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Abstract. We obtain global and local theorems on the existence of invariant manifolds for
perturbations of non autonomous linear difference equations assuming a very general form
of dichotomic behavior for the linear equation. The results are obtained using Banach fixed
point theorem and include situations where the behavior is far from hyperbolic. We also
give several new examples and show that our result includes as particular cases several
previous theorems.
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1. Introduction

The study of invariant manifolds is a key subject in the qualitative theory of
dynamical systems. Usually, hyperbolicity is the tool used to establish the
existence of stable, unstable and central invariant manifolds for perturbations of
linear systems. In the study of difference and differential equations, hyperbolicity
is seldom given by the existence of an (uniform) exponential dichotomy, notion
that goes back to the seminal work of Perron [12].

In some situations, particularly in the nonautonomous setting, the concept of
uniform exponential dichotomy is too restrictive and it is important to look for
more general hyperbolic behavior. Two different perspectives can be identified
as ways to generalize the concept of uniform exponential dichotomy: on the one
hand one can consider growth rates that are not necessarily exponential and on
the other hand one can define dichotomies that depend on the initial time and
therefore are nonuniform. The first approach is present in the work of Pinto
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[13], [14] and Naulin and Pinto [11] where the authors study stability of ordinary
differential linear equations possessing (4, k)-dichotomies, a notion that is closely
related with the notion of uniform dichotomy used in the book by Pé&tzsche [15].
The second approach lead to concepts of nonuniform exponential dichotomies
and can be found in the work of Preda and Megan [16] and Megan, Sasu and
Sasu [10], and in a different form, in the work of Barreira and Valls [2]. The last
authors studied deeply, in the general framework of Banach spaces, the existence
of stable and central manifolds for nonlinear and nonautonomous perturbations
of linear nonautonomous difference and differential equations assuming that the
linear equation admits a nonuniform exponential dichotomy.

A natural step towards generalization is to obtain invariant manifolds for
dichotomies that are both nonuniform and not necessarily exponential. This
was the approach followed by the present authors that in [6], [8] obtained stable
manifolds for nonautonomous nonlinear perturbations of nonautonomous linear
difference and differential equations, assuming the existence of a nonuniform
polynomial dichotomy for the linear equation, and in [7], [9] where it was as-
sumed that the linear equation belongs to a more general family of nonuniform
dichotomies—the so called (u, v)-dichotomies. We note that the concept of non-
uniform polynomial dichotomy considered in [6] is not included as a particular
case in the concept of (u,v)-dichotomy, though, letting u,, = v,, = m in (25) (see
Example 7), we can obtain a different version of polynomial dichotomy. This last
version coincides with the notion of dichotomy considered by Barreira and Valls
[3], where some conditions for the existence of polynomial behavior are obtained
in terms of generalized polynomial Lyapunov exponents. We emphasize that our
(1, v)-dichotomies allowed the obtention of stable manifolds in situations where
the classical Lyapunov exponents are zero, for instance for the referred nonuni-
form polynomial dichotomies. It should also be mentioned that Barreira and
Valls [4] were able to obtain stable manifolds for perturbations of linear equa-
tions assuming that the linear equation has some type of dichotomy given by gen-
eral growth rates that correspond to set x,, = v, = ¢’ in (25) with p: N — N
increasing. Naturally, the last condition implies that the rates growth exponen-
tially or faster, and do not include zero Lyapunov exponent situations like, for
example, the referred polynomial behavior.

For a different approach to the existence of invariant manifolds for nonauton-
omous difference equations we recommend again the book by Potzsche [15] that
includes also historical notes about the development of the subject as well as a
large set of references.

The several concepts of nonuniform dichotomy that have been considered in
recent years led us to consider the following tasks: define a general framework
that includes as particular cases the several definitions of nonuniform dichotomy
and that still allows us to obtain results (existence and regularity of invariant
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manifolds, robustness results) that generalize the ones in the literature. This made
us consider some type of general dichotomic behavior that consists simply in
assuming the existence of a splitting into two sequences of invariant subspaces
where the norms of the evolution map are bounded by some double sequences
that depend on the initial and final times (see (D1) and (D2)). In this paper we
establish the existence on Lipschitz invariant manifolds for perturbations of non-
autonomous linear equations with the mentioned dichotomic behavior, obtaining
an asymptotic behavior along the manifolds that is the same as the one assumed
for the linear part in the corresponding subspaces.

Firstly we obtain a global theorem on the existence of invariant manifolds for
perturbations of linear difference equations and as a consequence of this result we
obtain a local result for a large set of perturbations. The perturbations considered
are nonautonomous in the sense that we perturb the diference equation by a dif-
ferent Lipschitz function f, for each time n. Several examples illustrate our results
and we also check that our result include, as particular cases, several previous
theorems. We stress that our approach reveals the relation between the Lipschitz
constants of the perturbations and the behavior assumed for the dichotomy. This
allows us to require less from the dichotomic behavior by restricting the set of
perturbations or to consider an extended set of perturbations by demanding more
from the dichotomic behavior. We also stress that we include in our theorems
situations that are far from being hyperbolic in any reasonable sense.

2. Notation and preliminaries

Let N2 = {(m,n) e N> :m >n} and N2 = {(m,n) e N* :m >n}. Let B(X) be
the space of bounded linear operators in a Banach space X. Given a sequence
(Ay), . of operators of B(X), we write

Aypq... A, ifm>n,
=Q{n n = .
i {Id if m=n,

for every (m,n) e N2.
Consider the linear difference equation

Xma1 = AmXm,  me N, (1)
We say that equation (1) admits an invariant splitting if there exist bounded
projections P,, n € N, such that, for every (m,n) € Ni, we have
(S1) Pulyyn = i nPu;
(S2) oy n(ker P,) = ker Py;
(S3) L nlier p, : ker P, — ker Py, is invertible.
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In these conditions we define, for each n € N, the complementary projection
0, =1d — P, and the linear subspaces E, = P,(X) and F, =ker P, = Q,(X).
As usual, we identify the vector spaces E, x F,, and E, @ F,, as the same vector
space.

Given double sequences (am,n)( )Nz and (bm,n)(m,n)ewi we say that equation
(1) admits a general dichotomy with bounds (a,, ,) and (b, ,) if it admits an invari-
ant splitting such that

(D1) H&/nLnPnH < am,n;
(D2) H(Mm7n|Fn)7lQm|| < by,

m,n

Example 1. Let (a,),.n, (bn),cns (€n),en and (dy),.n be given sequences of
positive numbers such that ¢, > 1 and d, > 1 for every n € N. Consider the linear
operators A, : R — R? given by the diagonal matrices

r n\ 1/2
an ey Y / 0
an+1 C]+(_l>n

4, = n+1
n— _(_ n 1/2 ’
0 bn+1 <dnl =1 )
14+(-1)"
I b Nyt

Considering the projections given by P,(x,y) = (x,0) and Q,(x, y) = (0, ) we
have

ay eV 2

| Lo Pall = = <<71>>

am C}’ﬂ

and

_(_ m 1/2
by (dy Y
1 _ Dn m
||(=Q{m.n|Fn) Qm” - bm <d’}(1)”

and this implies

a _ b
H&{m,nPnH < a_ncn and ||(~Qim,n|l-‘,,) 1QmH < b_ndm~

m 1

This example shows that for any given sequences (a,),.n> (bn),ens (€n),en and
(dy),cn of positive numbers such that ¢, > 1 and d, > 1 for every n € N, there is
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always a sequence of linear maps (A4,),. that admits a general dichotomy with
bounds

for the projections above.
In particular, if

an=2e""" b,=e" and ¢, =d, = De",
for some constants « < 0 < b and ¢ > 0, we obtain an example of a linear equation

that admits a nonuniform exponential dichotomy (in the sense of [2]).
Another particular case can be obtained by setting

and ¢, =d, = Dm®,
for some constants ¢ < 0 < b and ¢ > 0. Here we obtain an example of a linear

equation that admits a nonuniform polynomial dichotomy like the ones con-
sidered in [1].

3. Existence of invariant Lipschitz manifolds

In this section we are going to state our results on the existence of Lipschitz invari-
ant manifolds of the difference equation

Xm+1 = AmXm + f;11(x111)7 me N,
where f,, : X — X are Lipschitz perturbations such that

fm(0) =0  forevery m € N. (2)

For every f,, we define

| fon (1) = fn ()]

[l = o]

Lip(fm)_sup{ :u,veX,u;év}. (3)

Given n € N and v, = (&,7) € E, x F,, for each m > n we write

U = %@n(vn) = gtm,n(&;ﬂ) = (xrm ym) € Em X Fm7 <4)
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ggmﬂn:{(Am—l +fm—l)o"'o(An +fn) %fm>n, (5)
1d if m=n.

We denote by 2 the space of sequences (¢,), . of functions ¢, : E, — F, such
that

9,(0) =0 (6)
l9a(8) = 0O < 1€ = €]l (7)

for every &, & € E, and every n € N. Note that making & = 0 in (7) we have

e (I < €] (8)

for every n € N and every & € E,.
Given (¢,),.n € %, for each n € N, we consider the graph

Vo ={(£,0,(0)) : & € By}, 9)

that we call global invariant manifold.
We now state the result on the existence of global invariant manifolds.

Theorem 1. Given a Banach space X, suppose that equation (1) admits a general
dichotomy with bounds (am,n) ez and (bmn) g pyenz- Let fu: X — X be a
sequence of Lipschitz functions satisfying (2). Assume that

lim  ay, nby =0 (10)
m— o0 ’
for every n € N,
m—1
o= sup Z A, fe410%,n LIP(fic) < 400 (11)

(m,n)eN2 Am.n 1=,

and

+
8

p= su[N) bi+1 nar o Lip(fi) < c0. (12)

=~
Il
3

If
20+ max{2f,\/B} < 1, (13)
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then there is a unique ¢ € X such that
Fmn(Von) =Vom  forevery (m,n) € Ni, (14)
where V', , and V', ,, are given by (9). Furthermore, we have

_ 2 _
||'%m,11(éa (pn(é)) - 977”7"(5’ q’n(é)) || < mam,n”f - é” (15)

for every (m,n) € Ni and every &, & € E,,.

We will now consider the problem of existence of local invariant manifolds.
Let B(r) denote the open ball of radius r in X and define

V(‘ﬂfn,r = {(éﬂ ¢n(é)) € “/g‘ﬂ,n : é € B(r)} (16)
The next theorem can be obtained from Theorem 1.

Theorem 2. Given a Banach space X, suppose that equation (1) admits a general
dichotomy with bounds (am-,n)(m,n)er\@ and (b”L”)(m,n)eNi' For each m € N, let
fm: X — X be a Lipschitz function in B(r,,) satisfying (2). Assume that

i dyy ybpn =0 (17)

m—+o0
for every n € N,

1 m—1

o= Ssup
2 m,n
(m,n)eNZ Ry

m,k+18k,n Lip(fi gy, ) < +00 (18)

and
+o0
p= sup > bestntien Lip(fil giryy) < +00. (19)
NEN f=p
If, for each n € N,
2 Am,nl'n
Sy = max{L - Zuza . } < 400 (20)

and

4o+ max{4p,\/2p} < 1, (21)



48 A.J. G. Bento and C. M. Silva

then there is ¢ € X such that
Tt ginnioo)) € Viimny for every (mon) & N2. (22)

Furthermore, we have

_ 2 _
Hﬁm,n(&(pn(f)) - %n,n(éa(on(g))H = mam,nné - é” (23)

for every (m,n) € N2 and every & & € B(ry).

4. Examples

In this section we will give some examples that illustrate our theorem and show
that it contains as a particular case several results in the literature.
Firstly, we present some results on the existence of global invariant manifolds.

Example 2. For each (m,n) e N2, set

a b
Am,n = _ncn and bm,n = _ndm7
am bm
where (am),ens (bm)mens (Cm)men and (di),,cn are some nondecreasing se-
quences of positive numbers. In this particular case, conditions (10), (11) and
(12) correspond respectively to the conditions

dm

1
m—-+0 by,

=0, (24)

—+0o0
A1 .
o= E — e Lip(fi) < +o0
=1 ‘K

and

+0o0

dy .

B = sup b,a,c, Z ;)H Lip(fx) < +co.
neN o Akbpy

Thus, if the numbers Lip(f;) are small enough so that (13) holds, we obtain a
sequence of invariant manifolds 77, , given by (9) where the decay is given by

- - 2 a,

H%ﬂ.n(éa (ﬂn(é)) - %1,n(f7 %(f)) H < 1—7206 acnné - E||7

for every (m,n) € Ni and every &, & € E,.
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It is easy to see that, if we set

!
4’

+0o0

. : a arby )

Lip(fx) < min e withdi=Y A<
i1 Gt dir max (aibic;) ,;

conditions (11), (12) and (13) are verified and thus, provided that (24) holds, we
always have perturbations with small enough non-zero Lipschitz constants such
that the perturbed equations has invariant manifolds with the behavior given in
our theorem.

In particular, setting

am

am=e""  b,=e"™ and ¢, =d, = De"",

for some constants ¢ < 0 < b and ¢ > 0, we get
am,n = Dem=m)ten and bm,n = Deb(l117’1)+l:mv

and we obtain Theorem 3 in [5]. Note that for these dichotomies condition (24) is
equivalent to condition a + ¢ < b, already present in the referred paper.
Another particular case can be obtained by setting

a

— &
ay, =m~ 4, b, =m and ¢, =d, = Dm®,

for some constants ¢ < 0 < b and ¢ > 0. In this case we get

a —b
Ay, = D(T> n® and by, = D(T) mé,

n n

corresponding to the dichotomies already considered for instance in [1], [3]. In this
case condition (24) is also equivalent to a + ¢ < b and assuming this condition
we obtain global Lipschitz stable manifolds for small enough Lipschitz perturba-
tions of linear equations admitting these polynomial dichotomies. As far as we are
aware in this polynomial setting this result was obtained here for the first time.

Example 3. For each (m,n) e N2, set

dmn=Dm—n+1)n" and by, =Dm—n+1)"m’
for some constants a < 0 < b and ¢ > 0. Set also

Lip(f;) <ok *71.
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In this case, conditions (11) and (12) are satisfied, condition (10) corresponds to
a+¢ < b and condition (13) is satisfied if we consider a small enough J > 0.
Thus our theorem allows us to obtain a sequence of invariant manifolds ¥/, , given
by (9) where the decay is given by

2D

1 = 2x (m —n+ l)ané‘”é - f”?

Hﬁmn (67 (pn(é)) - %1,71 (Ea (ﬂn(E)) H <

for every (m,n) € Ni and every &, & € E,.
This result corresponds to Theorem 2 in [6].

Example 4. For each (m,n) e N2, set

—b
_ m
lpyp = Dedm=n)+en and bm’n — D(;) m?,

for some constants ¢ < 0 < b and ¢ > 0. Set also
Lip(fi) < ok =1,

In this case, all conditions of our theorem are satisfied provided that we consider a
small enough 6 > 0. Thus our theorem allows us to obtain a sequence of invariant
manifolds 7, , given by (9) where the decay is given by

2D

a(m—n)+en|| £ _ ¥
2D e g,

||=97m7n(é, (pn(f)) - =¢m,n(€7 (ﬂn(é)) || <

for every (m,n) € Ni and every &, & € E,.
Example 5. For each (m,n) e N2, set
Am,n = L and bm,n = Dea(mfn)ﬂsm’

for some constants L > 1, @ < 0 and & > 0. Set also Lip(f;) = de~**. Once again
all conditions of our theorem are satisfied provided that we consider a small
enough 6 > 0. Thus our theorem allows us to obtain a sequence of invariant
manifolds 7, , given by (9) where we have

2L
||'%'1,11 (f,gDn(f)) - =%n,n(fa T

for every (m,n) € Ni and every &, & € E,. That is, we obtain an upper bound for
the distance of the iterates of any two points in the manifolds.
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In particular, setting for each n € N,

="
4, = [L 0 ]
0 1/2

we obtain by, , =2~ and a,, , € {1/L,1,L} (and therefore a,, , < L). This
shows that the given sequence of matrices satisfies the hypothesis above. This
example shows that we can still obtain some informations for the dynamics in
situations that are far from being hyperbolic in any reasonable sense.

The next examples are special cases of Theorem 2.

a b

Example 6. For each (m,n) e N2, set @y, =—c¢, and b, , = b—”dm where
m m

(@m)merns Bm)mens (€m)men and (di),,cn are some sequences of positive numbers

and assume that, for each k € N, we have

[1fie(w) = fie@)]| < ellu = vl (full + NlolD?,

for some constants ¢ > 0 and ¢ > 0. It is immediate that fi|,, is Lipschitz with
Lipschitz constant less or equal to ¢27r{. Thus, conditions (17), (18), (19) and (20)
correspond respectively to the conditions

. d}’n
lim
m—+0 by,
+o0
Aic+1
o= c24 g —— 11y < +o0,
=1 4

% dk+1 !
S = c29 sup a,b,c, k<« +0
neN — ajchi
and
ayCyly SUP am ‘m ''< +oo.

m>n

Thus, if the radius of the balls B(ry) are small enough so that (21) holds, we obtain
a sequence of invariant manifolds given by (16) where the decay is given by

2
@) < =5 aedle — .

Hg{n,n(éa (Dn(é)) - %n,n(é
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for every (m,n) € Ni and every &, & € E,. Note that, for any dichotomy in this
example, it is always possible to choose small enough balls where our hypothesis
hold.

As a particular case, given a < 0 < b and ¢ > 0, we can put

ay=¢e¢ " b, = e’ and ¢, =d, = De™",
for each m € N. We can also set r, = de P for each k e N. In this setting condi-
tion (17) is equivalent to a + ¢ < b, conditions (18) and (19) are equivalent to
2¢ — fq < 0 and condition (20) is equivalent to a + f# < 0 (this condition implies
a+e¢e<b). With this setting we obtain the result in [2]. In fact we slightly
improve that result since in our case we can have f§ > % while f = ¢+ % in [2].

Example 7. Given a < 0 < b and ¢ > 0, for each (m,n) € N2, set

a —b
A, = D< Al ) viy and by, = D('u’”_l) Vi (25)
My Hy

where (1,,),,en, and (Vi) ,cn, are growth rates, that is these sequences are non
decreasing, converge to +oo and y, = vo = 1. Also assume, for each k € N, that
v = ORy and that we have

1fie(u) = fie(@)I| < ellu = vl|(Jull + NlolD?,

for some constants ¢ > 0 and ¢ > 0. In this case, conditions (17), (18), and (20)
correspond respectively to the conditions

a e
. v
lim “mm=1_ ¢

m——+o0o Iu,};71 ’

+ 00
Z ViR! < 400,
k=1

and
R & a a
p¥nt sup Hon

< +00.
My m=nRm

Additionally

+ 00
sup vo_, E ViR! < 40
neN k—n

implies (19).



Nonuniform dichotomic behavior: Lipschitz invariant manifolds 53

Thus, if the provided ¢ > 0 is small enough so that (21) holds, we obtain a
sequence of invariant manifolds given by (16) where the decay is given by

_ _ 2D 4 _
1Fmn (& 94(0)) = Fnn (&0 (D) | < T4 (;‘”’1) vi-all€ =€l

for every (m,n) € Ni and every &, &€ E,. Letting now Ry = pf we obtain
Theorem 1 in [7]. In fact, in this case, condition (17) is equivalent to (13) in [7],
condition (18) is equivalent to (12) in [7], condition (19) is implied by (15) in [7]
and (20) is immediate.

Example 8. For each (m,n) e N2, set

A, n =D(m—n+1)an8 and bmm :D(m_n+l)7hms7

for some constants « < 0 < b and ¢ > 0. Assume further that for each k € N we
have

/i) = fi@)I| < ellu = oll(lull + [lol})?,

for some ¢ > 0 and ¢ > 0 and that r, = 0k~7. In this case, conditions (18) and (19)
are satisfied provided y > zsqi, condition (20) is satisfied if y < —a, condition (17)
corresponds to @+ & < b and condition (13) is satisfied if we consider a small
enough 0 > 0. The result obtained corresponds to Theorem 1 in [6].

5. Proof of Theorem 1

In this section we will prove Theorem 1. Given n € N and v, = (£,7) € E, X F,,
using (4), it follows that for each m > n, the trajectory (v,,) satisfies the fol-
lowing equations

m>n

m—1

Xm = J?/m,nf + Z &/m,k—}—lpk-klfk(xkv yk)7 (26)
k=n
m—1

Ym = fQ/m,n” + Z eQfm,/ﬂ—l Qk-ka(xk’ yk)' (27)
k=n

In view of the forward invariance required in (14), each trajectory of (5) starting in
¥y must be in ¥, ,, for every (m,n) € N2, and thus the equations (26) and (27)
can be written in the form
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m—1
Xm = <9{m,né + Z =Q/m,k+1Pk+1fk (ka (ﬂk(xk))7 (28)
k=n
m—1
Pm (xm) = &/m,n(pn (f) + Z =9/m.k+1Qk+lf}€(xka (/)k(xk))- (29>

k=n

To prove that equations (28) and (29) have solutions we will use Banach fixed
point theorem in some suitable complete metric spaces.
In 2 we define a metric by

d(p, ) = sup{w :neNand¢e En\{O}}. (30)

for each ¢ = (¢,),cns ¥ = (W,),cny € 2. It is easy to see that 2’ is a complete
metric space with the metric defined by (30).

Let %, be the space of all sequences x = (x;,) of functions x,, : E, — E,,

mz=n

such that
xu(0) =0  for every m > n, (31)
x|, = sup{!lxm(%"' cm>n,ée E,,\{O}} < +o0. (32)
From (32) we obtain the following estimates
[126m ()] < @, nl|x[], €] (33)
for every m > n and every ¢ € E,. It is easy to see that (%, || - ||,) is a Banach

space.

Lemma 1. For each ¢ € 2 and n € N there exists a unique sequence x = x? € %,
satisfying equation (28). Moreover

xy (&) =¢, (34)
1?1, < 37— (35)
1 (&) = xRN < 7= : Ty dmalle =<l (36)

for every m > n and &, € E,. Furthermore,

o

X=X, < ———
I =3 < s

d(p,y) (37)

for each p,\y € Z.
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Proof. Given ¢ € %, we define an operator J = J, in %, by

é if m= n,
o m—1
(P (€) = Lm,n€ + Z L g1 Prest fie (5 (€), 01 (31 (€))) - if m > . o
k=n

One can easily verify from (31), (6) and (2) that (Jx),,(0) = 0 for every m > n.
Let x € 4, and let & € E,. From (38), (3), (7), (32) and (11) it follows for every
m > n that

m—1

1) (N < NonnPall 11+ 3 o 1 Pl | i (56 (), 1 (x2(E)) |
k=n

m—1

< am <] + Z Ay, fe+1 Lip(fk)(ka(f)H + H(Pk(xk(f)) ||)
k=n
m—1

< €] + Z am,k+1 Lip(fie) 2| xk (€]
k=n

m—1

< dpnll€ll 4+ 2 amrr Lip(fi)ar X1, 1]
k=n

< IS ||+ 20t x|, @, ||
< (14 2o|x[],, ) @m, <]l
and this implies

X[l < 1+ 2el[x]] - (39)

Therefore we have the inclusion J(%,) < %,.
We now show that J is a contraction in %4,. Let x,y € %,. Then

[(Ix),,(E) = (I),, (D)l
m—1
< Z <L 1 Prcsr || fre (e (E), 01 (3 (E))) = S (wic(E), 0 (06(9))) || (40)
k=n

for every m > n and every £ € E,. By (3), (7), (D1) and (32) we have for every
k>=n

/i (3 (&), 01 (x5(€))) = Sfic (0 (E)s i (v (E))) ||
< Lip(fi) (I () = (O + [low (x () — o1 (kD))
< 2Lip(fi)[[x« () — ye (Ol
< 2Lip(fi)ak, || €]l [Ix = yl, (41)
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Hence, from (40), (D1), (41) and (11) we have

m—1

107%),,(€) = (), (I < 20EN1x = Ylly D dm 10 LiD(fi)

k=n

< 2aty,n|<[| llx = yll,
for every m > n and every ¢ € E, and this implies
[ = JIyll,, < 2af|x = yll,,

Since by (13) we have o < 1/2 it follows that J is a contraction in %,. Because 4,
is a Banach space by the Banach fixed point theorem, the map J has a unique fixed
point x? in 4, which is thus the desired sequence. Moreover, is obvious that (34)
is true and by (39) we have

167l < 12l x7]],

and since o < 1/2 we have (35).
To prove (36) we will first prove that for every x € 4, if

_ 1 _
en&) = 5 < 75 amallé = &
for every m > n and every &, & € E,, then
_ 1 _
”(‘]x)m(é) - (‘]x)m(f)” < mam,nné - é”

for every m > n and every &, & € E,. In fact

m—1
10720),, () = (), (O < | Lm Pl 11€ = Ell + D o k1 Pl
k=n
_ m—1
< am,n”é - é” + Z A, k+17f»
k=n

where 7 = || fi (xk (), 1 (¥k(€))) — fic (i (E), o (& (E)) ) || Since

e < Lin(fi) (I1x6(€) — x (&) + || (xx(€)) = o (i () |])
< 2Lip(fir)l|xk (&) — x (O]

2 . z
< - Lip(fi)a, || — <]
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we have

107),,(&) = () (Ol < amnll€ =&+ 77511 = fllzamk+1aknLlp(ﬁc)

k=n

2
<am n”é é” + am n”é é”

= mam,n”é - fH

Now fix z = (z,,) = (A, nPn) € B,. Since

m>=n m>=n

1
17 () = 2O < @mall€ = &l < 7=z amnllc =<,

we have

1 _
jam,nné - f”

1(752),0(&) = (T*2), (O] = 5

for every k € N. Letting k — +o0 in the last inequality we have (36).
Next we will prove (37). Let ¢,y € Z. From (28) we have

[RASEEAE]
< mij it Prest || | e (L (E), 1 (XL(E))) = Sl () (5L (O))] (42)

k=n

for every m > n and every ¢ € E,. By (3), (7), (32), (30) and (33) it follows that

72 (£ (€), guc (¢ é)))_fk(xk Vi (x k(é)) |

)
) -

< Lip(fit) ([Ix7 (&) — x( \|+H¢k(x;f<é> Ve (L (9)]])
< Lip(fie) 2l1x7 (&) — x{ (O] + [0 (x} (&) — i (x{ (©))]])
< Lip(fi) 2aglIE] 57 = xV||,, + 1} (&) |d(p, )]

SLlp(fk)aanéH 2||xw_xw‘|n+md<¢7¢) (43)

for every k > n. Hence by (42), (43), (D1) and (11) we get



58 A.J. G. Bento and C. M. Silva

|w$@>—x$@>|snaﬂmuw—x¢m+-l_2fﬂ¢

lp):| i Am, k+1Ak.n Llp(fk)
k=n

< ||| | 20| — XV X g
< |22l = 3V, + 25 d)|
for every m > n and every & € E, and this implies
? _ x| < 2allx? — x¥ _* 4 .
Ioe? = x], < 20w = x|, + T d(p,)
Therefore

o
x? — x|, < ———d(p, ). O
I* = ¥l < s dlo)

We now represent by (x! ) k>n € A, the unique sequence given by Lemma 1.

Lemma 2. Let ¢ € 2. The following properties are equivalent:
a) for every n € N, m > n and & € E, the identity (29) holds with x; = xlﬁk,'
b) for every n € N and every ¢ € E,

o0

P,(&) = — Z(&/k+1,n|p,,)71Qk+1ﬁc(xff,k(f)a o1 (xy () (44)

k=n
holds.
Proof. First we prove that the series in (44) is convergent. From (D2), (3), (8),

(33) and (12), we conclude that for every n € N and every & € E,

o0

ZH(&/kJrl,n‘F) Qk+1fk( ( ) §0k( (\f)))“

k=n

||(~Q{k+17n‘]~‘n)_le+1 || ||fk(x;(fk(é); (ok(x:f,k(é))) ”

e 1

mHanuwmak O+ [lox ()

=
Il

n

o0
< 20E0 %71, Y brst,nasn Lip(fi)

k=n

< 2811 Ix",

and thus the series converges.
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Now, let us suppose that (29) holds with x = x? for every n € N, every m > n
and every ¢ € E,. Then, since (&/mﬁn|Ez)71&[m,k+l|FM = (QQ/k+1,n|Fn)7l forn <k <
m — 1, equation (29) can be written in the following equivalent form

0u(&) = (Ll )~ P (50(E))

m—1

- Z(JZ{ICH,AF,,)_]Qk+lﬁc(x,ik(é)a P (x;(fk(é)» (45)

k=n

Using (D2), (8) and (33), we have

H(ﬂm,nlﬂ,)71¢ln('xl(f,m(é))H = H(&imn‘FH)ilngom(x,(fm(é))H
< byl (O]
< bm,nam,nHé” ||x||n||é||

and by (10) this converge to zero when m — oo. Hence, letting m — oo in (45) we
obtain the identity (44) for every n € N and every ¢ € E,.

We now assume that for every n € N, m > n and ¢ € E, the identity (44) holds.
Therefore

&{m,nq)n(é) = - 2 JZ{m,n(&{k”rl,n'Fn)_1 QkJrlf}C(xn(p,k(é)ﬂ Dr (ka(é)>>a

and thus it follows from (44) and the uniqueness of the sequences x? that

m—1

éZ/m,n(”n(f) + Z tQ/m,k+1Qk+1f}€(x:f7k(é); P (x,(fk(f)))

k=n

o0

== (Aisrmlp) " Ot fie(x] (&), pr (x0 ()

k=m

o0

== (Airrtmlp) " Ot fie(x0 1 (x0,,(E)), 01 (X0 (x0,,(9))))

k=m

= Om (X;ﬁ m (é))

for every n € N, every m > n and every ¢ € E,. This proves the lemma. O
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Lemma 3. There is a unique ¢ € X such that

0,(6) = =D (Arralp,) ™ Quert il (9 01 (¥ (€)))

M5

=~
Il

n
for every n € N and every & € E,,.

Proof. We consider the operator ®@ defined for each ¢ € Z by

Z s, n|F Qk+1ﬁc(x/(f(é)a§”k(x1?(é))) (46)
k=n

where x? = (x]);~, € %, is the unique sequence given by Lemma 1. It follows
from (2), (31), (6) and (46) that (®g),(0) = 0 for each n € N.

Furthermore, given n € N and ¢&,¢ € E,, by (D2), (3), (7), (36) and (12) we
have

1(@9), (&) = (®p), (S]]

(ks 1,nlp,) YOt 1 (52 (€), 0k (L () = i (5L (D), o1 (D)) ]

Ms@

k=n

< S b Lip(D20 () — @)l
k=n
2 - .
< 7l ¢l ;bkﬂ,nhp(mam
28 i}
< 7ol

Since by (13) the inequality o + f < 1/2 holds, it follows that

1(@p), (&) — (®p), (O] < 1€ = €]

Therefore ®(2) < X

We now show that @ is a contraction. Given ¢, € Z and n € N, let x? and
x¥ be the unique sequences given by Lemma 1 respectively for ¢ and y. By (D2),
(43), (37) and (12) we have
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1(@p),(€) = (@), (Sl

~—

<

MS

CAiert.nl,) ™ Q1 fi (R () 0 (xL(€))) = fi (6 (€), 0k (£ (€)))

=~
Il
=

1

MS

1
< 3 bronn Lip(ac €l 21 = 3V, + - dio. )]

=~
Il

n

0 . 1
< Zbk+1,nLlp<ﬂ>ak,n||é||l 4 _2“] (o)
k=n

(1 —20)?

1
< ﬁnéﬂd Y Zbk+1 ntie.n LAp(fic)

< g ey

for every n € N and every ¢ € E, and this implies

B

d(®p, DY) < m

d(e,¥)

a /;)z < 1, it follows that ® is a contraction in Z.

Therefore the map ® has a unique fixed point ¢ in 2 that is the desired sequence.
U

Since by (13) we have

We are finally in conditions to prove Theorem 1.

By Lemma 1, for each ¢ € # there is a unique sequence x? € %4, satisfying
(28). It remains to show that there is a ¢ and a corresponding x? that satisfie
(29). By Lemma 2, this is equivalent to solve (44). Finally, by Lemma 3, there
is a unique solution of (44). This establishes the existence of the invariant
manifolds. Moreover, for each ne N, m>n and & & € E, it follows from
(7) that

~

| Fonn (&, 04(E)) = o (€, 04())]|

< lxm(&) — xm(E)” + H(”m (xm(é)) — Pm (Xm(é))H
< 2[xm(&) — xm (Sl
< 1—2720(0”1’””6 - EH

Hence we obtain (15) and the theorem is proved.



62 A.J. G. Bento and C. M. Silva
6. Proof of Theorem 2

We will now establish Theorem 2. Since, for each k € N, fi[p,,) : B(re) = X is a
Lipschitz function, fi can be continuously extended in unique way to the closure
of B(ry) and it is easy to see that the function f, : X — X given by

= fi(x) if x € B(ry)
Je= { filare/Ix])if x ¢ Blr)

is Lipschitz with Lip(f;) < 2Lip(/¢|s,)). Thus we have

~1
B 1 m ) -
&= sup A, fe+10%, LIp(fy) < 200 < 400
(m,n)eNi Am,n k=n
m%#n

and

ﬂ suprk+1 ndk, nLlp(fk) = 2ﬂ < +o0.
neN ke=n

According to (21) we have

26 + max{2f, \/E} < 4o+ max{4p, \/28} < 1,

and thus Theorem 1 shows that (14) and (15) hold for the perturbations fr-
Let # (m,n) be the operators in (5) with the functions f; replaced by the func-
tions f,. From (15) we obtain

_ . o 2 _
Hﬁ(m,n)(é,gon(f)) - F(m,n) (fa(pn(é))n < 1_—2o~cam,n|‘é <
b _
< mam,nHé_f”' (47)
for every (m,n)e Ni and every ¢, &€ E,  In particular, if £=0 and
& € B(ry/(2s,)) N Ey,, we have (&,9,(8)) € B(ry/ss) and by (20) we get

~ 2 2 )
|5 m.m) (& ou(@) ] = =g mallEll < gy <
and thus . (m, n)(“/w 1/ s) S Vpom s Where 75, in (16) correspond to the
manifolds obtained in Theorem 1 for the perturbations f,. Since £, | B = el By

for each k € N, we obtain

*

97(]’]’!7 n) (n%‘ﬂ:k”arn/(z“'n)) s %3”’7 Im*
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and (22) holds. Finally, using (47) and still recalling that f, = f; in B(r;) for each
k € N, we obtain (23).
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