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Abstract. In this paper we study a Stackelberg-Nash strategy to control systems of coupled
linear parabolic partial di¤erential equations. We assume that we can act on the system
through several controls called followers, intended to solve a Nash multi-objective equilib-
rium, and a single leader control satisfying a null controllability objective. We obtain the
existence and uniqueness of the Nash equilibrium, its characterization and the optimal
leader control satisfying the null controllability problem.
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1. Introduction

The development of science and technology has motivated many branches of

control theory. Initially, in the classical control theory, we encountered problems

where a system must reach a predetermined target by the action of a single con-

trol, for example, find the control v a Vad of minimum norm such that the design

specifications are met. To the extent that more realistic situations were con-

sidered, it was necessary to include several di¤erent (and even contradictory) con-

trol objectives, as well as develop theory that would handle the concepts of multi-

criteria optimization, where optimal decisions need to be taken in the presence

of trade-o¤s between these di¤erent objectives. There are many points of view to

deal with multi-objective problems. Notions of economics and game theory were

introduced in the works of H. von Stackelberg [25], J. F. Nash [22] and V. Pareto

[24], where each has a particular philosophy to solve these problems.

According to the formulation introduced by H. von Stackelberg [25], we

assume the presence of various local controls, called followers, which have their
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own objectives, and a global control, called leader, with a di¤erent goal from the

rest of the players (in this case, the followers). The general idea of this strategy is a

game of hierarchical nature, where players compete against each other, so that the

leader makes the first move and then the followers react optimally to the action of

the leader. Since many followers are present and each has a specific objective, it is

intended that these are in Nash equilibrium.

Up to date, in the context of partial di¤erential equations (PDEs), there are

several papers related to this topic. As a precedent, in the papers by Lions [19]

and [20], the Stackelberg equilibrium was studied when control is applied on the

boundary of a wave equation and control is exerted in the interior of an equa-

tion of parabolic type, respectively. Later, Dı́az [9], in collaboration with Lions,

studied the existence and uniqueness of Stackelberg-Nash equilibrium, as well as

its characterization. In that work, the followers and the leader have both objec-

tives of approximate controllability, the first ones locally and the second in a

global way. On the other hand, Glowinski, Ramos, and Periaux [13] studied the

Nash equilibrium for linear parabolic equations from a theoretical and numeri-

cal point of view. More recently, Lı́maco, Clark, and Medeiros [18] developed

results of hierarchical control for parabolic equations with moving boundaries,

while Guillén-González, Marques-Lopes, and Rojas-Medar [16] presented a

Stackelberg-Nash strategy for the Stokes problem in the velocity and pressure

formulation. Finally, in [4], the authors developed the first hierarchical results

within the exact controllability framework for a parabolic equation.

Nevertheless, most of the previous works have one thing in common: they deal

with hierarchical control of a single equation. In this paper we are interested in

developing a Stackelberg-Nash strategy where the system dynamics is given by a

non-scalar system of parabolic equations in which we act through a hierarchy of

controls. This type of systems are particularly studied in mathematical biology.

The systems analyzed in this paper represent a linear version of more complex

models obtained from Chemotaxis (see for instance [7], [21]) or treatment of

tumors [6]. To our knowledge, the only paper dealing with coupled systems is

[5]. There, the authors study a Stackelberg-Nash strategy for two coupled equa-

tions of fluid mechanics, with the particularity that they act by means of the

leaders and followers on both of the equations involved satisfying an approximate

controllability constrain. In this paper, the main novelty is that we deal with a

system of two coupled parabolic equations acting only in the first equation and

addressing a null controllability result.

2. The problem and its formulation

Let W be an open and bounded domain of RN with boundary qW of class C2 and

o be an open and nonempty subset of W. Given T > 0, we consider the following
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system of coupled parabolic PDEs with leader control localized in o and follower

controls localized in o1;o2 HW with oi Bo ¼ j. More precisely

y1; t � Dy1 þ a11y1 þ a12y2 ¼ hwo þ v1wo1
þ v2wo2

in Q ¼ W� ð0;TÞ;
y2; t � Dy2 þ a21y1 þ a22y2 ¼ 0 in Q;

yj ¼ 0 on S ¼ qW� ð0;TÞ; j ¼ 1; 2;

yjðx; 0Þ ¼ y0j ðxÞ in W; j ¼ 1; 2;

8>>><
>>>:

ð1Þ

where aij ¼ aijðx; tÞ a LlðQÞ and y0j a L2ðWÞ are prescribed. Equivalently, the

previous system can be written as

yt � Dyþ Aðx; tÞy ¼ B½hwo þ v1wo1
þ v2wo2

� in Q;

y ¼ 0 on S;

yðx; 0Þ ¼ y0ðxÞ in W;

8<
: ð2Þ

where y0 ¼ ðy0i Þi¼1;2 a ½L2ðWÞ�2, Aðx; tÞ ¼
�
aijðx; tÞ

�
1ai; j a 2

a ½LlðQÞ�2�2 and

B ¼ ð1 0Þ�.
In system (2), y ¼ ðy1; y2Þ� is the state, vi ¼ viðx; tÞ and h ¼ hðx; tÞ are the

follower and leader control functions, respectively, while wo and woi
denote the

characteristic functions of o and oi. Observe that for each h a L2
�
o� ð0;TÞ

�
,

vi a L2
�
oi � ð0;TÞ

�
, i ¼ 1; 2 and y0 a L2ðWÞ2, system (2) admits a unique weak

solution, hereinafter denoted as

y ¼ yðx; t; h; v1; v2Þ:

In the case where only a leader control is exerted on o, there exist several

papers devoted to the controllability of parabolic non-scalar systems of PDEs,

see for instance [1], [2], [15], [23] or [3] for a recent survey on the controllability

of coupled parabolic systems. In particular, in [14] the authors proved that system

(2) is indeed null controllable whenever a single control is applied in the first equa-

tion of the coupled system, as long as a21 has a fixed sign on an open subset of o.

Now, we introduce the control point of view where we assume that we have a

hierarchy in our wishes and we will describe the Stackelberg-Nash strategy for sys-

tem (2). Let O1;d ;O2;d HW be open subsets, representing the observation domains

of the followers, which are localized arbitrarily in W. Define the functionals

Jiðh; v1; v2Þ ¼
ai

2

ðð
Oi; d�ð0;TÞ

jy1 � yi
1;d j

2 þ jy2 � yi
2;d j

2
dx dt

þ mi
2

ðð
oi�ð0;TÞ

jvij2 dx dt; i ¼ 1; 2; ð3Þ
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and the main functional

JðhÞ ¼ 1

2

ðð
o�ð0;TÞ

jhj2 dx dt;

where ai; mi > 0 are constants and yi
d ¼ ðyi

1;d ; y
i
2;dÞ

� are given functions in

L2
�
Oi;d � ð0;TÞ

�
, i ¼ 1; 2.

The main goal is to choose h such that the following general objective (of null

controllability) is achieved

yð�;T ; h; v1; v2Þ ¼ 0 in W: ð4Þ

The second priority is the following. Given the functions yi
1;d and yi

2;d , we

want to choose the controls vi such that throughout the interval t a ð0;TÞ

yðx; t; h; v1; v2Þ “do not deviate much” from yi
dðx; tÞ;

in the observability domains Oi;d ; i ¼ 1; 2: ð5Þ

To achieve simultaneously (4) and (5) the control process can be described

as follows. For a fixed leader control h, find controls ðv1; v2Þ that depend on h

and the corresponding state solution y ¼ yðh; v1; v2Þ of equation (2) satisfying the

Nash equilibrium related to ðJ1; J2Þ defined in (3). That is, given h, find ðv1; v2Þ
such that

J1ðh; v1; v2Þa J1ðh; v1; v2Þ; Ev1 a L2
�
o1 � ð0;TÞ

�
;

J2ðh; v1; v2Þa J2ðh; v1; v2Þ; Ev2 a L2
�
o2 � ð0;TÞ

�
;

or equivalently

J1ðh; v1; v2Þ ¼ min
v1

J1ðh; v1; v2Þ; ð6Þ

J2ðh; v1; v2Þ ¼ min
v2

J2ðh; v1; v2Þ: ð7Þ

Any pair ðv1; v2Þ satisfying (6)–(7) is called a Nash equilibrium for ðJ1; J2Þ.
Since J1 and J2 are strictly convex functionals, ðv1; v2Þ is a Nash equilibrium with

respect to ðJ1; J2Þ if and only if

qJ1

qv1
ðh; v1; v2Þ; v1

� �
¼ 0 Ev1 a L2

�
o1 � ð0;TÞ

�
; ð8Þ

qJ1

qv2
ðh; v1; v2Þ; v2

� �
¼ 0 Ev2 a L2

�
o2 � ð0;TÞ

�
: ð9Þ

118 V. Hernández-Santamarı́a, L. de Teresa and A. Poznyak



After identifying the Nash equilibrium and the associated state y ¼
y
�
h; v1ðhÞ; v2ðhÞ

�
for each h, we look for an optimal control ĥh such that

JðĥhÞ ¼ min
h

J
�
h; v1ðhÞ; v2ðhÞ

�
ð10Þ

subject to the restriction

y
�
�;T ; h; v1ðhÞ; v2ðhÞ

�
¼ 0 in W: ð11Þ

Within this spirit, the main contribution of this paper can be stated as follows.

Assume that

O1;d ¼ O2;d ; ð12Þ

denoted in the next sections as Od . Then we state the following:

Theorem 2.1. Let A ¼ Aðx; tÞ be the corresponding coupling matrix of system (2).

Assume that Od BoA j and that mi for i ¼ 1; 2, are su‰ciently large. If

a12C 0 in Q; ð13Þ

and

a21b a0 > 0 or �a21b a0 > 0 in ðOd BoÞ � ð0;TÞ; ð14Þ

there exists a positive function r ¼ rðtÞ blowing up at t ¼ T such that if

ðð
Od�ð0;TÞ

r2jyi
j;d j

2
dx dt < þl; i; j ¼ 1; 2; ð15Þ

then for any y0 a L2ðWÞ2 there exists a control h a L2
�
o� ð0;TÞ

�
and the corre-

sponding Nash equilibrium ðv1; v2Þ such that the solution of (2) satisfies (11).

Remark 2.2. Some remarks are in order.

• The hierarchical control is largely motivated by applications where more than

one objective is desirable in the behavior of the system under study. For in-

stance, if u ¼ uðx; tÞ represents the concentration of a chemical product, the

methodology is to reach the state 0 by means of an optimal control h acting

on the domain o, but at the same time try to keep the concentration near

a reasonable quantity in Od along the time interval ð0;TÞ. In this paper we

extend this concept to coupled parabolic systems.

• Just as in [4], condition (15) seems natural and it means that the follower

objectives yi
j;d approach 0 as t ! T . This is because after computing the
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follower controls ðv1; v2Þ the leader control h should not find any obstruction

to control the system. Also in [4], condition (12) is required to control a single

parabolic equation. It remains an open problem to verify if this condition is

necessary.

• It remains an open problem, in [4] and here, to eliminate the condition

O1;d ¼ O2;d : intuitively it should be more di‰cult to drive the solution close

to two di¤erent objectives in the same subset than close to two di¤erent ones

in di¤erent subsets.

• Assumption (13) might seem restrictive, but this condition appears naturally

in cascade systems. See Remark 6.5 below.

• Unlike other papers as [16] (in the scalar case) or [5] (in the coupled case),

we are supposing that the follower controls are being applied in some sets oi

disjoint of the leader set o. This leads to a more realistic situation, otherwise

once the followers choose a policy, the leader modifies its behavior at the

same points.

The proof of Theorem 2.1 requires several steps: in Section 3 we give su‰cient

conditions for the existence and uniqueness of Nash equilibrium, while in Section

4 we give its characterization. In Section 5 we prove that if there exists a Nash

equilibrium for the followers, then the leader solve the problem of null control-

lability. Lastly, we devote Section 6 to prove the observability inequality needed

to establish the null controllability result.

3. Existence and uniqueness for the Nash equilibrium

In this section, we recall an existence and uniqueness result concerning the Nash

equilibrium in the sense of (8)–(9) (see, for instance, [9]). We follow the same

spirit as in [16] to present the result. Here, no hypotheses are required regarding

the control sets oi and o or the observation sets Oi;d , nor the coe‰cient a12, so we

keep the notation from the problem formulation.

For this, consider the functionals given by (3) and define the functional

spaces

Hi ¼ L2
�
oi � ð0;TÞ

�
; i ¼ 1; 2;

H ¼ H1 �H2:

as well as the operator

Li a L
�
Hi;L

2ðQÞ2
�

defined as Liv
i ¼ yi;
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where yi ¼ ðyi
1; y

i
2Þ is solution of

yi
1; t � Dyi

1 þ a11y
i
1 þ a12y

i
2 ¼ viwoi

in Q;

yi
2; t � Dyi

2 þ a21y
i
1 þ a22y

i
2 ¼ 0 in Q;

yi
j ð0Þ ¼ 0 in W; yi

j ¼ 0 on S; j ¼ 1; 2:

8><
>:

With this notation, for any h a L2
�
o� ð0;TÞ

�
we write the solution of (2) as

follows

y ¼ L1v
1 þL2v

2 þ qðhÞ;

where qðhÞ ¼
�
q1ðhÞ; q2ðhÞ

�
solves the system

q1; t � Dq1 þ a11q1 þ a12q2 ¼ hwo in Q;

q2; t � Dq2 þ a21q1 þ a22q2 ¼ 0 in Q;

qjð0Þ ¼ y0j in W; qj ¼ 0 on S; j ¼ 1; 2:

8><
>:

Thus, we rewrite the functionals (3) as

Jiðh; v1; v2Þ ¼
mi
2

ðð
oi�ð0;TÞ

jvij2 dx dt

þ ai

2

ðð
Oi; d�ð0;TÞ

kL1v
1 þL2v

2 � ~yyi
dk

2
dx dt for i ¼ 1; 2;

where ~yyi
d ¼ yi

d � qðhÞjOi; d
, ði; j ¼ 1; 2Þ and k � k stands for the usual Euclidian

norm. Therefore, ðv1; v2Þ is a Nash equilibrium if and only if satisfies (8)–(9),

namely

mi

ðð
oi�ð0;TÞ

vivi dx dtþ ai

ðð
Oi; d�ð0;TÞ

ðL1v
1 þL2v

2 � ~yyi
dÞ �Liv

i dx dt ¼ 0;

for i ¼ 1; 2 and for any ðv1; v2Þ a H. It follows that

miðvi; viÞoi�ð0;TÞ þ ai
�
L�

i ½ðL1v
1 þL2v

2ÞjOi; d
� ~yyi

d �; vi
�
oi�ð0;TÞ ¼ 0;

with ð� ; �ÞA denoting the internal product in L2ðAÞ and L�
i a L

�
½L2ðQÞ�2;Hi

�
is

the adjoint operator of Li. Hence,

miv
i þ aiL

�
i ½ðL1v

1 þL2v
2ÞjOi; d

� ¼ aiL
�
i ~yy

i
d :
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For all v ¼ ðv1; v2Þ, we define the operator R ¼ ðR1;R2Þ a LðH;HÞ as

Riv ¼ miv
i þ aiL

�
i ½ðL1v

1 þL2v
2ÞwOi; d

�;

for each i ¼ 1; 2. Thereby, v ¼ ðv1; v2Þ is a Nash equilibrium if and only if

Rv ¼ aiL
�
i ~yy

i
d ; i ¼ 1; 2; ð16Þ

where the right hand side is a given fixed element of H. Let us calculate

ðRv; vÞH ¼
X2

i¼1

mikvik
2
L2ðoi�ð0;TÞÞ þ a1ðL1v

1 þL2v
2;L1v

1ÞO1; d�ð0;TÞ

þ a2ðL1v
1 þL2v

2;L2v
2ÞO2; d�ð0;TÞ:

By developing the product of cross terms and applying Young’s inequality to

them, we finally obtain

ðRv; vÞHbm1kv1k
2
H1

þ m2kv2k
2
H2

� a1

4
kL2wO1; d

k2H1; d
kv2k2H2

� a2

4
kL1wO2; d

k2H2; d
kv1k2H1

;

where k � kHi; d
denotes the norm in the space L

�
H3�i;L

2
�
Oi;d � ð0;TÞ

��
for

i ¼ 1; 2. Then, for parameters m1 and m2 su‰ciently large such that

4m1 > a2kL1wO2; d
k2H2; d

;

4m2 > a1kL2wO1; d
k2H1; d

;

we have

ðRv; vÞHb gkvk2H; g ¼ min
i¼1;2

mi �
a3�i

4
kLiwo3�i; d

k2H3�i; d

� �
> 0: ð17Þ

We define the functional aðv; uÞ : H�H ! R as

aðv; uÞ ¼ ðRv; uÞH:

Then, from the definition of R and the estimation (17), a is a continuous and

coercive bilinear form. Applying the Lax-Milgram theorem (see e.g. [8]), we

have that for all f a H, there exists a unique element v a H such that

aðv; uÞ ¼ ðf; uÞ Eu a H;
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particularly satisfying (16). Thus we have proved the existence and uniqueness of

the Nash equilibrium related to ðJ1; J2Þ.

4. Optimality conditions for the followers

We have shown in the previous section that for m1 and m2 large enough, there exist

a unique Nash equilibrium for ðJ1; J2Þ. We want to express it in terms of a new

adjoint variable. We have that ðv1; v2Þ is solution of (8)–(9) if

ai

ðð
Oi; d�ð0;TÞ

ðy1 � yi
1;dÞ ŷyi

1 þ ðy2 � yi
2;dÞ ŷyi

2 dx dt

þ mi

ðð
oi�ð0;TÞ

viv̂vi dx dt ¼ 0; Ev̂vi a L2
�
oi � ð0;TÞ

�
; i ¼ 1; 2; ð18Þ

where ŷyi ¼ ð ŷyi
1; ŷy

i
2Þ is the solution of system

ŷyi
1; t � Dŷyi

1 þ a11 ŷy
i
1 þ a12 ŷy

i
2 ¼ v̂viwoi

in Q;

ŷyi
2; t � Dŷyi

2 þ a21 ŷy
i
1 þ a22 ŷy

i
2 ¼ 0 in Q;

ŷyi
j ð0Þ ¼ 0 in W; ŷyi

j ¼ 0 on S; j ¼ 1; 2:

8><
>: ð19Þ

Let us introduce the adjoint state to (19), that is, pi ¼ ðpi
1; p

i
2Þ

� solution of

�pi
1; t � Dpi

1 þ a11p
i
1 þ a21p

i
2 ¼ aiðy1 � yi

1;dÞwOi; d
in Q;

�pi
2; t � Dpi

2 þ a12p
i
1 þ a22p

i
2 ¼ aiðy2 � yi

2;dÞwOi; d
in Q;

pi
j ðTÞ ¼ 0 in W; pi

j ¼ 0 on S; j ¼ 1; 2:

8><
>: ð20Þ

If we multiply (20) by ŷyi in ½L2ðQÞ�2, and integrate by parts, we obtain

ðð
Q

aiðy1 � yi
1;dÞwOi; d

ŷyi
1 � a21p

i
2 ŷy

i
1 dx dt ¼

ðð
Q

pi
1ðv̂v iwoi

� a12 ŷy
i
2Þ dx dt;ðð

Q

aiðy2 � yi
2;dÞwOi; d

ŷyi
2 dx dt ¼

ðð
Q

ð�a21p
i
2 ŷy

i
1 þ a12p

i
1 ŷy

i
2Þ dx dt:

Adding up the above expressions and replacing on (18) we have

ðð
oi�ð0;TÞ

pi
1v̂v

i dx dtþ mi

ðð
oi�ð0;TÞ

viv̂vi dx dt ¼ 0;
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which implies that

pi
1woi

þ miv
i ¼ 0:

Therefore, given h a L2
�
o� ð0;TÞ

�
, the pair ðv1; v2Þ is a Nash equilibrium of

problem (6)–(7) if and only if

vi ¼ � 1

mi
pi
1woi

; i ¼ 1; 2;

where ðy; piÞ is solution of the coupled system

y1; t � Dy1 þ a11y1 þ a12y2 ¼ hwo � 1
m1
p11wo1

� 1
m2
p21wo2

in Q;

y2; t � Dy2 þ a21y1 þ a22y2 ¼ 0 in Q;

�pi
1; t � Dpi

1 þ a11p
i
1 þ a21p

i
2 ¼ aiðy1 � yi

1;dÞwOi; d
in Q;

�pi
2; t � Dpi

2 þ a12p
i
1 þ a22p

i
2 ¼ aiðy2 � yi

2;dÞwO1; d
in Q;

yjð0Þ ¼ y0j ; pi
j ðTÞ ¼ 0; yj ¼ pi

j ¼ 0 on S; i; j ¼ 1; 2:

8>>>>>><
>>>>>>:

ð21Þ

5. Null controllability

Recall that the main objective is to prove the null controllability of ðy1; y2Þ at

time T . Note that the computation of the follower controls satisfying conditions

(8)–(9) added four additional equations coupled to the original system under

study. Thus, in this section, we look for a control h a L2
�
o� ð0;TÞ

�
such that

the solution of (21) satisfies (11).

In order to accomplish this, consider the following system which is the adjoint

of (21)

�j1; t � Dj1 þ a11j1 þ a21j2 ¼ a1y
1
1wO1; d

þ a2y
2
1wO2; d

in Q;

�j2; t � Dj2 þ a12j1 þ a22j2 ¼ a1y
1
2wO1; d

þ a2y
2
2wO1; d

in Q;

y i
1; t � Dy i

1 þ a11y
i
1 þ a12y

i
2 ¼ � 1

mi
j1woi

in Q;

y i
2; t � Dy i

2 þ a21y
i
1 þ a22y

i
2 ¼ 0 in Q;

jjðTÞ ¼ fj; y i
j ð0Þ ¼ 0 in W; jj ¼ y i

j ¼ 0 on S; i; j ¼ 1; 2:

8>>>>>>><
>>>>>>>:

ð22Þ

The main task is to prove an observability inequality for system (22). In fact, it

remains an open problem if the required observability inequality holds true when

O1;d AO2;d and a12A 0.

Taking into consideration assumptions (12) and (13) we can simplify the pre-

vious system as follows
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�j1; t � Dj1 þ a11j1 þ a21j2 ¼ ða1y11 þ a2y
2
1ÞwOd in Q;

�j2; t � Dj2 þ a22j2 ¼ ða1y12 þ a2y
2
2ÞwOd in Q;

y i
1; t � Dy i

1 þ a11y
i
1 ¼ � 1

mi
j1woi

in Q;

y i
2; t � Dy i

2 þ a21y
i
1 þ a22y

i
2 ¼ 0 in Q;

jjðTÞ ¼ fj; y i
j ð0Þ ¼ 0 in W; jj ¼ y i

j ¼ 0 on S; j ¼ 1; 2:

8>>>>>>><
>>>>>>>:

ð23Þ

The estimate is given in the following result:

Proposition 5.1. Suppose that assumptions (12)–(14) hold, Od BoA j and that

mi are su‰ciently large. There exist a positive constant C and a weight function

r ¼ rðtÞ blowing up at t ¼ T, such that, for every ð f1; f2Þ a ½L2ðWÞ�2, the solution

ðj; y iÞ to (23) satisfies

ð
W

jj1ð0Þj
2
dxþ

ð
W

jj2ð0Þj
2
dxþ

X2

i¼1

ðð
Q

r�2jy i
1j

2
dx dtþ

X2

i¼1

ðð
Q

r�2jy i
2j

2
dx dt

aC

ðð
o�ð0;TÞ

jj1j
2
dx dt: ð24Þ

The proof of Proposition 5.1 relies on various well-known arguments that will

be clarified in its proof. For now, we suppose that the proposition holds and

we will conclude the proof of Theorem 2.1. There are several ways to show that

inequality (24) implies the existence of a null control of minimal norm. We sketch

one of them. First, we can prove that

kð f1; f2Þk2W ¼
ðð

o�ð0;TÞ
jj1j

2
dx dt;

where j1 is the corresponding (first component of the) solution to (23) defines a

norm in ½L2ðWÞ�2. This can be readily verified by means of Proposition 6.4 below

or directly from (24), using classical results for cascade systems that provide a

unique continuation property. Now, define W as the completion of ½L2ðWÞ�2
with this norm and set

Ið f1; f2Þ ¼
1

2
kð f1; f2Þk2W þ

ð
W

y01j1ð0Þ dxþ
ð
W

y02j2ð0Þ dx

�
X2

i¼1

ðð
Od�ð0;TÞ

aiy
i
1y

i
1;d dx dt�

X2

i¼1

ðð
Od�ð0;TÞ

aiy
i
2y

i
2;d dx dt;

where ðj; y iÞ is the solution to (22). It is clear that I is continuous and strictly

convex. Moreover, the observability inequality (24) allows to prove that
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Ið f1; f2Þ

b
1

4
kð f1; f2Þk2W � C

�ð
W

jy01 j
2
dxþ

ð
W

jy02 j
2
dx

þ
X2

i¼1

a2i

�ðð
Q

r2jyi
1;d j

2
dx dtþ

ðð
Q

r2jyi
2;d j

2
dx dt

��
;

where C and r are provided by Proposition 5.1. Therefore, Ið f1; f2Þ is coercive in
W . Note that here, we have used the growth assumption (15). Consequently, the

existence of a minimizer ð f̂f1; f̂f2Þ solving

Ið f̂f1; f̂f2Þ ¼ min
ð f1; f2Þ AW

Ið f1; f2Þ

is guaranteed. Hence, the control h ¼ ĵj1wo, where ĵj1 is the solution of (23) cor-

responding to this minimum solves (10)–(11), see for instance [10]. This ends the

proof of Theorem 2.1.

6. Proof of Proposition 5.1

We will devote this section to prove Propostion 5.1. To this end, we recall some

results that will be useful to prove (24). The starting point is a well-known global

Carleman inequality for solutions to scalar parabolic equations:

zt � Dz ¼ F in Q;

z ¼ 0 on S;

zðx; 0Þ ¼ z0ðxÞ in Q;

8<
: ð25Þ

where F a L2ðQÞ and z0 a L2ðWÞ. To formulate this inequality we first need to

introduce a special weight function whose existence is guaranteed by the following

result (see Lemma 1.1 in [12]).

Lemma 6.1. Let BHHW be a nonempty open subset. Then there exists

h0 a C2ðWÞ such that

h0ðxÞ > 0 all x a W; h0jqW ¼ 0;

j‘h0j > 0 for all x a WnB:

(

Fixing an open subset BHHW, we set

b0ðxÞ ¼ e2C
�kh0kl � eC

�h0ðxÞ; ð26Þ
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for x a W, where h0 is the function provided by Lemma 6.1 for this particular B

and C � is an appropriate positive constant only depending on W and B.

In the following result, due to Imanuvilov and Yamamoto (see [17]), we have a

global Carleman inequality for the solutions to (25):

Lemma 6.2. Let BHHW be a nonempty open subset. For any m a R, there exist

constants sm > 0 and Cm > 0 such that, for any sb sm and every z0 a L2ðWÞ, the
solution z to (25) satisfies

Iðm; zÞ :¼
ðð

Q

e�2sbðsgÞm�2j‘zj2 dx dtþ
ðð

Q

e�2sbðsgÞmjzj2 dx dt

aCm

�
LBðm; zÞ þ

ðð
Q

e�2sbðsgÞm�3jF j2 dx dt
�
: ð27Þ

Furthermore, Cm only depends on W, B and m and sm can be taken of the form

sm ¼ smðT þ T 2Þ where sm only depends on W, B and m. In inequality (27), b is

defined by

bðx; tÞ ¼ b0ðxÞ
tðT � tÞ ; for ðx; tÞ a Q;

with b0 the function appearing in (26) and where LBðm; zÞ and g ¼ gðtÞ stand for

LBðm; zÞ :¼
ðð

B�ð0;TÞ
e�2sbðsgÞmjzj2 dx dt; gðtÞ :¼ 1

tðT � tÞ :

Remark 6.3. Note that by changing t for T � t, Lemma 6.2 remains valid for

linear backwards in time systems. Therefore, we can apply it interchangeably in

what follows.

Now we are in position to prove inequality (24). It is consequence of a com-

bination of global Carleman inequalities and suitable energy estimates for the

solutions to system (23). In view of assumptions (12) and (13), we may simplify

(23) as

�j1; t � Dj1 þ a11j1 þ a21j2 ¼ c1wOd in Q;

�j2; t � Dj2 þ a22j2 ¼ c2wOd in Q;

c1; t � Dc1 þ a11c1 ¼ � a1
m1
wo1

þ a2
m2
wo2

� �
j1 in Q;

c2; t � Dc2 þ a21c1 þ a22c2 ¼ 0 in Q;

jjðTÞ ¼ fj; cjð0Þ ¼ 0 in W; jj ¼ cj ¼ 0 on S; j ¼ 1; 2;

8>>>>>><
>>>>>>:

ð28Þ
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where cj ¼ a1y
1
j þ a2y

2
j for j ¼ 1; 2. Let us now present a Carleman estimate for

the solutions to the non-scalar adjoint problem (28) that is the key point to accom-

plish the proof of Proposition 5.1:

Proposition 6.4. Suppose that assumptions (12)–(14) hold and that Od BoA j.
Then, for an adequate selection of parameters di and pi a R, for i ¼ 1; 2, there exist

a function a0 a C2ðWÞ and positive constants C and s2 such that, for every ð f1; f2Þ a
½L2ðWÞ�2, the solution to system (28) satisfies

Iðd1; j1Þ þ Iðd2; j2Þ þ Iðp1;c1Þ þ Iðp2;c2Þ

aC

ðð
o�ð0;TÞ

e�2saðsgÞ2p2�d2þ12jj1j
2
dx dt ð29Þ

Esb s2 ¼ s2
�
T þ T 2 þ T 2 max

	
max
j¼1;2

kajjk2=3l ; ka21k2=ðd2�ðd1�3ÞÞ
l ;

ka21k2=ðp1�ðp2�3ÞÞ
l


�
:

In inequality (29) a ¼ aðx; tÞ is given by

aðx; tÞ ¼ a0ðxÞ
tðT � tÞ :

Proof. The proof is standard and relies on various well-known arguments.

Define

O :¼ Od Bo;

and since OA j, there exists a non-empty open set O0 HHO. Let a0 and a be the

functions associated to B ¼ O0 provided by Lemma 6.2. We will achieve the

proof in three steps.

Step 1. We begin by applying inequality (27) to each function jj and yj , solu-

tion to (28), with di¤erent real numbers dj and pj to be chosen later. We add such

inequalities and obtain the following

Iðd1; j1Þ þ Iðd2; j2Þ þ Iðp1;c1Þ þ Iðp2;c2Þ

aC0

�X2

j¼1

LO0
ðdj; jjÞ þ

X2

j¼1

LO0
ðpj;cjÞ þ

X2

j¼1

ðð
Q

e�2saðsgÞdj�3jcjwOd j
2
dx dt

þ
X2

j¼1

Xj

i¼1

ðð
Q

e�2saðsgÞdi�3kajik2ljjjj
2
dx dt
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þ
X2

i¼1

Xi

j¼1

ðð
Q

e�2saðsgÞpi�3kaijk2ljcjj
2
dx dt

þ
ðð

Q

e�2saðsgÞp1�3 � a1

m1
j1wo1

� a2

m2
j1wo2

����
����
2

dx dt

�
; ð30Þ

valid for every sb s0 ¼ s0ðT þ T 2Þ, with C0 and s0 two positive constants de-

pending on W, O, dj and pj. The next step is to absorb as many possible terms

from the right hand side into the left hand side of (30). To accomplish this, we

have to properly select each of the powers dj and pj involved. It is not di‰cult

to see that if

d1 � 3 < p1 < d1 þ 3 and d2 � 3 < p2; ð31Þ

we get

Iðd1; j1Þ þ Iðd2; j2Þ þ Iðp1;c1Þ þ Iðp2;c2Þ

aC0

�X2

j¼1

LO0
ðdj; jjÞ þ

X2

j¼1

LO0
ðpj;cjÞ

þ
X2

j¼1

Xj

i¼1

ðð
Q

e�2saðsgÞdi�3kajik2ljjjj
2
dx dt

þ
X2

i¼1

Xi

j¼1

ðð
Q

e�2saðsgÞpi�3kaijk2ljcjj
2
dx dt

�
;

Esb s0 and where C is a new constant only depending on W, O0, dj, pj and aj. We

can get rid of the two last sums in the previous inequality if we take into account

that gðtÞ�1
aT 2=4 in ð0;TÞ, then select

d1 � 3 < d2 and p2 � 3 < p1; ð32Þ

and take

sb s2 ¼ s2
�
T þ T 2 þ T 2 max

	
max
j¼1;2

kajjk2=3l ; ka21k2=ðd2�ðd1�3ÞÞ;

ka21k2=ðp1�ðp2�3ÞÞ
l


�
;

thus obtaining
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Iðd1; j1Þ þ Iðd2; j2Þ þ Iðp1;c1Þ þ Iðp2;c2Þ

aC2

�X2

j¼1

LO0
ðdj; jjÞ þ

X2

j¼1

LO0
ðpj;cjÞ

�
; Esb s2: ð33Þ

with C2 and s2 two new positive constants only depending on W, O0, dj, pj, aj and

kaijkl.

Step 2. Now, we want to eliminate the local terms corresponding to cj in the

right-hand side of (33). We will reason out as in [26] and [14]. Given a set O1 such

that O0 HHO1 HHO, we consider a function x a ClðRNÞ verifying: 0a xa 1 in

RN , xC 1 in O0, supp xHO1 and

Dx

x1=2
a LlðWÞ and

‘x

x1=2
a LlðWÞN :

We set uj ¼ e�2saðsgÞpj for j ¼ 1; 2: Then, we multiply the equations satisfied by jj
in system (28) by ujxcj , respectively, and integrate in Q. We add those expressions

to obtain

LO0
ðp1;c1Þ þLO0

ðp2;c2Þa
ðð

Q

u1xjc1j
2 þ

ðð
Q

u2xjc2j
2

¼
ðð

Q

u1xc1ð�j1; t � Dj1 þ a11j1 þ a21j2Þ

þ
ðð

Q

u2xc2ð�j2; t � Dj2 þ a22j2Þ: ð34Þ

Integrating by parts several times with respect to the time and space variables in

the right hand side of (34) we obtain the following expression

LO0
ðp1;c1Þ þLO0

ðp2;c2Þa eCA

�
Iðp1;c1Þ þ Iðp2;c2Þ

�
þ Ce;A

�ðð
O1�ð0;TÞ

e�2saðsgÞp1þ4jj1j
2

þ
ðð

O1�ð0;TÞ
e�2saðsgÞp2þ4jj2j

2
�
; ð35Þ

where e > 0, CA, Ce;A are new constants only depending on W, O0, O1, oi, pj and

kaijkl. Replacing (35) in (33) with e ¼ 1
2CAC2

, with C2 the constant appearing in

(33), we obtain
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Iðd1; j1Þ þ Iðd2; j2Þ þ Iðp1;c1Þ þ Iðp2;c2Þ

aC
�ðð

O1�ð0;TÞ
e�2saðsgÞp1þ4jj1j

2 þ
ðð

O1�ð0;TÞ
e�2saðsgÞp2þ4jj2j

2
�
; ð36Þ

for a new positive constant C and valid for all sb s2.

Step 3. Thanks to assumption (14) and by selecting appropriately the pa-

rameter s we will eliminate the local term corresponding to j2 in the previous

inequality. To this end, consider a new set O2 such that O1 HHO2 HO and a func-

tion ~xx a ClðRNÞ with properties analogous to that of Step 2.

We set u ¼ e�2saðsgÞp2þ4. Recall that the coe‰cient a21 satisfies (14) and, for

simplicity, assume that a21b a0 in O� ð0;TÞ. We multiply the equation satisfied

by j1 in system (28) by u~xxj2 and integrate in Q. We obtain

a0LO1
ðp2 þ 4; j2Þa

ðð
Q

u~xxa21jj2j
2 ¼

ðð
Q

ðj1; t þ Dj1 � a11j1Þu~xxj2

þ
ðð

Q

c1wOd uhj2: ð37Þ

Again, reasoning out as in [14], we integrate by parts several times with respect to

the time and space variables in the right hand side of (37) to obtain

a0LO1
ðp2 þ 4; j2Þa 6eIðd2; j2Þ þ C 1þ 1

e

� �ðð
O2�ð0;TÞ

e�2saðsgÞ2p2�d2þ12jj1j
2

þ C

ðð
Q

e�2saðsgÞp2þ4jc1j
2; ð38Þ

for a new positive constant C and e > 0. Replacing (38) in (36) with e ¼ a0
12C where

C is the constant appearing in (36) we get

Iðd1; j1Þ þ Iðd2; j2Þ þ Iðp1;c1Þ þ Iðp2;c2Þ

aC
�ðð

O2�ð0;TÞ
e�2saðsgÞ2p2�d2þ12jj1j

2 þ
ðð

Q

e�2saðsgÞp2þ4jc1j
2
�
; ð39Þ

valid for all sb s2. Selecting p2 þ 4 < p1 and increasing the parameter s2, if nec-

essary, we obtain

Iðd1; j1Þ þ Iðd2; j2Þ þ Iðp1;c1Þ þ Iðp2;c2Þ

aC

ðð
O2�ð0;TÞ

e�2saðsgÞ2p2�d2þ12jj1j
2; Esb s2:

Therefore the proof is complete. r
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Remark 6.5. So far, we have not been able to remove the assumption (13) from

Theorem 2.1. Indeed, consider that a12A 0 in Q in system (28). Following the

ideas of the proof of Proposition 6.4, it is not di‰cult to see that two new terms

appear in the right-hand side of (30), more precisely

ðð
Q

e�2saðsgÞd2�3ka12k2ljj1j
2 and

ðð
Q

e�2saðsgÞp1�3ka12k2ljc2j
2:

Note that (31) and (32) remain to be a valid choice, but we have to add the addi-

tional constraints

d2 � 3 < d1 and p1 � 3 < p2; ð40Þ

in order to absorb this terms. We proceed as before and eliminate the local terms

associated to cj. Then, we estimate the local term corresponding to j2 and by

replacing as in (39) we note that we cannot longer choose p2 þ 4 < p1 since it

interferes with the previous selection (40).

As mentioned earlier, the observability inequality (24) is a combination of

a global Carleman estimate and suitable energy estimates. To this aim, we set

s ¼ s2 where s2 is the constant furnished by Proposition 6.4. Let us consider the

function

lðtÞ ¼ T 2=4 for 0a taT=2;

tðT � tÞ for T=2a taT ;

�

and the following associated weight functions

aðx; tÞ ¼ a0ðxÞ
lðtÞ ; gðtÞ ¼ 1

lðtÞ :

Let h a C1ð½0;T �Þ be a function satisfying

h ¼ 1 in ½0;T=2�; h ¼ 0 in ½3T=4;T �; jh 0ðtÞjaC=T : ð41Þ

Hereinafter C will denote a generic positive constant that may vary from line to

line. Arguing as in [11], we proceed to obtain energy estimates for jj with this

cut-o¤ function, this is,ð
W

ð�j1; t � Dj1 þ a11j1 þ a21j2Þhj1 dx ¼
ð
W

c1wOdhj1 dx;ð
W

ð�j2; t � Dj2 þ a22j2Þhj2 dx ¼
ð
W

c2wOdhj2 dx;
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Then, by adding up and integrating by parts we obtain that

� 1

2

d

dt

�ð
W

hðjj1j
2 þ jj2j

2Þ dx
�
þ
ð
W

hðj‘j1j
2 þ j‘j2j

2Þ dx

¼ �
ð
o

ha11jj1j
2
dx�

ð
W

ha22jj2j
2
dx�

ð
W

ha21j2j1 dx

� 1

2

ð
W

h 0ðjj1j
2 þ jj2j

2Þ dxþ
ð
W

c1wOdhj1 dxþ
ð
W

c2wOdhj2 dx:

Then

� d

dt

�ð
W

hðjj1j
2 þ jj2j

2Þ dx
�
þ 2

ð
W

hðj‘j1j
2 þ j‘j2j

2Þ dx

a
C

T

ð
W

ðjj1j
2 þ jj2j

2Þ dxþ 2ð1þ kAkÞ
ð
W

hðjj1j
2 þ jj2j

2Þ dx

þ
ð
W

hðjc1j
2 þ jc2j

2Þ dx

where kAk :¼
P2

i¼1

P i
j¼1 kaijkl. We multiply by e2ð1þkAkÞt the above expression

and integrate in ½0;T �. Then, in view of (41), we obtain for a new constant that

ð
W

�
jj1ð0Þj

2 þ jj2ð0Þj
2�

dxþ
ðT=2

0

ð
W

ðj‘j1j
2 þ j‘j2j

2Þ dx dt

aC
�ð3T=4

T=2

ð
W

ðjj1j
2 þ jj2j

2Þ dx dtþ
ð3T=4

0

ð
W

ðjc1j
2 þ jc2j

2Þ dx dt
�
:

Using Poincaré’s inequality it is not di‰cult to see that

ð
W

�
jj1ð0Þj

2 þ jj2ð0Þj
2�

dxþ
ðT=2

0

ð
W

ðjj1j
2 þ jj2j

2 þ j‘j1j
2 þ j‘j2j

2Þ dx dt

aC
�ð3T=4

T=2

ð
W

ðjj1j
2 þ jj2j

2Þ dx dtþ
ð3T=4

0

ð
W

ðjc1j
2 þ jc2j

2Þ dx dt
�
:

Since a and g have lower and upper bounds for ðx; tÞ a W� ½0;T=2�, we can intro-

duce the corresponding weight functions in the above expression, namelyð
W

�
jj1ð0Þj

2 þ jj2ð0Þj
2�

dxþ I ½0;T=2�ðd1; j1Þ þ I ½0;T=2�ðd2; j2Þ

aC
�ð3T=4

T=2

ð
W

ðjj1j
2 þ jj2j

2Þ dx dtþ
ð3T=4

0

ð
W

ðjc1j
2 þ jc2j

2Þ dx dt
�
; ð42Þ
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where

I ½a;b�ðd; zÞ ¼
ð b

a

ð
W

e�2sagd jzj2 dx dtþ
ð b

a

ð
W

e�2sagd�2j‘zj2 dx dt:

We add to both sides of the inequality (42) the terms I ½0;T=2�ðp1;c1Þ and

I ½0;T=2�ðp2;c2Þ, thereforeð
W

jj1ð0Þj
2
dxþ

ð
W

jj2ð0Þj
2
dxþ I ½0;T=2�ðd1; j1Þ

þ I ½0;T=2�ðd2; j2Þ þ I ½0;T=2�ðp1;c1Þ þ I ½0;T=2�ðp2;c2Þ

aC
�
I ½0;T=2�ðp1;c1Þ þ I ½0;T=2�ðp2;c2Þ

þ
ð3T=4

T=2

ð
W

ðjj1j
2 þ jj2j

2 þ jc1j
2 þ jc2j

2Þ
�
: ð43Þ

To get rid of the terms corresponding to I ½0;T=2�ðp1;c1Þ and I ½0;T=2�ðp2;c2Þ in the

right-hand side, first we see that from classical energy estimates for the third and

fourth equation in (28), we have

ðT=2

0

ð
W

ðjc1j
2 þ jc2j

2 þ j‘c1j
2 þ j‘c2j

2Þ dx dtaC
a21
m2
1

þ a22
m2
2

� �ðT=2

0

ð
W

jj1j
2
dx dt

where C is independent of m1 and m2. We introduce the weight functions in this

new expression and obtain

I ½0;T=2�ðp1;c1Þ þ I ½0;T=2�ðp2;c2Þ

aC
a21
m2
1

þ a22
m2
2

� �
T 2

4

� �d1ðT=2

0

ð
W

jj1j
2
e�2sagd1e2sa dx dt: ð44Þ

where we used the fact that g�1aT 2=4. Replacing (44) in the right-hand side of

(43) and noting that for mi, i ¼ 1; 2, su‰ciently large, we can absorb the new term

into the left hand side to obtainð
W

jj1ð0Þj
2
dxþ

ð
W

jj2ð0Þj
2
dxþ I ½0;T=2�ðd1; j1Þ

þ I ½0;T=2�ðd2; j2Þ þ I ½0;T=2�ðp1;c1Þ þ I ½0;T=2�ðp2;c2Þ

aC
�ð3T=4

T=2

ð
W

ðjj1j
2 þ jj2j

2 þ jc1j
2 þ jc2j

2Þ dx dt
�
:

Then, using (29) and the upper bounds on the weight functions, we obtain
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ð
W

jj1ð0Þj
2
dxþ

ð
W

jj2ð0Þj
2
dxþ I ½0;T=2�ðd1; j1Þ

þ I ½0;T=2�ðd2; j2Þ þ I ½0;T=2�ðp1;c1Þ þ I ½0;T=2�ðp2;c2Þ
aC

�
Iðd1; j1Þ þ Iðd2; j2Þ þ Iðp1;c1Þ þ Iðp2;c2Þ

�
aC

ðð
o�ð0;TÞ

jj1j
2
dx dt: ð45Þ

On the other hand, since a ¼ a and g ¼ g in W� ðT=2;TÞ we use again inequality

(29) to obtain

I ½T=2;T �ðd1; j1Þ þ I ½T=2;T �ðd2; j2Þ þ I ½T=2;T �ðp1;c1Þ þ I ½T=2;T �ðp2;c2Þ
a Iðd1; j1Þ þ Iðd2; j2Þ þ Iðp1;c1Þ þ Iðp2;c2Þ

aC

ðð
o�ð0;TÞ

jj1j
2
dx dt: ð46Þ

We put together (45) and (46)ð
W

jj1ð0Þj
2
dxþ

ð
jj2ð0Þj

2
dxþ I ½0;T �ðd1; j1Þ

þ I ½0;T �ðd2; j2Þ þ I ½0;T �ðp1;c1Þ þ I ½0;T �ðp2;c2Þ

aC

ðð
o�ð0;TÞ

jj1j
2
dx dt: ð47Þ

Now we conclude the proof of Proposition 5.1. Set a�ðtÞ ¼ max
W
aðx; tÞ and

define rðtÞ :¼ esa
�
. Thus, rðtÞ is a non-decreasing strictly positive function blow-

ing up at t ¼ T . We obtain energy estimates with this new weight for y i
j solution

to the third equation and fourth equation in (23) (recall that at this point we are

assuming that (12) and (13) hold). More precisely,ðð
Q

r�2ðjy i
1j

2 þ jy i
2j

2Þ dx dtaC

ðð
oi�ð0;TÞ

r�2jj1j
2
dx dt; i ¼ 1; 2:

We note that the right hand side of the previous inequality is indeed comparable

to I ½0;T �ðd1; j1Þ up to a multiplicative constant and by replacing accordingly in (47)

we finally obtain inequality (24).
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