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lation, a structure that generalizes midpoint algebras and commutative semigroups with
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1. Introduction

A midpoint algebra is a pair ðA;aÞ where A is a set and a a binary operation

satisfying the following axioms:

ðidempotencyÞ xax ¼ x;

ðcommutativityÞ xa y ¼ yax;

ðcancellationÞ ðba a A; xa a ¼ ya aÞ ¼) x ¼ y;

ðmedialityÞ ðxa yÞa ðzawÞ ¼ ðxa zÞa ðyawÞ:

An example of such a structure is the unit interval A ¼ ½0; 1� with xa y ¼ xþy
2 .

A word of motivation before entering into the details of the paper. A gen-

eralization of the above structure appeared in the study of algebraic properties of

*This research work was supported by the Portuguese Foundation for Science and Technology (FCT)
through the Project references UID/Multi/04044/2013, PTDC/EME-CRO/120585/2010, PTDC/MAT/
120222/2010 and also by the grant number SFRH/BPD/4321/2008 at CMUC. It was also supported by
IPLeiria/ESTG-CDRSP.



arbitrary spaces with a suitable notion of a geodesic path for every two points in it.

We observed that, in some cases, any trajectory can be viewed as a set of points

expanded from a single fixed origin with an associated monoid operation. Here,

we concentrate on the study of necessary and su‰cient conditions that guarantee

the existence of a monoid structure with a specified identity element in the context

of midpoint algebras. These algebraic structures can also be used to solve concrete

problems in several fields of pure and applied mathematics, such as the so called

motion planing algorithms in robotics (see for example [9]).

The category of midpoint algebras is not a Mal’tsev category. Indeed, the

usual order relation on the unit interval, with the arithmetic mean as above, is

clearly a subalgebra of the product ½0; 1� � ½0; 1�, which is reflexive and transitive

but not symmetric, contradicting the well known characterization of Mal’tsev cate-

gories [5], [6], [7]. Nevertheless, the category of midpoint algebras does have

some interesting properties weaker than those of Mal’tsev categories, namely that

each object admits at most one internal monoid structure for each choice of a

unit. To illustrate this aspect we use another example. Let ðA;aÞ be the midpoint

algebra with A ¼ �0; 1�, the set of positive real numbers smaller or equal than one,

and the operation

aa b ¼ 2ab

aþ b
:

It is clear that if a and b are positive real numbers then aa b is also positive; it is

also easy to see that if a and b are less or equal than one then aa b is less or equal

than one. A simple way to see it is to observe that the condition aa ba 1 is

equivalent to the condition

0a að1� bÞ þ bð1� aÞ:

Hence the operation is well defined and it is easily checked that ðA;aÞ is a

midpoint algebra. The diagram

A� A!m A f1g;

with

mðx; yÞ ¼ xy

xþ y� xy
;

is an internal monoid. This internal monoid structure is uniquely determined

by the unit element 1 a A and there is no internal monoid structure for any other

220 J. P. Fatelo and N. Martins-Ferreira



choice of a unit element. Moreover, it is not an internal group as, for example,
1
2 has no inverse since the equation

x ¼ 1þ x

has no solution in the real numbers.

While proving some of the results presented in this paper, we have observed

that, in many cases, the idempotency law could be dealt with in a separate way.

This suggested to us the study of the more general structure of commutative can-

cellative medial magmas, which, for simplicity, we will refer to as ccm-magmas.

The medial law has been widely studied over the last three quarter of a century.

In the context of magmas, i.e. algebras with one binary operation (known also as

groupoids), this law was also referred to as bisymmetric, entropic or transposition,

among other names. It has been studied either from an algebraic point of view or

from a more geometrical perspective, see for example [1], [8], [12], [14], [16], [21].

The open-closed unit interval �0; 1� used in the example above has several other

important structures of ccm-magma: that of a midpoint algebra (with the arith-

metic mean), and that of a commutative monoid with cancellation (with the usual

multiplication), resulting in an interplay between di¤erent ccm-magmas on the

same set. The study of such interactions is certainly worthy. Nevertheless, for

the moment, we dedicate our attention to some important aspects of the internal

structures in the category of ccm-magmas, such as internal monoid, internal group

and internal relation.

This paper is organized as follows: Section 2 recalls some categorical notations

and concepts such as the one of an internal monoid; Section 3 introduces the cate-

gory of ccm-magmas, gives some examples, and some useful lemmas are proven;

Section 4 observes that the category of ccm-magmas is weakly Mal’tsev and char-

acterizes the existence of an internal monoid structure on a given object, for every

choice of a unit element; Section 5 explores this property further by considering

the notions of e-expansive, e-symmetric and homogeneous ccm-magmas (a short

list of simple examples and counter-examples is also presented at the end of the

section); and finally, Section 6 studies some properties of internal relations, namely

symmetry, transitivity, reflexivity and difunctionality, which are not visible in the

case of Mal’tsev categories.

2. Preliminaries

The basic notions and notations from Category Theory used in this paper can be

found, for instance, in [17]. Let us just recall a few of them. If C is any category

with finite limits, an internal monoid in C is a diagram of the shape

A� A!m A e 1
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in which A is any object in C, m and e are morphisms in C, 1 denotes the terminal

object and the following diagram is commutative (where !A denotes the unique

morphism from A to the terminal object 1).

A3 ����!1A�m
A2  ����3e!A;1A4

A

m�1A

???y m

???y
???y31A; e!A4

A2 ����!m
A  ����m

A2

An internal monoid ðA;m; eÞ is an internal group (see for example the Appendix in

[3]) if and only if the diagram

A m A� A!p2 A

is a product diagram (the morphism p2 is the canonical second projection), in

other words, for every two morphisms u; v : X ! A there exists a unique mor-

phism, represented as u� v, from X to A such that

m3u� v; v4 ¼ u:

The inverse of a generalized element x : X ! A is clearly e� x with e : 1! A

the unit element. This is simply another way to say that there is a morphism

t : A! A such that

m31A; t4 ¼ e!A ¼ m3t; 1A4:

This paper restricts itself to quasi-varieties of universal algebra [4], that is, cate-

gories in which the objects are sets equipped with an arbitrary family of finite-

arity operations, satisfying a collection of axioms which may be either expressed

as identities or as implications. All the results to be proven about conditions of

uniqueness are easily generalized to a category with a faithful functor into the

category of sets, preserving finite limits. However, the results involving existence

conditions depend on the context and do not necessarily hold in general.

The notion of internal ccm-magma is also a natural one to be considered. It

would be interesting, for example, to study topological ccm-magmas, i.e. ccm-

magmas internal to the category of topological spaces [8], [15].

A congruence on an object A is a subalgebra of A� A, which, if considered as

a relation, is reflexive, transitive and symmetric (see e.g. [3]). We will also consider

difunctional relations: a relation R � X � Y is difunctional if the implication

xRy; zRy; zRw ¼) xRw

holds for all x; z a X and y;w a Y .
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A Mal’tsev category is characterized by the property that every reflexive inter-

nal relation is a congruence relation, or equivalently, by the property that every

internal relation is difunctional ([5], [6], [7] see also [3]). As we will see, this prop-

erty does not hold in the categories we are considering. However, these have a

weaker property: some types of reflexive internal relations are still congruences,

and some types of internal relations are automatically difunctional.

3. Ccm-magmas

A ccm-magma (commutative cancellative medial magma) may be obtained from a

midpoint algebra simply by not requiring the idempotency axiom.

Definition 3.1. A ccm-magma is an algebraic structure ðA;aÞ with a binary

operationa satisfying the following axioms:

M1 aa b ¼ ba a

M2 aa c ¼ ba c) a ¼ b

M3 ðaa bÞa ðca dÞ ¼ ðaa cÞa ðba dÞ

A morphism of ccm-magmas is simply a homomorphism, that is, a map pre-

serving the binary operation.

It is known that the category of commutative cancellative magmas is weakly

Mal’tsev ([19]). The third axiom has an important consequence illustrated in the

following proposition.

Proposition 3.2. If f : X ! A and g : Y ! A are homomorphisms of magmas and

ðA;aÞ satisfies (M3), then the map h : X � Y ! A defined by

hðx; yÞ ¼ f ðxÞa gðyÞ

is a homomorphism.

Proof. The result is an immediate consequence of the axiom (M3). r

Next we present a short list of examples built up from well-known algebraic

structures.

Example. A short list of simple examples:

(1) The open unit interval �0; 1½ with the operation

xa y ¼ xþ y

2
or xa y ¼ ffiffiffiffiffiffi

xy
p

is a ccm-magma.
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(2) Every midpoint algebra is a ccm-magma.

(3) The set of natural numbers with the usual addition is a ccm-magma.

(4) Every commutative semigroup with cancellation is a ccm-magma.

(5) If A is any ring, then the formula

xa y ¼ aðxþ yÞ þ b

gives a ccm-magma for every choice of a; b a A, with a an invertible element.

(6) If R is a ring and A an R-module, then the formula

xa y ¼ aðxþ yÞ þ b

gives a ccm-magma on A for every choice of an invertible scalar a a R and

any b a A.

(7) If A is the set of positive real numbers, then the formula

xa y ¼ axy

xþ y

gives a ccm-magma for every choice of a a A.

(8) If ðA;þ;�; �; 0; 1Þ is a commutative and associative classical algebra over a

commutative ring R, then the formula

xa y ¼ a � ðxþ yÞ þ b � ðx� yÞ

gives a ccm-magma on the set

fx a A j a � 1þ b � x is invertibleg

for every choice of scalars a; b a R with a ¼ a2.

(9) Every loop with aðbcÞ ¼ cðbaÞ is a ccm-magma, see for instance [20].

(10) If ðA;aÞ is a ccm-magma and g : A! A is a monomorphism, then the

formula

ðx; yÞ 7! gðxa yÞa a

gives a ccm-magma on A, for every choice of a a A.
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The last example is obtained directly from the proposition below by letting

f ¼ k ¼ 1A and h ¼ g.

Proposition 3.3. Let ðA;aÞ be a ccm-magma and f ; g : A! A any two maps. If

f and g are injective and there are maps h; k : A! A such that

f
�
gðxa yÞa z

�
¼

�
hðxÞa hðyÞ

�
a kðzÞ; x; y; z a A;

then the formula

ðx; yÞ 7! g
�
f ðxÞa f ðyÞ

�
a a

gives a ccm-magma for every choice of a a A.

Proof. The result is an immediate consequence of the axioms, combined with

the hypotheses on the given maps. Commutativity is immediate. Cancellation

follows from f and g being injective. To prove the medial law, on the one hand

we have

f
�
gð fxa fyÞa a

�
a f

�
gð fza fwÞa a

�

which by our assumptions on f and g simplifies to

��
hð fxÞa hð fyÞ

�
a kðaÞ

�
a

��
hð fzÞa hð fwÞ

�
a kðaÞ

�
; ð3:1Þ

while on the other hand we have

f
�
gð fxa fzÞa a

�
a f

�
gð fya fwÞa a

�
;

which by our assumptions on f and g simplifies to

��
hð fxÞa hð fzÞ

�
a kðaÞ

�
a

��
hð fyÞa hð fwÞ

�
a kðaÞ

�
: ð3:2Þ

Finally we observe that expressions ð3:1Þ and ð3:2Þ are equal by a simple manipu-

lation of axiom (M3) on the originala, which completes the proof. r

We end this section with two lemmas which will be used later on while proving

that some internal relations, in the category of ccm-magmas, are automatically

difunctional.
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Lemma 3.4. Let f ; g : A� A! B be two morphisms in the category of ccm-

magmas such that f ða; aÞ ¼ gða; aÞ for every a a A. Then:

(i) f ða; bÞ ¼ gða; bÞ, f ðb; cÞ ¼ gðb; cÞ ) f ða; cÞ ¼ gða; cÞ;
(ii) f ða; bÞ ¼ gða; bÞ ) f ðb; aÞ ¼ gðb; aÞ.

Proof. (i) We will show that if f ða; bÞ ¼ gða; bÞ and f ðb; cÞ ¼ gðb; cÞ then we

always have

f ða; cÞa f ðb; bÞ ¼ gða; cÞa gðb; bÞ ð3:3Þ

and since f ðb; bÞ ¼ gðb; bÞ we use (M2) and get f ða; cÞ ¼ gða; cÞ. To show (3.3)

we observe:

f ða; cÞa f ðb; bÞ ¼ f ðaa b; ca bÞ
¼ f ðaa b; ba cÞ
¼ f ða; bÞa f ðb; cÞ
¼ gða; bÞa gðb; cÞ
¼ gðaa b; ba cÞ
¼ gðaa b; ca bÞ
¼ gða; cÞa gðb; bÞ:

(ii) Since f ða; aÞ ¼ gða; aÞ for every a a A, we always have:

f ðb; aÞa f ða; bÞ ¼ f ðba a; aa bÞ
¼ f ðaa b; aa bÞ
¼ gðaa b; aa bÞ
¼ gðba a; aa bÞ
¼ gðb; aÞa gða; bÞ

now, if f ða; bÞ ¼ gða; bÞ then, using (M2) we obtain f ðb; aÞ ¼ gðb; aÞ as desired.

r

Lemma 3.5. Let f ; g : X � Y ! B be any two morphisms in the category of ccm-

magmas. Then:

f ðx; yÞ ¼ gðx; yÞ
f ðz; yÞ ¼ gðz; yÞ
f ðz;wÞ ¼ gðz;wÞ

0
B@

1
CA ¼) f ðx;wÞ ¼ gðx;wÞ:
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Proof. Assuming f ðx; yÞ ¼ gðx; yÞ and f ðz;wÞ ¼ gðz;wÞ we have:

f ðx;wÞa f ðz; yÞ ¼ f ðxa z;wa yÞ
¼ f ðxa z; yawÞ
¼ f ðx; yÞa f ðz;wÞ
¼ gðx; yÞa gðz;wÞ
¼ gðxa z; yawÞ
¼ gðxa z;wa yÞ
¼ gðx;wÞa gðz; yÞ:

Now, if f ðz; yÞ ¼ gðz; yÞ then we conclude that f ðx;wÞ ¼ gðx;wÞ as desired, using
axiom (M2). r

4. Mal’tsev and weakly Mal’tsev properties

We have already observed that the category of midpoint algebras, and hence the

one of ccm-magmas, is not a Mal’tsev category. It is a weakly Mal’tsev category

as a result of ccm-magmas being a subcategory of commutative cancellative

magmas, known to be weakly Mal’tsev. Nonetheless, we present an alternative

proof using the medial law instead of commutativity (thus the following result

holds also for the category of cancellative medial magmas).

Proposition 4.1. The category of ccm-magmas is a weakly Mal’tsev category.

Proof. From [19] we know that if there exists a ternary term pðx; y; zÞ such that

pðx; y; yÞ ¼ pðy; y; xÞ

and

pðx; a; aÞ ¼ pðy; a; aÞ ¼) x ¼ y

then the category is weakly Mal’tsev. Indeed this is the case for every ccm-magma

ðA;aÞ if we define

pðx; y; zÞ ¼ ðya xÞa ðza yÞ: r

In a weakly Mal’tsev category any diagram of the shape

A ���!f ���
r

B  ���g���!
s

C???yv

D

ð4:1Þ
 �

����
�����!u w
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with fr ¼ 1B ¼ gs and ur ¼ v ¼ ws, induces a bigger diagram

C

A�B C B v���! D

A

ð4:2Þ

���! �
��  �
�� ���!

 �
�� ���! ���! �
��

p2

e2 g

s
w

e1 f

p1 r
u

in which there is at most one morphism, say y : A�B C ! D, from the pullback

ðA�B C; p1; p2Þ of the split epimorphism f along the split epimorphism g to

the object D such that ye1 ¼ u and ye2 ¼ w, where e1 and e2 are the induced

morphisms of the form

e1ðaÞ ¼
�
a; sf ðaÞ

�
; e2ðcÞ ¼

�
rgðcÞ; c

�
:

The following result states under which conditions a diagram such as (4.1)

induces a morphism such as y.

Proposition 4.2. Given a diagram such as ð4:2Þ in the category of ccm-
magmas, there is a (unique) morphism y : A�B C ! D, such that ye1 ¼ u
and ye2 ¼ w, if and only if, the equation

xa vðbÞ ¼ uðaÞawðcÞ ð4:3Þ

has a solution x a D for every a a A, b a B and c a C with f ðaÞ ¼ b ¼ gðcÞ. When

that is the case, yða; cÞ ¼ x.

Proof. Suppose there is y : A�B C ! D such that y
�
a; sðbÞ

�
¼ uðaÞ and

y
�
rðbÞ; c

�
¼ wðcÞ, where b ¼ f ðaÞ ¼ gðcÞ, then x ¼ yða; cÞ is always a solution to

the equation (4.3). Indeed, using axiom (M1), we observe that

yða; cÞa vðbÞ ¼ yða; cÞa y
�
rðbÞ; sðbÞ

�
¼ y

�
ða; cÞa

�
rðbÞ; sðbÞ

��
¼ y

�
aa rðbÞ; ca sðbÞ

�
¼ y

�
aa rðbÞ; sðbÞa c

�
¼ y

�
a; sðbÞ

�
a y

�
rðbÞ; c

�
¼ uðaÞawðcÞ:

Conversely, if the equation (4.3) has a solution (which is unique by axiom (M2))

for every ða; cÞ a A�B C, then we may define a map y : A�B C ! D which as-
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signs the unique solution of (4.3) to every pair ða; cÞ a A�B C. It remains to show

that this map is a homomorphism. By axiom (M2), it su‰ces to prove that

�
yða; cÞa yða 0; c 0Þ

�
a vðba b 0Þ ¼ yðaa a 0; ca c 0Þa vðba b 0Þ

for every a; a 0 a A and c; c 0 a C where

f ðaÞ ¼ gðcÞ ¼ b a B and f ða 0Þ ¼ gðc 0Þ ¼ b a B:

Now, because u, v and w are homomorphisms and, using axiom (M3), we have

�
yða; cÞa yða 0; c 0Þ

�
a vðba b 0Þ ¼

�
yða; cÞa yða 0; c 0Þ

�
a

�
vðbÞa vðb 0Þ

�
¼

�
yða; cÞa vðbÞ

�
a

�
yða 0; c 0Þa vðb 0Þ

�
¼

�
uðaÞawðcÞ

�
a

�
uða 0Þawðc 0Þ

�
¼

�
uðaÞa uða 0Þ

�
a

�
wðcÞawðc 0Þ

�
¼ uðaa a 0Þawðca c 0Þ
¼ yðaa a 0; ca c 0Þa vðba b 0Þ

as desired, which completes the proof. r

In particular, any internal reflexive graph admits, at most, one structure of in-

ternal category. This is easily seen from the above result by choosing D ¼ A ¼ C,

r ¼ s ¼ v, and u and w to be the identity morphisms. Even more particularly,

by choosing B to be a singleton, and if ðA;aÞ is a ccm-magma then, for every

idempotent e a A, there is, at most, one internal monoid structure on A which is

compatible with the binary operation, that is, there exists at most one monoid

ðA; �e; eÞ such that

ðx �e yÞa ðz �e wÞ ¼ ðxa zÞ �e ðyawÞ: ð4:4Þ

Note that e a A must be an idempotent, so that the inclusion feg ! A may be

a homomorphism.

Corollary 4.3. Let ðA;aÞ be a ccm-magma and e a A an idempotent element in A.

There is a (unique) internal monoid structure ðA; �e; eÞ in A, if and only if the

equation

ya e ¼ xa y

has a solution y ¼ yðx; yÞ a A for every x; y a A. In that case x �e y is given by

yðx; yÞ.
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Proof. It follows from the previous proposition with A ¼ D ¼ C, B ¼ 1 the termi-

nal algebra, f and g uniquely determined while r ¼ s ¼ v send the unique element

in 1 to the chosen element e in A (which is a homomorphism as soon as ea e ¼ e),

and u ¼ w is the identity morphism. The fact that the operation �e is associative
and has a unit e follows from general arguments used in [18] but may also be

demonstrated directly:

(i) As
�
x �e ðy �e zÞ

�
a e ¼ xa ðy �e zÞ and

�
ðx �e yÞ �e z

�
a e ¼ ðx �e yÞa z, we

have, by (M1) and (M3),��
x �e ðy �e zÞ

�
a e

�
a ðea eÞ ¼ ðxa eÞa ðya zÞ and��

ðx �e yÞ �e z
�
a e

�
a ðea eÞ ¼ ðxa yÞa ðza eÞ ¼ ðxa eÞa ðya zÞ which,

by (M2), imply that

x �e ðy �e zÞ ¼ ðx �e yÞ �e z.
(ii) ðx �e eÞa e ¼ xa e which, by (M2), implies that x �e e ¼ x. r

5. Internal monoids and internal groups

It is well known [5], [6], [7] that, in Mal’tsev categories, every internal monoid is

necessarily an internal group. This property does not apply to ccm-magmas. In

this section, we will study some su‰cient conditions for the existence of an internal

monoid or group structure within a ccm-magma with a chosen unit element,

which is necessarily an idempotent. For that we introduce the following notions,

which have already been considered in the literature for di¤erent purposes, see for

example [2], [12]:

Definition 5.1. Let ðA;aÞ be a ccm-magma and consider any element e a A. We

will say that:

(i) A is e-expansive if for every a a A there exists 2eðaÞ a A such that

2eðaÞa e ¼ a;

(ii) A is e-symmetric if for every a a A there exists �eðaÞ a A such that

�eðaÞa a ¼ e;

(iii) A is homogeneous if it is e-expansive (or e-symmetric) for every e a A.

In fact, a homogeneous ccm-magma is the same as a commutative medial

quasigroup.

A su‰cient condition for a ccm-magma to admit an internal monoid struc-

ture with an idempotent element e as its unit is to be e-expansive. When that is

the case, then the internal monoid is a group if and only if the algebra is

e-symmetric. Moreover, if every element is an idempotent, that is, if we have

a midpoint algebra, then it is e-expansive if and only if there exists a monoid
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structure over e. Also every internal monoid (or group) is commutative and

admits cancellation.

Proposition 5.2. Let ðA;aÞ be a ccm-magma and consider any idempotent element

e a A. If A is e-expansive then ðA; �e; eÞ is a monoid with

x �e y ¼ 2eðxa yÞ:

Moreover, it is a group if and only if A is e-symmetric.

Proof. If A is e-expansive then in particular 2eðxa yÞ is a solution to the equation

ya e ¼ xa y;

for every x; y a A. From Corollary 4.3 we may conclude that ðA; �e; eÞ is an

internal monoid. Now, if moreover A is e-symmetric then �eðaÞ is the inverse of

a, for every a a A. Indeed we have that

�eðaÞ �e a ¼ e

is equivalent (by (M2)) to

�
�eðaÞ �e a

�
a e ¼ ea e

which holds because

�
�eðaÞ �e a

�
a e ¼ 2e

�
�eðaÞa a

�
a e ¼ �eðaÞa a ¼ e ¼ ea e:

Conversely, if ðA; �e; eÞ is a group, then, for every a a A, its inverse element, say

a 0 a A, is a solution to the equation xa a ¼ e. Indeed, since a 0 is such that

a 0 �e a ¼ e, or equivalently 2eða 0a aÞ ¼ e, and e is an idempotent, we conclude

that

e ¼ ea e ¼ 2eða 0a aÞa e ¼ a 0a a: r

In the case when the operationa has the geometrical meaning of midpoint, the

formula a �e b ¼ 2eðaa bÞ is intuitively illustrated via the following diagram.

a a �e b

aa b

e b

231Internal monoids and groups in ccm-magmas



As a more concrete example, let A be any real vector space. Then, by defining

aa b ¼ 1

2
ðaþ bÞ

we obtain a ccm-magma which is 0-symmetric and 0-expansive with the usual

interpretation of �a and 2a, as illustrated for the particular case of the real line.

ð�aÞ ð�aÞa a a 2a ���!����
����

����
����

ð�aÞ 0 0a ð2aÞ 2a ���!

More generally, for every e a A, this structure of ccm-magma is e-symmetric and

e-expansive, with 2eðaÞ ¼ 2a� e and �eðaÞ ¼ 2e� a. This fact is related to the

a‰ne transformation x 7! xþ e.

We also notice that if a ccm-magma is e-expansive and e-symmetric, for some

element e, then it is so for all elements, in other words it is homogeneous. This

result will be used in the proof of Corollary 6.6.

Proposition 5.3. Let ðA;aÞ be a ccm-magma and e a A an element in it. If it is

e-expansive and e-symmetric then it is homogeneous.

Proof. We have to prove that for every u; v a A, there exists a solution x to the

equation xa u ¼ v. Indeed,

xa u ¼ v () ðxa uÞa
�
ea�eðuÞ

�
¼ va

�
ea�eðuÞ

�
() ðxa eÞa

�
ua�eðuÞ

�
¼ va

�
ea�eðuÞ

�
() ðxa eÞa e ¼ va

�
ea�eðuÞ

�
() xa e ¼ 2e

�
va

�
ea�eðuÞ

��
() x ¼ 2e

�
2e
�
va

�
ea�eðuÞ

���
;

which gives the desired solution to the equation. r

As already referred, every homogeneous ccm-magma is a commutative medial

quasigroup. This means that for homogeneous ccm-magmas, Proposition 5.2 is

a special case (commutative) of the well known Toyoda Theorem [21]. This

theorem has been generalized for medial magmas with cancellation (see for

instance [12]), but the result is no longer comparable with the one of an internal

monoid structure.
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Restricting the study to homogeneous ccm-magmas has some advantages but

it forces the category to be Mal’tsev (and hence there is no longer the distinction

between internal monoid and internal group). Indeed, adapting the well-known

formulas describing the category of quasigroups as a Mal’tsev category, say from

[10], we can conclude that if a ccm-magma is expansive for every element then

pðx; y; zÞ ¼ 22yðyÞðxÞa 2yðzÞ

is a Mal’tsev term.

We continue with another aspect of ccm-magmas which will be used in Propo-

sition 5.5. If a given ccm-magma is expansive with respect to some idempotent

element e then the respective map 2e is a homomorphism. In general, we have:

Proposition 5.4. Let ðA;aÞ be a ccm-magma. If it is u-expansive and v-expansive

for some u; v a A, then it is also ðua vÞ-expansive, and moreover,

2uðaÞa 2vðbÞ ¼ 2uavðaa bÞ:

Proof. Suppose there exists 2uavðaa bÞ, then we necessarily have

2uðaÞa 2vðbÞ ¼ 2uavðaa bÞ

because, by adding ua v in each term, we obtain aa b. It remains to prove that

2uav exists. In other words we have to prove that for every a a A, there is x a A

such that xa ðua vÞ ¼ a. We claim that

x ¼ 2u
�
2uðaÞ

�
a 2vðuÞ

is the needed solution. Indeed,

�
2u
�
2uðaÞ

�
a 2vðuÞ

�
a ðua vÞ ¼

�
2u
�
2uðaÞ

�
a u

�
a

�
2vðuÞa v

�
¼ 2uðaÞa u

¼ a:

So, we get 2uavðaÞ ¼ 2u
�
2uðaÞ

�
a 2vðuÞ ¼ 2v

�
2vðaÞ

�
a 2uðvÞ. r

The next result explains the connection between two induced monoid struc-

tures for two di¤erent idempotents u and v.

Proposition 5.5. Let ðA;aÞ be a ccm-magma which is u-expansive and v-expansive

for some idempotent elements u; v a A. The two monoid structures on A, induced

by u and v, are isomorphic. Moreover the two structures are related as follows:

a �u b ¼ ða �v bÞ �u v:
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Proof. Let a �u b ¼ 2uðaa bÞ and a �v b ¼ 2vðaa bÞ be the two monoid opera-

tions induced, respectively by u and v, assuming u and v to be idempotent and

A to be u-expansive and v-expansive. The map f : ðA; �u; uÞ ! ðA; �v; vÞ, such
that f ðaÞ ¼ 2uðaa vÞ, a a A, is a monoid homomorphism. Clearly, the units are

preserved, since

f ðuÞ ¼ 2uðua vÞ ¼ 2uðva uÞ ¼ 2uðvÞa 2uðuÞ ¼ 2uðvÞa u ¼ v:

From

f ða �u bÞa v ¼ f
�
2uðaa bÞ

�
a v

¼ 2u
�
2uðaa bÞa v

�
a v

¼ 2u
�
2uðaa bÞa v

�
a

�
ua 2uðvÞ

�
¼

�
2u
�
2uðaa bÞ

�
a 2uðvÞ

�
a

�
ua 2uðvÞ

�
¼

�
2u
�
2uðaa bÞ

�
a u

�
a

�
2uðvÞa 2uðvÞ

�
¼ 2uðaa bÞa

�
2uðva vÞ

�
¼ 2uðaa bÞa

�
2uðvÞ

�
¼ 2u

�
ðaa bÞa v

�

and

�
f ðaÞ �v f ðbÞ

�
a v ¼ 2v

�
f ðaÞa f ðbÞ

�
a v

¼ f ðaÞa f ðbÞ
¼ 2uðaa vÞa 2uðba vÞ
¼ 2u

�
ðaa vÞa ðba vÞ

�
¼ 2u

�
ðaa bÞa ðva vÞ

�
¼ 2u

�
ðaa bÞa v

�

we may conclude that f ða �u bÞ ¼ f ðaÞ �v f ðbÞ. The inverse homomorphism of f

is g : ðA; �v; vÞ ! ðA; �u; uÞ with gðaÞ ¼ 2vðaa uÞ. Indeed,

gf ðaÞ ¼ 2v
�
2uðaa vÞa u

�
¼ 2vðaa vÞ ¼ 2vðaÞa 2vðvÞ ¼ 2vðaÞa v ¼ a

and similarly we prove fgðaÞ ¼ a. Finally, we prove a �u b ¼ ða �v bÞ �u v by

observing that

ða �u bÞa u ¼ aa b ¼
�
ða �v bÞ �u v

�
a u: r
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In some cases, a ccm-magma ðA;aÞ does not only admit an internal monoid

structure over some idempotent element e, but also the structure itself is a monoid

with unit element e, that is aa e ¼ a. This property is summarized in the follow-

ing proposition.

Proposition 5.6. Let ðA;aÞ be a ccm-magma and e a A an idempotent. The

following conditions are equivalent:

(i) the operationa is associative;

(ii) the element e a A is a unit element fora;

(iii) the ccm-magma is e-expansive with 2eðaÞ ¼ a;

(iv) the structure ðA;a; eÞ is an internal monoid.

Proof. If the operationa is associative and e a A is idempotent then

ðaa eÞa e ¼ aa ðea eÞ ¼ aa e

and hence aa e ¼ a. If e a A, an idempotent, is also a unit element for a

then 2eðaÞ ¼ a by definition of 2e. We already know that if the ccm-magma is

e-expansive then ðA; �e; eÞ is an internal monoid structure with x �e y ¼ 2eðxa yÞ.
When 2e is the identity map, the operation �e is simply the originala. This proves

(i)) (ii)) (iii)) (iv), whereas (iv)) (i) is obvious. r

Note also that if a ccm-magma ðA;aÞ is associative, then it has, at most, one

idempotent. Indeed, if e1 and e2 are two idempotents, anda is associative, then

e1a ðe1a e2Þ ¼ e1a e2 ¼ e2a ðe2a e1Þ

from which it follows that e1 ¼ e2.

In the case of midpoint algebras, that is, when every element is an idempotent,

there is no distinction between having a monoid structure for some element e a A

and being e-expansive.

Proposition 5.7. Let ðA;aÞ be a midpoint algebra with e a A. The following

conditions are equivalent:

(i) there is an internal monoid structure over e;

(ii) for every a; b a A, there is x a A such that xa e ¼ aa b;

(iii) the midpoint algebra is e-expansive.

Proof. The two conditions (i) and (ii) are already equivalent in the context of

ccm-magmas (Corollary 4.3). Also, in the more general case of ccm-magmas,
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(iii) implies (i), as it is proven in Proposition 5.2. We are left to prove that (i)

implies (iii). With an internal monoid structure ðA; �e; eÞ we can define 2eðaÞ ¼
a �e a. Indeed, using the fact that every element a a A is idempotent (A is a

midpoint algebra), we have

ða �e aÞa e ¼ aa a ¼ a: r

If, in a midpoint algebra ðA;aÞ, there is an internal monoid structure ðA; �e; eÞ,
then �e is distributive over a, as it immediately follows from ð4:4Þ. This is not

true in general for ccm-magmas.

Proposition 5.8. Let ðA;aÞ be a ccm-magma with an internal monoid structure

ðA; �e; eÞ. The following two conditions are equivalent:

(i) the ccm-magma is a midpoint algebra (every element a a A is an idempotent);

(ii) for every x; y; z a A,

x �e ðya zÞ ¼ ðx �e yÞa ðx �e zÞ: ð5:1Þ

Proof. If ðA;aÞ is a midpoint algebra then ð5:1Þ follows from ð4:4Þ. Conversely,

if we have an internal monoid structure ðA; �e; eÞ together with ð5:1Þ, then every

element a a A is an idempotent

aa a ¼ ða �e eÞa ða �e eÞ ¼ a �e ðea eÞ ¼ a �e e ¼ a:

Note that e is an idempotent because it is the unit element of an internal monoid.

r

Some examples illustrating the properties discussed in the previous results. This sec-

tion concludes with a short list of examples and counter-examples showing several

particular cases and properties, which a given ccm-magma may or may not have

for some specific choice of an idempotent element e in it. First we observe that if

the four basic properties in the left column on the table below are considered, then

there are only six possible combinations between them, namely the ones expressed

in the other columns and denoted by I to VI:

I II III IV V VI

e-expansive yes yes no no no no

e-symmetric yes no yes no no yes

internal monoid over e yes yes no no yes yes

internal group over e yes no no no no yes
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The properties I to VI defined in the table above have an obvious interpretation.

For example, a ccm-magma has property III if and only if it is e-symmetric but

not e-expansive for a specific choice of e, it does not have an internal group struc-

ture over e or even an internal monoid; while the ccm-magmas with property V

have an internal monoid structure over some idempotent element e, they are not

e-expansive nor e-symmetric, and consequently do not possess an internal group

structure. Now, combining the previous properties with the existence of one or

more, none, or even all idempotents, and also with associativity, we observe the

following list of ccm-magmas ðA;aÞ.
(1) Ccm-magmas with no idempotent elements (in this case there is no interaction

with properties I to VI from above):

(a) Non-associative:

(i) aa b ¼ aþb
2 þ 1, A ¼ R

(ii) aa b ¼ 3ab
aþb , A ¼ Rþ

(iii) aa b ¼ 2ðaþ bÞ, A ¼ Rþ

(b) Associative:

(i) aa b ¼ aþ bþ 1, A ¼ ½0;þl�
(ii) aa b ¼ ab

aþb , A ¼ Rþ or A ¼ �0; 1�
(iii) aa b ¼ aþ bþ ab, A ¼ Rþ

(iv) aa b ¼ aþ b, A ¼ Rþ

(v) aa b ¼ aþb
1þab , A ¼ �0; 1½

(vi) aa b ¼ log
�
expðaÞ þ expðbÞ

�
, A ¼ R

(2) Ccm-magmas with every element an idempotent, that is, midpoint algebras

(due to Proposition 5.7 the properties V and VI do not apply):

Property aa b A e a A

I aþb
2 R every

I
ffiffiffiffiffiffiffiffiffiffi
a3þb3

2
3

q
R every

II aþb
2 ½0;þl½ e ¼ 0

II 2ab
aþb �0; 1� e ¼ 1

III aþb
2 ½0; 1� e ¼ 1

2

III 2ab
aþb �1;þl½ e ¼ 2

IV aþb
2 Rþ N/A

IV 2ab
aþb Rþ N/A

(3) Ccm-magmas with at least one idempotent element which are not midpoint-

algebras (in this case again we distinguish between associative and non-
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associative and give examples of each one of the properties I to VI from

above):

(a) non-associative:

Property aa b A e a A

I 2ðaþ bÞ R e ¼ 0

I 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a3 þ b33
p

R e ¼ 0

II 2ðaþ bÞ ½0;þl½ e ¼ 0

III aþb
3 ½�1; 1� e ¼ 0

IV aþb
3 ½0; 1� e ¼ 0

V 2ðaþ bÞ N0 e ¼ 0

VI 2ðaþ bÞ Z e ¼ 0

(b) associative (in this case we only distinguish properties I and II from above,

as it follows from Proposition 5.6).

Property aa b A e a A

I aþ b R e ¼ 0

II aþ b ½0;þl½ e ¼ 0

II aþ b� ab ½0; 1½ e ¼ 0

(4) Finite ccm-magmas. Every finite ccm-magma is homogeneous. Some exam-

ples are as follows. The matrix

A2

1 3 2

3 2 1

2 1 3

0
B@

1
CA

shows an example of the multiplication table for a non-associative ccm-magma

with three idempotents. The matrix

A3

2 1 3

1 3 2

3 2 1

0
B@

1
CA
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shows an example of a non-associative ccm-magma with no idempotents.

However there are no ccm-magmas with a finite and even number of

idempotents. This is due to the fact that if ðA;aÞ is a ccm-magma then the

subset fa a A j aa a ¼ ag is a subalgebra of ccm-magmas and there are no

commutative idempotent quasigroups (homogeneous ccm-magmas) of even

order [20].

6. Internal relations

As we have observed in the introduction, the category of ccm-magmas is not

Mal’tsev, and so there is no hope of having every internal reflexive relation auto-

matically as a congruence, nor having any internal relation as a difunctional one.

Nevertheless, as it is shown in [11] a category is weakly Mal’tsev if and only if

every strong relation is difunctional. In particular, if f ; g : X � Y ! B are any

two morphisms of ccm-magmas, then the relation R � X � Y , defined by

xRy () f ðx; yÞ ¼ gðx; yÞ ð6:1Þ

is a strong relation.

Hence the following results:

Proposition 6.1. Let f ; g : A� A! B be two morphisms in the category of ccm-

magmas such that f ða; aÞ ¼ gða; aÞ for every a a A. The internal relation defined

by

xRy () f ðx; yÞ ¼ gðx; yÞ

is a congruence.

Proof. It is an immediate consequence of Lemma 3.4. r

Proposition 6.2. Let f ; g : X � Y ! B be two morphisms in the category of ccm-

magmas. The internal relation defined by

xRy () f ðx; yÞ ¼ gðx; yÞ

is difunctional.

Proof. It is an immediate consequence of Lemma 3.5. r

We now present some results involving another special type of internal rela-

tions, namely the ones constructed from a subalgebra of a given ccm-magma.
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Proposition 6.3. Let ðA;aÞ be a ccm-magma with a subalgebra X � A and an

idempotent element e a X. The relation

aRb () bx a X ; aa e ¼ xa b ð6:2Þ

(i) is an internal relation;

(ii) is reflexive;

(iii) is transitive whenever X has a (unique) internal monoid structure with e a X as

its unit;

(iv) is symmetric if and only if X is e-symmetric.

Proof. (i) The relation is an internal relation if and only if R � A� A is a sub-

algebra of the product, or equivalently, if and only if

aRb; a 0Rb 0 ¼) ðaa a 0ÞRðba b 0Þ:

It is the case because if there exist x; x 0 a X such that aa e ¼ xa b and a 0a e ¼
x 0a b 0 then we have

ðaa a 0Þa e ¼ ðaa a 0Þa ðea eÞ
¼ ðaa eÞa ða 0a eÞ
¼ ðxa bÞa ðx 0a b 0Þ
¼ ðxax 0Þa ðba b 0Þ

showing that there is ðxax 0Þ a X such that

ðaa a 0Þa e ¼ ðxax 0Þa ðba b 0Þ;

and so ðaa a 0ÞRðba b 0Þ.
(ii) The reflexivity of R follows from the observation that aa e ¼ ea a and

e a X .

(iii) Suppose there is an internal monoid structure in X with e as its unit

element. Corollary 4.3 tells us that X has a monoid structure with e as unit if

and only if for every x; y a X there is ðx �e yÞ a X such that ðx �e yÞa e ¼ xa y.

In this case, we prove transitivity by showing that if aRb and bRc, that is

aa e ¼ xa b; ba e ¼ ya c;

then aRc, because

aa e ¼ ðx �e yÞa c:
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It is straightforward to prove the above equality, by composing with ðea eÞ and
then using cancellation:

ðaa eÞa ðea eÞ ¼ ðxa bÞa ðea eÞ
¼ ðxa eÞa ðba eÞ
¼ ðxa eÞa ðya cÞ
¼ ðxa yÞa ðea cÞ
¼

�
ðx �e yÞa e

�
a ðca eÞ

¼
�
ðx �e yÞa c

�
a ðea eÞ:

(iv) Let us show that R is symmetric if and only if X is e-symmetric. By

definition of R, for every x a X , we have xRe. Hence, if the relation is symmetric

we also have eRx from which we conclude the existence of y a X such that e ¼
ea e ¼ yax. This shows that X is e-symmetric. Conversely, if X is e-symmetric

then for every x a X there is y a X such that xa y ¼ e and consequently the

relation R is symmetric. Indeed, given aRb, that is aa e ¼ xa b for some

x a X , we have, with y ¼ �eðxÞ:

ðya aÞa e ¼ ðya eÞa ðaa eÞ ¼ ðyaxÞa ðea bÞ ¼ ea ðea bÞ

from which we conclude

ya a ¼ ba e

and so bRa. r

The condition on the existence of a monoid structure in item (iii) above is

su‰cient for the relation to be transitive but it is not necessary. Indeed we only

have the operation ðx �e yÞ well defined for certain pairs ðx; yÞ a X � X , namely

the ones for which given any c a A there are a; b a A such that a ¼ ðy �e cÞ and
b ¼ x �e ðy �e cÞ.

This suggests the following necessary and su‰cient condition for the transi-

tivity of this type of internal relations.

Proposition 6.4. Let ðA;aÞ be a ccm-magma with a subalgebra X � A and an

idempotent element e a X. The relation

aRb () bx a X ; aa e ¼ xa b

is transitive if and only if:
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for all x; y a X and c a A, if there exist a; b a A such that

aa e ¼ xa b and ba e ¼ ya c ð6:3Þ

then there is z a X such that za e ¼ xa y.

Proof. Assume R is transitive. If we have solutions a and b for the equations

(6.3) then we also have aRb and bRc which, by transitivity, gives us the desired

z a X such that aa e ¼ za c. It is now a simple calculation to check that

za e ¼ xa y. Indeed we have

ðza eÞa ðca eÞ ¼ ðza cÞa ðea eÞ
¼ ðaa eÞa ðea eÞ
¼ ðxa bÞa ðea eÞ
¼ ðxa eÞa ðba eÞ
¼ ðxa eÞa ðya cÞ
¼ ðxa yÞa ðea cÞ

and the result follows from cancellation. Conversely, if aRb and bRc then we

also have x; y a X as in ð6:3Þ and hence there is an element z a X such that

za e ¼ xa y from which we conclude that aa e ¼ za c. Indeed

ðaa eÞa ðea eÞ ¼ ðxa bÞa ðea eÞ
¼ ðxa eÞa ðba eÞ
¼ ðxa eÞa ðya cÞ
¼ ðxa yÞa ðea cÞ
¼ ðza eÞa ðca eÞ
¼ ðza cÞa ðea eÞ;

this shows that aRc and concludes the proof. r

When A is e-expansive, item (iii) in Proposition 6.3 can now be reformulated so

to relate the transitivity of R with the property of X being e-expansive.

Corollary 6.5. Let ðA;aÞ be a ccm-magma which is e-expansive for some idem-

potent element e a A and let X be a subalgebra with e a X. The relation

aRb () bx a X ; aa e ¼ xa b

is transitive if and only if X is e-expansive.
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Proof. If X is e-expansive then in particular it has an internal monoid structure

with x � y ¼ 2eðxa yÞX . Hence the relation is transitive (Proposition 6.3(iii)).

Conversely, if the relation is transitive, then for all x; y a X the element

2eðxa yÞ a A is in fact an element in X . Indeed, 2eðxa yÞRy and yRe im-

plies 2eðxa yÞRe which is equivalent to 2eðxa yÞ a X . This shows that X is

e-expansive. r

Combining the two previous results on symmetry and transitivity with X being

e-expansive and e-symmetric we also observe:

Corollary 6.6. Let ðA;aÞ be a homogeneous ccm-magma with a subalgebra X � A

and an idempotent element e a X. The relation

aRb () bx a X ; aa e ¼ xa b

is a congruence, if and only if X is homogeneous.

Proof. If X is homogeneous then it is e-expansive with 2eðxÞ a X and it is

e-symmetric with �eðxÞ ¼ 2xðeÞ a X , for every x a X . As a consequence the rela-

tion R is transitive and symmetric, and hence it is a congruence, since it is always

an internal reflexive relation. Conversely, let us suppose R is a congruence. By

Corollary 6.5 and Proposition 6.3(iv) we already know that X is e-expansive and

e-symmetric, hence the result in Proposition 5.3 concludes the proof. r

7. Conclusion

This work shows that the category of ccm-magmas admits several classifications

for its objects. One possibility is to di¤erentiate between those ccm-magmas

admitting an internal monoid structure and those who don’t. A ccm-magma

ðA;aÞ with a given idempotent, e, admits an internal monoid structure with e

as its unit if and only if the equation

xa e ¼ aa b

has a solution x for every a, b in A. This condition is weaker than A being

e-expansive. However, the two conditions are equivalent when every element

a a A can be decomposed as a ¼ x1ax2. This property is considered, for in-

stance, in [13].

It is shown that every relation R of the form (6.1), constructed with the two

homomorphisms f and g, is necessarily a difunctional relation. This result is

also a consequence of the fact that the relation R is a strong relation and the

category of ccm-magmas is weakly Mal’tsev. More generally, when f and/or g

243Internal monoids and groups in ccm-magmas



are not homomorphisms, it might happen that R is still an internal relation but not

a difunctional one. In a similar way, if f and g are as in Proposition 6.1, with

f ða; aÞ ¼ gða; aÞ, but not homomorphisms, then we may have a reflexive internal

relation which is not a congruence. For example, the relation R in Proposition

6.3, is equivalently defined as aRb if and only if f ða; bÞ ¼ gða; bÞ, where, for all

a; b a A, f ða; bÞ ¼ aa e while gða; bÞ ¼ aa e if there exists x a X such that

aa e ¼ xa b, otherwise gða; bÞ ¼ ea b.

Every finite ccm-magma is necessarily homogeneous (Definition 5.1), and since

axiom (M3) is weaker than associativity, these kinds of structures may be useful

to the random generation of finite abelian groups. The procedure is very simple:

randomly generate a ccm-magma M with at least one idempotent, say e (although

this is only important if we are interested in internal structures), and then define

A(i,j)=find(M(:,e)==M(i,j))

for every i and j, in order to obtain a matrix A with the multiplication table for an

abelian group with e as unit element.

The notion of ccm-magma may also be defined internally in every category

with binary products (as it is done in [8] for midpoint algebras) and so, some

interesting interactions at this level are also expected, especially for the case of

topological ccm-magmas.
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