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Generators of finite fields with powers of trace
zero and cyclotomic function fields

José Felipe Voloch*

Abstract. In this paper, we count the number of generators of finite fields with powers of
trace zero up to some point, answering a question of Z. Reichstein. More generally, we
count irreducible polynomials over finite fields with some prescribed coe‰cients. This is
done by relating this count to the problem of counting rational points on curves over finite
fields whose function fields are subfields of cyclotomic function fields.
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1. Introduction

As usual, for a prime p and a power q of p we use Fq to denote the finite field of q

elements. The main purpose of this paper is to count irreducible polynomials over

Fq with fixed degree and with some prescribed coe‰cients.

Our initial motivation was a question of Z. Reichstein, asked in connection

with the results of [7]. Specifically, he asked when for a given m is there y a Fqn

with FqðyÞ ¼ Fqn and TrðyÞ ¼ � � � ¼ TrðymÞ ¼ 0, (where Tr is the Fqn=Fq trace).

As we will show below, this is equivalent to the minimal polynomial PðtÞ of y

being of degree n and having all the coe‰cients of tn�i, 1a iam, pF i vanish.

As a consequence of Theorem 1.1 such y can be found if, for some c > 0,

m < n=2� c log n and q is su‰ciently large.

Reichstein was particularly interested in the case n ¼ 6, m ¼ 3, p ¼ 2. Here

one can proceed directly as follows, as already indicated in [7]. To find y in Fq6 ,

not in a smaller field with TrðyÞ ¼ Trðy3Þ ¼ 0 (where the trace is to Fq) it is

enough to find x; z a Fq6 with y ¼ xq � x, y3 ¼ zq � z and FqðyÞ ¼ Fq6 . The

equations simplify to zq � z ¼ ðxq � xÞ3 and letting u ¼ zþ x3, we get uq � u ¼
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x2qþ1 þ xqþ2 as p ¼ 2. The latter equation defines a curve of genus qðq� 1Þ
over Fq6 (by a standard computation using the Hurwitz formula). The Weil

bound gives that the number of points on the projective curve is at least

q6 þ 1� 2qðq� 1Þq3. There is one point at infinity and at most q5 points with

y ¼ xq � x a Fq3 , these are the bad points. So we need q6 þ 1� 2qðq� 1Þq3 >
1þ q5 and is enough to have q6 > 3q5, i.e. q > 3. For q ¼ 2, there are in fact

two irreducible polynomials over F2, x
6 þ xþ 1 and x6 þ x4 þ x2 þ xþ 1, whose

roots satisfy the required conditions. Tracing back through the argument actually

shows the existence of q4 þOðq3Þ such y. This is a special case of Theorem 1.1

with n ¼ 6, m ¼ 3, p ¼ 2, j ¼ 1.

The purpose of this paper is to answer the general question above by first

reducing it to counting points on a certain curve over a finite field, showing how

to estimate its genus and then finally using the Weil bound to count the points.

The case p ¼ 2 has been studied before by I. Shparlinski [8] and O. Ahmadi [1].

We recover their results in this paper. Their methods are superficially di¤erent

to ours but, in essence, they are similar and the results of this paper on

Reichstein’s question, for arbitrary p and m, could be obtained by their methods.

The more conceptual approach of this paper, however, can be applied to more

general situations. For instance, we will also count the number of y a Fqn with

FqðyÞ ¼ Fqn whose minimal polynomial over Fq has all the coe‰cients of tn�i,

1a iam, p j F i equal to zero. For j ¼ 1 the methods of [1], [8] could be used

instead to obtain our results. For j > 1, to analyze this problem with exponential

sums would require the use of Witt vectors (as in e.g. [9]), which is beyond the

scope of [1], [8]. Instead, we use a more conceptual setup which gives the result

easily once we do the genus estimate.

A classical problem in the arithmetic of finite fields is to count monic

irreducible polynomials with some coe‰cients prescribed. Specifically, given

I H f0; . . . ; n� 1g and fixed elements bi a Fq, i a I , one is interested in counting

the number of monic irreducible polynomials in Fq½t� of degree n for which the

coe‰cient of ti is bi. For a survey of known results up to 2005, see [2] and for

more recent results, see [3]. These are mostly for I of the form f0; . . . ;mg or

fn�m� 1; . . . ; ng or arbitrary singletons. In particular, these results only apply

to the questions considered here when m < p j, in which case our results reduce

to the results there.

An idea, implicit in older papers (e.g. [4]) but made clear in the work of

Hsu ([6]), relates the above problem, when I ¼ f0; . . . ;mg or fn�m� 1; . . . ; ng
to certain curves over finite fields. These are the curves whose function fields are

subfields of the so-called cyclotomic function fields, constructed by Carlitz. These

fields describe abelian extensions of FqðtÞ. For each monic polynomial f in Fq½t�,
Carlitz constructed a field Kf , Galois over FqðtÞ with Galois group G ¼ ðFq½t�=f Þ�.
Moreover a prime (i.e. monic irreducible) P of Fq½t� splits completely in Kf if and
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only if PC 1 ðmod f Þ. We have that Kf is the function field of some curve over

Fq and the Weil bound for this curve (applied to Fqn points) describes the number

of monic irreducible polynomials P of degree n with PC 1 ðmod f Þ. So, for

instance, the condition PC 1 ðmod tmþ1Þ describes polynomials with coe‰cients

1; 0; . . . ; 0 in degrees 0; 1; . . . ;m respectively.

If we want to count irreducible polynomials HðtÞ of degree n with HðtÞ ¼
tn þ atn�m þ � � � , we instead consider tnHð1=tÞ to fall back on the above

framework. However, tnHð1=tÞ is no longer monic so we need to look at

P ¼ atnHð1=tÞ, for suitable a and we cannot prescribe the constant term of P

and would like to count those P congruent to a constant ðmod tmþ1Þ. These are

precisely the primes that split completely in the subfield of Kf , f ¼ tm, which is

the fixed field of the subgroup of ðFq½t�= f Þ� consisting of (images of ) constants.

This field is sometimes called the maximal real subfield Rf of Kf . As mentioned

before, this construction is in [6].

In this paper we look at the subsets I ¼ f1a iam; p j F ig and we will show

that this corresponds to looking at primes P splitting completely in the subfield

of Ktmþ1 , which is the fixed field of the subgroup of the Galois group of Kf =FqðtÞ
consisting of p j-th powers. Our main theorem is:

Theorem 1.1. Given a prime power q and positive integers m, n, j with m < n,

the number N of y a Fqn with FqðyÞ ¼ Fqn whose minimal polynomial over Fq
has all the coe‰cients of tn�i, 1a iam, p j F i vanish (or, equivalently, for

j ¼ 1 that TrðyÞ ¼ � � � ¼ TrðymÞ ¼ 0, where Tr is the Fqn=Fq trace) satisfies

jN � qn�mþbm=p jcja 7qn=2m.

2. Genus estimates

For definitions and background on the cyclotomic function fields see [5]. Fix an

integer m > 1 and let K ¼ Ktmþ1 be the corresponding cyclotomic function field

(denoted by kðLtmþ1Þ in [5]). Let G ¼ ðFq½t�=tmþ1Þ�. Then G is the Galois group

of K=FqðtÞ and has ðq� 1Þqm elements. The genus g of K satisfies 2g� 2 ¼
qmðq� 1Þm. This is a special case of Hayes’s formula [5], cor. 4.2. Also, from

[5], thm 4.1, the prime above t ¼ 0 is totally ramified in K and there are qm primes

above t ¼ l which are tamely ramified, with ramification index q� 1.

To get the genus of the field fixed by constants or p j-th powers we use the

Hurwitz formula. Let R ¼ Rtmþ1 be the maximal ‘‘real’’ subfield of K , which is

by definition the fixed field of the subgroup F�
q of G. The qm primes above

t ¼ l and the unique prime above t ¼ 0 of R are all totally and tamely ramified

in K=R, so the genus r of R satisfies 2g� 2 ¼ ðq� 1Þð2r� 2Þ þ ðqm þ 1Þðq� 2Þ.
It follows from the formula for g that 2r� 2amqm.
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Theorem 2.1. For jb1, let Gp j

be the group of p j-th powers of G, Lj the fixed field

of Gp j

and lj the genus of Lj, then we have the inequality lj a ðmqm�bm=p jc þ 1Þ=2.

Proof. It is clear that Gp j

, the group of p j-th powers of G, consists of classes

represented by polynomials in tp
j

of degree at most bm=p jc, therefore Gp j

has

index qm�bm=p jc in G. Therefore R=Lj is an extension of degree qbm=p jc and the

prime above t ¼ 0 is the only prime ramifying in this extension and it is totally

and wildly ramified. The Hurwitz formula then gives 2r� 2b qbm=p jcð2lj � 2Þþ
qbm=p jc ¼ qbm=p jcð2lj � 1Þ. Using the estimate ramqm obtained above gives the

stated inequality. r

3. Vanishing traces and prescribed coe‰cients prime to p

Let pkðx1; . . . ; xnÞ ¼ xk
1 þ � � � þ xk

n and sk be the usual elementary symmetric

functions.

Lemma 3.1. In a field K of characteristic p > 0, we have pj vanishes at

ða1; . . . ; anÞ a Kn, for jam if and only if sj vanishes at ða1; . . . ; anÞ a Kn, for

jam, ð j; pÞ ¼ 1.

Proof. We have the Newton identities:

ksk ¼
Xk

i¼1

ð�1Þ i�1sk�ipi

It is clear from the above identities that, if pj vanishes at ða1; . . . ; anÞ a Kn, for

jam, then msm vanishes at ða1; . . . ; anÞ, which gives one direction.

For the other direction, we can assume by induction that pj vanishes at

ða1; . . . ; anÞ, for j < m and the above identities give 0 ¼ msmða1; . . . ; anÞ ¼
epmða1; . . . ; anÞ, since s0 ¼ 1. r

Note that prescribing arbitrary values for the pj , jam is not equivalent to

prescribing values for the sj , jam, ð j; pÞ ¼ 1. For instance, when p ¼ 2,

s1 ¼ p1, p2 ¼ p2
1 and

s3 ¼ s2p1 þ p3
1 þ p3;

hence, given p1A 0, p2, p3, we can select s3 (or s2) arbitrarily.

It follows from the above that y a Fqn with FqðyÞ ¼ Fqn and TrðyÞ ¼ � � � ¼
TrðymÞ ¼ 0, (where Tr is the Fqn=Fq trace) is equivalent to the minimal polynomial
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of y being of degree n and having all the coe‰cients of tn�i, 1a iam, ði; pÞ ¼ 1

vanish.

We are ready to prove Theorem 1.1. More generally, we prove

Theorem 3.2. Given a prime power q, positive integers m, n, j with m < n, and

ai a Fq, 1a iam, p j F i, the number N of y a Fqn with FqðyÞ ¼ Fqn whose minimal

polynomial over Fq has coe‰cient of tn�i, 1a iam, p j F i equal to ai satisfies

jN � qn�mþbm=p jcja 7qn=2m.

Proof. Let p : Y ! X be a map of curves which induces a Galois extension of

the corresponding function fields with Galois group H. A twist of p is a map

p 0 : Y 0 ! X such that, after base change to the algebraic closure of the ground

field, there is an isomorphism f : Y ! Y 0, with p 0 � f ¼ p. Over an arbitrary

field F with absolute Galois group G, the set of twists of a fixed p as above is

in bijection with H 1ðG;HÞ. Over a finite field, which has a pro-cyclic absolute

Galois group, the twists of p correspond to elements of G and we denote by Y ðgÞ,
the twist of Y corresponding to g a H.

In particular, if p : Yj ! P1 corresponding to the the extension of function

fields, Lj=FqðtÞ, where Lj is as in Section 2 with Galois group G=Gp j

, G ¼
ðFq½t�=tmþ1Þ�, then a twist of p corresponds to an element of G=Gp j

and, a prime

(i.e. monic irreducible) P of Fq½t� splits completely in the function field correspond-

ing to Y
ðgÞ
j if and only if P� g is a p j-th power ðmod f Þ. Since the Y

ðgÞ
j are all

isomorphic over an extension of Fq, they all have the same genus.

It follows from the discussion preceding the statement of the theorem that the

condition on y is equivalent to the minimal polynomial P of 1=y over Fq being

of degree n and having the coe‰cients of t i, 1a iam, p j F i equal to ai. So

P�
P

1aiam; p jFi ait
i is a p j-th power modulo tmþ1.

The desired polynomials P correspond to orbits under the group G=Gp j

of points of Y
ðgÞ
j , g ¼

P
1aiam; p jFi ait

i defined over Fqn but not a smaller

field, excluding possibly the points above t ¼ 0;l. The Weil bound gives

jaY
ðgÞ
j ðFqnÞ � qn � 1ja 2ljq

n=2, where lj as before is the genus of Yj. Now,

let b ¼ m� bm=p jc. The group G=Gp j

has order qb and 2lj amqb þ 1 by

Theorem 2.1. So the number M of y a F�
qn lifting to a point in Y

ðgÞ
j ðFqnÞ satisfies

jM � qn�bja 5mqn=2. Finally, we need to count the elements of Fqn , not on

some Fqd , for d j n, d < n with the desired property but the excluded ones are

at most

X

djn;d<n

qd
a

Xn=2

d¼0

qd
a 2qn=2

completing the proof of the theorem. r
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