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Strongly anisotropic elliptic problems with regular
and L1 data
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Abstract. In this paper, we obtain the existence of weak solutions to a class of strongly ani-
sotropic nonlinear elliptic boundary-value problems with nonlinear lower-order term with
natural growth in an appropriate anisotropic function space. We investigate the cases
where the right hand side term is regular or to be in L1: A uniqueness result is also given
in a particular case.
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1. Introduction

This work is devoted to the study of the anisotropic nonlinear elliptic problem

Auþ gðx; u;DuÞ ¼ f ; in W

u ¼ 0; on qW

�
ðPÞ

where W is an open bounded subset of RN (Nb 3), and A is a nonlinear operator

acting from X into X � (the space X as defined in Section 2) given by

Au ¼ �
XN
i¼1

DiðwijDiujq�2
DiuÞ � div aðx; u;DuÞ
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where Di denotes the partial derivative
q

qxi
, q > 2 and w ¼ fwiðxÞgi¼1;...;N is a

vector of functions on W such that each wi is a.e. positive in W and belong to

LlðWÞ, while aðx; s; xÞ ¼ faiðx; s; xÞgi¼1;...;N : W� R� RN ! RN is a Carathéo-

dory vector-valued function, that is to say, measurable with respect to x in W for

every ðs; xÞ in R� RN , and continuous with respect to ðs; xÞ in R� RN for almost

every x in W, and satisfies the following conditions.

(H1) There exist a constant b > 0 and a nonnegative function kðxÞ a L1ðWÞ such
that, for a.e. x a W, and all ðs; xÞ a R� RN

jaiðx; s; xÞja b
�
kðxÞ þ jsjp þ

XN
j¼1

jxjjpj
�1�1=pi

; i ¼ 1; . . . :N:

(The exponents pi and p are defined below.)

(H2) For a.e. x a W, for every x; x 0 a RN , xA x 0

�
aðx; s; xÞ � aðx; s; x 0Þ

�
:ðx� x 0Þ > 0:

(H3) There exists a constant a > 0, such that for a.e. x a W and every

ðs; xÞ a R� RN

aðx; s; xÞ:xb a
XN
i¼1

jxijpi :

As regard to the nonlinear lower-order term g, we assume that g has no growth

conditions with respect to juj, and satisfies the following classical sign condition

and natural growth on jDuj:
(H4) For a.e. x a W and for all s a R, gðx; s; xÞ:sb 0,

(H5) g : W� R� RN 7! R is a Carathéodory function, such that for a.e. x a W,

all ðs; xÞ a R� RN

jgðx; s; xÞja hðjsjÞ
�
cðxÞ þ

XN
j¼1

jxj jpj
�
; c a L1ðWÞ; cb 0;

where h : Rþ ! Rþ is a continuous and increasing function with finite

values. Herein pi are real positive numbers by pi > 2, i ¼ 1; . . . ;N. We

also assume f a LmðWÞ, such that

mb
Np

Np�N þ p
and p < N;

1

p
¼ 1

N

XN
i¼1

1

pi
;
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or

f a L1ðWÞ;
pðN�1Þ
Nðp�1Þ < pi <

pðN�1Þ
N�p

and p < N;

jgðx; s; xÞja hðjsjÞ
�
cðxÞ þ

PN
j¼1 jxj j

aj
�
; aj < pj Ej ¼ 1; . . . ;N:

8>><
>>: ð1Þ

The case of isotropic quasilinear elliptic equations ðpi ¼ p; i ¼ 1; . . . ;NÞ, where
the principal part of the operator behaves like the Leray-Lions operator, has

been the subject of numerous studies, we can cite, among others, the references

[7], [9], [13], where the others obtained existence of solutions by considering lower

order terms with quadratic growth or subquadratic growth with respect to the

gradient. Let us also mention here the work of Bensoussan, Boccardo and Murat

[5], where in particular, the authors proved the existence of solutions in the varia-

tional case by proceeding from di¤erent ideas which is based essentially on the

strong convergence of the positive and negative parts of the approximate solution.

In the anisotropic case, Li, Feng-Quan in [12] studied the problem ðPÞ with wi ¼
g ¼ 0 and a satisfying (H1)–(H3). The author proved the existence of a weak

solution u in 7N

i¼1
W

1; ðr1;...; rN Þ
0 ðWÞ with ri ¼ piðp�1Þm �

p
when f a LmðWÞ for 1 <

m < Np
Np�Nþp

.

In the case of a datum f in L1ðWÞ or in L1 logL1ðWÞ, with wi ¼ g ¼ 0, and

a does not depend on x and s, namely aðx; s; xÞ is the vector field whose compo-

nents are jxijpi�2xi ði ¼ 1; . . . ;NÞ, then it has been proved in [6] that there exists a

weak solution u a W
1; ðr1;...; rN Þ
0 ðWÞ for an anisotropic elliptic problem with Radon

bounded measure data on W and ri a 1;
piðp�1ÞN
pðN�1Þ

h �
: If f a L1ðWÞ, wi ¼ 0, and g

satisfies the following coercitivity condition, that is, there exists g > 0 such that

jgðx; s; xÞjb g
XN
i¼1

jxijpi ; for jsj su‰ciently large;

it has been proved in [10] that there exists a weak solution u a W
1; ðp1;...;pN Þ
0 ðWÞ to

the problem ðPÞ:
The purpose in this paper, is to follow the ideas of [5] to study such a problem

in the anisotropic case. More precisely, under weak feeble restrictions on the func-

tions a and g, namely, under the hypotheses (H1)–(H3) and g a nonlinear lower-

order term, which depend on the solution and its gradient Du, having natural

growth with respect to jDuj with no growth restrictions on juj but a sign condition

on g is assumed (see the conditions (H4) and (H5) above), we prove the existence

result for the strongly anisotropic problem ðPÞ when the datum f is assumed to be

in LmðWÞ with mb
Np

Np�Nþp
. In addition, if f belongs only in L1ðWÞ, the existence

of weak solutions is established. Also, in the case when f is in L1 logL1ðWÞ, the
existence result is, as well, deduced. We also prove the uniqueness of weak
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solutions to ðPÞ in the case where g is a lower order term depending only on u.

Our study is motivated by the use of a kind of anisotropic Sobolev inequality due

to Troisi [22].

Let us point out that an interesting work in this direction can be found in [17]

where the authors proved the existence of renormalized solutions for some aniso-

tropic quasilinear elliptic equations. Finally, it would be interesting to mention

that when g does not depend on Du; we refer the reader to the works [3] and [8],

dealing with strongly nonlinear elliptic equations governed by a general class of

anisotropic operators.

As a prototype example, we consider the model problem

�
XN
i¼1

DiðwijDiujq�2
Diuþ jDiujpi�2

DiuÞ þ gðx; u;DuÞ ¼ f in W;

where gðx; s; xÞ ¼ jsj signðsÞffiffiffiffiffiffiffiffi
1þjsj

p ð
PN

i¼1 jxij
aiÞ, and the exponents ai < pi for i ¼ 1; . . . ;N.

2. Preliminaries

2.1. Anisotropic Sobolev spaces. We start by recalling that the notion of aniso-

tropic Sobolev spaces were introduced and studied by Nikolskiı̆ [15], Slobodeckiı̆

[21], and Troisi [22], and later by Trudinger [23] in the framework of Orlicz spaces.

Let W be a bounded open subset of RN ðNb 3) and let p1; . . . ; pN be N real

numbers, with 1 < pi < l, i ¼ 1; . . . ;N: We denote by W 1; ðp1;...;pN ÞðWÞ, called
anisotropic Sobolev space, the space of all real-valued functions u a LpðWÞ such
that the derivatives in the sense of distributions satisfy

Diu a LpiðWÞ for all i ¼ 1; . . . ;N:

This set of functions forms a Banach space under the norm

kuk1; p1;...;pN ¼
�ð

W

juðxÞjp dx
�1=p

þ
XN
i¼1

�ð
W

jDiujpi dx
�1=pi

:

The space W
1; ðp1;...;pN Þ
0 ðWÞ is defined as the closure of Cl

0 ðWÞ, the space of real in-
definitely di¤erentiable functions of compact support in W, with respect to the

norm k:k1; p1;...;pN : The theory of such anisotropic Sobolev spaces was developed

in [16], [18], [19] and [22]. It was proved that Cl
0 ðWÞ is dense in W

1; ðp1;...;pN Þ
0 ðWÞ

and ðW 1; ðp1;...;pN Þ
0 ðWÞ; k:k1; p1;...;pN Þ is a reflexive Banach space for any pi > 1. We

recall that

W
1; ðp1;...;pN Þ
0 ðWÞ ¼ 7

N

i¼1

W
1;pi
0 ðWÞ;
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where W 1;pi
0 ðWÞ is the closure of Cl

0 ðWÞ with respect to the norm

kuk0;pi ¼ kukpi þ
XN
j¼1

kDjukpi :

In the following, we assume

pi > 2 for all i ¼ 1; . . . ;N and
XN
i¼1

1

pi
> 1:

Let q > 2 and let wi, i ¼ 1; . . . ;N be measurable functions satisfying wi a LlðWÞ
and wi > 0 for a.e. in W:

Consider the weighted Lebesgue space associated to wi defined by

Lq
wi
ðWÞ ¼ fu ¼ uðxÞ : w1=q

i u a LqðWÞg:

In this space we define the norm

kukwi
¼
�ð

W

wijujq dx
�1=q

:

Let X be the Banach space, called also anisotropic Sobolev space, obtained as the

closure of Cl
0 ðWÞ with respect to the norm

kukX ¼ kukp þmax
N

i¼1

h
kDiukpi4

�ð
W

wijDiujq dx
�1=qi

: ð2Þ

We denote by X � the dual space of X :

Theorem 2.1 ([2]). Let V, W be Banach spaces such that

(i) V BW is dense in both V and W.

(ii) If ðuhÞh AN is a sequence in V BW such that

kuh � ukV ! 0; kuh � vkW ! 0 ¼) u ¼ v a V BW :

Then the map V 0 þW 0 to ðV BW Þ0 defined by

3z; u 0 þ v 04ðVBWÞ 0 :¼ 3z; u 04V 0 þ 3z; v 04W 0 ; Ez a V BW

is an isometric isomorphism.
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Proposition 2.2. The function space X endowed with the norm (2) is a reflexive

Banach space. Moreover, for any f a X � there exist F a
QN

i¼1 L
q 0

wi
ðWÞ and G aQN

i¼1 L
p 0
i ðWÞ such that

3f; j4 ¼
ð
W

ð3wDj;F4þ 3G;Dj4Þ; Ej a X :

Proof. (The proof follows the lines to that of Oppezzi and Rossi [17] for the case

q ¼ 2: For the completeness and for the reader’s convenience we present it here

in detail).

We have X is isometrically isomorphic to a closed subspace of

LpðWÞ �
�YN
i¼1

�
LpiðWÞBLq

wi
ðWÞ
��

:

We prove for i ¼ 1; . . . ;N, the reflexivity of the space LpiðWÞBLq
wi
ðWÞ, endowed

with the norm k:kpi4k:kwi
: Let ðukÞ be a bounded sequence in LpiðWÞBLq

wi
ðWÞ

and j a Cl
0 ðWÞ. Then there exist u a LpiðWÞ and v a Lq

wi
ðWÞ such that, by going

to a subsequence if necessary

uk * u and uk * v weakly in LpiðWÞ and Lq
wi
ðWÞ respectively:

Since jwi a Lp 0
i ðWÞ, we see that

ð
W

ukjwi dx !
ð
W

ujwi dx and

ð
W

ukjwi dx !
ð
W

vjwi dx;

so that u ¼ v by arbitrariness of j and assumptions on wi: Now by Theorem

2.1, thanks to the density of LpiðWÞBLq
wi
ðWÞ in both LpiðWÞ and Lq

wi
ðWÞ, it re-

sults that
�
LpiðWÞBLq

wi
ðWÞ
� 0

is isomorphic to Lp 0
i ðWÞ þ Lq 0

wi
ðWÞ according to the

definition

3z; u 0 þ v 04ðL pi ðWÞBL
q
wi
ðWÞÞ 0 ¼ 3z; u 04ðL pi ðWÞÞ 0 þ 3z; v 04ðLq

wi
ðWÞÞ 0

Ez a LpiðWÞBLq
wi
ðWÞ:

On the other hand, by density of Cl
0 ðWÞ in both

�
LpiðWÞ

� 0
and

�
Lq
wi
ðWÞ
� 0

it

results

3uk; u
04ðL pi ðWÞÞ 0 ! 3u; u 04ðL pi ðWÞÞ 0 and 3uk; v

04ðLq
wi
ðWÞÞ 0 ! 3u; v 04ðLq

wi
ðWÞÞ 0 ;

for all u 0 a
�
LpiðWÞ

� 0
and v 0 a

�
Lq
wi
ðWÞ
� 0
. Hence uk * u in X and the reflexivity is

proved.
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Let P : X !
QN

i¼1

�
LpiðWÞBLq

wi
ðWÞ
�
such that PðuÞ ¼ Du: If f a X � is given,

we define

f 0 : PðXÞ ! R

u 7! f 0�PðuÞ� ¼ fðuÞ
:

Clearly f 0 a PðXÞ0, so, by Hahn-Banach theorem there exists a norm preserving

extension ~ff a
�QN

i¼1

�
LpiðWÞBLq

wi
ðWÞ
�� 0

of f 0: Therefore, by the isomorphism be-

tween
�
LpiðWÞBLq

wi
ðWÞ
� 0

and Lp 0
i ðWÞ þ

�
Lq
wi
ðWÞ
� 0
, there exist F ¼ ðF1; . . . ;FNÞ

and G ¼ ðG1; . . . ;GNÞ such that

Gi þ Fi a Lp 0
i ðWÞ þ

�
Lq
wi
ðWÞ
� 0
; i ¼ 1; . . . ;N

and

fðzÞ ¼
XN
i¼1

3zi;Fi4ðLq
wi
ðWÞÞ 0 þ 3zi;Gi4

L
p 0
i ðWÞ for each z a

YN
i¼1

�
LpiðWÞBLq

wi
ðWÞ
�
:

Now, if j a X we have

~ffðjÞ ¼ f 0ðDjÞ ¼
XN
i¼1

ð3Dij;Fi4ðLq
wi
ðWÞÞ 0 þ 3Dij;Gi4

L
p 0
i ðWÞÞ:

This concludes the Proof of Proposition 2.1. r

3. Main result

If x : W ! RN we introduce the notation wx ¼ ðw1x1; . . . ;wNxNÞ, so that the oper-

ator A : X ! X � defined by

Au ¼ �
XN
i¼1

Di

�
wijDiujq�2

Diuþ aiðx; u;DuÞ
�

is well defined.

In this section we formulate and prove the main results of this paper. Our first

main result is the following.

Theorem 3.1. Let

q > 2; p < N; and mb
Np

Np�N þ p
;

1

p
¼ 1

N

XN
i¼1

1

pi
: ð3Þ
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with pi > 2, i ¼ 1; . . . ;N: Assume (H1)–(H5) hold, and f a LmðWÞ. Then the

problem ðPÞ has at least one solution u a X such that

gðx; u;DuÞ a L1ðWÞ and gðx; u;DuÞu a L1ðWÞ;

3Au; v4þ
ð
W

gðx; u;DuÞv dx ¼ 3 f ; v4; Ev a X :

8<
:

In order to prove Theorem 3.1, we need the following anisotropic Sobolev

inequality.

Lemma 3.2 ([22]). Let pi > 1, i ¼ 1; . . . ;N and u a W
1; ðp1;p2;...;pN Þ
0 ðWÞ: Then

kuksaC
YN
i¼1

kDiuk1=Npi

where s ¼ p� ¼ Np

N � p
if p < N with p given by

1

p
¼ 1

N

PN
i¼1

1

pi
. The constant C

depends on pi and N. Furthermore, if pbN, this inequality is true for all sb 1 and

C depends also on s and jWj.

Remark 3.3. If we assume that the exponents pi satisfy p < N. Then p� is given
by

p� ¼ NXN
i¼1

1

pi
� 1

;

and there are continuous embeddings W
1; ðp1;p2;...;pN Þ
0 ðWÞ ,! LsðWÞ for all sa p�

which turn out to be compact only when s < p�.

Proof of Theorem 3.1. The proof of this theorem needs several steps.

Step 1: Existence of the approximate problem. Set

geðx; u;DuÞ ¼ gðx; u;DuÞ
1þ ejgðx; u;DuÞj for e > 0;

and consider

beðu; vÞ ¼
ð
W

geðx; u;DuÞv dx;

for all u; v a X :
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Observe that beðu; vÞ is well defined since geðx; u;DuÞ is bounded with compact

support. Define the following operator

Geu : X ! R

v !
ð
W

geðx; u;DuÞv dx:

Definition 3.4. The operator B from X to its dual X � is called of the calculus of

variations type, if B is bounded and is of the form

BðuÞ ¼ Bðu; uÞ ð4Þ

where ðu; vÞ ! Bðu; vÞ is an operator from X � X into X � satisfying the following

properties:

Eu a X ; v ! Bðu; vÞ is bounded hemicontinuous from X into X �

and
�
Bðu; uÞ � Bðu; vÞ; u� v

�
b 0; ð5Þ

Ev a X ; u ! Bðu; vÞ is bounded hemicontinuous from X into X � ð6Þ
if un * u weakly in X and if

�
Bðun; unÞ � Bðun; uÞ; un � u

�
! 0

then; Ev a X ; Bðun; vÞ * Bðu; vÞ weakly in X �; ð7Þ
if un * u weakly in X and if Bðun; vÞ * c weakly in X �;

then;
�
Bðun; vÞ; un

�
! ðc; uÞ: ð8Þ

Proposition 3.5. Under the assumptions (H1), (H2) and (H3), the operator Be ¼
Aþ Ge is of the calculus of variations type. Moreover, Be is coercive, in the sense

that:

lim
kukX!þl

3Beu; u4

kukX
¼ þl;

Proof. Put for u; v;c a X

b1ðu; v;cÞ ¼
XN
i¼1

ð
W

�
wijDivjq�2

DivDicþ aiðx; u;DvÞDic
�
dx

and

beðu;cÞ ¼
ð
W

geðx; u;DuÞc dx:
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Then the mapping c 7! b1ðu; v;cÞ þ beðu;cÞ is continuous in X and

b1ðu; v;cÞ þ beðu;cÞ ¼ 3Beðu; vÞ;c4; Beðu; uÞ ¼ Beu:

The conditions (5) and (6) follows easily from (H1). Indeed for the boundedness

we have

j3ðAþ GeÞu; v4j

¼ j3Au; v4j þ
���ð

W

geðx; u;DuÞv dx
���

a

��ð
W

wijDiujq dx
�1=q	q=q 0�ð

W

wijDivjq dx
�1=q

þ b
XN
i¼1

h�ð
W

�
kðxÞ þ jujp þ

XN
j¼1

jDjujpj dx
��1=p 0

i
�ð

W

jDivjpi dx
�1=pii

þ
���ð

W

geðx; u;DuÞv dx
���;

which gives using the fact that jgeðx; u;DuÞja 1
e
,

j3ðAþ GeÞu; v4ja kukq=q 0

X kvkX þ c1kvkX ðc2 þ kukX Þ
g þ cðeÞkvkX

a kvkX
�
kukq=q 0

X þ c1ðc2 þ kukX Þ
g þ cðeÞ

�
;

where c1, c2 and cðeÞ are positive constants and g is a positive real number. This

implies the boundedness of Aþ Ge:

Now, to show that Be ¼ Aþ Ge is hemicontinuous, let l ! l0 and prove

that

3Beðuþ lvÞ;c4 ! 3Beðuþ l0vÞ;c4

for all u; v;c a X : Since for a.e. x a W

wijDiðuþ lvÞjq�2
Diðuþ lvÞ þ ai

�
x; uþ lv;‘ðuþ lvÞ

�
! wijDiðuþ l0vÞjq�2

Diðuþ l0vÞ þ ai
�
x; uþ l0v;‘ðuþ l0vÞ

�
as l ! l0, thanks to the growth condition (H1), we have

wijDiðuþ lvÞjq�2
Diðuþ lvÞ ! wijDiðuþ l0vÞjq�2

Diðuþ l0vÞ
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weakly in
�
Lq
wi
ðWÞ
� 0

and

ai
�
x; uþ lv;‘ðuþ lvÞ

�
! ai

�
x; uþ l0v;‘ðuþ l0vÞ

�
weakly in Lp 0

i ðWÞ as l ! l0:

Therefore

3b1ðuþ lvÞ;c4 ! 3b1ðuþ l0vÞ;c4 as l ! l0:

On the other hand, we have

ge
�
x; uþ lv;‘ðuþ lvÞ

�
! g

�
x; uþ l0v;‘ðuþ l0vÞ

�
as l ! l0 for a.e. x a W: This implies

ge
�
x; uþ lv;‘ðuþ lvÞ

�
! g

�
x; uþ l0v;‘ðuþ l0vÞ

�
in L1ðWÞ

as l ! l0 since
�
ge
�
x; uþ lv;‘ðuþ lvÞ

��
l
is bounded in L1ðWÞ: Therefore,

3Geðuþ lvÞ;c4 ! 3Geðuþ l0vÞ;c4 as l ! l0:

Moreover, thanks to the assumption (H2), we have

�
Beðu; uÞ � Beðu; vÞ; u� v

�
¼ b1ðu; u; u� vÞ � b1ðu; v; u� vÞb 0:

Arguing as Lemma 2.2 from [14], we have the property (7).

With regards to the assertion (8), assume that

un * u weakly in X ð9Þ

and that

Beðun; vÞ * c weakly in X � as n ! þl: ð10Þ

Thanks to the compact imbedding X ,! LpðWÞ and in view of (H1), we obtain

b1ðun; v; unÞ ! b1ðu; v; uÞ: ð11Þ

By Hölder’s inequality, we have

jbeðun; un � uÞjaCekun � ukp ! 0 as n ! þl: ð12Þ
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Using (10) and (11), we can write

beðun; uÞ ¼
�
Beðun; vÞ; u

�
� b1ðun; v; uÞ ! ðc; uÞ � b1ðu; v; uÞ;

then, with (12), we have

beðun; unÞ ! ðc; uÞ � b1ðu; v; uÞ as n ! þl:

Consequently

�
Beðun; vÞ; un

�
¼ b1ðun; v; unÞ þ beðun; unÞ ! ðc; uÞ as n ! þl:

Now, we prove that Be is coercive. Indeed, let i0 be such that

kDi0ukpi0 ¼ maxfkDiukpi ; i ¼ 1; . . . ;Ng:

Hence, thanks to (H3) and (H4) we obtain

3ðAþ GeÞu; u4
kukX

b

ð
W

�XN
i¼1

wijDiujq þ a
XN
i¼1

jDiujpi
�
dx

kukX

b

ð
W

XN
i¼1

wijDiujq dxþ a

2
kDiukpi

pi
þ a

2
kDi0uk

pi0
pi0

kukp þ kDi0ukpi0 þ
XN
i¼1

�ð
W

wijDiujq dx
�1=q

bK 0

ð
W

XN
i¼1

wijDiujq dxþ kDi0uk
pi0
pi0

þ kukp
p

kukp þ kDi0ukpi0 þ
XN
i¼1

�ð
W

wijDiujq dx
�1=q ;

where K 0 is a suitable positive constant. Then the coerciveness follows immedi-

ately since the following assertion holds: limxþyþz!l
xq þ yt þ zs

xþ yþ z
¼ l, when

x; y; z a Rþ and t; sb 1: r

Therefore, thanks to Proposition 3.1 and Theorem 2.7 of [14], there exists

ue a X solution of the problem

Aue þ geðx; ue;DueÞ ¼ f ;
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or variationally

XN
i¼1

ð
W

�
wijDiuejq�2

DiueDivþ aiðx; ue;DueÞDiv
�
dxþ

ð
W

geðx; ue;DueÞv dx

¼ 3 f ; v4 ð13Þ

for all v a X :

Step 2: A priori estimates. Remark first that the assumption (3) implies

that

m 0
a p� ¼ Np

N � p
with p < N:

Then by Lemma 3.2, we have

kukm 0 a ~KKkukp� aKkDi0ukpi0 ;

where ~KK , K are positive constants. Substituting v ¼ ue in (13), using (H3) and

(H4), due to the result of Troisi [22] stated in Lemma 3.1 and using the fact that

m 0a p�, we see that

a
XN
i¼1

ð
W

jDiuejpi dxa k f kmkuekm 0 a ck f kmkuekX ;

where c is a positive constant. Then similarly as in the proof of the coerciveness

argument, we get

K 0

XN
i¼1

ð
W

wijDiuejq dxþ kDi0uek
pi0
pi0

þ kuekp
p

kuekp þ kDi0uekpi0 þ
XN
i¼1

�ð
W

wijDiuejq dx
�1=q a

3ðAþ GeÞue; ue4
kuekX

a ck f km:

If we suppose by contradiction that kuekX is not bounded, the left hand term of the

above inequality becomes unbounded. Then

kuekX aC; Ee > 0 ð14Þð
W

geðx; ue;DueÞue dxaC; Ee > 0 ð15Þ
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for some constant C > 0 independent of e. By the similar argument above, we can

prove that A is a bounded operator, then we get

kAuekX � aC 0; ð16Þ

for some constant C 0 > 0 independent of e.

Step 3: Convergence of ue. In view of Proposition 2.1, X is reflexive, then

we deduce from (14) and (16) that

ue ! u weakly in X ;

ue ! u strongly in LpðWÞ;
Diue ! Diu weakly in LpiðWÞ;
Diue ! Diu weakly in Lq

wi
ðWÞ;

Aue ! w weakly in X �:

This implies that we can extract a subsequence still denoted by ue such that

ue ! u a:e: in W: ð17Þ

This is not su‰cient to pass to the limit in ge: We need for instance

Due ! Du a:e: in W: ð18Þ

In fact, inspired by the work [5], we prove that

uþe ! uþ; u�e ! u� and Due ! Du a:e: in W:

Let k > 0. Define uþk ¼ uþ5k ¼ minfuþ; kg. We shall fix k, and use the

notation

ze ¼ uþe � uþk :

Then we have ze a X and zþe a X . Putting v ¼ zþe in (13), we obtain

3Aue; z
þ
e 4þ

ð
W

geðx; ue;DueÞzþe dx ¼ 3 f ; zþe 4:

Note that if zþe > 0, we have ue > 0 (if not, there exists x such that ueðxÞa 0,

then uþe ðxÞ ¼ 0 which implies that zeðxÞ ¼ �uþk ðxÞ ¼ �minfuþðxÞ; kga 0, so

zþe ðxÞ ¼ 0). Hence from (H4), we get geðx; ue;DueÞb 0: Thus we have
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3Aue; zþe 4a3 f ; zþe 4: Therefore

XN
i¼1

ð
W

wijDiuejq�2
DiueDiz

þ
e dxþ

ð
W

aðx; ue;DueÞDzþe dxa3 f ; zþe 4:

Since ue ¼ uþe in fx a W : zþe > 0g, we may write

XN
i¼1

ð
W

wijDiu
þ
e j

q�2
Diu

þ
e Diz

þ
e dxþ

ð
W

aðx; ue;Duþe ÞDzþe dxa3 f ; zþe 4;

which implies

XN
i¼1

ð
W

wijDiu
þ
e j

q�2
Diu

þ
e Diðuþe � uþk Þ

þ
dx

þ
ð
W

½aðx; ue;Duþe Þ � aðx; ue;Duþk Þ�Dðuþe � uþk Þ
þ
dx

a�
ð
W

aðx; ue;Duþk ÞDðuþe � uþk Þ
þ þ 3 f ; zþe 4: ð19Þ

As e ! 0, we have

zþe ! ðuþ � uþk Þ
þ a:e: in W:

However zþe is bounded in X ; hence

zþe * ðuþ � uþk Þ
þ in X :

Using the fact that

aðx; ue;Duþk Þ ! aðx; u;Duþk Þ in
YN
i¼1

Lp 0
i ðWÞ;

jDiuejq�2
Diue ! jDiujq�2

Diu in Lq 0

wi
ðWÞ

and by passing to the limit in e in (19), we obtain

lim sup
e!0

�XN
i¼1

ð
W

wijDiu
þ
e j

q�2
Diu

þ
e Diðuþe � uþk Þ

þ
dx

þ
ð
W

½aðx; ue;Duþe Þ � aðx; ue;Duþk Þ�Dðuþe � uþk Þ
þ
dx
�

aRk ð20Þ
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with

Rk ¼ �
ð
W

aðx; u;Duþk ÞDðuþ � uþk Þ
þ þ 3 f ; ðuþ � uþk Þ

þ4:

Since ðuþ � uþk Þ
þ ! 0 in X as k ! l, we have Rk ! 0 as k ! l.

Now, let us prove the following assertion

� lim inf
e!0

�XN
i¼1

ð
W

wijDiu
þ
e j

q�2
Diu

þ
e Diðuþe � uþk Þ

�
dx

þ
ð
W

½aðx; ue;Duþe Þ � aðx; ue;Duþk Þ�Dðuþe � uþk Þ
�
dx
�

a 0: ð21Þ

Indeed, we shall use the test function ve ¼ jlðz�e Þ with jlðsÞ ¼ sels
2
in (13) (where

l will be chosen later). We have 0a z�e a k, hence z�e a LlðWÞ and since z�e a X ,

clearly we have ve a X . Then we deduce

XN
i¼1

ð
W

wijDiuejq�2
DiueDiz

�
e j

0
lðz�e Þ dxþ

ð
W

aðx; ue;DueÞDz�e j
0
lðz�e Þ dx

þ
ð
W

geðx; ue;DueÞjlðz�e Þ dx

¼ 3 f ; jlðz�e Þ4:

Define

Ee ¼ fx a W : uþe ðxÞa uþk ðxÞg and Fe ¼ fx a W : 0a ueðxÞa uþk ðxÞg:

We have ð
W

geðx; ue;DueÞjlðz�e Þ dx ¼
ð
Ee

geðx; ue;DueÞjlðz�e Þ dx:

If uea 0, we have geðx; ue;DueÞa 0 and since jlðz�e Þb 0, using (H5), we obtainð
Ee

geðx; ue;DueÞjlðz�e Þ dxa
ð
Fe

geðx; ue;DueÞjlðz�e Þ dx

a

ð
Fe

bðjuejÞ
�
cðxÞ þ

XN
i¼1

jDiuejpi
�
jlðz�e Þ dx: ð22Þ

Thanks to the structure assumption (H3), we can write
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bðjuejÞ
�
cðxÞ þ

XN
i¼1

jDiuejpi
�
jlðz�e Þ

a bðjuejÞ cðxÞ þ 1

a
aðx; ue;DueÞDue

� 	
jlðz�e Þ: ð23Þ

Now, using (22) and (23), we obtainð
Ee

geðx; ue;DueÞjlðz�e Þ dxa
1

a
bðkÞ

ð
Fe

aðx; ue;DueÞDuejlðz�e Þ dx

þ bðkÞ
ð
W

cðxÞjlðz�e Þ dx:

As in [5], by choosing l ¼ bðkÞ2
4a2

, we deduce that

� 1

2

XN
i¼1

ð
W

wijDiu
þ
e j

q�2
Diu

þ
e Diðuþe � uþk Þ

�
dx

� 1

2

ð
W

½aðx; ue;Duþe Þ � aðx; ue;Duþk Þ�Dðuþe � uþk Þ
�
dx

a� 1

2

XN
i¼1

ð
W

wijDiu
þ
e j

q�2
Diu

þ
e Diðuþe � uþk Þ

�
dx

þ
ð
W

½aðx; ue;DueÞ � aðx; ue;Duþe Þ�Duþk j
0
lðuþk Þ dx

þ 3�f ; jlðz�e Þ4þ
ð
W

aðx; ue;Duþk ÞDz�e j
0
lðz�e Þ dx

þ bðkÞ
a

ð
W

aðx; ue;Duþe ÞDuþk jlðz�e Þ dx

þ bðkÞ
a

ð
W

aðx; ue;Duþk ÞDðuþe � uþk Þjlðz�e Þ dxþ bðkÞ
ð
W

cðxÞjlðz�e Þ dx:

Extracting subsequences satisfying

jDiu
þ
e j

q�2
Diu

þ
e * ni in Lq 0 ðwiÞ; i ¼ 1; . . . ;N

and

aðx; ue;DueÞ * s1 and aðx; ue;Duþe Þ * s2 in
YN
i¼1

Lp 0
i ðWÞ: ð24Þ

For k fixed and when e tends to zero, using Lebesgue’s dominated convergence

theorem, the right side of the above inequality becomes
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� 1

2

XN
i¼1

ð
W

niDiðuþ � uþk Þ
�
dxþ

ð
W

½s1ðxÞ � s2ðxÞ�Duþk j
0
lðuþk Þ dx

þ


�f ; jl

�
ðuþ � uþk Þ

���þ ð
W

aðx; u;Duþk ÞDðuþ � uþk Þ
�j 0

l

�
ðuþ � uþk Þ

��
dx

þ bðkÞ
a

ð
W

s2ðxÞDuþk jl
�
ðuþ � uþk Þ

��
dx

þ bðkÞ
a

ð
W

aðx; u;Duþk ÞDðuþ � uþk Þjl
�
ðuþ � uþk Þ

��
dx

þ bðkÞ
ð
W

cðxÞjl
�
ðuþ � uþk Þ

��
dx ¼

ð
W

½s1ðxÞ � s2ðxÞ�Duþk j
0
lðuþk Þ dx

since ðuþ � uþk Þ
� ¼ 0, jlð0Þ ¼ 0 and

�
aðx; ue;DueÞ � aðx; ue;Duþe Þ

�
ðueÞþk ¼ 0 a:e:

Because, if ue < 0 we have ðueÞþk ¼ 0: This implies
�
s1ðxÞ � s2ðxÞ

�
uþk ¼ 0, there-

fore we get

lim sup
e!0

�
�
XN
i¼1

ð
W

wijDiu
þ
e j

q�2
Diu

þ
e Diðuþe � uþk Þ

�
dx

�
ð
W

½aðx; ue;Duþe Þ � aðx; ue;Duþk Þ�Dðuþe � uþk Þ
�
dx
�

a 0: ð25Þ

As in [5], from (20) and (25), we have

lim sup
e!0

�XN
i¼1

ð
W

wijDiu
þ
e j

q�2
Diu

þ
e Diðuþe � uþÞ dx

þ
ð
W

½aðx; ue;Duþe Þ � aðx; ue;DuþÞ�Dðuþe � uþÞ
�
dx

aRk þ
ð
W

½s2ðxÞ � aðx; u;Duþk Þ�Dðuþk � uþÞ:

Letting k ! l and using (Lemma 2.3, [14]), we obtain

uþe ! uþ in X strongly: ð26Þ

Now we want to prove the convergence of the negative part of ue: Indeed, as in

the preceding step, we shall prove that

u�e ! u� in X strongly: ð27Þ
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Define u�k ¼ u�bk, ye ¼ u�e � u�k , and putting v ¼ yþe in (13), we get

XN
i¼1

ð
W

wijDiuejq�2
DiueDi y

þ
e dxþ

ð
W

aðx; ue;DueÞDyþe dxþ
ð
W

geðx; ue;DueÞyþe dx

¼ 3 f ; yþe 4:

Since yþe > 0 implies ue < 0, then we have geðx; ue;DueÞa 0. Hence

geðx; ue;DueÞyþe a 0 a.e. in W. Then we get

XN
i¼1

ð
W

wijDiuejq�2
DiueDi y

þ
e dxþ

ð
W

aðx; ue;DueÞDyþe dxb3 f ; yþe 4:

Since ue ¼ �u�e on the set fx a W : yþe > 0g, we can write

�
XN
i¼1

ð
W

wijDiuejq�2
DiueDi y

þ
e dxþ

ð
W

aðx; ue;�Du�e ÞDyþe dxb3 f ; yþe 4;

which implies

XN
i¼1

ð
W

wijDiuejq�2
DiueDiðu�e � u�k Þ

þ
dx

�
ð
W

½aðx; ue;�Du�e Þ � aðx; ue;�Du�k Þ�Dðu�e � u�k Þ
þ
dx

a

ð
W

aðx; ue;�Du�k ÞDðu�e � u�k Þ
þ
dx� 3 f ; yþe 4:

As e ! 0 we have yþe ! ðu� � u�k Þ
þ a.e. in W. Since yþe is bounded in X ,

yþe * ðu� � u�k Þ
þ in X (for k fixed).

Passing to the limit in e we obtain

lim sup
e!0

�XN
i¼1

ð
W

wijDiuejq�2
DiueDiðu�e � u�k Þ

þ
dx

�
ð
W

½aðx; ue;�Du�e Þ � aðx; ue;�Du�k Þ�Dðu�e � u�k Þ
þ
dx
�

a ~RRk; ð28Þ
with

~RRk ¼
ð
W

aðx; u;�Du�k ÞDðu� � u�k Þ
þ � 3 f ; ðu� � u�k Þ

þ4;

and ~RRk ! 0 as k ! þl since ðu� � u�k Þ
þ ! 0 in X as k ! l:
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By considering again as test function ve ¼ jlðy�e Þ, we show as above that

lim sup
e!0

�XN
i¼1

ð
W

wijDiuejq�2
DiueDiðu�e � u�k Þ

�
dx

þ
ð
W

½aðx; ue;�Du�e Þ � aðx; ue;�Du�k Þ�Dðu�e � u�k Þ
�
dx
�

a 0: ð29Þ

Finally combining (28) and (29), we see that

u�e ! u� strongly in X : ð30Þ

Therefore, since g is continuous, we get the conclusion

geðx; ue;DueÞ ! gðx; u;DuÞ a:e: in W

and

geðx; ue;DueÞue ! gðx; u;DuÞu a:e: in W:

From (15), the assumption (H4), and in view of Fatou’s lemma, we obtain

ð
W

gðx; u;DuÞu dxa lim
e!0

ð
W

geðx; ue;DueÞue dxaC; ð31Þ

which implies that

gðx; u;DuÞu a L1ðWÞ:

Now let d > 0. In view of Hölder inequality we can write

ð
E

jgeðx; ue;DueÞj dxa
ð
EBfjuejadg

jgeðx; ue;DueÞj dx

þ d�1

ð
EBfjuej>dg

geðx; ue;DueÞue dx

a hðdÞ
ð
E

�
cðxÞ þ

XN
i¼1

jDiuejpi
�
dxþ d�1C; ð32Þ

where E is any measurable subset of W and C is the constant of (15) which is in-

dependent of k. Thanks to (14), the above inequality implies the equi-integrability

of geðx; ue;DueÞ:
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Thanks to (24), (26), (32) and Vitali’s theorem we get

geðx; ue;DueÞ ! gðx; u;DuÞ strongly in L1ðWÞ:

Hence it follows that gðx; u;DuÞ a L1ðWÞ:
Passing to the limit in (13), we obtain

3w; v4þ
ð
W

gðx; u;DuÞv dx ¼ 3 f ; v4 for all v a X :

It remains to show that Au ¼ w: For this purpose, note that since A is bounded,

hemicontinuous and monotone, then A is pseudo-monotone.

Now, by substituting v ¼ ue in (13), and in view of (31) we get

lim sup
e!0

3Aue; ue4a3 f ; u4�
ð
W

gðx; u;DuÞu dx:

This implies

lim sup
e!0

3Aue; ue4a3w; v4:

Since A is a pseudo-monotone operator, then w ¼ Au. Finally, we conclude that

gðx; u;DuÞ a L1ðWÞ; gðx; u;DuÞu a L1ðWÞ
3Au; v4þ

Ð
W gðx; u;DuÞv dx ¼ 3 f ; v4 for all v a X :

�

This completes the proof of Theorem 3.1. r

Before stating our second main result of this paper, let us first define the

Banach space Y obtained as the closure of Cl
0 ðWÞ with respect to the norm

kukY ¼ kukk þmax
N

i¼1

h
kDiukki4

�ð
W

wijDiujr dx
�1=ri

;

where ki and r are as in the following theorem.

Theorem 3.6. Let pi b 2, i ¼ 1; . . . ;N. Assume (H1)–(H5) hold and f a L1ðWÞ.
Furthermore, assume that

1aki < pi
Nðp� 1Þ
pðN � 1Þ ; i ¼ 1; . . . ;N: ð33Þ

Then for all 1 < r <
qk�

1þ k� , there exists u a Y solution of problem ðPÞ:
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Proof. For fixed k > 0, we define the truncation Tk at levelsHk; k > 0 by

TkðsÞ ¼
s; jsja k;

k signðsÞ; jsj > k:

�

Let fn ¼ Tnð f Þ be a sequence of bounded functions, such that

fn ! f strongly in L1ðWÞ and j fnja j f j:

Let us define the sequence of approximate problems ðPnÞ by

Aun þ gðx; un;DunÞ ¼ fn; in W

un ¼ 0; on qW:

�
ðPnÞ

Thanks to Theorem 3.1, there exists a solution un a X of the problem ðPnÞ.
Let us choose as a test function in ðPnÞ

fðunÞ ¼ fdðunÞ ¼ ðd� 1Þ
ð un
0

dt

ð1þ jtjÞd
; d > 1:

Then, using the assumption (H3) and the fact that jfðunÞja 1, we deduce

ð
W

wijDiunjq

ð1þ junjÞd
dxaC and

ð
W

jDiunjpi

ð1þ junjÞd
dxaC: ð34Þ

To carry on the proof, we need the following Lemmas 3.7–3.10.

Lemma 3.7. Let pi and ki be such that

pi b 2 and ki a 1; pi
Nðp� 1Þ
pðN � 1Þ

� 	
; i ¼ 1; . . . ;N

where p < N and 1
p
¼ 1

N

PN
i¼1

1

pi
and let 1 < r <

qk�

1þ k� : Then

• ðunÞn remains in a bounded set of LkðWÞ.

• ðDiunÞn remains in a bounded set of LkiðWÞ.

• ðDiunÞn remains in a bounded set of Lr
wi
ðWÞ.

Proof. We can assume that ki=pi ¼ k=p. If not, we set y ¼ maxfki=pi; i ¼ 1; . . . ;

Ng and replace ki by ypi. Then, since ypi bki, the fact that ðDiunÞn remains in a

bounded set of LypiðWÞ implies the result.
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From now on, we set ki ¼ ypi, with y a 0;
Nðp�1Þ
pðN�1Þ

� �
H ð0; 1Þ. Since ki <

pi
Nðp�1Þ
pðN�1Þ then we have k <

Nðp�1Þ
N�1 . This implies that y

1�y
< k�, y ¼ k=p: Hence

there exists d > 1 such that

dy

1� y
ak�; k� ¼ Nk

N � k
: ð35Þ

By using Hölder inequality, we obtainð
W

jDiunjki dx ¼
ð
W

jDiunjki

ð1þ junjÞdy
ð1þ junjÞdy dx

a

�ð
W

jDiunjpi

ð1þ junjÞd
dx
�y�ð

W

ð1þ junjÞdðy=ð1�yÞÞ
dx
�1�y

: ð36Þ

In view of (34) and (36), we getð
W

jDiunjki dxaC
�ð

W

ð1þ junjÞdðy=ð1�yÞÞ
dx
�1�y

aC
�ð

W

ð1þ junjÞk
�
dx
�1�y

: ð37Þ

Hence �ð
W

jDiunjki dx
�1=Nki

aC
�ð

W

ð1þ junjÞk
�
dx
�1=Nki�1=Npi

:

Now we apply Lemma 3.2 and using (35), we can write

kunkk � aC
�ð

W

ð1þ junjÞk
�
dx
�1=k�1=p

¼ C þ Ckunkk
�ð1=k�1=pÞ

k � : ð38Þ

Therefore, since p < N, we have k� 1
k
� 1

p

� �
< 1 and by the last inequality, we

deduce that the sequence ðunÞn is bounded in Lk �ðWÞ, so that ðunÞn is bounded in

LkðWÞ. The combination of this and (37), implies that ðDiunÞn is bounded in

LkiðWÞ for all i ¼ 1; . . . ;N. Concerning the boundedness of ðDiunÞn in Lr
wi
ðWÞ,

using again Hölder inequality, we have for 0 < y < 1 such that r ¼ yq ðr < qÞ
ð
W

wijDiunjr dx ¼
ð
W

wy
i jDiunjyq

ð1þ junjÞdy

 !�
w1�y
i ð1þ junjÞdy

�
dx

a

�ð
W

wijDiunjq

ð1þ junjÞd
dx
�y�ð

W

wið1þ junjÞdðy=ð1�yÞÞ
dx
�1�y

:
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Since r <
qk�

1þk � , then we have y
1�y

< k�: Hence, there exists d > 1 such that
dy
1�y

ak�: As above, we deduce, thanks to (38), that
Ð
W wijDiunjr dxaC since

wi a LlðWÞ: Therefore

Diun ! Diu weakly in Lr
wi
ðWÞ;

un ! u strongly in LkðWÞ:

Lemma 3.8. There exists a constant C > 0 such that for all nb 1

kTkðunÞkX aCk ð39Þ

and

kgð:; un;DunÞk1aC; ð40Þ

where Tk is the truncation defined by

TkðsÞ ¼
s; jsja k;

k signðsÞ; jsj > k;

�

for fixed k > 0:

Proof of Lemma 3.8. Taking TkðunÞ as a test function in ðPnÞ, we find

XN
i¼1

ð
W

�
wijDiunjqT 0

kðunÞ þ aiðx; un;DunÞDiunT
0
kðunÞ

�
dx

þ
ð
W

gðx; un;DunÞTkðunÞ dx

a kk f k1: ð41Þ

On one hand, using (H3), (H4) and the fact that ðT 0
kÞ

pi ¼ T 0
k and ðT 0

kÞ
q ¼ T 0

k we

obtain (39). The estimate (41) also leads to

ð
junjak

gðx; un;DunÞun dxþ k

ð
junj>k

jgðx; un;DunÞj dxa kk f k1:

On the other hand, thanks to (H4), we obtain

ð
junj>k

jgðx; un;DunÞj dxa k f k1:
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This estimate implies that

ð
W

jgðx; un;DunÞj dx ¼
ð
junj>k

jgðx; un;DunÞj dxþ
ð
junjak

jgðx; un;DunÞj dx

aC þ
ð
W

bðkÞ
�
cðxÞ þ

XN
i¼1

jDiTkðunÞjpi
�
dx:

This inequality and (39) imply (40). r

Now let us prove that for all 0 < e < 1 small enough, we have also

Diun ! Diu in Lr�e
wi

ðWÞ: ð42Þ

Indeed, by ðPnÞ, we have for any k > 0,

XN
i¼1

ð
W

wi½jDiunjq�2
Diun � jDiumjq�2

Dium�DiTkðun � umÞ dx

þ
ð
W

½aðx; un;DunÞ � aðx; um;DumÞ�DiTkðun � umÞ dx

þ
ð
W

½gðx; un;DunÞ � gðx; um;DumÞ�Tkðun � umÞ dx

¼
ð
W

ð fn � fmÞTkðun � umÞ dx:

This yields using (H2) and (40)

XN
i¼1

ð
jun�umjak

wi½jDiunjq�2
Diun � jDiumjq�2

Dium�Diðun � umÞ dx

aCk þ Ckk f k1 ¼ Cð1þ k f k1Þk:

Hence in view of the monotonicity properties of q-Laplacian operator, with q > 2,

we get for i ¼ 1; . . . ;N

ð
jun�umjak

wijDiun �Diumjq dxaCk:

Then using Hölder inequality, the fact that wi a LlðWÞ and that ðDiunÞn is

bounded in Lr
wi
ðWÞ, we obtain
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ð
W

wijDiðun � umÞjr�e
dx

¼
ð
jun�umjak

w
ðr�eÞ=q
i jDiðun � umÞjr�e

w
ðq�rþeÞ=q
i dx

þ
ð
jun�umj>k

w
ðr�eÞ=r
i jDiðun � umÞjr�e

w
e=r
i dx

aC
�ð

jun�umjak

wijDiðun � umÞjq dx
�ðr�eÞ=q

þ
�ð

jun�umj>k

wijDiðun � umÞjr dx
�ðr�eÞ=r�ð

jun�umj>k

wi dx
�e=r

aCk ðr�eÞ=q þ CmesfjunðxÞ � umðxÞj > kge=r:

Since k is an arbitrary positive number and ðunÞn is a Cauchy sequence in mea-

sure, we deduce that ðDiunÞn is a Cauchy sequence in Lr�e
wi

ðWÞ: Then by (42) we

have

wijDiunjq�2
Diun ! wijDiujq�2

Diu in L1ðWÞ:

Corollary. There exist u a Y and a subsequence, still denoted by un, such that un
(resp. TkðunÞ) weakly converges to u (resp. TkðuÞ) in Y and a.e.

Lemma 3.9. For all k > 0, there exists a function y such that for all e > 0, we

have

ð
fjun�TkðuÞjaeg

�XN
i¼1

wijDiunjq�2
DiunDi

�
un � TkðuÞ

�
þ aðx; un;DunÞD

�
un � TkðuÞ

��
dxa yðeÞ;

with lime!0 yðeÞ ¼ 0.

Proof. We choose Te

�
un � TkðuÞ

�
as a test function in ðPnÞ, we have

ð
fjun�TkðuÞjaeg

�XN
i¼1

wijDiunjq�2
DiunDi

�
un � TkðuÞ

�
þ aðx; un;DunÞD

�
un � TkðuÞ

��
dx

a e
�
kgð:; un;DunÞk1 þ k f k1

�
:

This inequality and (40) give the result. r
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Lemma 3.10. Let

ri a
1

pi � 1
;

piNðp� 1Þ
ðpi � 1ÞpðN � 1Þ

� 	
; i ¼ 1; . . . ;N;

then
�
aiðx; un;DunÞ

�
n
is bounded in LriðWÞ for all i ¼ 1; . . . ;N.

Proof. Note that we can choose ri > 1, thanks to

pðN � 1Þ
Nðp� 1Þ < pi <

pðN � 1Þ
N � p

and p < N:

As in Lemma 2.11 of [11], let s be such that

riðpi � 1Þ
pi

< s <
Nðp� 1Þ
pðN � 1Þ < 1:

This is possible since we have

1 < ri <
piNðp� 1Þ

ðpi � 1ÞpðN � 1Þ and p < N:

Hence

spi a 1;
piNðp� 1Þ
pðN � 1Þ

� 	
and

ðpi � 1Þri
spi

< 1: ð43Þ

Using (H1), we can write

jaiðx; un;DunÞjri aC
�
kðxÞs þ jujsp þ

XN
j¼1

jDiunjpjs
�ðpi�1Þri=spi

:

In view of this inequality, Lemma 3.7 and (43), we get Lemma 3.10. r

Now, by using Lemmas 3.7–3.9, and the compactness result as in [20], there

exists a subsequence (still denoted un) such that

Dun ! Du a:e in W;

and for all i ¼ 1; . . . ;N, we have

Diun ! Diu strongly in LsðWÞ; Es a ½1; qiÞ; Eqi a pi;
Nðp� 1Þ
pðN � 1Þ

� 	
:
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By Lemma 3.10, we deduce that

aðx; un;DunÞ ! aðx; u;DuÞ strongly in
�
L1ðWÞ

�N
:

Consequently, using the fact that

wijDiunjq�2
un ! wijDiujq�2

u strongly in L1ðWÞ;

a is a Carathéodory function, so that, aiðx; un;DunÞ ! aiðx; u;DuÞ a.e in W,

gðx; un;DunÞ ! gðx; u;DuÞ a.e in W, since g is a Carathéodory function and the

fact that fn ! f strongly in L1ðWÞ, then by letting n ! l in ðPnÞ, we deduce

that problem ðPÞ has a weak solution in Y :

Let us prove now that gðx; un;DunÞ is uniformly equi-integrable.

Let g > 0. We define jg : R ! R by

jgðsÞ ¼
fðs� gÞ; s > g

0; jsja g

fðsþ gÞ; s < �g:

8><
>:

By choosing jgðunÞ as a test function in ðPnÞ, in view of (H2) and using the fact

that jfðsÞja 1, we obtain

ð
fjunjbgg

gðx; un;DunÞjgðunÞ dxa
ð
fjunjbgg

j f j dx ! 0 as g ! þl ð44Þ

uniformly with respect to n. Now by using the properties of the function f, and

the fact that gðx; un;DunÞunb 0, we getð
fjunjbgg

jgðx; un;DunÞj dx

a
1

jgð2gÞ

ð
fjunjbgg

gðx; un;DunÞjgðunÞ dx ! 0 as g ! þl:

Thanks to (H5), we can also write for EHWð
EBfjunjagg

jgðx; un;DunÞj dx

a hðgÞ
ð
E

cðxÞ dxþ
XN
i¼1

jEj1�ai=pi
�ð

W

jDiTgðunÞjpi
�ai=pi

dx:

This inequality and (39) give the equi-integrability of g on W. So it is simple to

pass to the limit in ðPnÞ. Therefore, Theorem 3.1 is proved. r
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Remark 3.11. In order to obtain the equality in (33), one has to impose

a stronger assumption on the datum f ; more precisely we will require that

f a L1 logL1ðWÞ, i.e.,
ð
W

j f j logð1þ j f jÞ dx < þl:

The following result hold.

Theorem 3.12. Let pi b 2, i ¼ 1; . . . ;N. Assume (H1)–(H5) hold, and f a
L1 logL1ðWÞ. Then the problem ðPÞ has at least one solution u a Y, for all

ki ¼ pi
Nðp� 1Þ
pðN � 1Þ ; i ¼ 1; . . . ;N:

Proof. We modify the previous proof with the help of techniques used in [6].

Using logð1þ junjÞ sgnðunÞ as test function in ðPnÞ, the inequality becomes

ð
W

jDiunjpi
1þ junj

dxa

ð
W

f logð1þ junjÞ dx

a

ð
W

j f j logð1þ j f jÞ dxþ
ð
W

ð1þ junjÞ dxaC: ð45Þ

Similarly, we have

ð
W

wijDiunjq

1þ junj
dxaC:

This gives a change in inequality (35),

d ¼ ð1� yÞk�

y
¼ 1; k� ¼ Nk

N � k
:

Then ðDunÞn is bounded in
QN

i¼1 L
kiðWÞ and in

QN
i¼1 L

r
wi
ðWÞ with ki ¼ pi

Nðp�1Þ
pðN�1Þ and

r ¼ qk �

1þk� . As in Lemma 3.10, we have
�
aiðx; un;DunÞ

�
n
is bounded in LriðWÞ for

ri ¼
piNðp� 1Þ

ðpi � 1ÞpðN � 1Þ ; i ¼ 1; . . . ;N:

So that

aiðx; un;DunÞ * aiðx; u;DuÞ weakly in LriðWÞ: r
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4. Uniqueness result

Let us first note that the result of this section is motivated by the work of Antont-

sev and Chipot [1]. Herein, we suppose that the function g ¼ gðx; uÞ depends only
on u:

Let us consider the problem

�
XN
i¼1

Di

�
wijDiujq�2

Diuþ aiðx; u;DuÞ
�
þ gðx; uÞ ¼ f ; in W

u ¼ 0; in qW:

8><
>:ðPuÞ

First, we assume instead of the condition (H2) that for some constant h > 0, a.e.

x a W, Eu; v a R, Ex; x 0 a RN we have

�
aiðx; u; xÞ � aiðx; v; x 0Þ; xi � x 0

i

�
b hjxi � x 0

i j
pi � mðju� vjÞðjxij þ jx 0

i jÞ
pi�1jxi � x 0

i j; ð46Þ

where the function m satisfies

ð
0þ

1

mðxÞy
dx ¼ þl; 1 < ya min

N

i¼1

pi

pi � 1
: ð47Þ

We also assume that

u 7! gðx; uÞ is increasing: ð48Þ

Here the exponents pi > 2, i ¼ 1; . . . ;N.

Theorem 4.1. Assume (H1)–(H5), (46) and (48) hold, and that the exponents pi
and m are restricted as in (3) and let f a LmðWÞ: Then the weak solution u a X to

ðPuÞ is unique.

Proof. As in [1], thanks to (47), there exists % > 0 such that

Es a ð0; %Þ; mðsÞa 1; ð49Þ

and for any 0 < e < %, we get

ð e
t

1

mðxÞy
dx ! þl as t ! 0þ:
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Hence, for all e < %, there exists de > 0 such that

ð e
de

1

mðxÞy
dx ¼ 1:

Now let us define the function Se for all s a R by

SeðsÞ ¼
0; if s < deÐ s
de

1

mðxÞy
dx; if s a ½de; e�

1; if s > e:

8><
>: ð50Þ

This is a Lipschitz function satisfying Seð0Þ ¼ 0. Let u; v be two solutions to ðPuÞ.
Taking Seðu� vÞ as a test function in ðPuÞ, we have

XN
i¼1

ð
W

�
ðjDiujq�2

Diu� jDivjq�2
DivÞ

þ
�
aiðx; u;DuÞ � aiðx; v;DvÞ

��
ðDiu�DivÞS 0

eðu� vÞ dx

þ
ð
W

�
gðx; uÞ � gðx; vÞ

�
Seðu� vÞ dx ¼ 0:

Due to the algebraic expression ðjxjq�2
x� jyjq�2

y; x� yÞb 0, Ex; y a RN , using

the structure condition (46) and the definition of Se, we get

h
XN
i¼1

ð
me

jDiu�Divjpi

oðju� vjÞy
dxþ

ð
W

�
gðx; uÞ � gðx; vÞ

�
Seðu� vÞ dx

a
XN
i¼1

ð
We

jDiu�Divj
mðju� vjÞy�1

ðjDiuj þ jDivjÞpi�1
dx; ð51Þ

where

We ¼ fx j de < ðu� vÞðxÞ < eg:

An application of Young’s inequality gives

jDiu�Divj
mðju� vjÞy�1

ðjDiuj þ jDivjÞpi�1

¼ ðpih=2Þ1=pi
jDiu�Divj
mðju� vjÞy�1

ðpih=2Þ�1=piðjDiuj þ jDivjÞpi�1

a
h

2

jDiu�Divjpi

mðju� vjÞpiðy�1Þ þ CiðjDiuj þ jDivjÞpi : ð52Þ
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So, by relation (49) and the fact that

1 < ya min
N

i¼1

pi

pi � 1
¼) piðy� 1Þa y for all i ¼ 1; . . . ;N;

we deduce that

Es a ½de; e�; mðsÞpiðy�1Þ
bmðsÞy: ð53Þ

Now, in view of (51), (52) and (53), we obtain

h

2

XN
i¼1

ð
We

jDiu�Divjpi

mðju� vjÞy
dxþ

ð
W

�
gðx; uÞ � gðx; vÞ

�
Seðu� vÞ dx

aC
XN
i¼1

ð
We

ðjDiuj þ jDivjÞpi dx:

We deduce in particular that

ð
W

�
gðx; uÞ � gðx; vÞ

�
Seðu� vÞ dxaC

XN
i¼1

ð
W

wWe
ðjDiuj þ jDivjÞpi dx; ð54Þ

where wWe
denotes the characteristic function of a set We. By using the properties

of the function Se, the fact that

wWe
! 0 a:e:; and Seðu� vÞ ! 1 on u� v > 0

and by applying Lebesgue’s dominated convergence theorem, we get after passing

to the limit e ! 0 in (54)

ð
u�v>0

�
gðx; uÞ � gðx; vÞ

�
dxa 0:

Finally and according to (48), we have u ¼ v.

This achieves the Proof of Theorem 4.1. r

4.1. Application. Let us consider the problem

�
XN
i¼1

Di

�
wijDiujq�2

Diuþmiðx; uÞjDiujpi�2
Diu
�
þ gðx; uÞ ¼ f ; in W

u ¼ 0; on qW

8><
>:ðP0Þ
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where gðx; sÞ ¼
PN

i¼1 jsj
pi�2

s and the exponents pi > 2 for i ¼ 1; . . . ;N. mi is a

Carathéodory valued functions satisfying

jmiðx; uÞ �miðx; vÞjaCju� vj; Eu; v a R; a:e: x a W ð55Þ

and

0 < ramiðx; uÞas < þl; Eu a R; a:e: x a W; ð56Þ

for all i ¼ 1; . . . ;N:

Theorem 4.2. Assume (55)–(56) hold, and that the exponents pi and m are re-

stricted as in (3) and let f a LmðWÞ: Then the weak solution u a X to ðP0Þ is

unique.

Proof. The proof needs the following lemma.

Lemma 4.3 ([4]). There exists a constant l > 0 for which

ðjxijpi�2
xi � jx 0

i j
pi�2

x 0
i Þ:ðxi � x 0

i Þb ljxi � x 0
i j
pi

holds true for all x ¼ ðx1; . . . ; xNÞ, x 0 ¼ ðx 0
1; . . . ; x

0
NÞ a RN :

We aim to prove that aiðx; u;DuÞ ¼ miðx; uÞjDiujpi�2
Diu satisfies the property

(46). For all u; v a X , we have

�
aiðx; u;DuÞ � aiðx; v;DvÞ

�
� ðDiu�DivÞ

¼ miðx; uÞðjDiujpi�2
Diu� jDivjpi�2

DivÞðDiu�DivÞ

þ
�
miðx; uÞ �miðx; vÞ

�
jDivjpi�2

DivðDiu�DivÞ:

Using Lemma 4.3 and the assumption (56), we get

�
aiðx; u;DuÞ � aiðx; v;DvÞ

�
� ðDiu�DivÞ

b rljDiu�Divjpi � jmiðx; uÞ �miðx; vÞj jDivjpi�1jDiu�Divj:

Now, by the asumption (55), we obtain

�
aiðx; u;DuÞ � aiðx; v;DvÞ

�
� ðDiu�DivÞ

b rljDiu�Divjpi � Cju� vj jDivjpi�1jDiu�Divj:

Hence
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�
aiðx; u;DuÞ � aiðx; v;DvÞ

�
� ðDiu�DivÞ

b rljDiu�Divjpi � mðju� vjÞðjDiuj þ jDivjÞpi�1jDiu�Divj;

with mðxÞ ¼ Cx. Since u 7! jujpi�2
u is increasing, Theorem 4.2 follows from

Theorem 4.1. r
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tion de signe et une dépendance sous quadratique par rapport au gradient. Ann. Fac.
Sci. Toulouse Math. IX (2) (1988), 161–169.
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