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Abstract. Systems with Coulomb and logarithmic interactions arise in various settings: an
instance is the classical Coulomb gas which in some cases happens to be a random matrix
ensemble, another is vortices in the Ginzburg-Landau model of superconductivity, where
one observes in certain regimes the emergence of densely packed point vortices forming
perfect triangular lattice patterns named Abrikosov lattices, a third is the study of Fekete
points which arise in approximation theory. In this review, we describe tools to study such
systems and derive a next order (beyond mean field limit) ‘‘renormalized energy’’ that gov-
erns microscopic patterns of points. We present the derivation of the limiting problem and
the question of its minimization and its link with the Abrikosov lattice and crystallization
questions. We also discuss generalizations to Riesz interaction energies and the statistical
mechanics of such systems. This is based on joint works with Etienne Sandier, Nicolas
Rougerie, Simona Rota Nodari, Mircea Petrache, and Thomas Leblé.
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1. Introduction and motivations

We are interested in the following class of energies

Hnðx1; . . . ; xnÞ ¼
X
iAj

gðxi � xjÞ þ n
Xn
i¼1

VðxiÞ ð1:1Þ

where x1; . . . ; xn are n points in Rd and the interaction kernel g is given by either

gðxÞ ¼ 1

jxjd�2
db 3; ð1:2Þ



or

gðxÞ ¼ �logjxj in dimension d ¼ 2: ð1:3Þ

Later we will also discuss generalizations to

gðxÞ ¼ 1

jxjs maxð0; d � 2Þa s < d; db 1; ð1:4Þ

or

gðxÞ ¼ �logjxj in dimension d ¼ 1; ð1:5Þ

that can be treated with slight modifications. We are interested in the asymptotics

n ! l of the minimum of Hn. One notes that in the cases (1.2)–(1.3), g is a mul-

tiple of the Coulomb kernel in dimension d, and there is a constant cd depending

only on d such that

�Dg ¼ cdd0; ð1:6Þ

where d0 is the Dirac mass at the origin.

We now review various motivations for studying such systems.

1.1. Fekete points. Fekete points arise in interpolation theory as the points

minimizing interpolation errors for numerical integration [SaTo]. They are often

studied on manifolds, such as the d-dimensional sphere, and then correspond to

sets of n points which maximize

Y
iAj

jxi � xj j:

Equivalently they minimize

�
X
iAj

logjxi � xj j:

In Euclidean space, one also considers ‘‘weighted Fekete points’’ which maximize

Y
iAj

jxi � xjje�nT
i
VðxiÞ

or equivalently minimize

�
X
iAj

logjxi � xjj þ n
Xn
i¼1

VðxiÞ
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which in dimension 2 corresponds exactly to the minimization of our Hamiltonian

Hn in the particular case (1.3). They also happen to be zeroes of orthogonal poly-

nomials, see [Si].

Since �logjxj can be obtained as lims!0
1
s
ðjxj�s � 1Þ, there is also interest in

studying ‘‘Riesz s-energies’’, i.e. the minimization of

X
iAj

1

jxi � xjjs
ð1:7Þ

for all possible s, hence a motivation for (1.4). On all these matters we refer to

[SaTo], the review paper [SK], [BHS] and the forthcoming monograph [BHS].

1.2. Statistical mechanics. The study of Hn is also interesting for understanding

the associated Gibbs measure

dPn;bðx1; . . . ; xnÞ ¼
1

Zn;b
e�ð1=2ÞbHnðx1;...;xnÞ dx1 . . . ; dxn ð1:8Þ

where b > 0 represents an inverse temperature and Zn;b is the partition function of

the system, i.e. a number that normalizes Pn;b to a probability measure on ðRdÞn.
This corresponds to the Gibbs measure of a classical ‘‘Coulomb gas system’’ (or a

log gas in cases (1.5)–(1.3)) (cf. [Forr]), by extension we can also call it a ‘‘Riesz

gas’’ in the case (1.4). Such systems have been studied in the physics literature

[SM], [JLM], [LiLe], [LN], [PeSm]. They can be considered as a toy model for

matter, with classical particles. As always with such statistical mechanics en-

sembles, one would like to understand the behavior in terms of the temperature:

are there critical temperatures corresponding to phase transitions for which the

nature of the states changes?

1.3. Random matrix theory. The study of (1.8) has attracted a lot of attention

due to its connection with random matrix theory. As first noticed by [Wi], [Dy], in

the particular cases (1.5)–(1.3) the Gibbs measure (1.8) also corresponds to the law

of the eigenvalues (which can be computed algebraically) of some famous random

matrix ensembles:

• when (1.3), with b ¼ 2 and VðxÞ ¼ jxj2, (1.8) is the law of the (complex)

eigenvalues of an n� n matrix where the entries are chosen to be normal

Gaussian i.i.d. This is called the Ginibre ensemble.

• when (1.5), with b ¼ 2 and VðxÞ ¼ x2=2, (1.8) is the law of the (real) eigen-

values of an n� n Hermitian matrix with complex normal Gaussian iid

entries. This is called the Gaussian Unitary Ensemble.
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• when (1.5), b ¼ 1 and VðxÞ ¼ x2=2, (1.8) is the law of the (real) eigenvalues

of an n� n real symmetric matrix with normal Gaussian iid entries. This is

called the Gaussian Orthogonal Ensemble.

• when (1.5), b ¼ 4 and VðxÞ ¼ x2=2, (1.8) is the law of the eigenvalues of an

n� n quaternionic symmetric matrix with normal Gaussian iid entries.

One thus observes in these ensembles the phenomenon of ‘‘repulsion of eigen-

values’’: they repel each other logarithmically, i.e. like two-dimensional Coulomb

particles.

The particular choice of b ¼ 2 makes these determinantal point processes

because then the law can be rewritten

1

Zn;b

�Y
i< j

jxi � xjj
�2
e�nT

n

i¼1VðxiÞ dx1 . . . dxn

where a square Vandermonde determinant appears. This allows to compute alge-

braically a lot of quantities in this particular case, such as the partition functions

(when V is x2), the limiting processes at the microscopic scale, etc, and there is a

large literature on this. In [BEY1], [BEY2], Bourgade-Erdös and Yau manage to

understand the case (1.5) for all b and general V , and they show the universality

(after suitable rescaling) of the microscopic behavior and local statistics of the

points, i.e. the fact that they are essentially independent of V .

1.4. Vortices in condensed matter physics. Interaction energies of the form

(1.1) in the case (1.3) also arise as e¤ective interaction energies for vortices in

models from condensed matter physics: the Ginzburg-Landau model of supercon-

ductivity and the Gross-Pitaevskii functionals for superfluids and Bose-Einstein

condensates. In this spirit, the mathematical study of such vortices started with

Bethuel-Brezis-Hélein [BBH] who studied the simplified functional

EeðuÞ ¼
1

2

ð
W

j‘uj2 þ ð1� juj2Þ2

2e2

where u is a function from a two-dimensional (bounded simply connected) domain

W to the complex plane C, which is prescribed to take boundary values u ¼ g with

g a map from qW to S1 of nonzero topological degree n. Bethuel, Brezis and

Hélein analyzed minimizers of Ee under this boundary condition, and showed that

they have n zeroes (or vortices) of topological degree 1, at locations xe
1; . . . ; x

e
n.

These points tend as e ! 0, to minimize a ‘‘renormalized energy’’

W ðx1; . . . ; xnÞ ¼ �
X
iAj

logjxi � xjj þ
X
i; j

Rðxi; xjÞ
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where R is a regular function depending on the boundary data g. They also

proved that

minEeP pnjlog ej þminW as e ! 0;

where the leading order term pnjlog ej corresponds to the ‘‘self-interaction’’ of all

the vortices, and the second order term minW governs the vortex locations.

The original Ginzburg-Landau model of superconductivity contains a gauge

and an applied magnetic field:

Geðu;AÞ ¼
1

2

ð
W

j‘Auj2 þ j‘� A� hexj2 þ
ð1� juj2Þ2

2e2
: ð1:9Þ

Here A : W ! R2 is the gauge of the magnetic field, ‘A ¼ ‘� iA is the covariant

derivative, h :¼ ‘� A ¼ q2A1 � q1A2 is the induced magnetic field in the sample.

The constant parameters are hex, the intensity of the external magnetic field, and

e a material constant, which is often small. Associated to this functional are the

Ginzburg-Landau equations:

ðGLÞ

�ð‘AÞ2u ¼ 1

e2
uð1� juj2Þ in W

�‘?h ¼ 3iu;‘Au4 in W

h ¼ hex on qW

‘Au � n ¼ 0 on qW;

8>>>>>><
>>>>>>:

where ‘? denotes the operator ð�q2; q1Þ, n is the outer unit normal to qW and

3a; b4 is the scalar product in C as identified with R2.

The analysis of [BBH] was first generalized to the model with gauge, still with

fixed boundary conditions, in [BR]. In the true physics model, vortices arise due

to the hex parameter, with no prescribed boundary data. In the experiments and

physics predictions, it is observed that when hex is above a first critical field Hc1 of

order jlog ej, then vortices start to appear. Their number increases as hex is further

increased, and they tend to form perfect triangular Abrikosov lattices, named after

the physicist Abrikosov who first predicted them.

Several of these features have been proven rigorously in a series of works on

the vortices in this Ginzburg-Landau model, which are summarized in [SS1]. (In

that reference one can also find a detailed introduction to the functional, as well as

references to the mathematics and physics literature.) To analyze the vortices in

(1.9) one defines the vorticity of a configuration ðu;AÞ as

mðu;AÞ ¼ ‘� 3iu;‘Au4þ ‘� A:

This is the gauge-invariant analogue of the standard vorticity, such as the one

defined in fluids. One can show that in the asymptotics e ! 0, for configurations
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whose energy is reasonably controlled one has

mðu;AÞU‘� 3iu;‘u4U 2p
X
i

didxi ð1:10Þ

where xi are the vortex centers and di their integer degrees (all possibly depending

on e). This is not exact, however it can be given some rigorous meaning in some

functional space in the asymptotics e ! 0 (cf. [SS1], Chap. 6). A more true state-

ment is that the right hand side is a sum of approximate Diracs, smeared out at the

scale e, which we will denote by dðeÞxi
. Taking the curl (or the vector product with

‘) of the second equation in (GL) leads to

�Dh ¼ ‘� 3iu;‘Au4 ¼ mðu;AÞ þ ‘� A

or in other terms to what is called the London equation:

�Dhþ hU 2p
P

i did
ðeÞ
xi

in W

h ¼ hex on qW:

�
ð1:11Þ

In an electrostatic analogy, h is thus like a Coulomb (or more accurately Yukawa)

potential generated by the point vortices, which behave like (smeared out) point

charges. Assuming for simplicity that all degrees are þ1 (which is true for energy

minimizers), we may then write with (1.11) that

h� hex ¼
ð
W

GWðx; yÞ
�
2p
X
i

dðeÞxi
� hex

�

where GW is the kernel of �Dþ I with Dirichlet boundary condition i.e.

�DxGW þ GW ¼ dy in W

GW ¼ 0 on qW:

�
ð1:12Þ

Of course GWðx; yÞP�logjx� yj þ Rðx; yÞ where R is some regular remainder,

so GW behaves essentially like the two-dimensional Coulomb kernel. One has

jujU 1 and j‘Auj2U j‘hj2 as e ! 0 by using the second equation in (GL), and

then one may formally rewrite (1.9) as

Geðu;AÞU
1

2

ð
W

j‘hj2 þ jh� hexj2

¼ 1

2

ðð
GWðx; yÞ

�
2p
X
i

dðeÞxi
� hex

�
ðxÞ
�
2p
X
i

dðeÞxi
� hex

�
ðyÞ dx dy

Upnjlog ej � p
X
iAj

logjxi � xj j þ remainder terms: ð1:13Þ
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Here the term pnjlog ej comes from the diagonal terms i ¼ j, i.e. the self interac-

tion of the smeared out Dirac masses, the logarithmic terms come from the leading

order of GW and the remainder terms from the next order terms of GW, which are

regular. We thus see that everything happens formally as if the vortices were a

system of points with logarithmic interactions as in (1.3). The works [SS1], [SS3]

make that analogy rigorous.

2. The leading order behavior of Hn

The leading order behavior of Hn is well understood since [Cho], and the limit

(or mean-field limit) is

EðmÞ ¼
ðð

Rd�Rd

gðx� yÞ dmðxÞ dmðyÞ þ
ð
Rd

VðxÞ dmðxÞ ð2:1Þ

defined over PðRdÞ, the space of probability measures on Rd . Finding the mini-

mum of E is also known as the ‘‘capacitor problem’’ in potential theory and was

first considered by Gauss and solved by Frostman in the 30’s [Fro].

Theorem 2.1 (Frostman). If V is continuous and limjxj!l V=2þ g ¼ þl, then E

has a unique minimizer mV among probability measures. Moreover

• mV has compact support of positive measure

• it is uniquely characterized by the fact that there exists a constant c such that

hmV þ V
2 b c in Rd

hmV þ V
2 ¼ c q:e: on SuppðmV Þ

(
ð2:2Þ

where

hmV ¼ g � mV : ð2:3Þ

This measure mV is called the equilibrium measure. The uniqueness easily

comes from observing that E is stricly convex on PðRdÞ. The characterization of

mV comes from making variations of the form ð1� tÞmV þ tn with n a PðRdÞ and
letting t ! 0. ‘‘q.e.’’ means quasi-everywhere or except on a set of capacity 0

(a compact set E is of capacity zero if infm APðEÞ
Ð Ð

gðx� yÞ dmðxÞ dmðyÞ ¼ þl).

Important examples are the case where VðxÞ ¼ jxj2 with (1.2) or (1.3), then

mV ¼ 1
jB1j 1B1

. This can be guessed by taking formally the Laplacian of (2.2) on

the support of mV which yields �DhmV ¼ mV ¼ Dðjxj2=2Þ ¼ 1 there. In random

matrix theory, in the case (1.3), this corresponds to the so-called circular law.
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We will always assume that S :¼ SuppðmV Þ is compact with a C1 boundary,

and also that mV has a density (still denoted mV ðxÞ) which is bounded above and

C1 on S and behaves like a power of the distance to S (cf. [PeSe] for precise

assumptions). We will also denote

z ¼ hmV þ V

2
� c ð2:4Þ

with c the constant in (2.2). Then zb 0 in Rd and z ¼ 0 in S quasi-everywhere

(and everywhere as soon as V is regular enough).

Proposition 2.2 (G-convergence of Hn). Assume ðx1; . . . ; xnÞ1 are such that

Hnðx1; . . . ; xnÞaCn2, then up to extraction of a subsequence we have 1
n

Pn
i¼1 dxi *

m a PðRdÞ ( for the weak-* topology on probabilities), and

lim inf
n!l

Hnðx1; . . . ; xnÞ
n2

bEðmÞ:

Conversely, given m a PðRdÞ with EðmÞ < l, there exists a sequence of ðx1; . . . ; xnÞ
such that 1

n

Pn
i¼1 dxi * m and

lim sup
n!l

Hnðx1; . . . ; xnÞ
n2

aEðmÞ:

We immediately deduce that if for all n, ðx1; . . . ; xnÞ minimizes Hn, then
1
n

Pn
i¼1 dxi * mV , where mV is the unique minimizer of E as above, and we must

have

lim
n!l

minHn

n2
¼ EðmV Þ: ð2:5Þ

This settles the leading order behavior of the minimizers of Hn: their macroscopic

behavior is to resemble mV .

In the case with temperature, i.e. (1.8), it is striking that this behavior persists.

In fact it was proven in [PH], [BZ], [BG], [CGZ] that Pn;b admits a Large Devia-

tion Principle (LDP) at speed n2 and rate function
b

2 ðE�minEÞ.

Definition 2.3. One says that a sequence of Borel probability measures ðPnÞn
admits an LDP at speed an with rate function I if for every Borel set E,

�inf
E
�
I a lim inf

n!l

logPnðEÞ
an

a lim sup
n!l

logPnðEÞ
an

a�inf
E

I :

1everywhere we really mean x1; n; . . . ; xn; n i.e. the whole configuration depends on n.
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In our case, this means roughly that if 1
n

Pn
i¼1 dxi * m, then the probability of a

neighborhood of that event behaves like

e�n2ðb=2ÞðEðmÞ�EðmV ÞÞ:

Since mV is the only minimizer of E, all configurations which converge to mA mV
have exponentially small probability. This means that even with temperature

(with the scaling of temperature chosen here), configurations macroscopically

resemble mV .

For the proof of Proposition 2.2 and of the LDP, we refer to [Ser], Chap. 2.

3. Expanding Hn to next order

The goal is then to understand what governs the next order term in the asymp-

totics of Hn. This term will at the same time give us information on the micro-

scopic (vs. macroscopic previously) arrangements of the points. We expect that

typical configurations of low energy have n points distributed on (or near) the set

S. Since S is a bounded set of dimension d, we can thus expect the typical distance

between points to be n�1=d : this is the microscopic lengthscale. We will thus blow

up configurations at that lengthscale. For simplicity we present the computations

in the Coulomb cases.

Here we expand the Hamiltonian by viewing the point distribution nn :¼Pn
i¼1 dxi as a perturbation of nmV :

nn ¼ nmV þ ðnn � nmV Þ: ð3:1Þ

Inserting the splitting (3.1) into the definition of Hn, one finds that if the points

x1; . . . ; xn are distinct, and denotings for the diagonal of Rd ,

Hnðx1; . . . ; xnÞ ¼
X
iAj

gðxi � xjÞ þ n
Xn
i¼1

VðxiÞ

¼
ðð

sc

gðx� yÞ dnnðxÞ dnnðyÞ þ n

ð
V dnn

¼ n2
ðð

sc

gðx� yÞ dmV ðxÞ dmV ðyÞ þ n2
ð
V dmV

þ 2n

ðð
sc

gðx� yÞ dmV ðxÞdðnn � nmV ÞðyÞ þ n

ð
Vdðnn � nmV Þ

þ
ðð

sc

gðx� yÞdðnn � nmV ÞðxÞdðnn � nmV ÞðyÞ: ð3:2Þ
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We now recall that z was defined in (2.4) so that we may rewrite the middle line in

the right-hand side of (3.2) as

2n

ðð
sc

gðx� yÞ dmV ðxÞdðnn � nmV ÞðyÞ þ n

ð
Vdðnn � nmV Þ

¼ 2n

ð
hmV þ V

2

� �
dðnn � nmV Þ ¼ 2n

ð
ðzþ cÞdðnn � nmV Þ

¼ 2n

ð
z dnn � 2n2

ð
z dmV þ 2nc

ð
dðnn � nmV Þ ¼ 2n

ð
z dnn:

The last equality is due to the facts that z ¼ 0 q.e. on the support of mV and that nn
and nmV have the same mass n. We also have to notice that since mV has a Ll

density with respect to the Lebesgue measure, it does not charge the diagonal s
(whose Lebesgue measure is zero) and we can include it back in the domain of

integration. By that same argument, one may recognize in the first line of the

right-hand side of (3.2) the quantity n2EðmV Þ.
We may thus rewrite (3.2) as

Hnðx1; . . . ; xnÞ ¼ n2EðmV Þ þ 2n
Xn
i¼1

zðxiÞ

þ
ðð

sc

gðx� yÞdðnn � nmV ÞðxÞdðnn � nmV ÞðyÞ: ð3:3Þ

Note that this is an exact relation, valid for any configuration of distinct points.

The first term in the right-hand side gives the leading order, i.e. the energy of the

equilibrium measure. In the second term, z plays the role of an e¤ective confining

potential, which is active only outside of S (recall zb 0, and z ¼ 0 in S). The last

term in the right-hand side is the most interesting, it measures the discrepancy be-

tween the di¤use equilibrium measure mV and the discrete empirical measure 1
n
nn.

It is an electrostatic (Coulomb) interaction between a ‘‘negatively charged back-

ground’’ �nmV and the n positive discrete charges at the points x1; . . . ; xn. In the

sequel, we will express this energy term in another fashion, and show that it is

indeed a lower-order term.

To go further, we need to introduce hn, the potential generated by the distribu-

tion of charges nn � nmV , defined by

hn :¼ g � ðnn � nmV Þ ¼
ð
gð� � yÞdðnn � nmV ÞðyÞ: ð3:4Þ

Note that hn decays at infinity, because the charge distribution nn � nmV is

compactly supported and has zero total charge, hence, when seen from infinity
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behaves like a dipole. More precisely, hn decays like ‘g at infinity, that is O
�

1
rd�1

�
and its gradient ‘hn decays like the second derivative D2g, that is O

�
1
rd

�
(in dimen-

sion 1, like 1=r and 1=r2). Formally, using Green’s formula (or Stokes’ theorem)

and the definitions, one would like to say that, at least in dimension db 2,ðð
sc

gðx� yÞdðnn � nmV ÞðxÞdðnn � nmV ÞðyÞ

¼
ð
hndðnn � nmV Þ

¼
ð
hn � 1

cd
Dhn

� �
Q

1

cd

ð
j‘hnj2: ð3:5Þ

This is the place where we really use for the first time in a crucial manner the

Coulombic nature of the interaction kernel g. Such a computation allows to

replace the sum of pairwise interactions of all the charges and ‘‘background’’ by

an integral (extensive) quantity, which is easier to handle in some sense. However,

(3.5) does not make sense because ‘hn fails to be in L2 due to the presence of

Dirac masses. Indeed, near each atom xi of nn, the vector-field ‘hn behaves like

‘g and the integrals
Ð
Bð0;hÞ j‘gj

2 are divergent in all dimensions. Another way

to see this is that the Dirac masses charge the diagonal s and so sc cannot be

reduced to the full space.

To remedy this, we introduce truncated potentials, and a ‘‘renormalized’’ way

of computing the integral. Given h > 0, set

fhðxÞ ¼
�
gðxÞ � gðhÞ

�
þ ð3:6Þ

and observe that fh solves

�Dfh ¼ cdðd0 � d
ðhÞ
0 Þ

where d
ðhÞ
0 denotes the uniform measure of mass 1 on qBð0; hÞ. For hn as in (3.4),

we then define the truncated potential

hn;hðxÞ ¼ hnðxÞ �
Xn
i¼1

fhðx� xiÞ ð3:7Þ

and note that it solves

�Dhn;h ¼ cd

�Xn
i¼1

dðhÞxi
� nmV

�
: ð3:8Þ

We then have the following
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Lemma 3.1.

ðð
sc

gðx� yÞdðnn � nmV ÞðxÞdðnn � nmV ÞðyÞ ¼ lim
h!0

� 1
cd

ð
Rd

j‘hn;hj2 � ngðhÞ
�
:

Proof. Let us compute the right-hand side of this relation. Let us choose R so

that all the points are in Bð0;R� 1Þ in Rd , and h small enough that 2h <

miniAjjxi � xjj. Since hn;h ¼ hn (defined in (3.4)) at distanceb h from the points,

by Green’s formula and (3.7), we have

ð
BR

j‘hn;hj2 ¼
ð
qBR

hn
qhn

qn
�
ð
BR

hn;hDhn;h

¼
ð
qBR

hn
qhn

qn
þ cd

ð
BR

hn;h

�X
i

dðhÞxi
� nmV

�
: ð3:9Þ

In view of the decay of hn at infinity mentioned above, the boundary integral tends

to 0 as R ! l. We thus find

ð
Rd

j‘hn;hj2 ¼ cd

ð
Rd

hn;h

�Xn
i¼1

dðhÞxi
� nmV

�

¼ cd

ð
Rd

�
hn �

Xn
i¼1

fhð� � xiÞ
��Xn

i¼1

dðhÞxi
� nmV

�
: ð3:10Þ

Since fhð� � xiÞ ¼ 0 on qBðxi; hÞ ¼ SuppðdðhÞxi
Þ and outside of Bðxi; hÞ, and since

the balls Bðxi; hÞ are disjoint, we may write

ð
Rd

j‘hn;hj2 ¼ cd

ð
Rd

hn

�Xn
i¼1

dðhÞxi
� nmV

�
� ncd

ð
Rd

Xn
i¼1

fhð� � xiÞmV :

Let us now use (temporarily) the notation hi
nðxÞ ¼ hnðxÞ � gðx� xiÞ (for the

potential generated by the distribution bereft of the point xi). The function hi
n is

regular near xi, hence
Ð
hi
nd

ðhÞ
xi

! hi
nðxiÞ as h ! 0. It follows that

cd

ð
Rd

hn

�Xn
i¼1

dðhÞxi
� nmV

�
� ncd

ð
Rd

Xn
i¼1

fhðx� xiÞmV

¼ ncdgðhÞ þ cd
Xn
i¼1

hi
nðxiÞ � ncd

ð
Rd

hnmV

þOðn2kmVkLlÞ
ð
Bð0;hÞ

j fhj þ oð1Þ: ð3:11Þ
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We can check that
Ð
Bð0;hÞ j fhj ! 0 as h ! 0, so

lim
h!0

1

cd

ð
Rd

j‘hn;hj2 � ngðhÞ ¼
Xn
i¼1

hi
nðxiÞ � n

ð
Rd

hnmV : ð3:12Þ

Now, from the definitions it is easily seen that

hi
nðxiÞ ¼

ð
Rdnfxig

gðxi � yÞdðnn � nmV ÞðyÞ; ð3:13Þ

from which it follows thatðð
sc

gðx� yÞdðnn � nmV ÞðxÞdðnn � nmV ÞðyÞ

¼
Xn
i¼1

ð
Rdnfxig

gðxi � yÞdðnn � nmV ÞðyÞ � n

ð
Rd

hnmV ¼
Xn
i¼1

hi
nðxiÞ � n

ð
Rd

hnmV :

In view of (3.12), we conclude that the formula holds. r

Combining (3.3) and Lemma 3.1, we obtain

Hnðx1; . . . ; xnÞ ¼ n2EðmV Þ þ 2n
Xn
i¼1

zðxiÞ þ lim
h!0

� 1
cd

ð
Rd

j‘hn;hj2 � ngðhÞ
�
: ð3:14Þ

The final step consists in rescaling this quantity, as announced, by changing x into

x 0 ¼ n1=dx. We let m 0
V ðx 0Þ ¼ mV ðxÞ be the blown-up density of the equilibrium

measure, S 0 ¼ n1=dS and set

h 0
n ¼ g �

�Xn
i¼1

dx 0
i
� m 0

V

�
ð3:15Þ

and as above

h 0
n;h ¼ g �

�Xn
i¼1

d
ðhÞ
x 0
i
� m 0

V

�
;

which of course satisfy

�Dh 0
n ¼ cd

�Xn
i¼1

dx 0
i
� m 0

V

�
and �Dh 0

n;h ¼ cd

�Xn
i¼1

d
ðhÞ
x 0
i
� m 0

V

�
: ð3:16Þ
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Changing variables in (3.14) yields

Proposition 3.2. For any n, any ðx1; . . . ; xnÞ, we have

Hnðx1; . . . ; xnÞ ¼ n2EðmV Þ þ 2n
Xn
i¼1

zðxiÞ þ � n

2
log n

� �
1d¼2

þ n2�2=d

cd
lim
h!0

�1
n

ð
Rd

j‘h 0
n;hj

2 � cdgðhÞ
�
: ð3:17Þ

We have thus obtained a completely algebraic splitting of the energy, valid for

all configurations for fixed n, which separates the leading order term n2EðmV Þ
from terms which are expected to be of next order. This result was obtained in

[SS4], [SS5], [RouSe], and its analogue for (1.4) in [PeSe]. We will now focus on

studying the asymptotics of

Fnðx1; . . . ; xnÞ ¼ lim
h!0

�1
n

ð
Rd

j‘h 0
n;hj

2 � cdgðhÞ
�
: ð3:18Þ

A nice feature of the quantity defining Fn is its almost monotonicity:

Lemma 3.3. If a < h, we have

1

n

ð
Rd

j‘h 0
n;hj

2 � cdgðhÞa
1

n

ð
Rd

j‘h 0
n;aj

2 � cdgðaÞ þ ohð1Þ;

where the ohð1Þ depends only on d and kmVkLl .

The proof is based on integration by parts similarly as in Lemma 3.1. It can be

found in [Ser], Chap. 3.

4. The renormalized energy

When taking limits in (3.16), if the blow-up was centered at a point x0, we are led

to solutions of relations of the form

�Dh ¼ cd

�X
p AL

Npdp �m
�

in Rd ð4:1Þ

where Np a N� and L is a discrete (infinite) set of points. Here m is a constant,

equal to mV ðx0Þ (indeed, when centered around x0, the density m 0
V converges to the

constant mV ðx0Þ) since mV was assumed to be a continuous density. We call Am
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the class of vector fields E ¼ ‘h with h satisfying a relation of the form (4.1). To

each such h naturally corresponds as in (3.7) a truncated potential

hh :¼ h�
X
p AL

Np fhðx� pÞ;

which satisfies

�Dhh ¼ cd

�X
p AL

Npd
ðhÞ
p �m

�
: ð4:2Þ

In view of (3.18), it is then quite natural to define

Definition 4.1 (Renormalized energy). For ‘h a Am and 0 < h < 1, we define

Whð‘hÞ ¼ lim sup
R!l

� 1

jKRj

ð
KR

j‘hhj2 �mcdgðhÞ
�

ð4:3Þ

with KR ¼ ½�R;R�d , and

Wð‘hÞ ¼ lim
h!0

Whð‘hÞ: ð4:4Þ

We note that Wh is in fact monotone (nonincreasing) in h just as in Lemma 3.3,

so that the limit exists, thus WhbW1 for any ha 1, while W1 is easily seen to be

bounded below by �mcdgð1Þ. Therefore W is bounded below on Am by a con-

stant depending only on m and d.

The constant m is acting like a uniform negative background charge which

neutralizes the points, and also corresponds to the average density of points. In

fact we can prove that if Wð‘hÞ < l then

lim
R!l

P
p ALBKR

Np

jKRj
¼ m: ð4:5Þ

This follows from the fact that a relation of the form (4.1) allows to estimate the

discrepancy between the number of points and the volume via the energy itself:

one integrates (4.2) (applied for some h < 1 small but fixed) against a cut-o¤ func-

tion wR equal to 1 in KR and vanishing outside KRþ1. Green’s theorem then allows

to find

ð
wR

�X
p AL

Npd
ðhÞ
p �m

�
¼ 1

cd

ð
‘wR � ‘hh ð4:6Þ
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which is oðRdÞ as R ! l. Using the Cauchy-Schwarz inequality, the right-hand

side can be bounded above by

C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rd�1jKRj

�
Whð‘hÞ þmcdgðhÞ

�q
which is oðRdÞ as R ! l. On the other hand, since h < 1,

X
p ALBKR�2

Npa

ð
wR
X
p AL

Npd
ðhÞ
p a

X
p ALBKRþ2

Np

hence the left-hand side of (4.6) is easily seen to be equivalent to
P

p ALBKR
Np �

mjKRj, and we conclude that (4.5) holds.

We also have the following scaling property of W : if E a Am then ÊE :¼
m1=d�1E

� �
m1=d

�
a A1 and

WðEÞ ¼ m2�2=dWðÊEÞ � ð2pm logmÞ1d¼2: ð4:7Þ

Thus it su‰ces to study W on A1. On this class we can show (as seen just above)

that it is bounded below, and also that it has a minimizer. The big open question

is to identify the minimum and the minimizers.

If the configuration L is periodic, or equivalently if it lives on a torus T of

volume N and if

�Dh ¼ cd

�Xn
i¼1

dai � 1
�

in T ð4:8Þ

with possible repetitions in the ai, then we can compute W in a more explicit form:

Lemma 4.2. Assume (4.8) holds. If some ai is repeated then WðEÞ ¼ þl,

otherwise

Wð‘hÞ ¼ c2d
N

X
iAj

Gðai � ajÞ þ c2d lim
x!0

G � g

cd

� �
ð4:9Þ

where G is the solution on the torus of

�DG ¼ d0 �
1

N
:

The function G is the Green function of the torus, and behaves like g
cd

near

the origin. Up to a constant, the value of W just consists of a sum of pairwise

interactions, but now computed with a periodic Green’s function, which naturally

includes a neutralizing background.

262 S. Serfaty



Proof. We may write hðxÞ ¼ cd
Pn

i¼1 Gðx� aiÞ. Then

Wð‘hÞ ¼ lim
h!0

lim sup
R!l

ð
KR

j‘hhj2 � cdgðhÞ ¼ lim
h!0

ð
T

j‘hhj2 � cdgðhÞ

by periodicity. We then write

ð
T

j‘hhj2 ¼ �
ð
T

hhDhh:

We may then insert that hhðxÞ ¼ cd
Pn

i¼1 Gðx� aiÞ �
Pn

i¼1 fhðx� xiÞ and �Dhh ¼
cdð
Pn

i¼1 d
ðhÞ
xi

� 1Þ and expand exactly as in the proof of Lemma 3.1, to obtain the

result. r

The particular case where N ¼ 1, i.e. there is only one point per period, corre-

sponds to a configuration which is exactly a (Bravais) lattice L (with fundamental

cell normalized to 1). Then the formula above reduces to

W ¼ c2d lim
x!0

G � g

cd

� �

and this can be computed by expanding G in Fourier series. One finds that

GðxÞ ¼
X

k AL �nf0g

e2ipk�x

4p2jkj2
:

The right-hand side is an Eisenstein series. Using this formula one can prove

(cf. [SS3]) that in dimension 2, if L1 and L2 are two lattices of unit volume, then

WðL1Þ �WðL2Þ ¼ lim
s!0

X
p AL�

1 nf0g

1

jpj2þs
�

X
p AL �

2 nf0g

1

jpj2þs

¼ lim
s!0

zL �
1
ðsÞ � zL �

2
ðsÞ; ð4:10Þ

where zLðsÞ is called the Epstein zeta function of the lattice L. The minimization

of W among lattices is then solved via the following result due to Cassels, Rankin,

Ennola, Diananda, Montgomery (for a nice proof see [Mon]):

Theorem 4.3. Assume d ¼ 2 and s > 0. Then L 7! zLðsÞ is uniquely minimized

among lattices of volume 1 by the triangular lattice (i.e. the one based on eip=3).

It follows from (4.10) that in dimension 2, W is uniquely minimized among

volume 1 lattices, by the triangular lattice. This reconnects to the Abrikosov
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lattice that was observed in superconductivity, and leads us to conjecture that the

triangular lattice achieves a global minimum of W. Note that [BS] showed that

this conjecture is equivalent to a conjecture of [BHS].

In dimensions larger than 2, the minimization of the z function is not under-

stood, and so even the minimization of W among lattices is not sorted out. It is

for example reasonable to believe that in dimension 3, the minimum is achieved by

the BCC (body-centered cubic) lattice, see [SaSt]. For this, and more generally all

questions on crystallization, we also refer to the recent review [BL].

5. The screening result and analysis of minimizers of Hn

5.1. Screening. The screening procedure is a way to localize the energy, which is

by nature nonlocal in the point configuration: the electric potential h at any point

depends a priori on the configuration everywhere. The idea is to cut the domain

into cubes, and modify the configurations near the boundary of each such cubes

in such a way that the energy becomes equal to the sum of the energies on the

subcubes. For that we need to relax the problem and instead of working with

electric potentials h satisfying (4.1), work with electric fields E ¼ ‘h, which then

satisfy

�divE ¼ cd

�X
p AL

Npdp �m
�

in Rd ; ð5:1Þ

(this idea originates in [ACO]). Relaxing the constraint that E has to be a gradi-

ent, it is then possible to glue together two electric fields on adjacent cubes keeping

a relation of the form (5.1), provided that their normal components coincide on the

common boundary (then no divergence is created across the interface). The goal

is thus to modify electric fields in such a way that their normal components always

coincide, by making them vanish on the boundaries. The energy of a vector field

constructed by such a pasting becomes additive in the pasted pieces, i.e. essentially

local. At the end one may recover a gradient vector field by L2 projection onto

gradients, which naturally only decreases the energy.

The modification of the configuration in each cube is achieved through the fol-

lowing screening proposition:

Proposition 5.1. Given E a A1 with WðEÞ < l, satisfying

�divE ¼ cd

�X
p AL

Npdp � 1
�
:
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Given R such that jKRj a N, and given e > 0, h > 0 there exists L̂L a configuration of

points and ÊE a vector field (both possibly also depending on h) defined in KR and

satisfying ÊE ¼ E in KRð1�eÞ (hence L̂L ¼ L there too)

�div ÊE ¼ cd

�X
p A L̂L

dp � 1
�

in KR

ÊE � n ¼ 0 on qKR

8><
>: ð5:2Þ

and

ð
KR

jÊEhj2a
ð
KR

jEhj2 þ egðhÞRd : ð5:3Þ

The way to understand this is that given E a A1 and KR, we keep E pre-

served in a large subcube, and use the thin layer near the boundary to completely

modify the configuration and place points ‘‘by hand’’ in such a way that they

cancel the e¤ect of what is happening inside (hence the name ‘‘screening’’), and

a negligible energy is added. The points in the layer compensate the oscillation

of E on the boundary of the subcube and also make the whole configuration

globally neutral. Indeed, the boundary condition ÊE � n ¼ 0 implies by integrating

(5.2) over KR and using Green’s theorem, that the number of points in KR must

equal jKRj.
This screening allows to e‰ciently obtain upper bounds on the minimal energy

by constructing vector fields by truncating vector fields on cubes KR, applying

Proposition 5.1 and pasting together the results.

The screening result has several consequences, that were explored in [RNSe]

in the case (1.3). Since it allows to modify boundary traces of vector fields with-

out changing the energy too much, it proves that minA1
W is also equal to the

limit as R ! l of the minimum of W over KR-periodic configurations, and

also to

lim
h!0

lim
R!l

min
nð

KR

j‘hhj2 � cdgðhÞ;�Dh ¼ cd

�X
p

Npdp � 1
�
in KR

and qnh ¼ j on qKR

o
ð5:4Þ

for reasonable given boundary data j.

In other words, boundary e¤ects are negligible in the overall energy, and to

compute minW, it would su‰ce to compute the minimum over periodic configu-

rations, for which the formula (4.9) is available, and then take the limit of large

period.
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5.2. Minimizers of Hn in the case (1.3). The screening also allows to get the

following result of equidistributions of points and energy (it was written in the

case (1.3) but should work in all Coulomb cases):

Theorem 5.2 ([RNSe]). Assume (1.3). Let ðx1; . . . ; xnÞ � ðR2Þn minimize Hn,

then

• for all i, xi a S

• we have rigidity of the number of points: letting x 0
i ¼ n1=dxi and KlðaÞ ¼

½a� l; aþ l�d , if lb c > 0 and dist
�
KlðaÞ; qS 0�

b nb=2 ðb < 1Þ, we have

lim sup
n!l

			afx 0
i a KlðaÞg �

ð
KlðaÞ

m 0
V ðxÞ dx

			aCl: ð5:5Þ

• we have equidistribution of energy

lim sup
n!l

			lim
h!0

ð
KlðaÞ

j‘h 0
n;hj

2 � cdafx 0
i a KlðaÞggðhÞ �

ð
KlðaÞ

�
min
Am 0

V
ðxÞ
W
�
dx
			

a olðl2Þ: ð5:6Þ

This result is based on a comparison argument. Let ðx1; . . . ; xnÞ be a mini-

mizer, let us blow up (at scale n1=d ) and consider En ¼ ‘h 0
n the electric field that

it generates. If one examines a microscopic box KlðaÞ ¼ ½a� l; aþ l�d � S 0,
one can delete En in that box, and replace it by a vector field of choice, obtained

by applying Proposition 5.1 to a minimizer of W (with the right density i.e.

mV ðxÞ), thus making a new point configuration. By comparison, the energy of

the new total vector field should be larger than the original one (since it was a

minimizer), and this should say that the energy of the original En in the box is

(5.6). In order to make this reasoning rigorous one has to use Proposition 5.1

to glue together the old and new vector fields. One also has to find, by a mean

value argument, a good boundary of the cube on which En is well behaved.

This cannot be done at small scales a priori but the reasoning has to be applied

iteratively at smaller and smaller scales and bootstrapped until one gets to scale

l ¼ Oð1Þ. Gluing together the old vector field En outside KlðaÞ and the new

one inside KlðaÞ will not produce a gradient vector field, but as above, we

may project it later onto gradients (in L2) while decreasing the energy. Once

(5.6) is proven, (5.5) follows essentially by integrating (3.16) over the given

cube, integrating by parts and using the control of (5.6) to control the boundary

terms.

A result analogous to (5.5) is proven in [AOC] by very di¤erent methods, but

there is no result of the type (5.6).
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Theorem 5.2 naturally implies an asymptotic expansion to next order of the

minimum of Hn. However we will present that result below in the more general

setting of all dimensions.

6. Gamma-convergence approach

The approach outlined for Theorem 5.2 works for true minimizers of Hn, but it is

also of interest (in particular for studying the case with temperature) to obtain in-

formation for generic configurations. This is done via a G-convergence approach:

in this section, we will describe how to obtain lower bounds for generic configura-

tions. In view of (3.17), it su‰ces to study Fn given by (3.18). We note that the

integral defining Fn is given in a large (even infinite) domain. To bound it from

below we introduced [SS3], [SS4] a general abstract method which allows to get

‘‘lower bounds for 2-scale energies’’, and was inspired by Varadhan. In the pres-

ent context, given a configuration ðx1; . . . ; xnÞ (or really a sequence of configura-

tions depending on n), we let Pn be the push forward of the normalized Lebesgue

measure on S by

x 7!
�
x;‘h 0

nðn1=dxþ �Þ
�

where h 0
n is given by (3.15). This defines a probability measure on the set of

(points in S, vector fields) which can be thought of as a ‘‘tagged electric field pro-

cess’’, where for each vector field, we keep as a tag the memory of the point where

it was blown-up. We let in be the map ðx1; . . . ; xnÞ 7! Pn, which embeds ðRdÞn
into this space of probability measures. To obtain a lower bound for Fn, we may

naturally assume that FnaC along the sequence, where C is independent of n. It

is then not too di‰cult to show that, Fn being coercive enough, this implies that

the sequence ðPnÞn is tight, and thus up to extraction it converges to some proba-

bility measure P. We may also check that P satisfies by construction of Pn the

following properties:

• the first marginal of P is the normalized Lebesgue measure

• the second marginal of P is translation-invariant

• for P-a.e. ðx;EÞ we have E a Am 0
V
ðxÞ.

We say such probability measures are admissible. Defining then for any E in some

Am

fhðx;EÞ ¼
ð
Bð0;1Þ

jEhj2 � cdmV ðxÞgðhÞ
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where to each E a Am we may naturally associate an Eh via

Eh ¼ E �
X
p

Np‘fhð� � pÞ:

We may compute that by definition of the push-forward, the fact that the first

marginal of Pn is the normalized Lebesgue measure on S, and that
Ð
mV ¼ 1,

ð
fhðx;EÞ dPnðx;EÞ ¼

ð
S

1

jBð0; 1Þj 1y AB1
j‘h 0

n;hj
2ðn1=dxþ yÞ dy dx� cd

jSj gðhÞ

a
1

jS 0j

ð
fdistðz;S 0Þa1g

j‘h 0
n;hj

2ðzÞ dz� cd

jSj gðhÞ

where we used the change of variables z ¼ n1=dxþ y and Fubini’s theorem. Since

jS 0j ¼ njSj we deduce that
ð
fhðx;EÞ dPnðx;EÞa

1

jSjFnðx1; . . . ; xnÞ:

The weak convergence of Pn to P and the continuity of fh allows to take the limit

n ! l in this expression and obtain

lim inf
n!l

Fnðx1; . . . ; xnÞb jSj
ð
fhðx;EÞ dPðx;EÞ:

Next, we exploit the fact that P is translation-invariant in its second variable. The

multi-parameter ergodic theorem (cf. [Bec]) states that it implies that

ð
fhðx;EÞ dPðx;EÞ ¼

ð
f �h ðx;EÞ dPðx;EÞ

where

f �h ðx;EÞ :¼
ð
KR

fh
�
x;Eðlþ �Þ

�
dl:

(It is part of the theorem that the limit exists). Computing and using Fubini’s

theorem again easily gives that

f �h ðx;EÞ ¼ lim
R!l

ð
KR

jEhj2 � cdmV ðxÞgðhÞ ¼ WhðEÞ
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for E a AmV ðxÞ. We have thus obtained that

lim inf
n!l

Fnðx1; . . . ; xnÞb jSj
ð
WhðEÞ dPðx;EÞ:

We may then use Fatou’s theorem to take the h ! 0 limit and obtain

lim inf
n!l

Fnðx1; . . . ; xnÞb jSj
ð
WðEÞ dPðx;EÞ :¼ ~WWðPÞ: ð6:1Þ

Combining with (3.17), we have obtained a general lower bound for Hn. This

lower bound is expressed as an average of W over all blown-up centers, and an

average over all blown-up profiles of the configuration (like a Young measure).

Using the third property of admissible measures, we may easily compute that

min
P admissible

~WWðPÞ ¼
ð
S

min
AmV ðxÞ

W dx:

Also by scaling (4.7) we deduce that

min
P admissible

~WWðPÞ ¼ min
A1

W

ð
mV ðxÞ

2�2=d
dxþ

�ð
mV ðxÞ log mV ðxÞ dx

�
1d¼2: ð6:2Þ

The final step consists in showing that this minimum can be asymptotically

achieved by some sequence of n-point configurations. To prove that, we split S 0

(the blow-up of S) into cubes of size R on which
Ð
m 0
V is integer. We paste in each

cube a minimizer of W which has first been truncated and screened via Proposi-

tion 5.1 and then rescaled so as to make it have the right density m 0
V . As men-

tioned above, once such screened vector fields have been pasted together, one

may estimate the energy of the underlying point configuration by projecting the

global vector field onto gradients. This can only decrease the energy, and we con-

clude that the desired minimum can be achieved. The final result is

Theorem 6.1 ([SS4], [RouSe]). Assume we are in the cases (1.2) or (1.3). As

n ! l we have

minHn ¼ n2EðmV Þ �
n

2
log n

� �
1d¼2 þ n2�2=d min

P admissible

~WWþ oðn2�2=dÞ; ð6:3Þ

with min ~WW given by (6.2). In addition, if ðx1; . . . ; xnÞ a ðRdÞn minimize Hn, letting

Pn ¼ inðx1; . . . ; xnÞ, up to extraction Pn * P with P a minimizer ~WW, i.e. P-a.e.

ðx;EÞ, E minimizes W over AmV ðxÞ.
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7. Generalization to the Riesz case

As mentioned at the beginning, the approach we described can be extended be-

yond the Coulomb case to the case of Riesz interaction potentials as in (1.4) and

to the case of one-dimensional logarithmic interactions as in (1.5). This was done

in [SS5] for the case (1.5) and in [PeSe] for the case (1.4). It was a crucial ingredi-

ent in the Coulomb case that the sum of pairwise interaction could be transformed

via (3.17) into a quantity which is extensive in space and local in hn. This relied on

the Coulomb nature of the potential, more precisely the fact that g was the kernel

of a local operator. This is no longer the case for (1.4) and (1.5), however these

kernels can be seen as the kernels of local operators via the Ca¤arelli-Silvestre ex-

tension formula for fractional Laplacians. In that procedure one embeds the space

Rd into Rdþ1 by writing

Rdþ1 ¼ fX ¼ ðx; yÞ; x a Rd ; y a Rg:

One then considers the local operator �divðjyjg‘�Þ (which is elliptic, thus with a

good regularity theory) when the space Rd is extended by one dimension to

Rdþ1 ¼ fX ¼ ðx; yÞ; x a Rd ; y a Rg;

and div and ‘ act on Rdþ1. Let g be as in (1.4). Then one has that given a mea-

sure m on Rd and denoting by dRd the uniform measure on Rd seen as a subspace

of Rdþ1, the potential

h :¼ g � ðmdRd Þ ¼
ð
Rdþk

gðX � X 0ÞðmdRd ÞðX 0Þ

is the solution in Rdþ1 of

�divðjyjg‘hÞ ¼ cd; smdRd

for

g ¼ s� d þ 1 ð7:1Þ

and cd; s a constant depending only on d and s. The same is true in the case (1.5)

by taking s ¼ 0 in the formula (7.1). In that case g ¼ 0 and h is really the har-

monic extension to the plane of the potential defined on the line. One may then

write in all cases (1.4) or (1.5)

ð
Rd

ðg � mÞm ¼ cd; s

ð
Rdþ1

jyjgj‘hj2:
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One still defines fh ¼
�
g� gðhÞ

�
þ which makes sense in Rdþ1 and one sets

d
ðhÞ
0 :¼ divðjyjg‘fhÞ þ d0:

With the help of this formula, the whole approach described in the previous

sections then works identically, replacing the Laplacians by the operators

�divðjyjg‘�Þ and the integrals over Rd by integrals over Rdþ1 with weight jyjg.
For example the class Am is defined as the set of gradient vector fields E over

Rdþ1 such that

�divðjyjgEÞ ¼ cd; s

�X
p AL

Npdp �mdRd

�
in Rdþ1

where L is a discrete subset of Rdþ1. The renormalized energy is then

defined as

WðEÞ ¼ lim
h!0

lim sup
R!l

1

jKRj

ð
KR�R

jyjgjEhj2 � cd; smgðhÞ:

The analogue of Theorem 6.1 is then the following (in which one should under-

stand s as being 0 in the case (1.5)):

Theorem 7.1 ([SS5], [PeSe]). Assume we are in the cases (1.5) or (1.4). As n ! l
we have

minHn ¼ n2EðmV Þ � ðn log nÞ1d¼1;g¼�log þ n1þs=d min
P admissible

~WWþ oðn1þs=dÞ; ð7:2Þ

with

WðPÞ ¼
ð
S

min
AmV ðxÞ

W dx

and

min
P admissible

~WWðPÞ ¼ min
A1

W

ð
mV ðxÞ

1þs=d
dxþ

�ð
mV ðxÞ log mV ðxÞ dx

�
1d¼1;g¼�log:

In addition, if ðx1; . . . ; xnÞ a ðRdÞn minimize Hn, letting Pn ¼ inðx1; . . . ; xnÞ, up to

extraction Pn * P with P a minimizer ~WW, i.e. P-a.e. ðx;EÞ, E minimizes W over

AmV ðxÞ.
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8. Application to the statistical mechanics

The analysis described in the last sections allows to get without much more work

some information on the case with temperature, this is what was done in [SS4],

[SS5], [RouSe], [PeSe]. Indeed, combining (3.17) with (6.1) we obtain a general

lower bound on Hn which we may then insert into (1.8) to get

Zn;b a exp

 
n2

b

2
EðmV Þ þ

b

2

n

d
log n

� �
1d¼1;2;g¼�log þ

b

2
n1þs=d min ~WW

!
ð
ðRd Þn

e�bnT
n

i¼1zðxiÞ dx1 . . . dxn

and since z ! 1S this can be written

logZn;b a n2
b

2
EðmV Þ þ

b

2

n

d
log n

� �
1d¼1;2;g¼�log

þ b

2
n1þs=d min ~WWþ oðbn1þs=dÞ þOðnÞ: ð8:1Þ

This is already a nontrivial bound (new in many cases), which can be comple-

mented without too much e¤ort with a bound from below. However, it does

not give an optimal estimate up to oðnÞ. Such an estimate can be provided by a

stronger result, obtained with Thomas Leblé: in [LS], we obtained a full Large

Deviations Principle which characterizes the behavior of the system at the micro-

scopic scale for all b. To obtain a nontrivial result, it is better to rescale tempera-

ture in (1.8) and consider instead

dPn;bðx1; . . . ; xnÞ ¼
1

Zn;b
e�ðb=2Þn�s=dHnðx1;...;xnÞ dx1 . . . dxn xi a Rd : ð8:2Þ

Our result is expressed in terms of tagged point processes instead of tagged

electric field processes as in Section 6. First, for a given infinite configuration of

points C and a given m > 0 we may define a renormalized energy on points via

WmðCÞ ¼ inf
n
WðEÞ;E a Am;�divE ¼ cd

�X
p AC

dp �m
�o

:

(This can be done in cases (1.5)–(1.4) as well). For each ðx1; . . . ; xnÞ, we then con-

sider Pn the push-forward of the normalized Lebesgue measure on S by

x 7!
�
x; yn1=dxðx 0

1; . . . ; x
0
nÞ
�
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where yl represents the action of translating by l a configuration. Such measures

are again tight under good energy bounds, and converge up to extraction. As in

Section 6, the first marginal of P is the normalized Lebesgue measure on S, and

the second marginal of P is translation invariant. The measure P can also be dis-

integrated (i.e. sliced) into 1
jSj dxjSnPx. We then define

FbðPÞ ¼
b

cd; s

ð
S

ð
WmV ðxÞ dP

x dxþ
ð
S

ent½Px jPoisson� dx

where ent½P jPoisson� is the specific relative entropy of the point process P with

respect to the Poisson point process of intensity 1 (it is a large volume limit ana-

logue of the usual relative entropy).

The main result is

Theorem 8.1 ([LS]). The push forward of Pn;b by jn : ðx1; . . . ; xnÞ 7! Pn satisfies an

LDP with speed n and rate function Fb � inf Fb.

Roughly speaking this means that

Pn;bðPnUPÞU e�nðFbðPÞ�inf FbÞ

hence the Gibbs measure Pn;b concentrates on minimizers of Fb. This minimiza-

tion problem corresponds to some balancing (depending on b) between a term

based on W, which prefers order of the configurations (and expectedly crystalli-

zation), and an entropy term which measures the distance to the Poisson process,

thus prefers microscopic disorder and decorrelation between the points. As

b ! 0, or temperature gets very large, the entropy term dominates and one can

prove [Le2] that the minimizer of Fb converges to the Poisson process. On the

contrary, when b ! l, the W term dominates, and prefers regular configura-

tions (conjecturally, lattices). In dimension 1 where the minimum of W is

known to be achieved by the lattice, this can be made into a complete proof

of crystallization as b ! l (cf. [Le1], [Le2]). When b is intermediate then

both terms are important and one does not expect crystallization nor complete

decorrelation.

This result has several consequences. The first one is that the limiting

point processes obtained in random matrix models: the sine-beta and Ginibre

point processes, can be characterized as minimizing b
cd
W1 þ entð� jPoissonÞ

(defined for the logarithmic interaction) among stationary point processes of

intensity 1.

The second is the existence of a thermodynamic limit, i.e. an order n expansion

of logZn;b.
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Corollary 8.2 (Thermodynamic limit, [LS]).

logZn;b ¼ � bn2�s=d

2
EðmV Þ � nbminFb þ o

�
ðb þ 1Þn

�
ð8:3Þ

in the cases (1.4); and in the cases (1.5)–(1.3)

logZn;b ¼ � bn2

2
EðmV Þ þ

bn

2d
log n� nbminFb þ o

�
ðb þ 1Þn

�

or more explicitly

logZn;b ¼ � bn2

2
EðmV Þ þ

bn

2d
log n� nbmin

1

2
W1 þ

1

b
ent½� jPoisson�

� �

� nb
1

b
� 1

2d

� �ð
S

mV ðxÞ log mV ðxÞ dxþ o
�
ðb þ 1Þn

�
: ð8:4Þ

Here the oð1Þ tend to zero as n ! l independently of b.

This provides an asymptotic expansion of the free energy (i.e. � 1
b
logZn;b)

up to order n, where the order n term itself has the structure of a free energy.

This formulae are to be compared with the recent results of [Shc13], [BG13b],

[BG13a], [BFG13] in the dimension 1 logarithmic case. In both logarithmic cases,

we also recover in (8.4) the cancellation of the order n term when b ¼ 4 in dimen-

sion 2 and b ¼ 2 in dimension 1 that was first observed in [Dy], Part II, Section II

and [ZW06]. Such an expansion is completely new in the case (1.4).

The proof of Theorem 8.1 requires a thorough reworking of the problem, but

still relies on the two crucial ingredients described above: the asymptotic expan-

sion of Hn and the screening result. To prove an LDP, one needs to obtain an

upper bound and a lower bound for Pn;b

�
jnðx1; . . . ; xnÞ a BðP; eÞ

�
. By classical

large deviations theorems (à la Sanov), one has

lim
e!0

lim
n!l

1

n
log
�
jfðx1; . . . ; xnÞ a Sn; jnðx1; . . . ; xNÞ a BðP; eÞgj

�
¼ �

ð
S

entðP jPoissonÞ dx: ð8:5Þ

In other words, the specific relative entropy corresponds to the (logarithm of the)

volume in phase-space occupied by configurations whose Pn ¼ jnðx1; . . . ; xnÞ is

close to P. One then wishes to insert the splitting (3.17)–(3.18) into the explicit

form for Pn;b

�
jnðx1; . . . ; xnÞ a BðP; eÞ

�
. The lower bound (6.1) combined with
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(8.5) then allows to obtain an upper bound for Pn;b

�
jnðx1; . . . ; xnÞ a BðP; eÞ

�
. To

obtain a lower bound is much more delicate, due to the need to take the n ! l
limit in Fn and the lack of continuity of W. In order to achieve it, we examine

configurations of n points that are drawn at random according to a Bernoulli pro-

cess in S (and by (8.5) we know how to evaluate the volume in phase-space that

they occupy), and we show that we may modify each of them, using the screening

result, and a procedure for separating pairs of points that are too close to each

other, so that the resulting set of configurations still occupies enough logarithmic

volume in phase space (we lose volume, but not too much) and so that their Fn is

close to WðPÞ. For details, as well as open questions and perspectives, we refer

to [LS].
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[Cho] G. Choquet, Diamètre transfini et comparaison de diverses capacités, Technical
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