 2

zþ�z�
¼ Lþþðx; ½z�; zþ�Þ, then we

infer from Proposition 5.1 that

Lþþ
�
x;Rð f ; x0Þ

�
bLþþðx; ½z�; zþ�Þ;

thus (5.2) holds.
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In subcase (5.11), Rð f ; x0ÞH ½x�; xþ� and if Rð f ; x0Þ does not intersect qI ,

then LZ
W ð f Þ ¼ Lþþ

�
x;Rð f ; x0Þ

�
bLZ

W ðuÞ: On the other hand, if Rð f ; x0Þ inter-
sects qI , then we proceed as above in case (a) and take Lþþ

�
x;Rð f ; x0Þ

�
for

LZ
W ð f Þ. Hence, LZ

W ð f ÞbLZ
W ðuÞ. As a result, in both cases (5.2) holds.

Now, we come back to the left out case, i.e. x0 a fz�; zþg. If F ðx�; xþÞ does
not touch the boundary, then for t < t0 close to t0, x0 does not belong to any pre-

image of any facet. This is so because zeðtÞ are not constant, see (4.8), unless

zeðtÞ are points of discontinuity of u. Hence, there is no test function satisfying

(5.5).

The other case is that F ðz�; zþÞ intersects the boundary. As usually, we

have two possibilities for this facet, either wlðtÞ þ wrðtÞ < 0 or wlðtÞ þ wrðtÞ > 0.

If wlðtÞ þ wrðtÞ < 0, then there is no g a C1ð0;TÞ such that (5.5) holds. If

wlðtÞ þ wrðtÞ > 0, then we proceed as in previous cases.

Step 3. We consider the situation when (5.6) and the case Lemma 5.6 (b) hold.

Thus, a moving facet collides with a zero curvature facet. We have the situation

similar to that in Step 1. Thus, we may rule out the case of ðwl þ wrÞðt�Þ ¼ �2 as

impossible to satisfy (5.9).

If ðwl þ wrÞðtþÞ ¼ 2, we conclude that the only possibility for Rð f ; x0Þ is

that Rð f ; x0ÞH ½z�; zþ� and we have LZ
W ð f Þ ¼ Lþþ

�
x;Rð f ; x0Þ

�
. Arguing as be-

fore we see that g 0ðtÞ a ½0; 2=ðxþ � x�Þ� and 2=ðxþ � x�Þ ¼ Lþþðx; ½x�; xþ�Þ; but
Wx ¼ 0. As a result, (5.2) holds.

Step 4. Let us assume that (5.7) and case (c) of Lemma 5.6 hold. But there is

no test function cðx; tÞ ¼ f ðxÞ þ gðtÞ such that (5.9) holds.

Step 5. Let us assume that (5.7) and case (d) of Lemma 5.6 hold. If F ðx�; xþÞ
has positive curvature, i.e. wl þ wr > 0, then Lemma 5.6 (d) and (5.9) imply that

there is no test function. On the other hand, i.e. if wl þ wr < 0, then there are test

functions. In this configuration uþt ðx0; t0Þ < 0 and u�t ðx0; t0Þ ¼ 0. We may as-

sume that
�
x; uðxÞ

�
is a common point of two facets F ½x�; x� and F ½x; xþ�. With-

out the loss of generality, we may assume that F ðx�; xÞ has zero curvature while

F ðx; xþÞ has negative curvature, i.e. wl þ wr ¼ �2.

We deduce, that g 0ðt0Þ a ½A; 0�, where A ¼ �2
xþ�x

. Moreover, f may be faceted

with facets p ¼e1 as well as j f 0ðx0Þj < 1. Then, it is easy to check that (5.2)

holds.

Due to Lemma 5.5 and 5.6 all cases corresponding to 1a) are exhausted.

Step 6. Let us now consider situation corresponding to 2a) and its con-

sequences. If this occurs, then x0 belongs to facet F ¼ Fðx�; xþÞ and u is dis-

continuous at x0. This discontinuity implies that x0 as an endpoint of facet

F
�
x�ðtÞ; xþðtÞ

�
does not move for t in a neighborhood of t0.

Furthermore, it may happen that utðx0; t0Þ exists. Then our argument is simi-

lar to that used in Step 1, while taking into account that jWðx0; t0Þj ¼ 2 and

u�ðx0; t0Þ ¼ uðx0; t0Þ or u�ðx0; t0ÞA uðx0; t0Þ. The details are left to the interested
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reader except for a new situation arising when the test function has a slope dif-

ferent frome1. For the sake of definiteness we assume that the slope of F is 1.

If utð�; tÞ is additionally continuous at x0, then utðx0; t0Þ ¼ 0. If utð�; tÞ is dis-

continuous at x0, then utðx0; t0Þ ¼ �2=ðxþ � x�Þ. Any non-faceted test function

cðx; tÞ ¼ f ðxÞ þ gðtÞ must be such that f 0ðx0Þ > 1. If this happens, then LZ
W ¼�

Wp

�
f 0ðxÞ

��
x
jx¼x0

¼ 0. Hence, (5.2) holds.

The case when F has slope �1 is handled in the same way.

If utðx0; t0Þ does not exist, then we have several sub-cases:

1� facet is an e¤ect of the collision of Fðx0; xþÞ with F ðz�; zþÞ. Furthermore,

Fðz�; zþÞ may have positive or zero curvature;

2� Fða; x0Þ is an e¤ect of a collision of Fðz�; x0Þ, ðp ¼ �1Þ, with the boundary;

3� Fða; x0Þ is an e¤ect of a collision of Fðz�; x0Þ, ðp ¼ �1Þ, with a facet touching

the boundary.

Those situations are analogous to that considered in Step 2, where we have a

discontinuity of u at t0. We also note that this discontinuity of u may lead to

non-faceted test functions as in the previous paragraph. The details, however,

are left to the interested reader.

The cases 1b) and 2b) are now easy and they are left to the reader. r
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[14] Y. Giga, P. Górka, P. Rybka, Evolution of regular bent rectangles by the driven crys-
talline curvature flow in the plane with a non-uniform forcing term, Adv. Di¤erential

Equations, 18, (2013), 201–242.
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