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Abstract. In this paper, we obtain the existence of weak solutions to a class of strongly ani-
sotropic nonlinear elliptic boundary-value problems with nonlinear lower-order term with
natural growth in an appropriate anisotropic function space. We investigate the cases
where the right hand side term is regular or to be in L'. A uniqueness result is also given
in a particular case.
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1. Introduction
This work is devoted to the study of the anisotropic nonlinear elliptic problem

(P) {Au+g(x,u,Du) —f, inQ

u=0, on 0Q

where Q is an open bounded subset of R (N > 3), and A is a nonlinear operator
acting from X into X* (the space X as defined in Section 2) given by

N
Au= " Di(wi[ D" 2Diu) — div a(x, u, Du)
i=1

*The research of S. El Manouni is supported by the Arab Fund for Economic and Social Development
(AFESD), Kuwait.
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0 .
8x,’ g >2 and w={w;(x )}izl,...,N is a

vector of functions on Q such that each w; is a.e. positive in Q and belong to
L*(Q), while a(x,s,¢) = {ai(x,5,8)},oy  n QX R X RY — R" is a Carathéo-
dory vector-valued function, that is to say, measurable with respect to x in Q for
every (s,&) in R x RY, and continuous with respect to (s, &) in R x RY for almost
every x in Q, and satisfies the following conditions.

where D; denotes the partial derivative

(H1) There exist a constant # > 0 and a nonnegative function k(x) € L'(Q) such
that, for a.e. x € Q, and all (s5,¢) € R x RY

_ N 1-1/p;
jai(x,5, ) < B(k(x) + 1517+ D 1E17) T i=1 N
=1

(The exponents p; and p are defined below.)
(H2) Fora.e. x € Q, forevery &, e RY, & # ¢’

(a(x,s,&) —a(x,5,E)).(E=&) >0

(H3) There exists a constant o >0, such that for ae. xeQ and every
(5,6) e Rx RY

N
a(x,s, &).¢ > az &7
i—1

As regard to the nonlinear lower-order term g, we assume that g has no growth
conditions with respect to |u|, and satisfies the following classical sign condition
and natural growth on |Dul:

(H4) For a.e. x € Q and for all s € R, g(x,s,&).5s >0,

(H5) g:Q x R x RY — R is a Carathéodory function, such that for a.e. x € Q,
all (s,¢) e R x RY

l9(x.5.)| < h(lsl) (el +Z|5|P/) ceL'(Q), e,

where /7 : Rt — RT is a continuous and increasing function with finite
values. Herein p; are real positive numbers by p; > 2, i=1,...,N. We
also assume f e L™(Q), such that

Np

> = and p <N,
Np—N+p P

N o
N

ﬁl\
2\~
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or
feLl(Q),
z(g:i;<pi<ﬁ$;) and p <N, (1)
lg(x,5,E)] < h(ls|) (c(x) + 2 &), o< piVi=1,...,N.

The case of isotropic quasilinear elliptic equations (p; = p,i=1,...,N), where

the principal part of the operator behaves like the Leray-Lions operator, has
been the subject of numerous studies, we can cite, among others, the references
[7], [9], [13], where the others obtained existence of solutions by considering lower
order terms with quadratic growth or subquadratic growth with respect to the
gradient. Let us also mention here the work of Bensoussan, Boccardo and Murat
[5], where in particular, the authors proved the existence of solutions in the varia-
tional case by proceeding from different ideas which is based essentially on the
strong convergence of the positive and negative parts of the approximate solution.
In the anisotropic case, Li, Feng-Quan in [12] studied the problem (P) with w; =
g =0 and a satisfying (H1)-(H3). The author proved the existence of a weak
solution u in ﬂlzl Wol’m"“’r"")(Q) with 7; :w when f e L™(Q) for 1 <
m< =20
Np—N+p
In the case of a datum f in L'(Q) or in L'log L'(Q), with w; = g = 0, and
a does not depend on x and s, namely a(x, s, &) is the vector field whose compo-
nents are |&;|”%&; (i=1,...,N), then it has been proved in [6] that there exists a
weak solution u € W, (12" (©)) for an anisotropic elliptic problem with Radon

bounded measure data on Q and r; € [1,17;3((1]3\]—_11)?). If feL'(Q), w;=0,and g

satisfies the following coercitivity condition, that is, there exists y > 0 such that

N
lg(x,s,&)| = yz |&|",  for |s| sufficiently large,
i=1

it has been proved in [10] that there exists a weak solution u € Wol"<p el N)(Q) to
the problem (P).

The purpose in this paper, is to follow the ideas of [5] to study such a problem
in the anisotropic case. More precisely, under weak feeble restrictions on the func-
tions ¢ and g, namely, under the hypotheses (H1)-(H3) and ¢ a nonlinear lower-
order term, which depend on the solution and its gradient Du, having natural
growth with respect to |Du| with no growth restrictions on |u| but a sign condition
on ¢ is assumed (see the conditions (H4) and (HS5) above), we prove the existence
result for the strongly anisotropic problem (P) when the datum f is assumed to be
in L"(Q) with m > N7 fvf\’, —- In addition, if f belongs only in L'(Q), the existence
of weak solutions is established. Also, in the case when f is in L' log L'(Q), the
existence result is, as well, deduced. We also prove the uniqueness of weak
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solutions to (P) in the case where ¢ is a lower order term depending only on wu.
Our study is motivated by the use of a kind of anisotropic Sobolev inequality due
to Troisi [22].

Let us point out that an interesting work in this direction can be found in [17]
where the authors proved the existence of renormalized solutions for some aniso-
tropic quasilinear elliptic equations. Finally, it would be interesting to mention
that when g does not depend on Du, we refer the reader to the works [3] and [8],
dealing with strongly nonlinear elliptic equations governed by a general class of
anisotropic operators.

As a prototype example, we consider the model problem

N
~> " Di(wil Dl Dt + | D" D) + g(x,u. Du) = f in 2,
i=1
Is| sign(s)
1+]s

where g(x,s,¢&) = (lel |€™), and the exponents o; < p; fori=1,..., N.

g

2. Preliminaries

2.1. Anisotropic Sobolev spaces. We start by recalling that the notion of aniso-
tropic Sobolev spaces were introduced and studied by Nikolskii [15], Slobodeckii
[21], and Troisi [22], and later by Trudinger [23] in the framework of Orlicz spaces.

Let Q be a bounded open subset of RY (N > 3) and let py,..., py be N real
numbers, with 1 < p; < 0, i=1,...,N. We denote by W (rrv)(Q), called
anisotropic Sobolev space, the space of all real-valued functions u € L?(Q) such
that the derivatives in the sense of distributions satisfy

DueL"(Q) foralli=1,...,N

This set of functions forms a Banach space under the norm

ully popy = (JQ lu(x)]” dx)l + Z(L D] dx)l/pi.

The space WO1 H(Prap N>(Q) is defined as the closure of Cj°(€2), the space of real in-
definitely differentiable functions of compact support in Q, with respect to the
norm |.[[; , . The theory of such anisotropic Sobolev spaces was developed

[16] [ 8], [19] and [22]. It was proved that C°(Q) is dense in Wol'(pl"“’p"")(Q)
) is a reflexive Banach space for any p; > 1. We

’ H'Hl,pl,...,pN
recall that
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where WO1 P1(Q) is the closure of Ci°(Q) with respect to the norm

N
”uHO,p,- = ”qu, + Z ”Dju”p,
j=1

In the following, we assume

N
1
pi>2 forali=1,....N and Z;>1,
i=1
Let ¢ > 2 and let w;, i = 1,..., N be measurable functions satisfying w; € L*(Q)

and w; > 0 for a.e. in Q.
Consider the weighted Lebesgue space associated to w; defined by
L4(Q) = {u=u(x) : w9 e LY(Q)}.

wi

In this space we define the norm

1/q
= (ol ax) ™
Q

Let X be the Banach space, called also anisotropic Sobolev space, obtained as the
closure of C°(Q) with respect to the norm

_ N ' Pold 1/q
WM~4wb+@§DDMuvq;mwm|w)}. 2)

We denote by X * the dual space of X.

Theorem 2.1 ([2]). Let V, W be Banach spaces such that
(i) V n W is dense in both V and W.

(1) If (up),cn is a sequence in V. W such that
len —ully, — 0,  |lup—vlly =0 = u=veVnW.

Then the map V' + W' to (V n W)' defined by
ot +0" Dy = LU Dy + 20y, VzeV AW

is an isometric isomorphism.
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Proposition 2.2. The function space X endowed with the norm (2) is a reflexive
Banach space. Moreover, for any ¢ € X* there exist F € Hl]i | Lf{,:(Q) and G €
Hi]il LP(Q) such that

bopd = L«ww, F>+{G,Dg)), VpeX.

Proof. (The proof follows the lines to that of Oppezzi and Rossi [17] for the case
q = 2. For the completeness and for the reader’s convenience we present it here
in detail).

We have X is isometrically isomorphic to a closed subspace of

N

17(@) x (TJ (L@ n Ly @)).

i=1

We prove for i =1,..., N, the reflexivity of the space L”(Q) n L (Q2), endowed
with the norm ||.||,, v [.[|,,- Let (ux) be a bounded sequence in L”(Q) N Ly (Q)

w;i

and ¢ € C;°(Q2). Then there exist u € L?(Q) and v € L (Q) such that, by going
to a subsequence if necessary

up — u and u, — v weakly in L”'(Q) and LY (Q) respectively.
Since pw; € L7 (Q), we see that

J ukgow,-dx—>J upw;dx  and J
Q Q

urpw; dx — J vpW; dx,
Q Q

so that u = v by arbitrariness of ¢ and assumptions on w;. Now by Theorem
2.1, thanks to the density of L”(Q) n L{ (Q) in both L?(Q) and L (Q), it re-
sults that (L7/(Q) N LY, (Q))' is isomorphic to L7 (Q) + Lf{,; (Q) according to the
definition
G+ 0D wnnns @) = G D wn@)y + <D w @)
Vze L"(Q)n L] (Q).

On the other hand, by density of C7°(Q) in both (L#(Q))" and (LZ(Q))" it
results

Qs uD i)y = <ty and v g @y — 0Dy @)

forallu’ e (L7(Q)) and v’ € (LZ (Q))". Hence uy — u in X and the reflexivity is
proved.
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Let P: X — [[Y, (L7 (Q) n LY (Q)) such that P(u) = Du. If ¢ € X* is given,
we define
¢ :P(X)— R
us ¢ (P(u) = g(u)

Clearly ¢’ € P(X)’, so, by Hahn-Banach theorem there exists a norm preserving
extension ¢ € ([T.Y, (L7 (Q) n L, (2)))" of ¢'. Therefore, by the isomorphism be-
tween (L7(Q) mLf{,i(Q)), and L7 (Q) + (Lf{,i(Q))/, there exist F = (Fy,...,Fy)
and G = (Gy, ..., Gy) such that

Gi+F eLl(Q)+ (LL(Q), i=1,....N
and
N N
$(O) = ; i F g oy + <G Gy ) foreach (e g(m (Q) N LL(Q)).
Now, if ¢ € X we have
N
) = ¢'(Dp) =Y _(Dip. Fid1 @y + <D, G 1)

i=1

This concludes the Proof of Proposition 2.1. O

3. Main result

If ¢ : Q — RY we introduce the notation wé = (w ¢y, ..., wyEy), so that the oper-
ator 4 : X — X* defined by

N
Au = — Z Di(w,'IDiu|"’2D,~u + a;(x, u, Du))
i=1

is well defined.
In this section we formulate and prove the main results of this paper. Our first
main result is the following.

Theorem 3.1. Let

Np 1 1.1
¢>2p<N, and m> b~ 3" (3)
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with p;>2,i=1,...,N. Assume (H1)-(HS) hold, and f € L™(Q). Then the
problem (P) has at least one solution u € X such that
g(x,u,Du) e L'(Q) and g(x,u, Du)u € L'(Q),
{Au,v) —I—J g(x,u, Duyvdx = {f,vy, YvelX.
Q

In order to prove Theorem 3.1, we need the following anisotropic Sobolev
inequality.

Lemma 3.2 ([22)). Let p; > 1,i=1,...,N and u € Wy """ (Q). Then
al 1/N
ull, < CTT Dl
i=1

_ Np .. _ P | R |
where s = p* = —if p < N with iven by —=—> ", —. The constant C
PN b givenby —=5¥im1o,
depends on p; and N. Furthermore, if p > N, this inequality is true for all s > 1 and
C depends also on s and |Q)|.

Remark 3.3. If we assume that the exponents p; satisfy p < N. Then p* is given
by
P = al
- N,
>
—1 Pi

and there are continuous embeddings W, ""7"")/(Q) — L¥(Q) for all s < p*
which turn out to be compact only when s < p*.

Proof of Theorem 3.1. The proof of this theorem needs several steps.

Step 1: Existence of the approximate problem. Set

g(x,u, Du)
Du) = f
ge(x,u, Du) T ¢lg v, 0, D) ore >0,

and consider
by(u,v) = J g (x, u, Du)v dx,
Q

for all u,v € X.
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Observe that b, (u, v) is well defined since g, (x, u, Du) is bounded with compact
support. Define the following operator

Gu: X —R

v— J ge(x, u, Du)v dx.
Q

Definition 3.4. The operator B from X to its dual X* is called of the calculus of
variations type, if B is bounded and is of the form

B(u) = B(u,u) 4)

where (u,v) — B(u,v) is an operator from X x X into X* satisfying the following
properties:

VYu e X, v — B(u,v) is bounded hemicontinuous from X into X*

and (B(u,u) — B(u,v),u — v) >0, (5)
Vv e X, u — B(u,v) is bounded hemicontinuous from X into X* (6)
if u, — u weakly in X and if (B(u,,,u,,) — B(up, u), u, — u) — 0
then, Yv € X, B(u,,v) — B(u,v) weakly in X, (7)
if u, — u weakly in X and if B(u,,v) —  weakly in X",
then, (B(uy, v),uy) — (¥, u). (8)

Proposition 3.5. Under the assumptions (H1), (H2) and (H3), the operator B, =
A+ G is of the calculus of variations type. Moreover, B, is coercive, in the sense
that:

{Bgu,uy _

m
lully—+o0 |1l

Proof. Put foru,v,y € X
N
(u,0,9) = ZJ (wilDiv| "> DDy + ai(x, u, Dv) D) dx
i=1

and

bulud) = | g Dy .
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Then the mapping  — by (u, v, ) + b.(u, ) is continuous in X and

by (ua v, l,b) + be(ua l//) = <Bz:(”7 U), v, Be(ua u) = B.u.

The conditions (5) and (6) follows easily from (H1). Indeed for the boundedness
we have

[K(4 + G)u, v)|

= K]+ || gu(.e D |

= ((J W"|Df”|qu)l/q>q/q,<J wilD;v\qu>l/q
S o+ S ) ([

+ U ge(x, u, Du)v dx|,
Q

which gives using the fact that |g,(x,u, Du)| < 1,

(4 + Gy o3| < [ull 7 [lolly + exllollx (2 + lull ) + e(@)]loll ¢
< ol (lll £ + ex(es + llull )7 + (@),
where ¢;, ¢; and ¢(¢) are positive constants and y is a positive real number. This
implies the boundedness of 4 + G..
Now, to show that B, = 4 + G, is hemicontinuous, let A — 4y and prove

that

<B£(u + ;“U)v lﬁ> - <B£(u + /l()l)), lﬁ>
for all u,v,}y € X. Since for a.e. x € Q

wi Di(u 4 20)| 77Dy (u + ) + a;(x, u + Av, V(u + iv))
— Wil Di(u+ Aov)| "2 Dy + Aov) + a; (x,u + Aov, V(u + Aov))

as 1 — Ao, thanks to the growth condition (H1), we have

wi| Di(u + 2w)|472Di(u 4 Jv) — wi| Di(u + Agv)| 72 D;(u + Agv)
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weakly in (L (©))" and
a;(x,u+ A0, V(u+ Av)) — a;(x,u+ Aov, V(u + Aov))

weakly in L” (Q) as 1 — Ao.
Therefore

by (u+20), > — <by(u+ o), > as A — Jg.
On the other hand, we have
g (3, u+ A0, V(u + Av)) — g(x,u + Aov, V(u + Agv))

as 1 — Ag for a.e. x € Q. This implies

ge(x,u+ 20,V (u+ 20)) — g(x,u+ Aov, V(u + iov))  in L'(Q)
as A — Ag since (g.(x,u + Av, V(u + Av))), is bounded in L'(Q). Therefore,

{G(u+ ), > — LG(u+ dov), >  as L — A.

Moreover, thanks to the assumption (H2), we have

(B(u,u) — B,(u,v),u — v) = by (u,u,u — v) — by (u,v,u —v) > 0.

Arguing as Lemma 2.2 from [14], we have the property (7).
With regards to the assertion (8), assume that

u, —u  weakly in X 9)
and that
B,(u,,v) — ¢ weakly in X" as n — +o0. (10)
Thanks to the compact imbedding X < L?(Q) and in view of (H1), we obtain
by (uy, v, uy) — by(u, v, u). (11)
By Holder’s inequality, we have

|be(tny un — u)| < Cellun —ull; =0 asn— +oo. (12)
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Using (10) and (11), we can write
bﬁ(um u) = (Bﬁ(um U)a u) - bl (un’ v, u) - (lpv ”) - bl (”a v, u)v
then, with (12), we have

be(ty,un) — (Y u) — by(u,v,u)  asn— +o0.

Consequently
(Bg(un, v), un) = by (ty,v,u) + be(tty,up) — (Y,u) asn— +oo.
Now, we prove that B, is coercive. Indeed, let iy be such that
||D,~”u||pio = max{|[Du|,,i=1,...,N}.

Hence, thanks to (H3) and (H4) we obtain

N N
J ( wi|Diu|? + ocz |D,~u|”") dx
QM= i=1

[ ull ¢

A+ Gu,uy

[l

N
o P Pi
jgzwi|u,~u|qu+§||z)fu||z, + 2 1Dl

i=1

- il q 1/q
ey + 1D, + L Dl )
i=1

N
j wil Dl dx + | Dyul[50 +
> K/ Q i=1

- i q /g’
ey + 1D, + L D d)
i=1

where K’ is a suitable positive constant. Then the coerciveness follows immedi-

xq+yt+Z.Y

ately since the following assertion holds: limy ..,
X+y+z

x,y,z€ R, and t,5 > 1.

= oo, when

Therefore, thanks to Proposition 3.1 and Theorem 2.7 of [14], there exists

u, € X solution of the problem

Au, + ga(xa Ug, Dus) = f7
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or variationally
N

J (wil Dats| > Dy, Div + a;(x, uz, Duz) Div) dx + J ge(x, uy, Duy)v dx
—1 JQ Q

1

={fv) (13)
forallve X.

Step 2: A priori estimates. Remark first that the assumption (3) implies
that

N, .

Then by Lemma 3.2, we have

el < Klu

p* = KHDioul|p,»07

where K, K are positive constants. Substituting v = u, in (13), using (H3) and
(H4), due to the result of Troisi [22] stated in Lemma 3.1 and using the fact that
m' < p*, we see that

N

“ZL | Dite] " dx < |\ f | llutellr < €l f Wlltel s

i=1

where c¢ is a positive constant. Then similarly as in the proof of the coerciveness
argument, we get

N —
S Dl e+ 104l + )
K’ i=1

N g
sl + 1Dl + D (| D)
=1 e

<(A + Ge)“e?a Uy

ot

2 < el /]l

If we suppose by contradiction that ||| y is not bounded, the left hand term of the
above inequality becomes unbounded. Then

luzlly < C,  Ve>0 (14)

J ge(X, g, Du)u. dx < C,  Ve>0 (15)
Q
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for some constant C > 0 independent of ¢. By the similar argument above, we can
prove that A is a bounded operator, then we get

|||y < C', (16)
for some constant C’ > 0 independent of e.

Step 3: Convergence of u,. In view of Proposition 2.1, X is reflexive, then
we deduce from (14) and (16) that

u, — u  weakly in X,
u, — u  strongly in L7(Q),
Diu, — Dy weakly in L (Q),
Du, — D;u  weakly in LY (Q),

Wi

Au, — y  weakly in X*.
This implies that we can extract a subsequence still denoted by u, such that
u, —u a.e.in Q. (17)
This is not sufficient to pass to the limit in g,. We need for instance
Du, — Du  a.e.in Q. (18)
In fact, inspired by the work [5], we prove that
n _ _

u' —u", u, —u and Du, — Du ae. inQ.

Let k> 0. Define u;” =u* Ak =min{u*,k}. We shall fix k, and use the
notation

e =ul —u.

Then we have z, € X and z € X. Putting v =z in (13), we obtain

{Aug,z[ ) + J ge(x, up, Dug)z) dx = {f, 2.
o

Note that if z;* > 0, we have u, > 0 (if not, there exists x such that u,(x) <0,
then u(x) =0 which implies that z,(x) = —u;" (x) = —min{u"(x),k} <0, so
zF(x)=0). Hence from (H4), we get g.(x,u,,Du,) >0. Thus we have
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{Aug, z > < (f,z}>. Therefore
N

ZJ wi| Ditts| 42 Dau, Dz dx +J a(x, us, Du,) Dz} dx < {f, 2.
i=17Q Q

Since u, = u,” in {x € Q: z;} > 0}, we may write
N

> JQ wi| D |12 Dl Dz dx + JQ a(x, u;, Du Dz} dx < {f, 2},
i=1

which implies
N
-2 + +
J wi| D |* "D Di(u) — u”) " dx
=1 JQ

+ J la(x, us, Du) — a(x, ug, Dul )| D(u) —ut) " dx
o
< —J a(x,ug, Du \D(u — )"+ (f, 2.
o

As ¢ — 0, we have

zF— W —u))t ae inQ.

However z is bounded in X; hence

i — W —u’)T inX,

Using the fact that
N !
a(x,u;, Du)") — a(x,u,Du;’)  in HLP" (Q),
=1

|Ditt,| "> D, — |Dau| " *Du in LY (Q)
and by passing to the limit in ¢ in (19), we obtain
N

lim sup (Z J wil Da |2 Do} D) — uf) " dx
o

e—0 i=1

+ J la(x,uz, Du) — a(x, u,, Dul)|D(u) —ub)* dx)
o

.

< Ry

371

(20)
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with
R — _J a(x,u, DU D(ut — ut)* + f, (ut — ).
Q

Since (u™ —u)" — 0in X as k — oo, we have Ry — 0 as k — 0.
Now, let us prove the following assertion

N
—lim iglf (Z J wil Dt |47 Dl Dy — ul) dx
& =1 JQ
+ J la(x, uz, Du)) — a(x,uz, Du; )| D(u) —ul)™ dx)
Q
<0. (21)

Indeed, we shall use the test function v, = ¢,(z, ) with ¢,(s) = se”” in (13) (where

/4 will be chosen later). We have 0 <z <k, hence z; € L*(Q) and since z, € X,

clearly we have v, € X. Then we deduce

N
J wi| Dinte| > Dy, Diz, (2, ) dlx +J a(x, us, Dus) Dz, 9} (z,) dx

—1 JQ Q

1

+J ge(x, 1, Duz)g, (z,”) dx
)
= <f7 ¢A(Z;)>
Define
E.={xeQ:u (x)<u/(x)} and F,={xeQ:0<u(x)=<u(x)}

We have

J ge(x, uz, Duy) g, (z, ) dx = J ge(x, uz, Duy)p;(z, ) dx.
Q ES

If u, < 0, we have g, (x, u;, Du,) < 0 and since ¢,(z,") > 0, using (HS5), we obtain

j e ug,Duamz;)dxsj 655, ty, D), (25 ) dix
E, F,

&

< | bl () + 3 1Dl Yo7 s (2
i=1

F;

Thanks to the structure assumption (H3), we can write
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b(Ju]) (e +Z D] ) pi(z,)

b(|uel) (c(x) + éa(x, us, Dug)Due) ?;(z, ).

Now, using (22) and (23), we obtain

j 605, ty, D), (27 ) dx < b(k)[ (%, s, D) Ditopy (2
EIZ

F{I

T b(k) Lc(x)(/);,(z;)dx-

As in [5], by choosing 1 = we deduce that

423

1

N
-3 J wil D |72 Dot Di(u) — u)” dx
i=1

1
— EL[a(x, ug, Du" ) — a(x, u,, Du )|D(u} — u;") ™ dx
1 5 _
< - EZJ wi|Dut | T D Di(u)} —u)”)” dx

J (x, ug, Du,) — a(x, u,, Du )| Du; ¢} (u)”) dx

() + j a(, e, Duf ) Dz gl (=) dx
L bl

o

b(k)

J a(x, u,, Du ) Du g, (z,) dx
Q

o Q

Extracting subsequences satisfying

Dt | 2D —v;  in LY (w),i=1,...,N

and

N
a(x,u;,Du,) — oy and  a(x,u,,Du) — o, in HLP[/(Q

) dx

373

+*j a(x,p, Duf ) D — 1} ), (2 >dx+b<k>j (), () d.
Q

(24)

For k fixed and when ¢ tends to zero, using Lebesgue’s dominated convergence

theorem, the right side of the above inequality becomes
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3D i iy x| o) —ox (1D
+(~f,0, (W™ —u)7)) + La x,u, Duf )D(u —ul) ) (u" —uf) ") dx
S0 oawDuo (0 — ) s
+20 o DDl — () ) s
500 [ e (0"~ )Y dv = | for() - o2(01Du; 9

Q

Jr =0 ae.

since (ut —u)” =0, 9,(0) =0 and (a(x, u,, Du;) — a(x, u;, Du,")) (u
u; =0, there-

Because, if u, < 0 we have (u;); = 0. This implies (o1 (x) — 02(x))
fore we get

lim sup(— ZJ wil i |2 Daet Dy — u) ™ dx
Q

e=0 =1

As in [5], from (20) and (25), we have

o]

(a(, D) = a(x, y, DU | D(u” — ) dv)
<0.

N
lim sup(ZJ wilDael |7 D! Di(u)} — u™) dx

&0 i=1

+ | [a(x,us, Du) — a(x, u,, Du™)|D(u} — u*)) dx
Q

< Ry +J [o2(x) — a(x, u, Duf )| D(uf —u™).
Letting k — oo and using (Lemma 2.3, [14]), we obtain

uf —ut  in X strongly. (26)

Now we want to prove the convergence of the negative part of u,

. Indeed, as in
the preceding step, we shall prove that

u, —u  in X strongly. (27)
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Define u,, =u~ Ak, y, =u; —u;, and putting v = y," in (13), we get

N

ZJ Wi|Diuc‘q_2DiucDiyg+ dX+J a(xvuchuc)Dy: dX+J gs(xyuchuc)y: dx
i=1 JQ Q Q

={f 05
Since y >0 implies u, <0, then we have g.(x,u, Du;) <O0. Hence

ge(x,u,, Duy)y,” < 0 ae. in Q. Then we get

ZJ wi|Ditty| > Dyu, Dy}t dx+J a(x,u,, Du) Dy dx > (f, y}>
Q

i=1
Since u, = —u, on the set {x € Q: y,”- > 0}, we can write
N
— ZJ wi|Ditts| > Dy, Dy} dx + J a(x,u;, —Du; Dy} dx > {f, vy,
— Jo Q
which implies
N
ZJ wil Dittg 2D, Di(u; — u )" dx
=1 JQ

— Jg[a(x, uy, —Du_ ) — a(x,u,, —Du; )|D(u, — uk_)+ dx

&

< J a(x,uy, —Du )D(u;, —u )" dx — {f, v ).
Q
As ¢ — 0 we have y — (u™ —u;)" ae. in Q. Since y; is bounded in X,

v — (™ —up)" in X (for k fixed).
Passing to the limit in & we obtain

lim sup (Z J wi| Djt | q_zD,-ugDi(u; — uk_)+ dx

e—0
_J [a(x, us, —Du; ) — a(x, g, —Dug )| D(u; —up )™ dx)
Q

< Rk, (28)
with

R = L a(x,u, =Du )D(u™ — )" = <f, (™ =) "),

and Ry — 0 as k — +oo since (u™ —u;)" — 0in X as k — 0.
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By considering again as test function v, = ¢,(y, ), we show as above that
N
lim sup (Z J w,-|Dl-u(;|Q—2D,-ugD,-(u£_ —u; ) dx
0 Vo7 Jo
+ Lz[a(x, uy, —Du, ) — a(x,u,, —Du; )| D(u, —u; )~ dx)
<0. (29)
Finally combining (28) and (29), we see that
u, —u strongly in X. (30)
Therefore, since ¢ is continuous, we get the conclusion
go(x, uz, Du;) — g(x,u, Du)  a.e.in Q
and

ge(x, g, Dup)u; — g(x,u, Du)u  a.e.in Q.

From (15), the assumption (H4), and in view of Fatou’s lemma, we obtain

J g(x,u, Du)udx < limJ ge(x, g, Dutg)u, dx < C, (31)
Q Q

which implies that
g(x,u, Du)u € L'(Q).

Now let 0 > 0. In view of Holder inequality we can write

J |ge(xa USaD“£)|dxs J |ge(x7 us;Dus)|dx
E En{|u] <6}

—i—é*lJ ge(x, uy, Dug)u, dx
En{|u,|>0}

< h(é)J

N
(c(x) +y° |D,~u3|”"> dx+o7'Cc,  (32)
E i=1

where E is any measurable subset of Q and C is the constant of (15) which is in-
dependent of k. Thanks to (14), the above inequality implies the equi-integrability
of g.(x,u,, Du,).
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Thanks to (24), (26), (32) and Vitali’s theorem we get
s (x, g, Du,) — g(x,u, Du)  strongly in L'(Q).
Hence it follows that g(x,u, Du) € L'(Q).
Passing to the limit in (13), we obtain

<x,v>+J g(x,u, Du)jvdx = {f,v) forallve X.
Q

It remains to show that Au = y. For this purpose, note that since A is bounded,
hemicontinuous and monotone, then A4 is pseudo-monotone.
Now, by substituting v = u, in (13), and in view of (31) we get

lim sup (e, 1) < <f >~ | gl D
Q

e—0

This implies
lim sup {Aug, u;) < {x,v).

e—0

Since A4 is a pseudo-monotone operator, then y = Au. Finally, we conclude that

g(x,u, Du) € LY(Q), ¢g(x,u, Duju e L'(Q)
{Au, vy + [ 9(x,u, Dujvdx = (f,v) forallve X.

This completes the proof of Theorem 3.1. O

Before stating our second main result of this paper, let us first define the
Banach space Y obtained as the closure of Cj°(€2) with respect to the norm

N Lo\
Jully = el +miax |1 D, v (| wil D" dix) |,
= Q

where r; and r are as in the following theorem.

Theorem 3.6. Let p;>2,i=1,...,N. Assume (H1)—(HS5) hold and f € L'(Q).
Furthermore, assume that

1§K,'<pijﬁv(—:1; i=1,...,N. (33)

Tk

qK
1 +ic*’

Then for all 1 <r < there exists u € Y solution of problem (P).
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Proof. For fixed k > 0, we define the truncation T} at levels Fk,k > 0 by

s, |s| < k;

”@:h%m%m>k

Let f, = T,,(f) be a sequence of bounded functions, such that
fo— f stronglyin LY(Q) and |f;] <|f].
Let us define the sequence of approximate problems (P,) by

(P) Au, + g(x, uy, Duy) = f,, in Q
! u, =0, on 0Q2.

Thanks to Theorem 3.1, there exists a solution u, € X of the problem (P,).
Let us choose as a test function in (P,)

¢wn—%wa—®—mﬂ?af%w, 5> 1.

Then, using the assumption (H3) and the fact that |¢(u,)| < 1, we deduce
i| Ditty |
JﬁLiL dx < C. (34)

Dinpi
(sdeC and J | Ditt|
o (1 + [un])

o (1+ [uy])’
To carry on the proof, we need the following Lemmas 3.7-3.10.

Lemma 3.7. Let p; and ; be such that

N@—U) .
i>2 and ke |l,pp———=), i=1,....N
! {pmN—U

1 1 K"
whereﬁ<Nana’})::NZ;\:]I;andlet1<r<13’_c

i

. Then

® (u,), remains in a bounded set of L*(Q).
® (Djuy), remains in a bounded set of L"(Q).
® (Diuy), remains in a bounded set of L], (Q).
Proof. We can assume that x;/p; = i/p. If not, we set 0 = max{r;/p;,i=1,...,

N} and replace x; by 0p;. Then, since 0p; > k;, the fact that (D;u,), remains in a
bounded set of L% (Q) implies the result.
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From now on, we set x; = Op;, with 0 € (0 (< >) (0,1). Since x; <

Di _(<N . then we have & < Y2 11). This implies that {%; < i*, § = i¢/p. Hence

there exists 0 > 1 such that

o0 NK
—<—* =k .
—e="" " TN_& (35)

By using Holder inequality, we obtain

. D |
J Dt | dx:J Bl g ) dx
Q (14 |u,l)

| Dty |”" 0 J s0/(1-0)) ; \'7?
< — —  _dx 1+ |u, dx . 36
(,[Q(l + |ua])? ) ( Q( ) ) (36)

In view of (34) and (36), we get
; 1-0
J 1Pl = ([ (1 0 )
Q Q

< C(JQ(I ) dx)l_a. (37)

Hence

Now we apply Lemma 3.2 and using (35), we can write

1/k—1/p

il < C(L(l ) )

(/1/p) (38)

Therefore, since p < N, we have i ( ) < 1 and by the last inequality, we

deduce that the sequence (u,), is bounded in L* (Q), so that (u,), is bounded in
L*(Q). The combination of this and (37), implies that (Du,), is bounded in
L"(Q) for all i=1,...,N. Concerning the boundedness of (Du,), in L] (Q),
using again Holder inequality, we have for 0 < 6 < 1 such that r = 0gq (r < q)

4 9| Dy " ;
J wi|Diu,|" dx = J LL”M (w01 + Jun|)*) dx
Q Q \ (1 + |uy)

1D |4 0 1-0
S(J de) (J w1+ [u, )0 1=0) dx)
Q (1 + |uy|)" Q
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Since r < %, then we have 1799 < K*. Hence, there exists d > 1 such that

2% <i*. As above, we deduce, thanks to (38), that [, wi|Dju,|"dx < C since

w; € L*(Q). Therefore

D;u, — D;u  weakly in L";,l_(Q),
u, — u  strongly in L*(Q).

Lemma 3.8. There exists a constant C > 0 such that for all n > 1
1T (un )y < Ck (39)
and
llg (., t, Duy) ||y < C, (40)
where Ty, is the truncation defined by

s, |s| < k;

Ti(s) = {k sign(s), |s| >k,

for fixed k > 0.

Proof of Lemma 3.8. Taking Ty (u,) as a test function in (P,), we find
N

Z J (wi Diun| 1 T} (un) + a;(x, ty, Duty) Ditty T} (u) ) dx
Q

i1
+J g(x, uy, Duy) Ty (uy) dx
Q
< kll/ 1l (41)
On one hand, using (H3), (H4) and the fact that (7})” = T/ and (T})? = T{ we

obtain (39). The estimate (41) also leads to

j g(x,un,Dun>undx+kj 19(x, tn, D) dx < K £,
un| <k

[uy|>k

On the other hand, thanks to (H4), we obtain

j ot Dul e < /1)
| >
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This estimate implies that

lg(x, uy, Duy,)| dx+J lg(x, uy, Duy,)| dx

[un| <k

j l9(x, un,Dun>|dx:j
Q

[un| >k

<C+ JQ b(k) (c(x) + ZNI: |D,-Tk(un>|f’f) dx.

This inequality and (39) imply (40). O
Now let us prove that for all 0 < ¢ < 1 small enough, we have also
Diuy — D in L “(Q). (42)

Indeed, by (P,), we have for any k > 0,

J Wi[|Diun|(172Diun - |Dium|qizDium]DiTk(un - um) dX
i=1 JQ
+ J [a(x, uy, Duy) — a(x, up, Duy )| D; Ty (1 — ty,) dx
Q
+ J [g(x, uy, Duy) — g(x, tpy, D) Ty (thy — ) dx
Q

:J (o — fon) Tilttn — 1) d.
Q

This yields using (H2) and (40)

ZJ Wi[|Diun|q_2Di“n - ‘Dium|q_2Dium]Di(un - um) dx
i=1 9 =] <k

< Ck + Ck||f]l, = C(1 + |If]l,)k.

Hence in view of the monotonicity properties of g-Laplacian operator, with ¢ > 2,
wegetfori=1,...,N

J W,‘|Diun — D,'Mm|qu < Ck.
[ty — 1| <k

Then using Holder inequality, the fact that w; € L*(Q) and that (Dju,), is
bounded in L], (Q), we obtain
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J wil Di(uy — )| dx
o

_ J Wi(r‘fg)/q|Di(un . um)|r—swl§q7r+£)/q dx
‘”n*um‘ <k

+ J wfrig)/r|D,-(un - um)|"7£wf/r dx
[ty =t | >k

(r—e)/q
< C(J wil Di(uy — )| dx)
|ty — 1t | <k

- (r—e)/r efr
+ (J w;i|Di(uy — thyy)| dx) (J w; dx)
[ty — | >k [ty — | >k

< CkU=9/9 4 Cmes{|up(x) — tm(x)] > k}*/"

Since k is an arbitrary positive number and (u,), is a Cauchy sequence in mea-
sure, we deduce that (Djuy), is a Cauchy sequence in L) *(Q). Then by (42) we
have

wil Ditty| 2 Dty — wi| Dau|**Dau in LY(Q).

Corollary. There exist u € Y and a subsequence, still denoted by u,, such that u,
(resp. Ti(uy)) weakly converges to u (resp. Ty (u)) in Y and a.e.

Lemma 3.9. For all k > 0, there exists a function 0 such that for all ¢ > 0, we
have

L o (Z Wi Djttn|* 2 Ditty D (t, — Tie(ut))
+ a(>x, ty, Duy) D (uy, — Tk(u))) dx < 0(g),

with lim,_ 6(e) = 0.

Proof. We choose T, (u, — Ty (u)) as a test function in (P,), we have

J (Zw,|Dun| >Diut, D ,( n—Tk(u))
{Jun—Ty (u)| <&}

+ a(x, uy, Du,,)D(un — Tk(u))) dx
< e(llg(.s ttny Du) [y +11£11)-

This inequality and (40) give the result. O
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Lemma 3.10. Les

r; €

pi— 1 (pi—=1pN 1)
then (a;(x, un,Dun))n is bounded in L' (Q) foralli=1,...,N.

Proof. Note that we can choose r; > 1, thanks to

PN —1) PN 1) _
— < pi<— and <N
NG-D) PN r
As in Lemma 2.11 of [11], let o be such that
ri(pi — 1) N(p—1)
<0< — <1
pi PN -1)
This is possible since we have
piN(p—1) _
1<r< — and p<N
(pi —1)p(N —1)
Hence
piN(p — 1)) (pi = Dri
opi € |l,——— and ——< 1. 43
me 15 7 )

Using (H1), we can write

N
i 4 ap A\ (pi=Drifop;
|Cl,'(x7 Mn,DMn)ll' < C(k(x) + |u‘ P + Z |Diun|p] ) )
=1
In view of this inequality, Lemma 3.7 and (43), we get Lemma 3.10. ]

Now, by using Lemmas 3.7-3.9, and the compactness result as in [20], there
exists a subsequence (still denoted u,) such that

Du, — Du aeinQ,

and foralli=1,..., N, we have

s N(p—1
Diun - Diu Strongly mn LS(Q)7 Vs e [lvqi)v V% € |:pi7ﬁ (]5 ;) .
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By Lemma 3.10, we deduce that
a(x, uy, Du,) — a(x,u, Du)  strongly in (LI(Q))N.
Consequently, using the fact that

w,‘\D,'un|quun — 1vi|Diu|q72u strongly in L'(Q),

a is a Carathéodory function, so that, a;(x,u,, Du,) — a;(x,u, Du) a.e in Q,
g(x, ty, Duy,) — g(x,u, Du) a.e in Q, since g is a Carathéodory function and the
fact that f, — f strongly in L!(Q), then by letting n — oo in (P,), we deduce
that problem (P) has a weak solution in Y.

Let us prove now that g(x, u,, Du,) is uniformly equi-integrable.

Let y > 0. We define ¢, : R — R by

plo—7), o>y
¢,(0) =40, ol <
plo+7y), o< —y.
By choosing ¢, (u,) as a test function in (P,), in view of (H2) and using the fact

that |¢(s)| < 1, we obtain

J g(x, tn, D), (1) dx < J |fldx =0 asy— 4o (44)
{lun| =7} {lun =7}
uniformly with respect to n. Now by using the properties of the function ¢, and
the fact that g(x, u,, Du,)u, > 0, we get

J |g(x, tn, Duy)| dx

{loan| =7}

1
¢,(2y)

Thanks to (HS5), we can also write for £ = Q

< J 9(x, tn, Duy) @, (uy) dx — 0 asy — +oo.
{lun| =7}

J |g(x7 unaDun)‘dx
En{ju,| <y}

N
. N\%/Pi
<) | claxs S 1E1 (| D)
E i—1 Q

This inequality and (39) give the equi-integrability of g on Q. So it is simple to
pass to the limit in (P,). Therefore, Theorem 3.1 is proved. 0
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Remark 3.11. In order to obtain the equality in (33), one has to impose
a stronger assumption on the datum f; more precisely we will require that
felL'logL(Q), ie.,

JQ|f10g(1+f|)dx<—|—oo.

The following result hold.

Theorem 3.12. Let p;>2, i=1,...,N. Assume (H1)-(HS) hold, and f €
L'"log LY(Q). Then the problem (P) has at least one solution u € Y, for all

Proof. We modify the previous proof with the help of techniques used in [6].
Using log(1 + |u,|) sgn(u,) as test function in (P,), the inequality becomes

‘D[un|[’i J
dx < | flog(1l+ |u,|)dx
J, e < | 108(1+ ju)

sJLm%aHﬂmH[u+mmﬁsc (45)
Q Q

Similarly, we have

J&B&Eﬁgc
Q 1+|”n|

This gives a change in inequality (35),

5_ (=0

—1, w=2F
0 o TN-—Fk’

Then (Duy),, is bounded in H,Zl L"(Q) and in Hi]il L}, (Q) with x;; = p; 2[((]5:11)) and
o= Asin Lemma 3.10, we have (a;(x, u,, Du,)), is bounded in L"(Q) for

ryr =

piN(p—1)

T - AN 1)

i=1,...,N.

So that

a;(x, uy, Duy) — a;(x,u, Du)  weakly in L"(Q). O
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4. Uniqueness result

Let us first note that the result of this section is motivated by the work of Antont-
sev and Chipot [1]. Herein, we suppose that the function g = g(x, u) depends only
on u.

Let us consider the problem

N

- Z Di(wi|Dl-u|q_2D,-u + aj(x,u, Du)) + g(x,u) = f, inQ
i1

u=0, in 0Q.

(Pu)
First, we assume instead of the condition (H2) that for some constant # > 0, a.e.
xeQ VYu,ve R, VEE e RY we have

(ai(xau,é) - a,-(x, v, él)a éi - éll)
> n|&; — &I — ullu — o)) (1] + 1D G = &l (46)

where the function u satisfies

1 N o pi
jdx=+o, 1<0< min . (47)
0+ u(x) =1 pi—1

We also assume that

u+ g(x,u) isincreasing. (48)
Here the exponents p; >2,i=1,... N.
Theorem 4.1. Assume (H1)—-(HS), (46) and (48) hold, and that the exponents p;
and m are restricted as in (3) and let f € L™(Q). Then the weak solution u € X to
(P,) is unique.
Proof. As in [1], thanks to (47), there exists ¢ > 0 such that

Vo e (0,0), ulo)<l, (49)

and for any 0 < ¢ < p, we get

|
J 5 dx — 400 ast— 0F.
t pu(x)
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Hence, for all ¢ < p, there exists d, > 0 such that

J ! dezl.
o, ()

Now let us define the function S, for all s € R by

07 lf 5 < 53
9= | e s € b o
1, if s > e.

This is a Lipschitz function satisfying S,(0) = 0. Let u, v be two solutions to (P,).
Taking S.(u — v) as a test function in (P,), we have

N

ZJ ((|Du|* > Diu — |Div|* > Djv)
Q

i=1

+ (ai(x, u, Du) — a;(x,v, Dv)))(Du — D;v)S, (u — v) dx

+ J (9(x,u) — g(x,0))S:(u — v) dx = 0.
Q

Due to the algebraic expression (|x| 2x —|y|? %y, x — ¥) > 0, Vx, y € R", using
the structure condition (46) and the definition of S,, we get

N D). |Pi
j [Die = Diol™ dx + J (9(x,u) — g(x,0))S;(u — v) dx
1, Q

)i o(ju— 1))’
N \D,-u—D,-v| 1
szj D= Dok (1 b+ 1Dy di, (51)
o, u(|u - v))

where
Q, = {x]d: < (u—v)(x) < e}

An application of Young’s inequality gives

Diu - Dlv .
D= Ditl 11y 1 1Dyt
(= vl)
| Diu_DiU| —1/pi i—
- W(pm/z) P (| Dyu| + | Do)
Di — Di Pi |
gm + Ci(|Du| + |Diw|)*". 5
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So, by relation (49) and the fact that

N 4
1<9<m11n Pi 7 = pi(0—-1)<0 foralli=1,... N,
t Pi—
we deduce that
Vs e [0ne,  uls)Y > uis)’ (53)

Now, in view of (51), (52) and (53), we obtain

Q N |D1/l DU|P1 . )l e
ZZIJQ u |H—U|) d +Jg(g( su) —g(x, ))Sx( )d

< CZJ (|Dsu| + |Dw|)?" dx
i=1

We deduce in particular that
N
|, (9x0) ~ g0 siu =)@y < €3 | g (Dul+ D) v, (54)
Q =1 JQ

where yq_denotes the characteristic function of a set Q.. By using the properties
of the function S, the fact that

Zo, — 0ae, and S, (u—v)—1 onu—v>0

and by applying Lebesgue’s dominated convergence theorem, we get after passing
to the limit ¢ — 0 in (54)

J ) (9(x,u) — g(x,v)) dx < 0.

Finally and according to (48), we have u = v.
This achieves the Proof of Theorem 4.1. O

4.1. Application. Let us consider the problem

N
(Py) — ZDi(lv,-|Diu\q_2Diu + my(x, u)|D,<u|”"_2Diu) +g(x,u)=f, inQ
i—1

u=>0, on 0Q)
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where g(x,s) = Zil |s|” s and the exponents p; >2 for i=1,...,N. m; is a
Carathéodory valued functions satisfying

[mj(x,u) —m;(x,v)| < Clu—v|, Vu,veR, ae xeQ (55)
and
0<p<mixu)<o<+4+w, VueR ae xeQ, (56)
foralli=1,...,N.

Theorem 4.2. Assume (55)—(56) hold, and that the exponents p; and m are re-
stricted as in (3) and let f € L"™(Q). Then the weak solution ue X to (Py) is
unique.

Proof. The proof needs the following lemma.

Lemma 4.3 ([4]). There exists a constant 2 > 0 for which
(&7 = 11PN (& = &) =2 Aé = &1

holds true for all ¢ = (&,...,¢y), &' = (&],...,¢&y) € RY.

We aim to prove that a;(x, u, Du) = m;(x, u)|Du|" > Du satisfies the property
(46). For all u,v € X, we have

(ai(x,u, Du) — a;(x,v, Dv)) - (Dju — D)
= m;(x,u)(|Du” > D — | Dw|" > Dyv)(Diu — Dyv)
+ (mi(x,u) — mi(x,v)) |Div|" " Div(Dju — Div).
Using Lemma 4.3 and the assumption (56), we get
(ai(x,u, Du) — a;(x,v, Dv)) - (Dju — Djv)
> pA| D — Dyol” — |my(x, ) — m(x, v)| [ Do | Diu — Dyu.
Now, by the asumption (55), we obtain
(ai(x,u, Du) — ai(x,v, Dv)) - (D — D;v)
> pi|Dit — Dw|" — Clu — v| [Dw|” ' |Die — Dyv].

Hence
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(ai(x,u, Du) — a;(x,v, Dv)) - (Diu — D)
> p2|Di = Divl” — p(lu = v|)(|Diut| + |Div])” " | Dt — Do,

with u(x) = Cx. Since u — |u” u is increasing, Theorem 4.2 follows from
Theorem 4.1. O
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