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Abstract. We use orbifold Gromov–Witten theory to evaluate a hyperelliptic Hodge
integral that is responsible for the weight with which contracted components attached at
Weierstrass points contribute to hyperelliptic Gromov–Witten invariants of surfaces.
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1. Introduction

The purpose of this paper is to evaluate a Hodge integral on a compactification of

the moduli space of hyperelliptic curves with one marked Weierstrass point.

Theorem 1.1. Let Wg be the compactification of the moduli space of hyperelliptic

curves with a single marked Weierstrass point, described in Section 2. Let E be the

Hodge bundle on Wg and let L be the cotangent line at the marked point, and set

li ¼ ciðEÞ and c ¼ c1ðLÞ. Then (1) holds.
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� �g

ð1Þ

This integral shows up naturally in the enumerative geometry of hyperelliptic

curves on surfaces. It measures the weight with which a contracted component of

genus g, attached at a Weierstrass point, contributes to hyperelliptic Gromov–

Witten invariants (as is visible in Section 5). Our original application of this

calculation in [8] was to relate the genus zero Gromov–Witten invariants of

½Sym2 P2� and the enumerative geometry of hyperelliptic curves in P2. It has since

been used in the study of hyperelliptic curves on abelian surfaces [4], [7].

Expanded as a power series in c, the leading term of the integrand in (1) is a

multiple of lglg�1, whose integral on the hyperelliptic locus was calculated by
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Faber and Pandharipande [6], Corollary to Proposition 3. Cavalieri and Ross

computed integrals of the form
Ð
lglg�ic

m1

1 . . .cmk

k using localization [5], Theorem

2.3, but without the additional constraint imposed here that the marked points be

Weierstrass points.

We prove Theorem 1.1 by reinterpreting Wg as a moduli space of stable maps

from orbifold curves to the stack BðZ=2ZÞ. The oribfold curves in question are the

quotient stacks obtained by dividing hyperelliptic curves by their hyperelliptic

involutions. The integral (1) measures the virtual contributions of contracted

components to orbifold Gromov–Witten invariants, so we find a particularly

simple example of such an invariant to evaluate (see Section 5). As the quotient

of a hyperelliptic curve by its hyperelliptic involution is rational, this is a genus

0 Gromov–Witten invariant, and it succumbs easily to an application of the

WDVV equations (see Section 4).

Studying the stack quotient of a hyperelliptic curve by the hyperelliptic involu-

tion amounts to studying the hyperelliptic curve equivariantly, so it is in principle

possible to perform the same calculations without reliance on orbifolds. However,

orbifold Gromov–Witten theory (introduced by Chen and Ruan [5] and developed

algebraically by Abramovich, Graber, and Vistoli [1], [2], [3]) confers an advan-

tage in that it allows us to use a particularly convenient target, Pð1; 1; 2Þ, that is
not a global quotient by a Z=2Z-action.

I am indebted to the anonymous referees for their help in improving the expo-

sition of this paper.

Conventions. We work throughout over the complex numbers. The letter C is

used for orbifold curves of genus 0 and ~CC is used for a double cover of C by a

hyperelliptic curve. The coarse moduli space of C is denoted C. We reserve G

for the group Z=2Z. The only nontrivial stabilizer group that appears on orbifold

curves will be Z=2Z, so we will abbreviate ‘orbifold curve with Z=2Z stabilizers’

to ‘orbifold curve’.

For orbifold Gromov–Witten theory, we will follow the definitions and nota-

tion of [2], [3].

2. Hyperelliptic curves

We begin by explaining the notation used in Theorem 1.1. Suppose that gb 2.

Let Hg � Mg be the locus of hyperelliptic curves and let Hg � Mg be its closure.

If ½ ~CC � a Hg then ~CC is canonically equipped with an action of G. In fact, the same

holds when ½ ~CC � a Hg:

Lemma 2.1. Let ~CC be a stable curve that is the stable limit of a family of hyper-

elliptic curves. Then the hyperelliptic involution extends canonically over ~CC.
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Proof. Indeed, suppose that ½ ~CC � a Hg and let ~CC 0 be a versal deformation of ~CC over

a base S 0. Then Autð ~CC 0Þ is finite over S 0. The automorphism described above

yields a rational section of Autð ~CC 0Þ. The closure of the image of this section is a

subscheme of Autð ~CC 0Þ that is finite over and birational to, hence equal to, S 0. The

section therefore extends canonically over S 0. r

Now consider a family S ! Hg corresponding to a family of stable curves ~CC

over S with an automorphism s. Let W � ~CC be the intersection of the fixed locus

of s with the smooth locus of ~CC over S.

The projection W ! S is étale, and, if S is a versal family, generically of de-

gree 2gþ 2. It may be extended to a finite, but not necessarily étale, cover of S,

because of monodromy when exactly two Weierstrass points collide. We eliminate

this monodromy in a universal way.

There is a divisor Xirr � Hg corresponding to the locus where two Weierstrass

points collide; generically, points of Xirr correspond to irreducible curves with

a single node whose brances are points that are conjugate under s. The locus

Xirr is a normal crossings divisor, so one may perform a root stack construction

of order two along the components of Xirr to yield a finite, birational map of

Deligne–Mumford stacks:

~HHg ! Hg

Taking S ¼ ~HHg, above, the locus W constructed above has trivial monodromy,

hence extends to an étale cover of ~HHg, which we denote Wg.

By blowing up the nodes parameterized by Xirr, we can regard Wg as the

moduli space of pairs ½ ~CC; p� where ~CC is a curve with an involution and p is a

marked fixed point of that involution that does not lie in the singular locus of ~CC.

Lemma 2.2. The projection Wg ! ~HHg is finite and étale, of degree 2gþ 2.

Let L ¼ NWg=Cg
be the normal bundle to Wg inside the universal curve over

~HHg, and let E be the Hodge bundle (whose fiber over ½ ~CC; p� a Wg is H 0ð ~CC;o ~CCÞ).
We write c ¼ c1ðLÞ and li ¼ ciðEÞ.

3. Orbifold maps

We will use the theories of orbifold stable maps and orbifold Gromov–Witten

theory as developed in [1], [2], [3]. Our notation for the moduli space of genus 0,

degree b orbifold stable maps with n1 ordinary marked points and n2 orbifold

points will be

MðX ; n1; n2; bÞ;
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which is an open substack of the corresponding Artin stack of pre-stable maps,

MðX ; n1; n2; bÞ. When the target has dimension zero, we drop b from the

notation. We reserve the letter G for the group Z=2Z.

Lemma 3.1. There is a finite, étale cover

MðBG; 0; 2gþ 2Þ ! Wg ð3Þ

of degree ð2gþ 1Þ!.

Proof. To give a point of MðBG; 0; 2gþ 2Þ means to give a rational, nodal, orbi-

fold curve C with 2gþ 2 marked points with Z=2Z-stabilizers and a representable

map C ! BG. This map entails a 2-to-1 cover ~CC ! C where ~CC is an ordinary

nodal curve. Sending ½C� to ½ ~CC � gives a map (4).

MðBG; 0; 2gþ 2Þ ! Mg ð4Þ

It is possible to deform C to a smooth rational curve with 2gþ 2 marked orbifold

points; the maps C ! BG deform as well, since BG is étale over a point (alterna-

tively, the double covers ~CC ! C deform because they are étale). Therefore the

curve ~CC deforms to a smooth hyperelliptic curve, which shows that our map takes

values in Hg.

In fact, the 2gþ 2 marked orbifold points of C lift to 2gþ 2 marked points

of ~CC. Forgetting all but the first of these, we get a lift of this map to one

taking values in Wg. The whole construction can be run in reverse: given a curve

½ ~CC; p� a Wg, where ½ ~CC � a Hg and p is a marked Weierstrass point of ~CC, we can

recover C and its 2gþ 2 marked orbifold points by taking the stack quotient of

C by the hyperelliptic involution and choosing an ordering on the remaining

Weierstrass points. This proves that MðBG; 0; 2gþ 2Þ is a ð2gþ 1Þ!-fold étale

cover of Wg. r

Let p : C ! S be the total space of a family of rational orbifold curves with

a map C ! BG, and let ~CC be the corresponding family of stable hyperelliptic

curves. For each i ¼ 1; . . . ; 2gþ 2, there is a closed substack Di, the i-th marked

G-gerbe. The preimage of Di in ~CC will be denoted ~DDi and is a family of marked

Weierstrass points. The map Di � C ! BG trivializes the gerbe Di, yielding an

isomorphism Di U ~DDi � BG. Since the hyperelliptic involution acts nontrivially

on the cotangent space at a Weierstrass point, we may use this isomorphism to

identify

N4
Di=C

¼ N ~DDi= ~CC n r1

210 J. Wise



where r1 is the non-trivial representation of G, viewed as a line bundle on Di

pulled back from BG. Therefore the i-th cotangent line bundle of the hyperelliptic

curve may be constructed as

Li ¼ p�ðN4
Di=C

n r1Þ ¼ ðp � tÞ�N4
~DDi= ~CC

: ð5Þ

Applying this construction universally yields line bundles Li on MðBG; 0; 2gþ 2Þ.
In particular,L1 is the pullback ofL under the projectionMðBG;0;2gþ2Þ !Wg.

We also have the hyperelliptic Hodge bundle:

E ¼ ðp � tÞ�o ~CC=S ¼ p�ðoC=S n r1Þ

The second equality holds because

t�o ~CC=S ¼ t�t
�oC=S ¼ oC=S n t�t

�OC ¼ oC=S n ðr0a r1Þ;

where we have written r0 and r1 for the trivial and nontrivial representations of G,

respectively. The first summand contributes nothing to the Hodge bundle, since

oC=S ¼ oC=S n r0 has no nonzero global sections (because C has genus 0), so

ðp � tÞ�o ~CC=S ¼ p�ðoC=S n r1Þ.
By Serre duality, E is dual to

E4¼ R1ðp � tÞ�ðOSÞ ¼ R1p�ðr0a r1Þ ¼ R1p�r1: ð6Þ

The second equality comes from R1p�r0 ¼ R1p�OC ¼ 0, which is because C has

genus 0.

Applying this construction universally, we obtain the Hodge bundle over

MðBG; 0; 2gþ 2Þ, which is pulled back from the Hodge bundle over Wg. We

may now restate Theorem 1.1 using MðBG; 0; 2gþ 2Þ:

Theorem 3.2. With definitions as above,

ð
MðBG;0;2gþ2Þ

cðE4Þ2

cðL4
1 Þ

¼ ð2g� 1Þ!
ð
Wg

cðE4Þ2

cðcÞ ¼ � 1

4

� �g

:

The first equality is the combination of Lemma 3.1 and the discussion preced-

ing the statement of the theorem. The second equality will be proved by interpret-

ing the integral as a Gromov–Witten invariant on a weighted projective space

(Section 5) and evaluating it recursively using the WDVV equations (Section 4).

4. A Gromov–Witten invariant of P(1, 1, 2)

Let X ¼ Pð1; 1; 2Þ be the weighted projective space ½ðA3nf0gÞ=Gm�, acting with

weights 1; 1; 2. Let MðX ; n1; n2; bÞ be the moduli space of genus zero orbifold
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stable maps to X with n1 ordinary marked points and n2 orbifold marked points

and degree b. The degree is evaluated by integrating c1
�
Oð1Þ

�
over the curve and

so is an element of 1
2Z.

The virtual dimension is given by the formula

v:dimMðX ; n1; n2; bÞ ¼ dimX � 3þ
ð
b

c1ðTXÞ þ n1 þ n2 �
Xn2
i¼1

ageðxiÞ

where xi, i ¼ 1; . . . ; n2 is the set of orbifold marked points and ageðxiÞ is the sum

of the tj such that the eigenvalues of the action of the stabilizer of xi acting on TX

are e2pitj , j ¼ 1; . . . ; n2, listed with multiplicity. If f : C ! X is a representable

map then any orbifold point of C must be carried by f to the unique stacky point

of X , which is represented by ð0; 0; 1Þ. The automorphisms act with eigenvalues

�1;�1 on the fiber of the tangent bundle at this point, so the age is 1.

The Euler sequence here is

0 ! O ! Oð1ÞaOð1ÞaOð2Þ ! TX ! 0

so c1ðTXÞ ¼ 4c1
�
Oð1Þ

�
. Thus,

v:dimMðX ; n1; n2; bÞ ¼ 4d � 1þ n1

where d ¼
Ð
b
c1
�
Oð1Þ

�
.

We will follow the conventions of [3] concerning Gromov–Witten invariants.

In particular, if a1; . . . ; an are classes on the rigidified inertia stack of X , with n1
coming from the untwisted sector and n2 from the twisted sector, and d a 1

2Z,

then

3a1; . . . ; an4d ¼
ð
MðX ;n1;n2;dÞvir

e�1 ða1Þ \ � � � \ e�n ðanÞ

and 3a1; . . . ; an; �4d will denote the class in the orbifold Chow ring of X such that

3a1; . . . ; an; a
04d ¼ 3a1; . . . ; an; �4d \ a 0:

See [2], Section 4.7 for more details about this notation.

The inertia stack of X is X q BG and the rigidified inertia stack is X q ðpointÞ.
Let g be the fundamental class of the second component. Let p be the class of

an ordinary point in X . We will spend the rest of this section computing the

following invariant:

Lemma 4.1. With notation as introduced above,

3p; g; . . . ; g41=2 ¼ � 1

4

� �g

ð7Þ
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Let’s put h ¼ c1
�
Oð1Þ

�
. Then p ¼ 2h2.

A schematic of the orbifold Chow ring of X with its structure as a graded

vector space is shown below.

0

X Q

ðpointÞ

1

Qh

Qg

������
������

2

Qp

It is easy to see that MðX ; 1; 2; 0ÞGBG and therefore that g2 ¼ 1
2 p ¼ h2. There-

fore a presentation of the orbifold Chow ring is Q½h; g�=ðh2 � g2Þ. Note in par-

ticular that this satisfies Poincaré duality.

Lemma 4.2. The Gromov–Witten invariants of X have the following properties.

(a) If 3gnn; a40A 0 then n ¼ 2 and a ¼ 1.

(b) The invariant 3gnn; h; �40 is zero for all n.

Proof. For (a), if a comes from the untwisted sector then the invariant is com-

puted on MðX ; 1; n; 0Þ, which has virtual dimension 0, so the invariant will be

zero unless a ¼ 1. But then it will vanish by the unit axiom unless n ¼ 2. If a

comes from the twisted sector then it is computed on MðX ; 0; nþ 1; 0Þ, which
has virtual dimension �1, so the invariant vanishes.

For (b), it is su‰cient by linearity to show that 3gnn; 2h; �40 ¼ 0. But the

Chow class 2h can be represented by a line that doesn’t pass through the uniqe

orbifold point ð0; 0; 1Þ. Since this is a degree zero invariant, this means it is

computed on an empty moduli space, i.e., it is zero. r

The WDVV equations (see [3], Theorem 6.2.1) give

X
aþb¼2g�1
d1þd2¼1=2

33h; h; gna; �4d1 ; g; g; g
nb4d2 ¼

X
aþb¼2g�1
d1þd2¼1=2

33h; g; gna; �4d1 ; h; g; g
nb4d2 : ð8Þ

where d1 and d2 can take the values 0 and 1
2 in the sums.

Consider first the right side of the equality. One of the di must be zero, so

consider the invariant 3h; g; . . . ; g; �40. This is zero by Lemma 4.2 (b). Therefore

the right side is zero.

On the left side, note that if d1 ¼ 0 then the corresponding term of the sum will

be zero by the divisor axiom unless a ¼ 0 also. In that case we get

33h; h; �40; g; g; gnð2g�1Þ41=2 ¼ 3h2; gnð2gþ1Þ41=2
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The remaining terms on the left of (8) have the form

33h; h; gna; �41=2; gnðbþ2Þ40 ¼
1

4
33gna; �41=2; gnðbþ2Þ40 ¼

1

4
3gna; 3gnðbþ2Þ; �4041=2

(the first equality is by two applications of the divisor axiom). By Lemma 4.2 (a),

these invariants vanish for b > 0, so we are left with

1

4
3gnð2g�1Þ; 3g; g; �4041=2 ¼

1

4
3gnð2g�1Þ; g241=2:

Thus (8) reduces to

3h2; gnð2gþ1Þ41=2 þ
1

4
3gnð2g�1Þ; g241=2 ¼ 0:

Since h2 ¼ g2 ¼ 1
2 p we get

3p; gnð2gþ1Þ41=2 ¼ � 1

4

� �g

3p; g41=2

by induction. The invariant on the right side of this equality is easily seen to be 1.

Indeed, M
�
X ; 1; 1; 12

�
may be identified with

P
�
G
�
X ;Oð1Þ

��
GP1:

The virtual dimension of M
�
X ; 0; 1; 12

�
is also 1, so we only need to solve the

enumerative problem to compute 3p; g41=2. If ðu; vÞ a P1 is a point, then the

condition that the corresponding curve interpolate the point ðx; y; zÞ a X is

uxþ vy ¼ 0. This has exactly one solution if ðx; yÞA ð0; 0Þ so we conclude that

3p; g41=2 ¼ 1. This completes the proof of Lemma 4.1.

5. The virtual fundamental class

Lemma 5.1. Let C be a smooth orbifold curve. Suppose there is a representable

map f : C ! X of degree 1
2 . Then C has at most 1 orbifold point.

Proof. Let L be a line through the orbifold point of X (the vanishing locus of a

section of Oð1Þ). The preimage of L in C is an e¤ective divisor of degree 1
2 , hence

is one of the orbifold points P of C. Then CnP ! XnL is a representable map,

and Pð1; 1; 2ÞnL is representable by a scheme, so CnP is representable by a scheme

as well. r
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Proposition 5.2. There are isomorphisms

M X ; 0; 2gþ 1;
1

2

� �
GM X ; 0; 1;

1

2

� �
�MðBG; 0; 2gþ 2Þ

Proof. If ð f ;CÞ a M
�
X ; 0; 2gþ 1; 12

�
, then C has a unique irreducible component

C0 with deg f jC0
¼ 1

2 ; all other components have degree 0. By the lemma, C0 has

exactly 1 orbifold point. The remaining orbifold points must lie on a union of

components that is attached at the unique orbifold point of C. Thus every point

of M
�
X ; 0; 2gþ 1; 12

�
lies in the image of the gluing map

i : M X ; 0; 1;
1

2

� �
�MðBG; 0; 2gþ 2Þ ! MðX ; 0; 2gþ 1Þ

that attaches the marked point from the first component to the first marked point

from the second component.

This is a closed embedding, so to complete the proof, we must show that the

image of this map is open in M
�
X ; 0; 2gþ 1; 12

�
. Consider a first-order deforma-

tion ðC 0; f 0Þ of ðC; f Þ. Let C1 be the contracted component of C and let C0 be the

component of positive degree; write Q for the unique orbifold point of X , which

has coordinates ð0; 0; 1Þ. If ðC 0; f 0Þ were not in the image of i, then C 0 would be

a first-order smoothing of C. But then consider the map NC1=C 0 ! ð f jC1
Þ�TQX .

If P is the point of attachment between C0 and C1, then NC1=C 0 jP is spanned by

TPC0. Moreover, C0 meets Q transversally (since f jC0
has degree 1

2), which implies

that the map NC1=C 0 ! ð f jC1
Þ�TQX is nonzero at P.

On the other hand, NC1=C 0 GOC1
ð�PÞ, and ð f jC1

Þ�TQX G ð f jC1
Þ�ðr1a r1Þ

because f contracts C1 onto Q and TQX G r1a r1. Thus we obtain a pair of

sections of r1 nOC1
ðPÞ, at least one of which does not vanish at P.

Let p : C1 ! C1 be the coarse moduli space. Then we get a section

of p�
�
r1 nOC1

ðPÞ
�

that is not everywhere zero. But p�
�
r1 nOC1

ðPÞ
�
¼

O
C1
ð�2g� 1Þ where 2gþ 2 is the number of orbifold points on C1. In particular,

all sections of p�
�
r1 nOC1

ðPÞ
�
vanish. This contradicts the nonvanishing of the

section at P. r

Now that we know how the moduli space looks, we must determine the virtual

fundamental class. We use the deformation-obstruction sequence,

DefðCÞ ! Obsð f Þ ! ObsðC; f Þ ! ObsðCÞ ¼ 0:

We know that ObsðC; f Þ is a vector bundle because M
�
X ; 0; 2gþ 1; 12

�
is smooth.

The virtual fundamental class is the top Chern class of this vector bundle.
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Obsð f Þ is the relative obstruction space for the map

M X ; 0; 2gþ 1;
1

2

� �
! MðBG; 0; 2gþ 1Þ;

where MðBG; 0; 2gþ 1Þ is the Artin stack of pre-stable maps to BG. If ðC; f Þ is a
curve in M

�
X ; 0; 2gþ 1; 12

�
then we have just seen that C is the union of two

curves, C0 and C1, along an orbifold point, with degð f jC0
Þ ¼ 1

2 and degð f jC1
Þ ¼ 0.

It is clear that any deformation of C that is trivial near the node will extend to a

deformation of ðC; f Þ: indeed, C0 is rigid and C1 is contracted by f . Thus, the

image of DefðCÞ ! Obsð f Þ is the space of deformations of the node. If we

name the nodal point P, then the deformations of the node are parameterized by

p�ðTPC0 nTPC1Þ, so we have an exact sequence on M
�
X ; 0; 2gþ 1; 12

�
,

0 ! p�ðTPC0 nTPC1Þ ! Obsð f Þ ! ObsðC; f Þ ! 0:

Explicitly, Obsð f Þ ¼ R1p� f
�TX , where f : C ! X is the universal map. Ten-

soring the normalization sequence for the node P with f �TX and taking coho-

mology, we obtain

H 0ðT jPÞ ! H 1ðTÞ ! H 1ðT jC0
ÞaH 1ðT jC1

Þ ! H 1ðT jPÞ ¼ 0;

writing T ¼ f �TX . Note that H 0ðT jPÞ ¼ 0 since P is an orbifold point and

T jP G r1a r1 has no invariant sections.

We can also calculate H 1ðT jC0
Þ ¼ 0 using the Euler sequence, which pulls

back to

0 ! O ! OðPÞaOðPÞaOð2PÞ ! T jC0
! 0

since f jC0
has degree 1

2 and f �Oð1Þ ¼ OðPÞ. Pushing this sequence forward to the

coarse moduli space via q : C0 ! C0 (note q� is exact) gives

0 ! O
C0

! O
C0

aO
C0

aO
C0

�
qðPÞ

�
! q�T

��
C0

! 0:

Now taking cohomology and noting that H 1ðO
C0
Þ ¼H 1

�
O
C0

�
qðPÞ

��
¼H 2ðO

C0
Þ ¼

0, we deduce that H 1ðT jC0
Þ ¼ 0 from the long exact sequence.

It now follows that Obsð f Þ ¼ H 1ðT jC1
Þ. But, as already remarked, f jC1

fac-

tors through the orbifold point of X , so T jC1
is the pullback of the tangent bundle

at this point, which is r1a r1. Thus,

Obsð f Þ ¼ R1p�ðr1a r1ÞGE4aE4

where E is the Hodge bundle (see (6)).
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We therefore have an exact sequence,

0 ! p�ðTPC0 nTPC1Þ ! E4aE4! ObsðC; f Þ ! 0:

We have TPC0 G r1, so we get the exact sequence,

0 ! L4
1 ! E4aE4! ObsðC; f Þ ! 0

where L1 was defined in (5).

Now, we evaluate the Gromov–Witten invariant (7). Consider the cartesian

diagram

e�1ðpÞ ���! M
�
X ; 1; 2gþ 1; 12

�
???y

???ye

p
i

X�����������!
where e is evaluation at the ordinary marked point. Under the identification of

Proposition 5.2, e factors through the evaluation map on M
�
X ; 1; 1; 12

�
. Thus,

e�1ðpÞ may be identified with MðBG; 2gþ 2Þ. Now,

3p; gnð2gþ1Þ41=2 ¼
ð
i ! M X ; 1; 2gþ 1;

1

2

� �� �vir
¼

ð
MðBG;2gþ2Þ

cðE4Þ2

cðL4
1 Þ

:

But we have also seen in Section 4 that

3p; gnð2gþ1Þ41=2 ¼ � 1

4

� �g

and this completes the proof of Theorem 3.2.
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