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Parametric rigidness of germs of analytic unfoldings
with a Hopf bifurcation
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Abstract. In this paper we prove that families of germs of one-parameter analytic di¤eren-
tial equations with a Hopf bifurcation are rigid in the parameter. These systems are intrin-
sically real: the complex phase portrait is invariant under an antiholomorphic involution.
The latter permits to identify the modulus of the analytic classification. The dynamics in
the Siegel domain does not explain the existence of the real structure. Rather, these prop-
erties are meaningful in the Poincaré domain, where the fixed points are linearizable.
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1. Introduction

In these notes we prove that one-parameter real analytic families of ordinary

di¤erential equations of the form

_xx ¼ aðhÞx� bðhÞyþ
X

jþkb2

bjkðhÞx jyk

_yy ¼ bðhÞxþ aðhÞyþ
X

jþkb2

cjkðhÞx jyk;
ð1Þ

(h is the unfolding parameter) are rigid in the parameter, in a precise sense defined

later. The dots represent di¤erentiation with respect to the (real) time t. The

coe‰cients bjk, cjk depend analytically on the parameter. The functions aðhÞ,
bðhÞ are real analytic and að0Þ ¼ 0 but bð0ÞA 0. We assume that the unfolding

is generic: a 0ð0ÞA 0, see below.

It is known from the general theory that this family unfolds either a center

(integral trajectories are closed curves with interiors containing the origin) or a
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weak focus, see Figure 1. Weakness means that the convergence of integral curves

to the origin is slower than that of logarithmic spirals of strong foci. Although our

techniques apply to centers, from the viewpoint of the analytic properties of the

system, the interesting case occurs when the family (1) unfolds a weak focus.

(Strong foci are linearizable by Poincaré linearization theorem). In this case, the

system exhibits a generic codimension-one Hopf bifurcation provided L1ð0ÞA 0,

where

L1ðhÞ ¼ 3b30ðhÞ þ b12ðhÞ þ c21ðhÞ þ 3c03ðhÞ þ
�
b11ðhÞ

�
b20ðhÞ þ b02ðhÞ

�
� c11ðhÞ

�
c20ðhÞ þ c02ðhÞ

�
� 2b20ðhÞc20ðhÞ þ 2b02ðhÞc02ðhÞ

�
=bðhÞ

is the first Lyapunov constant of the system. This coe‰cient measures the sensi-

bility of the system to small variations in the parameter. It defines, moreover, the

topology of the phase portrait as follows.

Inasmuch as the system is generic, the implicit function theorem permits to

take e :¼ a=b as a new parameter via a time scaling t 7! bðeÞt. The parameter e

is an invariant under analytic changes. It has been called canonical in other works

but this denomination is both confusing and unnecessary. The eigenvalues of the

linearization matrix of the vector field at zero thus become eþ i and e� i and then

the singular point is elliptic or monodromic [10]. The term s ¼ sign
�
L1ð0Þ

�
¼e1 is

called the sign of the family. This number is an invariant which determines the

nature of the singular points. If s ¼ þ1 the Hopf bifurcation is called subcritical

and the cycle is present on negative values of e. The case s ¼ �1 corresponds to

a supercritical Hopf bifurcation. (This is also true in higher codimension [4]).

The two cases defined by s are equivalent only under the non-real rotation in 90�

degrees which exchanges real and imaginary axes. (The singular points are real

provided sea 0 and imaginary otherwise). Since complex spaces are much more

rigid (in the sense of conformal geometry) than real spaces one is then naturally

led to the question whether complexification is meaningful. To tackle this prob-

lem the coordinates x, y, the time t and parameter e are extended to the complex

Figure 1. Supercritical Hopf bifurcation.

154 W. Arriagada and J. Fialho



plane. In the standard complex variables x ¼ xþ iy and y ¼ x� iy the di¤erential

equation (1) takes the form

_xx ¼ ðeþ iÞxþ � � �
_yy ¼ ðe� iÞyþ � � � :

ð2Þ

The complex system is invariant under the antiholomorphic involution ðx; yÞ 7!
ðy; xÞ (see [2]) and hence the real phase portrait is embedded in the real plane

fx ¼ yg. The foliation is described locally by the complexification of the Poincaré

monodromy Pe : ðR; 0Þ ! ðR; 0Þ. The (complex) monodromy is real analytic and

is the second iterate of a conformal di¤eomorphism tangent to the standard flip

x 7! �x, see [4], [7]. The monodromy is hence tangent to the identity and its

form is well-suited to understand the real properties of the unfolding. The generic-

ity assumption permits to prepare the family of complex di¤erential equations via

a real analytic change of coordinate [1]. For the sake of the exposition the new

(prepared) complex coordinates will be denoted again by ðx; yÞ. Under the

change ðx; yÞ 7! ðx; yÞ the monodromy takes the prepared form

PeðxÞ ¼ xþ xðeþ sx2Þ
�
1þ bðeÞ þ cðeÞx2 þ xðeþ sx2Þhðx; eÞ

�
ð3Þ

with multiplier P 0
e ð0Þ ¼ expðeÞ. The formal invariant aðeÞ is defined by

P 0
e ðe

ffiffiffiffiffiffiffiffi
�se

p
Þ ¼ exp

�
�2e=

�
1� saðeÞe

��
: ð4Þ

The formal normal form of (3) is the time-one map of the vector field

xðeþ sx2Þ
1þ aðeÞx2

q

qx
: ð5Þ

In [5] the dynamics of Pe has been compared with the dynamics of its formal

normal form only for those values of e for which the singular objects (periodic

orbit and equilibria) are hyperbolic and the normalization domains intersect.

The corresponding invariant of analytic classification was identified only over

two sectors which do not cover a full neighborhood of zero in the parameter

space. The union these sectors intersects the real axis, see next section. The latter

corresponds to the Poincaré domain in the parameter space. (The multiplier has

absolute value di¤erent from 1 exactly when the parameter has a nonzero real

part). The modulus of the analytic classification is identified when the normal-

izing charts on special normalization domains are compared. The denomination

Poincaré modulus is then well-suited.

The Siegel domain in the parameter space corresponds to the union of two

sectors of the parameter space which intersect the positive and negative directions

of the imaginary axis, respectively. In the Siegel domain in the parameter space
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one can compute the modulus for all values of the parameter, since the union of

the two sectorial neighborhoods is a disk around zero. The normalization do-

mains (on which we compare the germ of family to the formal normal form) are

crescent-like sectorial domains with vertices located at the fixed points, see next

section. The analytic continuation of the normalizing chart is ramified at the fixed

points. The ramification is the obstruction preventing the family of di¤erential

equations from being embeddable. (A di¤erential equations is embeddable if its

flow can be conjugated to a holomorphic flow). The corresponding invariant of

the analytic classification is known as the Siegel modulus. The latter is a ramified

function of the parameter. In particular, there are two di¤erent definitions of the

Siegel modulus for the parameter values for which the Poincaré modulus can

be defined. Since the modulus depends analytically on e the Poincaré modulus,

defined only on a union of two sectors in the parameter space, determines the

Siegel modulus for parameter values in a full neighborhood of the origin. It is

precisely this last property that allows to embed a weak conjugacy (which is topo-

logical for some isolated values of the parameter) between two families of the form

(3) into a biholomorphism which is analytic in e.

Parametric rigidity. Let fe denote a germ of a one-parameter family of analytic

di¤eomorphisms or vector fields. The expression fe depends weakly analytically

on the parameter in a determined sectorial domain (of su‰ciently wide opening

containing e ¼ 0 at the tip) will indicate that f ðx; eÞ ¼ feðxÞ is analytic in the

second variable for values eA 0 and that f ðx; eÞ is only continuous in the second

coordinate at e ¼ 0, in that sectorial domain. The family fe depends strongly

analytically (or simply analytically) on e if f ðx; eÞ depends analytically on the

parameter in that determined sectorial domain.

Two families of germs of analytic di¤eomorphisms (resp. vector fields) fe are

weakly analytically conjugate (resp. weakly analytically orbitally equivalent) if

the following occurs. There exists a conjugacy (resp. orbital equivalence) between

those families which depends weakly analytically on e in a sectorial domain as

above. The transformation is fibered over the parameter space and tangent to

the identity. If the conjugacy (resp. orbital equivalence) depends analytically on

the parameter, the families are analytically conjugate (resp. analytically orbitally

equivalent).

Definition 1.1. The family of germs of real analytic di¤eomorphims (resp. vector

fields) fe is rigid in the parameter if any weak conjugacy (resp. weak orbital

equivalence) between this germ and any other germ of the same form necessarily

induces a real analytic biholomorphism which is holomorphic in e.

Hence, two families of germs of real analytic di¤eomorphims (resp. vector

fields) which are weakly conjugate (resp. weakly orbitally equivalent) and rigid
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in the parameter, are indeed strongly conjugate (resp. orbitally equivalent). We

prove in these notes that any germ of elliptic analytic generic unfolding with a

Hopf bifurcation of codimension one is rigid in the parameter.

2. The invariant of the analytic classification

It is known that (weak or strong) orbital equivalence of two germs of generic real

analytic families (2) implies (weak or strong) conjugacy of their monodromies, and

vice-versa.

Lemma 2.1 ([1]). Two generic germs of families of real analytic di¤erential equa-

tions (2) are weakly (resp. strongly) analytically orbitally equivalent by a real equiv-

alence if and only if the families unfolding their monodromies are weakly (resp.

strongly) analytically conjugate by a real conjugacy.

This implies that the class of the system (2) under orbital equivalence coin-

cides with the class of the monodromy under conjugacy. As the latter is a one-

dimensional germ this result is a great simplification in determining the analytic

class of the system of di¤erential equations.

2.1. The Ecalle modulus of the system (2). Two germs of real analytic families

of di¤eomorphisms of the form (3) with same sign s are conjugate if and only if

they have the same formal invariant aðeÞ and the same orbit space. The Ecalle

modulus is a description of the latter when e ¼ 0. Indeed, the germ P0 is topolog-

ically the time-1 map of (5) and then a fundamental domain Cþ
1 for the map P0 is

determined by a curve l1 and its image P0ðl1Þ. Notice that if x a l1 is identified

with its image P0ðxÞ, then the fundamental domain is conformally equivalent to a

sphere Sþ
1 . The endpoints of the crescent Cþ

1 limited by l1 and P0ðl1Þ correspond
to the points 0 and l on the sphere. All orbits of P0 (except that of 0Þ are repre-
sented by at most one point of the sphere Sþ

1 . However, there exist points in the

neighborhood of 0 whose orbits have no representative on the sphere Sþ
1 . To cover

the whole orbit space we need to take three other fundamental neighborhoods C�
1 ,

Cþ
2 , C

�
2 limited by curves lj and their images P0ðljÞ, j ¼ 2; 3; 4, respectively. As

before, we identify x a lj with its image P0ðxÞ and the union of these fundamental

domains is also conformally equivalent to a collection of spheres S�
1 , S

þ
2 , S

�
2 .

But there are points in the neighborhood of 0 (resp. lÞ which lie in di¤erent

spheres but belong to the same orbit. So we need to identify a neighborhood of

0 (resp. lÞ with a neighborhood of 0 (resp. lÞ in two di¤erent spheres. This is

done via a collection of analytic di¤eomorphisms c0
1 , c

0
2 (resp. cl

1 , cl
2 Þ sending 0

to 0 (resp. l to lÞ. In this way we obtain a non-Hausdor¤ topological manifold

endowed with a system of analytic charts given by the collection of spheres glued

157Rigidity of a Hopf bifurcation



at the poles by the maps c0
j and cl

j , see Figure 2. The size of the neighborhoods

of 0 and l depends on the size of the neighborhood of the origin where P0 is

defined, but the germs of analytic di¤eomorphims:

c0
1 ;c

0
2 : ðC; 0Þ ! ðC; 0Þ

cl
1 ;cl

2 : ðC;lÞ ! ðClÞ

are almost intrinsic maps of the sphere: the only analytic changes of coordinates

on Se
j preserving 0 and l are the linear maps. If we choose di¤erent coordi-

nates on Se
j we obtain di¤erent germs ðĉc0

j ; ĉc
l
j Þ. The equivalence relation

corresponding to changes of coordinates on Se
j and preserving the poles is

ðc0
1 ;c

0
2 ;c

l
1 ;cl

2 ÞP ðĉc0
1 ; ĉc

0
2 ; ĉc

l
1 ; ĉcl

2 Þ () bce1 ; c
e
2 a C :

c�2 ĉc
0
1ðwÞ ¼ c0

1 ðcþ1 wÞ;
c�1 ĉc

0
2ðwÞ ¼ c0

2ðcþ2 wÞ;

(
c�1 ĉc

l
1 ðwÞ ¼ cl

1 ðcþ1 wÞ;
c�2 ĉc

l
2 ðwÞ ¼ cl

2 ðcþ2 wÞ:

(

Inasmuch as P0 is the second iterate of a germ tangent to the standard flip

x 7! �x, it is possible to choose representatives of the modulus such that

c0;l
1 ð�wÞ ¼ �c0;l

2 ðwÞ ð6Þ

The Ecalle-modulus of the di¤eomorphism P0 is given by tuples ðc0
1 ;c

0
2 ;c

l
1 ;cl

2 Þ,
modulo the equivalence relationP. Any representative of the Ecalle modulus is

hence represented by a single pair ðc0;clÞ.

Figure 2. The flow of (5) in the cases s ¼e1 and the Ecalle modulus.
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On a small neighborhood U ¼ Dr of zero the dynamics of P0 is only topo-

logically conjugate to the dynamics of the time-one map of (5) at e ¼ 0. In the

unfolding, the study of the family Pe will be done over the fixed U for su‰ciently

small values of the parameter.

2.2. Unfolding of the Ecalle modulus in the Poincaré domain. We identify the

invariant of analytic classification of (3) in the Poincaré domain of the parameter

space. The latter corresponds to those values of e for which the fixed points

are hyperbolic. There are two sectorial domains for which this happens, each

one intersecting a real semi-axis:

Vd;l ¼ fjej < r; argðeÞ a ðp=2þ d; 3p=2� dÞg
Vd; r ¼ fjej < r; argðeÞ a ð�p=2þ d; p=2� dÞg;

ð7Þ

where d a ð0; p=2Þ, and r ¼ rðdÞ is a small positive number. The Poincaré domain

in the parameter space will be simply called the Poincaré domain or the hyperbolic

direction. We assume that Vd;lBVd; r ¼ f0g. The number r is chosen so that if

e a ðVd;lAVd; rÞnf0g then there are orbits connecting the fixed points in the neigh-

borhood U . Thus, the fixed points are linearizable along the hyperbolic direction.

The invariant is constructed by comparing the orbit space of (3) with the orbit

space of its formal normal form. The latter is the time-one map of the formal

vector field (5). Inasmuch as the fixed points are hyperbolic the family of di¤eo-

morphisms is normalizable independently over Vd;l and Vd; r. The orbit space of

Pe is obtained as follows. Let us denote by Lc the linear map w 7! cw, where

c a C.

We take three closed curves fl0; lþ; l�g around the fixed points along with

their images fPeðl0Þ;PeðlþÞ;Peðl�Þg. By hyperbolicity the closed regions C0, Cþ,
and C� between the curves and the images are isomorphic to three closed annuli,

see Figure 3. Each curve is identified with its image lPPeðlÞ and then the

quotient space is the union of three complex tori T0
e , T

l
1; e , and Tl

2; e. By Abel’s

Figure 3. The orbit space of (3) in the hyperbolic direction.
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Theorem [6] each torus is a quotient C�=Lc for some c a C� ¼ Cnf0g. Then a

natural coordinate on T is the projection of a coordinate w on C� ¼ Pnf0;lg.
In the quotient space each orbit of the di¤eomorphism is either a fixed point or

is represented by at most one point in a torus. However, some orbits may have

representatives in two di¤erent tori. The identification of orbits in two di¤erent

tori induce germs of families of analytic di¤eomorphisms ce : C
� 7! C� such that

ce �Lc1 ¼ Lc2 � ce if ce represents a map on an annulus in T1 ¼ C�=Lc1 with im-

age on annulus in T2 ¼ C�=Lc2 . The orbit space is hence represented by

an abstract, non-Hausdor¤ manifold given by the union of three tori (plus the

projection of the three fixed points, which represents the orbit space of the hyper-

bolic fixed points) glued along adjacent annuli by a collection of di¤eomorphisms

cþþ
e , c�þ

e , c��
e and cþ�

e .

We will refer to the invariant of analytic classification in the hyperbolic direc-

tion simply as the Poincaré modulus. Notice that P deprived of the north and

south poles is isomorphic to an infinite cylinder and the latter is the image of the

complex plane via the exponential map z 7! w ¼ expð�2pizÞ. The four compo-

nents of the Poincaré invariant yield four germs of conformal di¤eomorphisms

on C which commute with translation by one z 7! zþ 1. These maps will be

also denoted by cee
e . (This is not confusing as the source space of these maps is

parametrized by the complex coordinate z).

Consider the universal cover pe : Re ! U ¼ Dr. It is known that the source

space Re is a two-folded Riemann surface deprived of a countable number of holes

[9] and which is parametrized by the time t of the simpler one-dimensional equa-

tion _xx ¼ xðeþ sx2Þ. The latter is a small deformation of (5) and its time can be

found by direct integration. In the x coordinate, representatives of the modulus

are induced by the map qe ¼ pe � A�1
e , where Ae is a solution of Abel’s equation

f
�
PeðtÞ

�
¼ f ðtÞ þ 1; ð8Þ

and Pe is the germ induced by (3) in the chart t, see Figure 4. The complex

representatives of the modulus are respectively defined on the first, second, third

and fourth quadrants, see Figure 3. In the sequel, we will drop dependence on e

when the context allows no confusion.

Figure 4. On the left, the 4 domains of sectorial trivialization.
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2.2.1. Schwarz reflection and analytic continuation on P. It is always possible

to choose a real representative of the Poincaré modulus, in the sense that it sends

the real equator of P into itself. This particular choice in turn reflects the real

character of (3) and is expressed in terms of certain symmetries. The latter are

indeed consequence of the invariance of the foliation under the anitholomorphic

involution ðx; yÞ 7! ðy; xÞ, see [2]. This is in notorious contrast with the case of

other non-real conformal germs (e.g. parabolic or saddle di¤eomorphisms). We

discuss further details.

Let cee
e ðwÞ ¼

P
n AZ a

ee
n ðeÞwn be the expansions in Laurent series of the four

components of any representative of the Poincaré modulus in the annulus. The

complex conjugation w 7! w generates a multiplicative property.

Proposition 2.2. There exist representatives cee
e of the modulus in the hyperbolic

direction such that

X
Z

aþ�
n ðeÞwn �

X
Z

aþþ
�n ðeÞwn ¼ 1;

X
Z

a��
n ðeÞwn �

X
Z

a�þ
�n ðeÞwn ¼ 1:

Proof. Any given representative of the Poincaré invariant cee
e ¼ cee

e ðzÞ in the z

coordinate is a composite function of the form cee
e ¼ Be

e � ðAe
e Þ

�1 where Ae
e and

Be
e are two one-parameter solutions of Abel’s equation (8). The left index of

cee
e corresponds to the index of Ae

e and the right one, to the index of the map

Be
e . Theorem 5.1 in the reference [5] proves that the solutions Ae

e , B
e
e can be

chosen such that Ae
e ðtÞ ¼ Ae

e ðtÞ and Be
e ðtÞ ¼ BeH ðtÞ. The complex conjugation

z 7! z yields

cþ�
e ðzÞ ¼ cþþ

e ðzÞ; c��
e ðzÞ ¼ c�þ

e ðzÞ: ð9Þ

Inasmuch as expð�2pizÞ ¼ 1=expð�2pizÞ, composition of (9) with the exponential

map yields

cþ�
e ðwÞ ¼ 1=cþþ

e ð1=wÞ; c��
e ðwÞ ¼ 1=c�þ

e ð1=wÞ

in the w variable. The conclusion follows. r

Corollary 2.3. For real values of the parameter the equator of the Riemann sphere

is invariant under the Poincaré modulus.

Proof. Define the map cþ
e ¼ cþþ

e on domðcþþ
e Þ. By Proposition 2.2 the map

mðwÞ ¼ 1=cþþ
e ð1=wÞ coincides with cþ�

e on domðcþ�
e Þ. By the Schwarz reflec-
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tion principle, m extends cþ
e to all of domðcþþ

e ÞA domðcþ�
e Þ. That is, cþþ

e and

cþ�
e are analytic continuations of each other. Inasmuch as

cþ
e ðwÞ ¼ 1=cþ

e ð1=wÞ

the representative cþ
e fixes the real equator RP ¼ fjwj ¼ 1g of the Riemann

sphere provided e be real. (That is, if ww ¼ 1 then jcþ
e j ¼ 1 as well).

An analogous reasoning proves that c��
e and c�þ

e are analytic continuations

of each other. Proposition 2.2 proves again that the map

c�
e ¼ c��

e on domðc��
e Þ;

c�þ
e on domðc�þ

e Þ

�

fixes the real equator of the Riemann sphere on real values of the parameter. r

The pair ðcþ
e ;c

�
e Þ of real germs of di¤eomorphisms is a representative of the

invariant in the hyperbolic direction. It is also known [5] that the four compo-

nents of the Poincaré invariant are related by the linear map w 7! �w. The latter

generates an additive property.

Proposition 2.4. There exist representatives of the Poincaré invariant such that

X
Z

aþþ
n ðeÞwn þ

X
Z

ð�1Þna��
n ðeÞwn ¼ 0;

X
Z

aþ�
n ðeÞwn þ

X
Z

ð�1Þna�þ
n ðeÞwn ¼ 0:

As a corollary, any representative of the invariant of the analytic classifica-

tion in the hyperbolic direction is completely determined by only one of its four

components. Such a representative will be denoted by ce;P.

2.3. Unfolding of the Ecalle modulus in the Siegel domain. In the Siegel

domain of the parameter space (also called the nonhyperbolic direction or simply

the Siegel domain) the values of the parameter are taken in the union of two

sectorial domains of the parameter space

Vd;þ ¼ fjej < r; argðeÞ a ð�d; pþ dÞg
Vd;� ¼ fjej < r; argðeÞ a ðp� d; 2pþ dÞg

ð10Þ

where d a ð0; p=2Þ, and r ¼ rðdÞ is a small positive number. When the parameter

is restricted independently to each of these sectors, it is known that a suitable
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choice of r guarantees the existence of four crescents Ce
1; e, C

e
2; e in the source space

of (3), with endpoints at the fixed points. (The crescents corresponding to the

other sector are obtained by revolving the former crescents along the imaginary

axis, compare Figures 5 and 6). On each sector in (10) the crescents are bounded

by curves lj, j ¼ 1; 2, and their images PeðljÞ, see Figure 5. If lj and its image are

identified, then the quotient space is conformally equivalent to the union of four

spheres Se
j; e with the fixed points located at the south and north poles. It is known

[9] that there exists an analytic chart

fej; e : S
e
j; e ! P; ð11Þ

sending poles into poles and a chosen point x0 (called the base point and which

depends analytically on eÞ into 1. These coordinates are constructed in the univer-

sal cover Re and are known as Fatou coordinates [9]. The construction is standard

and can be reviewed in several articles and monographs. The pullback of (11) via

the quotient projection Ce
j; e ! Se

j; e generates analytic charts

%ej; e : C
e
j; e ! C; j ¼ 1; 2 ð12Þ

on the crescents. Points in neighborhoods of the poles of the spheres are identified

via analytic di¤eomorphisms c0
j; e;c

l
j; e : P ! P defined by

Figure 5. The crescents (gray strips) and some flow lines in the case s ¼ þ1 for values
e a Vd;þ.
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cl
j; e ¼ f�

j; e � ðfþ
j; eÞ

�1

c0
j; e ¼ f�

j; e � ðfþ
jþ1; eÞ

�1
ð13Þ

for j ¼ 1; 2 and where we identify fþ
3; e ¼ fþ

1; e. Evidently the maps (13) fix the

poles and are uniquely determined up to linear maps. The degree of freedom in

the coordinate determines an equivalence relation,

ðc0
j; e;c

l
j; eÞP ðĉc0

j; e; ĉc
l
j; eÞ () bce; c 0e a C� : ð14Þ

c 0eĉc
0
j; eðwÞ ¼ c0

j; eðcewÞ;
c 0eĉc

l
j; eðwÞ ¼ cl

j; eðcewÞ;

(

where ce and c 0e depend weakly analytically on e a Vd;�AVd;þ and c0; c
0
0A 0.

Moreover, the Z2 action of the map x 7! �x on (3) implies that di¤erent tuples

ðc0
j; e;c

l
j; eÞ inherit (6); that is c0;l

1; e ð�wÞ ¼ �c0;l
2; e ðwÞ. Therefore, any represen-

tative of an equivalence class is indeed completely determined by any pair

ðc0
j; e;c

l
j; eÞ. In principle, the invariant of the analytic classification of (3) in the

Siegel direction (or simply the Siegel modulus) consists of the sign s, the formal

invariant aðeÞ—defined implicitly in (4)—and a representative ðc0
e ;c

l
e Þ. How-

ever, in the next section we prove that the Siegel modulus can be retrieved

from the Poincaré modulus on the union of two subsectors in the intersection

Vd;�BVd;þ (hyperbolic direction). Since the formal invariant depends analyti-

Figure 6. The crescents in the case s ¼ þ1 for values e a Vd;�.
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cally on e it can be further continued along the sectors (10). Therefore, the Siegel

modulus consists of the sign s and the functional class defined by (14). It is worth-

while noticing that if we restrict to values ce ¼ c 0e then a suitable choice of the

global coordinate on P permits to take ðc0
e Þ

0ð0Þ ¼ ðcl
e Þ0ðlÞ.

2.4. Renormalized return maps. The Siegel modulus allows to study the dy-

namics of the germ near each of the fixed points by means of renormalized return

maps when the multiplier is on the unit circle [11]. It is known that the renor-

malized return maps still exist for nonzero values of e in the Siegel direction.

They are given by the composition of the Siegel modulus with a global transition

map le : P ! P. The latter is an analytic automorphism of P fixing 0 and l.

Hence it is linear and then the nonlinear part of a renormalized return map comes

from the Siegel modulus. More precisely, for nonzero values of e a Vd;�AVd;þ
the renormalized return maps are the composite maps

k0
e;e ¼ le;e � c0

e;e;

kle;e ¼ le;e � cl
e;e

(
ð15Þ

where the subscript þ, � makes reference to the respective sector Vd;þ or Vd;� on

which the definition takes place. The dynamics of these maps can be interpreted

as follows. In the neighborhood of each singular point the germ (3) is iterated

until it reaches back the crescent Ce
j; e. For example, given x a Cþ

1; e in the neigh-

borhood of a nonzero fixed point, and given e a Vd;þ, we let w be the coordinate

of x on Pþ
1 and we denote by n ¼ minfm a N : P�m

e ðxÞ a Cþ
1; eg. Then kle;þðwÞ is

the coordinate of the iterate P�n
e ðxÞ on the sphere P. Of course, the multipliers of

the renormalized return maps are analytic invariants:

ðk0
e;þÞ

0ð0Þ ¼ ðkle;�Þ
0ðlÞ ¼ expða0Þ;

ðkle;þÞ
0ðlÞ ¼ ðk0

e;�Þ
0ð0Þ ¼ expðalÞ;

ð16Þ

where a0 ¼ 4p2=e and al ¼ �2p2
�
1� saðeÞe

�
=e.

3. The Siegel invariant in the Poincaré domain

The sectors (10) intersect in two smaller sectors ~VVlHVd;l and ~VVr HVd; r over

which the renormalized maps (15) are linearizable [8], [11]. More precisely, for

values of e a ~VVlA ~VVr HVd;þ, there exist charts j
0
e;þ, j

l
e;þ such that

j0
e;þ � k0

e;þ ¼ Lexpða0Þ � j0
e;þ;

jle;þ � kle;þ ¼ LexpðalÞ � jle;þ:
ð17Þ
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(Note that the choice of the constants in the linear coordinates is not arbitrary: it is

fixed by (16)). For values of the parameter e a ~VVlA ~VVr HVd;�, there exist charts

j0
e;�, j

l
e;� on P such that

j0
e;� � k0

e;� ¼ LexpðalÞ � j0
e;�;

jle;� � kle;� ¼ Lexpða0Þ � jle;�:
ð18Þ

It is clear from (15) that tuples ðk0
e;e; k

l
e;eÞ are representatives of the Siegel

modulus. On the other hand, the linearizing charts provide representatives of the

invariant along the hyperbolic direction. Indeed, representatives of the Poincaré

modulus in the intersection of the Siegel domains (10) are given by the composite

maps (again, the subscript e makes reference to the corresponding Siegel sector

Vd;þ or Vd;�),

ce;P;e ¼
j0
e;e � ðjle;eÞ

�1; e a ~VVl

jle;e � ðj0
e;eÞ

�1; e a ~VVr:

(
ð19Þ

The linearizing coordinates are unique up to composition on the left with lin-

ear maps. In this section we solve the converse: given any representative ce;P;e of

the Poincaré invariant on P we retrieve charts ðV0; j
0
e;eÞ and ðVl; jle;eÞ on P

which depend weakly analytically on e a ~VVlA ~VVr. We drop dependence on e and

on the Siegel subscriptewhenever possible.

Theorem 3.1. The Siegel invariant can be determined from the Poincaré modulus.

Proof. Consider two positive numbers r1 < 1 < r0 and the standard covering

of the Riemann sphere P by an atlas of two charts ðD0; id0Þ and ðDl; tÞ. The

set D0 ¼ fjwj < r0gHR2 is an open disk (id0 is the identity on D0) and Dl ¼
fjwj > r1gA flg with the chart t ¼ 1=w, in which it also becomes an open disk.

The intersection D0BDl in P is the circular annulus A0;l ¼ fr1 < jwj < r0g.
The latter contains the equator fjwj ¼ 1g and induces two annuli A0 HD0 and

Al HDl. Inasmuch as the choice of the two numbers r1, r0 is irrelevant we

can assume that Al is the domain of the Poincaré invariant ce;P and A0 is the

target space for the values e a ~VVl and that the modulus has the opposite source

and target spaces for e a ~VVr. In either case, the source will be denoted by AS

and the target, AT. From this standard structure (with transition w 7! 1=wÞ we

construct a nonstandard atlas on P.

Consider the disks D0, Dl as disjoint sets in R2. The invariant ce;P induces

a map ce;P on AS HR2. Let us define M ¼ D0 þDl (ie., the set D0ADl

with topology: U HD0 þDl is open if and only if U BD0 is open in D0 and

U BDl is open in Dl). Then M has the structure of a smooth manifold and

an equivalence relation R is defined by identifying w a AS with ce;PðwÞ a AT.
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By Corollary 2.3 the disks are glued along the unit circle (equator). Hence the

quotient M=R is well defined and corresponds to a simply connected Riemann

surface equipped with an analytic structure. By the Uniformization Theorem the

quotient is conformally equivalent to the complex projective space. The canonical

inclusions i0 : D0 ,! M=R and il : Dl ,! M=R are injective because the invari-

ant is a di¤eomorphism. (These maps depend analytically on the parameter). It is

evident that

ce;P ¼ i�1
0 � il; e a ~VVl

i�1
l � i0; e a ~VVr

�
ð20Þ

up to linear maps c 7! cw in the middle space, where the constants c do not vanish

at e ¼ 0 and depend weakly analytically on the parameter. If V0 ¼ i0ðD0Þ and

Vl ¼ ilðDlÞ then we have the charts ðV0; i
�1
0 Þ and ðVl; i�1

l Þ on the quotient

manifold. It is clear that the family of all such charts is an atlas for P. It is also

evident that the transition function between the charts coincides with the represen-

tative ce;P of the Poincaré invariant.

We set j0
e ¼ id0 � i�1

0 and jle ¼ t�1 � i�1
l . These maps are di¤eomorphisms

respectively defined in neighborhoods of the poles of the projective space. Hence

they are unique up to left composition with linear maps. We will use this degree of

freedom: we will consider only those constants which depend weakly analytically

on e on the union of the Siegel domains (10). A chart ðj0
e ; j

l
e Þ with this restriction

is called normalized. It is clear that such a chart fixes the corresponding pole and

depends weakly analytically on the parameter in the Poincaré domain. By (20) the

composite maps

j0
e � ðjle Þ�1; e a ~VVl

jle � ðj0
e Þ

�1; e a ~VVr

(

yield representatives ce;P : A0;l ! A0;l for values e a ~VVlA ~VVr. In turn, families

of conformal maps k0
e;e, k

l
e;e can be respectively defined for those values of e via

(17) and (18). The families thus defined trivially satisfy (16) and are conjugate

to linear maps along the hyperbolic direction. By the almost unicity of the renor-

malized return maps they can be analytically continued (in the parameter) along

the non-hyperbolic direction. Indeed, the extension to a punctured neighborhood

of zero in the parameter space is holomorphic because the chart ðj0
e ; j

l
e Þ is

normalized. Since the maps ðj0
e ; j

l
e Þ are defined up to additive constants on

the left the maps ðk0
e;e; k

l
e;eÞ are renormalized return maps which depend weakly

analytically on e. A representative of the Siegel modulus on the Riemann sphere

can be thus recovered from equation (15) for values of e a Vd;�AVd;þ. The proof

is complete. r
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4. Parametric rigidity of the Hopf bifurcation

A symmetry of (3) is the germ of a one-parameter analytic family of di¤eomor-

phism which commutes with Pe on a neighborhood of the origin containing the

fixed points. A symmetry is real if the coe‰cients of its asymptotic expansion

are real for real values of e. This notion is helpful in the proof of the following

result.

Theorem 4.1. The class of germs of families of real analytic di¤erential equations

of the form (2) is rigid in the parameter.

Proof. Lemma 2.1 implies, in particular, that germs of analytic families of elliptic

vector fields of the form (2) are rigid in the parameter if and only if their mono-

dromies are rigid in the parameter. The latter has been proved in Theorem 1.2

of the reference [3] but we include the basic steps for the sake of completeness.

Through this result we prove that any germ of generic family (2) with a Hopf

bifurcation is rigid in the parameter.

Let us assume that, for values of the parameters in the union of the sectors (7)

(hyperbolic direction) the two prepared families of di¤eomorphisms (monodro-

mies) are weakly conjugate on the neighborhood U ¼ Dr. In the prepared form

the parameters are analytic invariants. Thus we can consider the conjugacy over

the identity and it su‰ces to compare the two families for a given e a ~VVlA ~VVr ¼
Vd;�BVd;þ and extend by analyticity. The weak conjugacy will be denoted by

he;l or by he; r provided e a Vd;l or e a Vd; r, respectively.

It is known that the existence of he;l and he; r is a su‰cient condition for the

Poincaré moduli of the di¤eomorphisms to coincide [5]. By Theorem 3.1, repre-

sentatives of the Siegel invariant for the two families are determined. There is no

reason for these moduli to coincide, though. However, as Fatou coordinates (11)

are unique up to composition on the left with linear maps, we can assume that

the associated crescents (the domains of the pullbacks (12)) are the same for the

two di¤eomorphisms. Moreover, if we restrict the values of the parameter to

the hyperbolic direction, the Fatou coordinates (11) associated with the two

monodromies coincide up to right composition with the conjugacy he;l, he; r and

up to left composition with linear maps. (Both solve the same Abel’s equation in

the Poincaré domain). It is easy to prove then that the Siegel invariants of the two

families coincide over the subsectors ~VVlA ~VVr. Inasmuch as the Siegel modulus is

analytic in the parameter on the larger subsectors (10), the Siegel moduli of the

two di¤eomorphisms coincide. It is known that this is a necessary and su‰cient

condition for the two di¤eomorphisms to be (strongly) analytically conjugate.

Back in the x coordinate this conjugacy induces two conjugacies he;þ and he;� on

the union of the crescents. (The subscriptemakes reference to the Siegel sector
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Vd;þ or Ve;�Þ. However, the crescents are fundamental domains and then he;þ and

he;� extend to Dr via iterations. The fact that the families have the same Siegel

modulus ensures that the extension is non-ramified. It remains to prove that

such a conjugacy induces a real biholomorphism analytic in e.

A su‰cient condition for the Poincaré and Siegel moduli to unfold the Ecalle

invariant is that the Fatou coordinates be normalized: they have the same limit

as e ! 0. Since Fatou coordinates are defined up to additive constant such a nor-

malization is always possible. This condition ensures that h0; rC h0;�C h0;þ. For

nonzero values of the parameter the composite maps Hþ
e ¼ ðhe;þÞ�1 � he; r and

H�
e ¼ ðhe;�Þ�1 � he; r are two symmetries of the monodromy of the second system

on the sector Vd; r, which a priori depend weakly analytically on e. It is known

[7] that along the hyperbolic direction, the symmetries of the monodromy are

conjugate to the time-tðeÞ flow of (5) for a continuous time tðeÞ which is unique

provided it unfolds the identity. Up to composition of he; r, he;þ and he;l on the

left with real symmetries of (3) (which are chosen to be conjugate to time-tr;eðeÞ
flows of (5) for times tr;eðeÞ ¼ ln h 0

e; r;eð0Þ=e) it is always possible to assume that

the multipliers

h 0
e; rð0Þ ¼ h 0

e;þð0Þ ¼ h 0
e;�ð0Þ ¼ 1

in the Poincaré domain. Hence ðHe
e Þ0ð0Þ ¼ exp

�
�etðeÞ

�
C 1 and thus tðeÞ ¼

2piN=e for an integer N. Since tðeÞ is continuous at zero, N ¼ 0 and He
e is the

identity. That is, he; rC he;þC he;� for values e a Vd; r. In particular, the maps

he;þ, he;� are real for real values of the parameter. This also implies the remark-

able fact that he; r depends analytically on the parameter.

For values of e a Vd;l we prove in analogous way that, up to left composition

with real symmetries of (3), he;lC he;þC he;� on e a Vd;l. The maps he;þ, he;�, are
hence real and he;l depends analytically on e.

Inasmuch as the two maps he;þ, he;� conjugate the monodromies, they coincide

on Vd;�BVd;þ. r

Corollary 4.2. Two real germs of families of conformal di¤eomorphisms of the

form (3) with the same sign s are strongly conjugate along the hyperbolic direction

if and only if they have the same Poincaré invariant.

Lemma 2.1 and Corollary 4.2 thus imply the following (stronger) result.

Corollary 4.3. Two germs of generic families of real analytic vector fields of the

form (2) are strongly analytically orbitally equivalent by a real equivalence if and

only if their Poincaré monodromies have the same sign s and the Poincaré moduli

of the associated prepared families (3) coincide.
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