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Abstract. We obtain global and local theorems on the existence of invariant manifolds for
perturbations of non autonomous linear di¤erence equations assuming a very general form
of dichotomic behavior for the linear equation. The results are obtained using Banach fixed
point theorem and include situations where the behavior is far from hyperbolic. We also
give several new examples and show that our result includes as particular cases several
previous theorems.
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1. Introduction

The study of invariant manifolds is a key subject in the qualitative theory of

dynamical systems. Usually, hyperbolicity is the tool used to establish the

existence of stable, unstable and central invariant manifolds for perturbations of

linear systems. In the study of di¤erence and di¤erential equations, hyperbolicity

is seldom given by the existence of an (uniform) exponential dichotomy, notion

that goes back to the seminal work of Perron [12].

In some situations, particularly in the nonautonomous setting, the concept of

uniform exponential dichotomy is too restrictive and it is important to look for

more general hyperbolic behavior. Two di¤erent perspectives can be identified

as ways to generalize the concept of uniform exponential dichotomy: on the one

hand one can consider growth rates that are not necessarily exponential and on

the other hand one can define dichotomies that depend on the initial time and

therefore are nonuniform. The first approach is present in the work of Pinto
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[13], [14] and Naulin and Pinto [11] where the authors study stability of ordinary

di¤erential linear equations possessing ðh; kÞ-dichotomies, a notion that is closely

related with the notion of uniform dichotomy used in the book by Pötzsche [15].

The second approach lead to concepts of nonuniform exponential dichotomies

and can be found in the work of Preda and Megan [16] and Megan, Sasu and

Sasu [10], and in a di¤erent form, in the work of Barreira and Valls [2]. The last

authors studied deeply, in the general framework of Banach spaces, the existence

of stable and central manifolds for nonlinear and nonautonomous perturbations

of linear nonautonomous di¤erence and di¤erential equations assuming that the

linear equation admits a nonuniform exponential dichotomy.

A natural step towards generalization is to obtain invariant manifolds for

dichotomies that are both nonuniform and not necessarily exponential. This

was the approach followed by the present authors that in [6], [8] obtained stable

manifolds for nonautonomous nonlinear perturbations of nonautonomous linear

di¤erence and di¤erential equations, assuming the existence of a nonuniform

polynomial dichotomy for the linear equation, and in [7], [9] where it was as-

sumed that the linear equation belongs to a more general family of nonuniform

dichotomies—the so called ðm; nÞ-dichotomies. We note that the concept of non-

uniform polynomial dichotomy considered in [6] is not included as a particular

case in the concept of ðm; nÞ-dichotomy, though, letting mm ¼ nm ¼ m in (25) (see

Example 7), we can obtain a di¤erent version of polynomial dichotomy. This last

version coincides with the notion of dichotomy considered by Barreira and Valls

[3], where some conditions for the existence of polynomial behavior are obtained

in terms of generalized polynomial Lyapunov exponents. We emphasize that our

ðm; nÞ-dichotomies allowed the obtention of stable manifolds in situations where

the classical Lyapunov exponents are zero, for instance for the referred nonuni-

form polynomial dichotomies. It should also be mentioned that Barreira and

Valls [4] were able to obtain stable manifolds for perturbations of linear equa-

tions assuming that the linear equation has some type of dichotomy given by gen-

eral growth rates that correspond to set mm ¼ nm ¼ erðmÞ in (25) with r : N ! N

increasing. Naturally, the last condition implies that the rates growth exponen-

tially or faster, and do not include zero Lyapunov exponent situations like, for

example, the referred polynomial behavior.

For a di¤erent approach to the existence of invariant manifolds for nonauton-

omous di¤erence equations we recommend again the book by Pötzsche [15] that

includes also historical notes about the development of the subject as well as a

large set of references.

The several concepts of nonuniform dichotomy that have been considered in

recent years led us to consider the following tasks: define a general framework

that includes as particular cases the several definitions of nonuniform dichotomy

and that still allows us to obtain results (existence and regularity of invariant
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manifolds, robustness results) that generalize the ones in the literature. This made

us consider some type of general dichotomic behavior that consists simply in

assuming the existence of a splitting into two sequences of invariant subspaces

where the norms of the evolution map are bounded by some double sequences

that depend on the initial and final times (see (D1) and (D2)). In this paper we

establish the existence on Lipschitz invariant manifolds for perturbations of non-

autonomous linear equations with the mentioned dichotomic behavior, obtaining

an asymptotic behavior along the manifolds that is the same as the one assumed

for the linear part in the corresponding subspaces.

Firstly we obtain a global theorem on the existence of invariant manifolds for

perturbations of linear di¤erence equations and as a consequence of this result we

obtain a local result for a large set of perturbations. The perturbations considered

are nonautonomous in the sense that we perturb the diference equation by a dif-

ferent Lipschitz function fn for each time n. Several examples illustrate our results

and we also check that our result include, as particular cases, several previous

theorems. We stress that our approach reveals the relation between the Lipschitz

constants of the perturbations and the behavior assumed for the dichotomy. This

allows us to require less from the dichotomic behavior by restricting the set of

perturbations or to consider an extended set of perturbations by demanding more

from the dichotomic behavior. We also stress that we include in our theorems

situations that are far from being hyperbolic in any reasonable sense.

2. Notation and preliminaries

Let N2
b¼ fðm; nÞ a N2 : mb ng and N2

> ¼ fðm; nÞ a N2 : m > ng. Let BðXÞ be

the space of bounded linear operators in a Banach space X . Given a sequence

ðAnÞn AN of operators of BðXÞ, we write

Am;n ¼
Am�1 . . .An if m > n;

Id if m ¼ n;

�

for every ðm; nÞ a N2
b.

Consider the linear di¤erence equation

xmþ1 ¼ Amxm; m a N: ð1Þ

We say that equation (1) admits an invariant splitting if there exist bounded

projections Pn, n a N, such that, for every ðm; nÞ a N2
b, we have

(S1) PmAm;n ¼ Am;nPn;

(S2) Am;nðkerPnÞ ¼ kerPm;

(S3) Am;njkerPn
: kerPn ! kerPm is invertible.
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In these conditions we define, for each n a N, the complementary projection

Qn ¼ Id� Pn and the linear subspaces En ¼ PnðXÞ and Fn ¼ kerPn ¼ QnðXÞ.
As usual, we identify the vector spaces En � Fn and EnaFn as the same vector

space.

Given double sequences ðam;nÞðm;nÞ AN2
b
and ðbm;nÞðm;nÞ AN2

b
we say that equation

(1) admits a general dichotomy with bounds ðam;nÞ and ðbm;nÞ if it admits an invari-

ant splitting such that

(D1) kAm;nPnka am;n;

(D2) kðAm;njFn
Þ�1

Qmka bm;n.

Example 1. Let ðanÞn AN, ðbnÞn AN, ðcnÞn AN and ðdnÞn AN be given sequences of

positive numbers such that cnb 1 and dnb 1 for every n a N. Consider the linear

operators An : R
2 ! R2 given by the diagonal matrices

An ¼

an

anþ1

c
1�ð�1Þn
n

c
1þð�1Þn
nþ1

 !1=2
0

0
bnþ1

bn

d
1�ð�1Þn
n

d
1þð�1Þn
nþ1

 !1=2

2
6666664

3
7777775
:

Considering the projections given by Pnðx; yÞ ¼ ðx; 0Þ and Qnðx; yÞ ¼ ð0; yÞ we

have

kAm;nPnk ¼ an

am

c
1�ð�1Þn
n

c
1�ð�1Þm
m

 !1=2

and

kðAm;njFn
Þ�1

Qmk ¼ bn

bm

d
1�ð�1Þm
m

d
1�ð�1Þn
n

 !1=2

and this implies

kAm;nPnka
an

am
cn and kðAm;njFn

Þ�1
Qmka

bn

bm
dm:

This example shows that for any given sequences ðanÞn AN, ðbnÞn AN, ðcnÞn AN and

ðdnÞn AN of positive numbers such that cnb 1 and dnb 1 for every n a N, there is
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always a sequence of linear maps ðAnÞn AN that admits a general dichotomy with

bounds

an

am
cn

� �
ðm;nÞ AN2

b

and
bn

bm
dm

� �
ðm;nÞ AN2

b

for the projections above.

In particular, if

am ¼ e�am; bm ¼ ebm and cm ¼ dm ¼ Deem;

for some constants a < 0a b and e > 0, we obtain an example of a linear equation

that admits a nonuniform exponential dichotomy (in the sense of [2]).

Another particular case can be obtained by setting

am ¼ m�a; bm ¼ mb and cm ¼ dm ¼ Dm e;

for some constants a < 0a b and e > 0. Here we obtain an example of a linear

equation that admits a nonuniform polynomial dichotomy like the ones con-

sidered in [1].

3. Existence of invariant Lipschitz manifolds

In this section we are going to state our results on the existence of Lipschitz invari-

ant manifolds of the di¤erence equation

xmþ1 ¼ Amxm þ fmðxmÞ; m a N;

where fm : X ! X are Lipschitz perturbations such that

fmð0Þ ¼ 0 for every m a N: ð2Þ

For every fm we define

Lipð fmÞ ¼ sup
k fmðuÞ � fmðvÞk

ku� vk : u; v a X ; uA v

� �
: ð3Þ

Given n a N and vn ¼ ðx; hÞ a En � Fn, for each m > n we write

vm ¼ Fm;nðvnÞ ¼ Fm;nðx; hÞ ¼ ðxm; ymÞ a Em � Fm; ð4Þ
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with

Fm;n ¼
ðAm�1 þ fm�1Þ � � � � � ðAn þ fnÞ if m > n;

Id if m ¼ n:

�
ð5Þ

We denote by X the space of sequences ðjnÞn AN of functions jn : En ! Fn such

that

jnð0Þ ¼ 0 ð6Þ

kjnðxÞ � jnðxÞka kx� xk ð7Þ

for every x; x a En and every n a N. Note that making x ¼ 0 in (7) we have

kjnðxÞka kxk ð8Þ

for every n a N and every x a En.

Given ðjnÞn AN a X, for each n a N, we consider the graph

Vj;n ¼
��

x; jnðxÞ
�
: x a En

�
; ð9Þ

that we call global invariant manifold.

We now state the result on the existence of global invariant manifolds.

Theorem 1. Given a Banach space X, suppose that equation (1) admits a general

dichotomy with bounds ðam;nÞðm;nÞ AN2
b
and ðbm;nÞðm;nÞ AN2

b
. Let fm : X ! X be a

sequence of Lipschitz functions satisfying (2). Assume that

lim
m!þl

am;nbm;n ¼ 0 ð10Þ

for every n a N,

a ¼ sup
ðm;nÞ AN2

>

1

am;n

Xm�1

k¼n

am;kþ1ak;n Lipð fkÞ < þl ð11Þ

and

b ¼ sup
n AN

Xþl

k¼n

bkþ1;nak;n Lipð fkÞ < l: ð12Þ

If

2aþmaxf2b;
ffiffiffi
b

p
g < 1; ð13Þ
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then there is a unique j a X such that

Fm;nðVj;nÞ ¼ Vj;m for every ðm; nÞ a N2
b; ð14Þ

where Vj;n and Vj;m are given by (9). Furthermore, we have



Fm;n

�
x; jnðxÞ

�
�Fm;n

�
x; jnðxÞ

�

a 2

1� 2a
am;nkx� xk: ð15Þ

for every ðm; nÞ a N2
b and every x; x a En.

We will now consider the problem of existence of local invariant manifolds.

Let BðrÞ denote the open ball of radius r in X and define

V�
j;n; r ¼

��
x; jnðxÞ

�
a Vj;n : x a BðrÞ

�
: ð16Þ

The next theorem can be obtained from Theorem 1.

Theorem 2. Given a Banach space X, suppose that equation (1) admits a general

dichotomy with bounds ðam;nÞðm;nÞ AN2
b

and ðbm;nÞðm;nÞ AN2
b
. For each m a N, let

fm : X ! X be a Lipschitz function in BðrmÞ satisfying (2). Assume that

lim
m!þl

am;nbm;n ¼ 0 ð17Þ

for every n a N,

a ¼ sup
ðm;nÞ AN2

>

1

am;n

Xm�1

k¼n

am;kþ1ak;n Lipð fkjBðrkÞÞ < þl ð18Þ

and

b ¼ sup
n AN

Xþl

k¼n

bkþ1;nak;n Lipð fkjBðrkÞÞ < þl: ð19Þ

If, for each n a N,

sn ¼ max 1;
2

1� 4a
sup
mbn

am;nrn

rm

� �
< þl ð20Þ

and

4aþmaxf4b;
ffiffiffiffiffi
2b

p
g < 1; ð21Þ
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then there is j a X such that

Fm;nðV�
j;n; rn=ð2snÞÞJV�

j;m; rm
for every ðm; nÞ a N2

b: ð22Þ

Furthermore, we have



Fm;n

�
x; jnðxÞ

�
�Fm;n

�
x; jnðxÞ

�

a 2

1� 4a
am;nkx� xk: ð23Þ

for every ðm; nÞ a N2
b and every x; x a BðrnÞ.

4. Examples

In this section we will give some examples that illustrate our theorem and show

that it contains as a particular case several results in the literature.

Firstly, we present some results on the existence of global invariant manifolds.

Example 2. For each ðm; nÞ a N2
b, set

am;n ¼
an

am
cn and bm;n ¼

bn

bm
dm;

where ðamÞm AN, ðbmÞm AN, ðcmÞm AN and ðdmÞm AN are some nondecreasing se-

quences of positive numbers. In this particular case, conditions (10), (11) and

(12) correspond respectively to the conditions

lim
m!þl

dm

ambm
¼ 0; ð24Þ

a ¼
Xþl

k¼1

akþ1

ak
ckþ1 Lipð fkÞ < þl

and

b ¼ sup
n AN

bnancn
Xþl

k¼n

dkþ1

akbkþ1
Lipð fkÞ < þl:

Thus, if the numbers Lipð fkÞ are small enough so that (13) holds, we obtain a

sequence of invariant manifolds Vj;n given by (9) where the decay is given by



Fm;n

�
x; jnðxÞ

�
�Fm;n

�
x; jnðxÞ

�

a 2

1� 2a

an

am
cnkx� xk;

for every ðm; nÞ a N2
b and every x; x a En.

48 A. J. G. Bento and C. M. Silva



It is easy to see that, if we set

Lipð fkÞamin
ak

akþ1ckþ1
;

akbkþ1

dkþ1 max
1aiak

ðaibiciÞ

8<
:

9=
;lk with l ¼

Xþl

k¼1

lk <
1

4
;

conditions (11), (12) and (13) are verified and thus, provided that (24) holds, we

always have perturbations with small enough non-zero Lipschitz constants such

that the perturbed equations has invariant manifolds with the behavior given in

our theorem.

In particular, setting

am ¼ e�am; bm ¼ ebm and cm ¼ dm ¼ Deem;

for some constants a < 0a b and e > 0, we get

am;n ¼ Deaðm�nÞþen and bm;n ¼ Debðm�nÞþem;

and we obtain Theorem 3 in [5]. Note that for these dichotomies condition (24) is

equivalent to condition aþ e < b, already present in the referred paper.

Another particular case can be obtained by setting

am ¼ m�a; bm ¼ mb and cm ¼ dm ¼ Dm e;

for some constants a < 0a b and e > 0. In this case we get

am;n ¼ D
m

n

� �a
ne and bm;n ¼ D

m

n

� ��b

me;

corresponding to the dichotomies already considered for instance in [1], [3]. In this

case condition (24) is also equivalent to aþ e < b and assuming this condition

we obtain global Lipschitz stable manifolds for small enough Lipschitz perturba-

tions of linear equations admitting these polynomial dichotomies. As far as we are

aware in this polynomial setting this result was obtained here for the first time.

Example 3. For each ðm; nÞ a N2
b, set

am;n ¼ Dðm� nþ 1Þane and bm;n ¼ Dðm� nþ 1Þ�b
me;

for some constants a < 0a b and e > 0. Set also

Lipð fkÞa dk�2e�1:
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In this case, conditions (11) and (12) are satisfied, condition (10) corresponds to

aþ e < b and condition (13) is satisfied if we consider a small enough d > 0.

Thus our theorem allows us to obtain a sequence of invariant manifolds Vj;n given

by (9) where the decay is given by



Fm;n

�
x; jnðxÞ

�
�Fm;n

�
x; jnðxÞ

�

a 2D

1� 2a
ðm� nþ 1Þanekx� xk;

for every ðm; nÞ a N2
b and every x; x a En.

This result corresponds to Theorem 2 in [6].

Example 4. For each ðm; nÞ a N2
b, set

am;n ¼ Deaðm�nÞþen and bm;n ¼ D
m

n

� ��b

me;

for some constants a < 0a b and e > 0. Set also

Lipð fkÞa dk�2e�1:

In this case, all conditions of our theorem are satisfied provided that we consider a

small enough d > 0. Thus our theorem allows us to obtain a sequence of invariant

manifolds Vj;n given by (9) where the decay is given by



Fm;n

�
x; jnðxÞ

�
�Fm;n

�
x; jnðxÞ

�

a 2D

1� 2a
eaðm�nÞþenkx� xk;

for every ðm; nÞ a N2
b and every x; x a En.

Example 5. For each ðm; nÞ a N2
b, set

am;n ¼ L and bm;n ¼ Deaðm�nÞþem;

for some constants Lb 1, a < 0 and e > 0. Set also Lipð fkÞ ¼ de�ek. Once again

all conditions of our theorem are satisfied provided that we consider a small

enough d > 0. Thus our theorem allows us to obtain a sequence of invariant

manifolds Vj;n given by (9) where we have



Fm;n

�
x; jnðxÞ

�
�Fm;n

�
x; jnðxÞ

�

a 2L

1� 2a
kx� xk;

for every ðm; nÞ a N2
b and every x; x a En. That is, we obtain an upper bound for

the distance of the iterates of any two points in the manifolds.
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In particular, setting for each n a N,

An ¼
Lð�1Þn 0

0 1=2

� �

we obtain bm;n ¼ 2�ðm�nÞ and am;n a f1=L; 1;Lg (and therefore am;naL). This

shows that the given sequence of matrices satisfies the hypothesis above. This

example shows that we can still obtain some informations for the dynamics in

situations that are far from being hyperbolic in any reasonable sense.

The next examples are special cases of Theorem 2.

Example 6. For each ðm; nÞ a N2
b, set am;n ¼

an

am
cn and bm;n ¼

bn

bm
dm where

ðamÞm AN, ðbmÞm AN, ðcmÞm AN and ðdmÞm AN are some sequences of positive numbers

and assume that, for each k a N, we have

k fkðuÞ � fkðvÞka cku� vkðkuk þ kvkÞq;

for some constants c > 0 and q > 0. It is immediate that fkjBðrkÞ is Lipschitz with
Lipschitz constant less or equal to c2qr

q
k . Thus, conditions (17), (18), (19) and (20)

correspond respectively to the conditions

lim
m!þl

dm

ambm
¼ 0;

a ¼ c2q
Xþl

k¼1

akþ1

ak
ckþ1r

q
k < þl;

b ¼ c2q sup
n AN

anbncn
Xþl

k¼n

dkþ1r
q
k

akbkþ1
< þl

and

ancnrn sup
mbn

a�1
m r�1

m < þl:

Thus, if the radius of the balls BðrkÞ are small enough so that (21) holds, we obtain

a sequence of invariant manifolds given by (16) where the decay is given by



Fm;n

�
x; jnðxÞ

�
�Fm;n

�
x; jnðxÞ

�

a 2

1� 4a

an

am
cnkx� xk;
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for every ðm; nÞ a N2
b and every x; x a En. Note that, for any dichotomy in this

example, it is always possible to choose small enough balls where our hypothesis

hold.

As a particular case, given a < 0a b and e > 0, we can put

am ¼ e�am; bm ¼ ebm and cm ¼ dm ¼ Deem;

for each m a N. We can also set rk ¼ de�bk for each k a N. In this setting condi-

tion (17) is equivalent to aþ e < b, conditions (18) and (19) are equivalent to

2e� bq < 0 and condition (20) is equivalent to aþ ba 0 (this condition implies

aþ e < b). With this setting we obtain the result in [2]. In fact we slightly

improve that result since in our case we can have b > 2e
q
while b ¼ eþ 2e

q
in [2].

Example 7. Given a < 0a b and e > 0, for each ðm; nÞ a N2
b, set

am;n ¼ D
mm
mn�1

� �a
nen�1 and bm;n ¼ D

mm�1

mn

� ��b

nem�1 ð25Þ

where ðmmÞm AN0
and ðnmÞm AN0

are growth rates, that is these sequences are non

decreasing, converge to þl and m0 ¼ n0 ¼ 1. Also assume, for each k a N, that

rk ¼ dRk and that we have

k fkðuÞ � fkðvÞka cku� vkðkuk þ kvkÞq;

for some constants c > 0 and q > 0. In this case, conditions (17), (18), and (20)

correspond respectively to the conditions

lim
m!þl

ma
mn

e
m�1

mb
m�1

¼ 0;

Xþl

k¼1

nekR
q
k < þl;

and

D
Rnn

e
n�1

mn�1

a

sup
mbn

ma
m

Rm

< þl:

Additionally

sup
n AN

nen�1

Xþl

k¼n

nekR
q
k < þl

implies (19).
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Thus, if the provided d > 0 is small enough so that (21) holds, we obtain a

sequence of invariant manifolds given by (16) where the decay is given by



Fm;n

�
x; jnðxÞ

�
�Fm;n

�
x; jnðxÞ

�

a 2D

1� 4a

mm
mn�1

� �a
nen�1kx� xk;

for every ðm; nÞ a N2
b and every x; x a En. Letting now Rk ¼ ma

k we obtain

Theorem 1 in [7]. In fact, in this case, condition (17) is equivalent to (13) in [7],

condition (18) is equivalent to (12) in [7], condition (19) is implied by (15) in [7]

and (20) is immediate.

Example 8. For each ðm; nÞ a N2
b, set

am;n ¼ Dðm� nþ 1Þane and bm;n ¼ Dðm� nþ 1Þ�b
me;

for some constants a < 0a b and e > 0. Assume further that for each k a N we

have

k fkðuÞ � fkðvÞka cku� vkðkuk þ kvkÞq;

for some c > 0 and q > 0 and that rk ¼ dk�g. In this case, conditions (18) and (19)

are satisfied provided g > 2eþ1
q

, condition (20) is satisfied if ga�a, condition (17)

corresponds to aþ e < b and condition (13) is satisfied if we consider a small

enough d > 0. The result obtained corresponds to Theorem 1 in [6].

5. Proof of Theorem 1

In this section we will prove Theorem 1. Given n a N and vn ¼ ðx; hÞ a En � Fn,

using (4), it follows that for each m > n, the trajectory ðvmÞm>n satisfies the fol-

lowing equations

xm ¼ Am;nxþ
Xm�1

k¼n

Am;kþ1Pkþ1 fkðxk; ykÞ; ð26Þ

ym ¼ Am;nhþ
Xm�1

k¼n

Am;kþ1Qkþ1 fkðxk; ykÞ: ð27Þ

In view of the forward invariance required in (14), each trajectory of (5) starting in

Vj;n must be in Vj;m for every ðm; nÞ a N2
b, and thus the equations (26) and (27)

can be written in the form
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xm ¼ Am;nxþ
Xm�1

k¼n

Am;kþ1Pkþ1 fk
�
xk; jkðxkÞ

�
; ð28Þ

jmðxmÞ ¼ Am;njnðxÞ þ
Xm�1

k¼n

Am;kþ1Qkþ1 fk
�
xk; jkðxkÞ

�
: ð29Þ

To prove that equations (28) and (29) have solutions we will use Banach fixed

point theorem in some suitable complete metric spaces.

In X we define a metric by

dðj;cÞ ¼ sup
kjnðxÞ � cnðxÞk

kxk : n a N and x a Ennf0g
� �

: ð30Þ

for each j ¼ ðjnÞn AN, c ¼ ðcnÞn AN a X. It is easy to see that X is a complete

metric space with the metric defined by (30).

Let Bn be the space of all sequences x ¼ ðxmÞmbn of functions xm : En ! Em

such that

xmð0Þ ¼ 0 for every mb n; ð31Þ

kxkn ¼ sup
kxmðxÞk
am;nkxk

: mb n; x a Ennf0g
� �

< þl: ð32Þ

From (32) we obtain the following estimates

kxmðxÞka am;nkxknkxk ð33Þ

for every mb n and every x a En. It is easy to see that ðBn; k � knÞ is a Banach

space.

Lemma 1. For each j a X and n a N there exists a unique sequence x ¼ xj a Bn

satisfying equation (28). Moreover

xj
n ðxÞ ¼ x; ð34Þ

kxjkna
1

1� 2a
; ð35Þ

kxj
mðxÞ � xj

mðxÞka
1

1� 2a
am;nkx� xk ð36Þ

for every mb n and x; x a En. Furthermore,

kxj � xckna
a

ð1� 2aÞ2
dðj;cÞ ð37Þ

for each j;c a X.
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Proof. Given j a X, we define an operator J ¼ Jj in Bn by

ðJxÞmðxÞ ¼
x if m ¼ n;

Am;nxþ
Xm�1

k¼n

Am;kþ1Pkþ1 fk
�
xkðxÞ; jk

�
xkðxÞ

��
if m > n:

8><
>: ð38Þ

One can easily verify from (31), (6) and (2) that ðJxÞmð0Þ ¼ 0 for every mb n.

Let x a Bn and let x a En. From (38), (3), (7), (32) and (11) it follows for every

m > n that

kðJxÞmðxÞka kAm;nPnk kxk þ
Xm�1

k¼n

kAm;kþ1Pkþ1k


 fk�xkðxÞ; jk�xkðxÞ��



a am;nkxk þ
Xm�1

k¼n

am;kþ1 Lipð fkÞ
�
kxkðxÞk þ



jk�xkðxÞ�

�

a am;nkxk þ
Xm�1

k¼n

am;kþ1 Lipð fkÞ2kxkðxÞk

a am;nkxk þ 2
Xm�1

k¼n

am;kþ1 Lipð fkÞak;nkxknkxk

a am;nkxk þ 2akxknam;nkxk
a ð1þ 2akxknÞam;nkxk

and this implies

kJxkna 1þ 2akxkn: ð39Þ

Therefore we have the inclusion JðBnÞHBn.

We now show that J is a contraction in Bn. Let x; y a Bn. Then

kðJxÞmðxÞ � ðJyÞmðxÞk

a
Xm�1

k¼n

kAm;kþ1Pkþ1k


 fk�xkðxÞ; jk�xkðxÞ��� fk

�
ykðxÞ; jk

�
ykðxÞ

��

 ð40Þ

for every mb n and every x a En. By (3), (7), (D1) and (32) we have for every

kb n 

 fk�xkðxÞ; jk�xkðxÞ��� fk
�
ykðxÞ; jk

�
ykðxÞ

��


aLipð fkÞ

�
kxkðxÞ � ykðxÞk þ



jk�xkðxÞ�� jk
�
ykðxÞ

�

�
a 2Lipð fkÞkxkðxÞ � ykðxÞk
a 2Lipð fkÞak;nkxk kx� ykn ð41Þ
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Hence, from (40), (D1), (41) and (11) we have

kðJxÞmðxÞ � ðJyÞmðxÞka 2kxk kx� ykn
Xm�1

k¼n

am;kþ1ak;n Lipð fkÞ

a 2aam;nkxk kx� ykn

for every mb n and every x a En and this implies

kJx� Jykna 2akx� ykn:

Since by (13) we have a < 1=2 it follows that J is a contraction in Bn. Because Bn

is a Banach space by the Banach fixed point theorem, the map J has a unique fixed

point xj in Bn, which is thus the desired sequence. Moreover, is obvious that (34)

is true and by (39) we have

kxjkna 1þ 2akxjkn

and since a < 1=2 we have (35).

To prove (36) we will first prove that for every x a Bn, if

kxmðxÞ � xmðxÞka
1

1� 2a
am;nkx� xk

for every mb n and every x; x a En, then

kðJxÞmðxÞ � ðJxÞmðxÞka
1

1� 2a
am;nkx� xk

for every mb n and every x; x a En. In fact

kðJxÞmðxÞ � ðJxÞmðxÞka kAm;nPnk kx� xk þ
Xm�1

k¼n

kAm;kþ1Pkþ1kgk

a am;nkx� xk þ
Xm�1

k¼n

am;kþ1gk;

where gk ¼


 fk�xkðxÞ; jk�xkðxÞ��� fk

�
xkðxÞ; jk

�
xkðxÞ

��

: Since

gk aLipð fkÞ
�
kxkðxÞ � xkðxÞk þ



jk�xkðxÞ�� jk
�
xkðxÞ

�

�
a 2Lipð fkÞkxkðxÞ � xkðxÞk

a
2

1� 2a
Lipð fkÞak;nkx� xk
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we have

kðJxÞmðxÞ � ðJxÞmðxÞka am;nkx� xk þ 2

1� 2a
kx� xk

Xm�1

k¼n

am;kþ1ak;n Lipð fkÞ

a am;nkx� xk þ 2a

1� 2a
am;nkx� xk

¼ 1

1� 2a
am;nkx� xk:

Now fix z ¼ ðzmÞmbn ¼ ðAm;nPnÞmbn a Bn. Since

kzmðxÞ � zmðxÞka am;nkx� xka 1

1� 2a
am;nkx� xk;

we have

kðJ kzÞmðxÞ � ðJ kzÞmðxÞka
1

1� 2a
am;nkx� xk

for every k a N. Letting k ! þl in the last inequality we have (36).

Next we will prove (37). Let j;c a X. From (28) we have

kxj
mðxÞ � xc

mðxÞk

a
Xm�1

k¼n

kAm;kþ1Pkþ1k


 fk�xj

k ðxÞ; jk
�
x
j
k ðxÞ

��
� fk

�
x
c
k ðxÞ;ck

�
x
c
k ðxÞ

��

 ð42Þ

for every mb n and every x a En. By (3), (7), (32), (30) and (33) it follows that



 fk�xj
k ðxÞ; jk

�
x
j
k ðxÞ

��
� fk

�
x
c
k ðxÞ;ck

�
x
c
k ðxÞ

��


aLipð fkÞ

�
kxj

k ðxÞ � x
c
k ðxÞk þ



jk�xj
k ðxÞ

�
� ck

�
x
c
k ðxÞ

�

�
aLipð fkÞ

�
2kxj

k ðxÞ � x
c
k ðxÞk þ



jk�xc
k ðxÞ

�
� ck

�
x
c
k ðxÞ

�

�
aLipð fkÞ½2ak;nkxk kxj � xckn þ kxc

k ðxÞkdðj;cÞ�

aLipð fkÞak;nkxk 2kxj � xckn þ
1

1� 2a
dðj;cÞ

� �
ð43Þ

for every kb n. Hence by (42), (43), (D1) and (11) we get
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kxj
mðxÞ � xc

mðxÞka kxk 2kxj � xckn þ
1

1� 2a
dðj;cÞ

� �Xm
k¼n

am;kþ1ak;n Lipð fkÞ

a am;nkxk 2akxj � xckn þ
a

1� 2a
dðj;cÞ

� �

for every mb n and every x a En and this implies

kxj � xckna 2akxj � xckn þ
a

1� 2a
dðj;cÞ:

Therefore

kxj � xckna
a

ð1� 2aÞ2
dðj;cÞ: r

We now represent by ðxj
n;kÞkbn a Bn the unique sequence given by Lemma 1.

Lemma 2. Let j a X. The following properties are equivalent:

a) for every n a N, mb n and x a En the identity (29) holds with xk ¼ x
j
n;k ;

b) for every n a N and every x a En

jnðxÞ ¼ �
Xl
k¼n

ðAkþ1;njFn
Þ�1

Qkþ1 fk
�
x
j
n;kðxÞ; jk

�
x
j
n;kðxÞ

��
ð44Þ

holds.

Proof. First we prove that the series in (44) is convergent. From (D2), (3), (8),

(33) and (12), we conclude that for every n a N and every x a En

Xl
k¼n



ðAkþ1;njFn
Þ�1

Qkþ1 fk
�
x
j
n;kðxÞ; jk

�
x
j
n;kðxÞ

��


a
Xl
k¼n

kðAkþ1;njFn
Þ�1

Qkþ1k


 fk�xj

n;kðxÞ; jk
�
x
j
n;kðxÞ

��


a
Xl
k¼n

bkþ1;n Lipð fkÞ
�
kxj

n;kðxÞk þ


jk�xj

n;kðxÞ
�

�

a 2kxk kxjkn
Xl
k¼n

bkþ1;nak;n Lipð fkÞ

a 2bkxk kxjkn

and thus the series converges.
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Now, let us suppose that (29) holds with x ¼ xj for every n a N, every mb n

and every x a En. Then, since ðAm;njFn
Þ�1Am;kþ1jFkþ1

¼ ðAkþ1;njFn
Þ�1 for na ka

m� 1, equation (29) can be written in the following equivalent form

jnðxÞ ¼ ðAm;njFn
Þ�1jm

�
xj
n;mðxÞ

�

�
Xm�1

k¼n

ðAkþ1;njFn
Þ�1

Qkþ1 fk
�
x
j
n;kðxÞ; jk

�
x
j
n;kðxÞ

��
: ð45Þ

Using (D2), (8) and (33), we have



ðAm;njFn
Þ�1jm

�
xj
n;mðxÞ

�

 ¼


ðAm;njFn

Þ�1
Qmjm

�
xj
n;mðxÞ

�


a bm;nkxj

n;mðxÞk

a bm;nam;nkxk kxknkxk

and by (10) this converge to zero when m ! l. Hence, letting m ! l in (45) we

obtain the identity (44) for every n a N and every x a En.

We now assume that for every n a N, mb n and x a En the identity (44) holds.

Therefore

Am;njnðxÞ ¼ �
Xl
k¼n

Am;nðAkþ1;njFn
Þ�1

Qkþ1 fk
�
x
j
n;kðxÞ; jk

�
x
j
n;kðxÞ

��
;

and thus it follows from (44) and the uniqueness of the sequences xj that

Am;njnðxÞ þ
Xm�1

k¼n

Am;kþ1Qkþ1 fk
�
x
j
n;kðxÞ; jk

�
x
j
n;kðxÞ

��

¼ �
Xl
k¼m

ðAkþ1;mjFn
Þ�1

Qkþ1 fk
�
x
j
n;kðxÞ; jk

�
x
j
n;kðxÞ

��

¼ �
Xl
k¼m

ðAkþ1;mjFn
Þ�1

Qkþ1 fk
�
x
j
m;k

�
xj
n;mðxÞ

�
; jk
�
x
j
m;k

�
xj
n;mðxÞ

���
¼ jm

�
xj
n;mðxÞ

�

for every n a N, every mb n and every x a En. This proves the lemma. r
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Lemma 3. There is a unique j a X such that

jnðxÞ ¼ �
Xl
k¼n

ðAkþ1;njFn
Þ�1

Qkþ1 fk
�
x
j
k ðxÞ; jk

�
x
j
k ðxÞ

��

for every n a N and every x a En.

Proof. We consider the operator F defined for each j a X by

ðFjÞnðxÞ ¼ �
Xl
k¼n

ðAkþ1;njFn
Þ�1

Qkþ1 fk
�
x
j
k ðxÞ; jk

�
x
j
k ðxÞ

��
ð46Þ

where xj ¼ ðxj
k Þkbn a Bn is the unique sequence given by Lemma 1. It follows

from (2), (31), (6) and (46) that ðFjÞnð0Þ ¼ 0 for each n a N.

Furthermore, given n a N and x; x a En, by (D2), (3), (7), (36) and (12) we

have

kðFjÞnðxÞ � ðFjÞnðxÞk

a
Xl
k¼n

kðAkþ1;njFn
Þ�1

Qkþ1k �


 fk�xj

k ðxÞ; jk
�
x
j
k ðxÞ

��
� fk

�
x
j
k ðxÞ; jk

�
x
j
k ðxÞ

��



a
Xl
k¼n

bkþ1;n Lipð fkÞ2kxj
k ðxÞ � x

j
k ðxÞk

a
2

1� 2a
kx� xk

Xl
k¼n

bkþ1;n Lipð fkÞak;n

a
2b

1� 2a
kx� xk

Since by (13) the inequality aþ b < 1=2 holds, it follows that

kðFjÞnðxÞ � ðFjÞnðxÞka kx� xk:

Therefore FðXÞHX.

We now show that F is a contraction. Given j;c a X and n a N, let xj and

xc be the unique sequences given by Lemma 1 respectively for j and c. By (D2),

(43), (37) and (12) we have
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kðFjÞnðxÞ � ðFcÞnðxÞk

a
Xl
k¼n

kðAkþ1;njFn
Þ�1

Qkþ1k


 fk�xj

k ðxÞ; jk
�
x
j
k ðxÞ

��
� fk

�
x
c
k ðxÞ; jk

�
x
c
k ðxÞ

��


a
Xl
k¼n

bkþ1;n Lipð fkÞak;nkxk 2kxj � xckn þ
1

1� 2a
dðj;cÞ

� �

a
Xl
k¼n

bkþ1;n Lipð fkÞak;nkxk
2a

ð1� 2aÞ2
þ 1

1� 2a

" #
dðj;cÞ

a
1

ð1� 2aÞ2
kxkdðj;cÞ

Xl
k¼n

bkþ1;nak;n Lipð fkÞ

a
b

ð1� 2aÞ2
kxkdðj;cÞ

for every n a N and every x a En and this implies

dðFj;FcÞa b

ð1� 2aÞ2
dðj;cÞ

Since by (13) we have b

ð1�2aÞ2 < 1, it follows that F is a contraction in X.

Therefore the map F has a unique fixed point j in X that is the desired sequence.

r

We are finally in conditions to prove Theorem 1.

By Lemma 1, for each j a X there is a unique sequence xj a Bn satisfying

(28). It remains to show that there is a j and a corresponding xj that satisfie

(29). By Lemma 2, this is equivalent to solve (44). Finally, by Lemma 3, there

is a unique solution of (44). This establishes the existence of the invariant

manifolds. Moreover, for each n a N, mb n and x; x a En it follows from

(7) that



Fm;n

�
x; jnðxÞ

�
�Fm;n

�
x; jnðxÞ

�


a kxmðxÞ � xmðxÞk þ



jm�xmðxÞ�� jm
�
xmðxÞ

�


a 2kxmðxÞ � xmðxÞk

a
2

1� 2a
am;nkx� xk:

Hence we obtain (15) and the theorem is proved.
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6. Proof of Theorem 2

We will now establish Theorem 2. Since, for each k a N, fkjBðrkÞ : BðrkÞ ! X is a

Lipschitz function, fk can be continuously extended in unique way to the closure

of BðrkÞ and it is easy to see that the function ~ffk : X ! X given by

~ffk ¼
fkðxÞ if x a BðrkÞ
fkðxrk=kxkÞ if x B BðrkÞ

�

is Lipschitz with Lipð ~ffkÞa 2Lipð fkjBðrkÞÞ. Thus we have

~aa ¼ sup
ðm;nÞ AN2

b

mAn

1

am;n

Xm�1

k¼n

am;kþ1ak;n Lipð ~ffkÞa 2a < þl

and

~bb ¼ sup
n AN

Xþl

k¼n

bkþ1;nak;n Lipð ~ffkÞa 2b < þl:

According to (21) we have

2~aaþmaxf2~bb;
ffiffiffi
~bb

q
ga 4aþmaxf4b;

ffiffiffiffiffi
2b

p
g < 1;

and thus Theorem 1 shows that (14) and (15) hold for the perturbations ~ffk.
Let ~FFðm; nÞ be the operators in (5) with the functions fk replaced by the func-

tions ~ffk. From (15) we obtain



 ~FFðm; nÞ
�
x; jnðxÞ

�
� ~FFðm; nÞ

�
x; jnðxÞ

�

a 2

1� 2~aa
am;nkx� xk

a
2

1� 4a
am;nkx� xk: ð47Þ

for every ðm; nÞ a N2
b and every x; x a En. In particular, if x ¼ 0 and

x a B
�
rn=ð2snÞ

�
BEn, we have

�
x; jnðxÞ

�
a Bðrn=snÞ and by (20) we get



 ~FFðm; nÞ
�
x; jnðxÞ

�

a 2

1� 4a
am;nkxk <

2

1� 4a
am;n

rn

sn
a rm

and thus ~FFðm; nÞðV�
j;n; rn=ð2snÞÞJV�

j;m; rm
, where Vj;n in (16) correspond to the

manifolds obtained in Theorem 1 for the perturbations ~ffk. Since ~ffkjBðrkÞ ¼ fkjBðrkÞ
for each k a N, we obtain

Fðm; nÞðV�
j;n; rn=ð2snÞÞJV�

j;m; rm
:
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and (22) holds. Finally, using (47) and still recalling that ~ffk ¼ fk in BðrkÞ for each
k a N, we obtain (23).
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