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Abstract. A homogenization result for a family of oscillating integral energies

Ug — J f‘<x7§7u8(x)>dx7 84}0+
Q &

is presented, where the fields u, are subjected to first order linear differential constraints
depending on the space variable x. The work is based on the theory of .o7-quasiconvexity
with variable coefficients and on two-scale convergence techniques, and generalizes the
previously obtained results in the case in which the differential constraints are imposed by
means of a linear first order differential operator with constant coefficients. The identifica-
tion of the relaxed energy in the framework of .o/-quasiconvexity with variable coefficients
is also recovered as a corollary of the homogenization result.
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1. Introduction

In this paper we continue the study of the problem of finding an integral represen-
tation for limits of oscillating integral energies

Uy — sz(x,g—a,uﬁ(x)> dx,

where f: Q x RY x R? — [0,40) has standard p-growth, Q ¢ R" is a bounded
open set, ¢ — 0, and the fields u,: Q — RY are subjected to x-dependent
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differential constraints of the type

N
ou, :
; <aﬁ> L(;x, X) — 0 strongly in W "(Q;R)), 1 < p< 4o, (11)

or in divergence form

N

0 ; .
Za (A’(%)udx)) — 0 strongly in W M(Q;R)), 1 < p< +oo, (1.2)
=1 O

with 4'(x) € Lin(le; Rl) forevery xe RN, i=1,...,N, d,l > 1, and where o, f
are two nonnegative parameters. Different regimes are expected to arise, depend-
ing on the relation between o and /.

We recently analyzed in [10] the limit case in which o =0, § > 0, the energy
density is independent of the first two variables, and the fields {u,} are subjected
o (1.2). We will consider here the case in which o > 0, f =0 and (1.1), i.e., the
energy density is oscillating but the differential constraint is fixed and in “non-
divergence” form. The situation in which there is an interplay between « and f
will be the subject of a forthcoming paper.

The key tool for our study is the notion of .o7-quasiconvexity with variable
coefficients, characterized in [20]. .o/-quasiconvexity was first investigated by
Dacorogna in [8] and then studied by Fonseca and Miiller in [12] in the case of
constant coefficients (see also [9]). More recently, in [20] Santos extended the anal-
ysis of [12] to the case in which the coefficients of the differential operator .o/
depend on the space variable.

In order to illustrate the main ideas of .o/-quasiconvexity, we need to intro-
duce some notation. For i=1...,N, consider matrix-valued maps A4’ e
C”(RN; M), where for /,d € N, M'*? stands for the linear space of matrices
with / rows and d columns, and for every x € RY define ./ as the differential
operator such that

, XxeQ (1.3)

for u e LIOC(Q; Rd), where C” is to be interpreted in the sense of distributions.
We require that the operator o/ satisfies a uniform constant-rank assumption
(see [18]), i.e., there exists € N such that

N
rank ZA’(X)W,- =r foreveryweS" ! (1.4)

uniformly with respect to x, where SV~ is the unit sphere in R".
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The definitions of .«Z-quasiconvex function and .«7-quasiconvex envelope in the
case of variable coefficients read as follows:

Definition 1.1. Let / : Q x RY — R be a Carathéodory function, let Q be the unit
cube in R" centered at the origin,

1 n\"
Q:<_§7§) B

and denote by Cl‘jgr(RN : RY) the set of smooth maps which are Q-periodic in R”.

For every x € Q consider the set

ow(y)
0yi

Cr = {w e CL(RV:RY) : JQ w(y)dy = O,iAi(x) - o}. (1.5)
i=1

For a.e. x € Qand ¢ € RY, the .«/-quasiconvex envelope of f in x € Q is defined as

01 (x,¢) := inf{J f(x,E4+w(y)dy:we Cx}.

o
£ is said to be .oZ-quasiconvex if f(x,&) = Q. f(x,&) for a.e. x e Q and & € RY.

Denote by .«7¢ a generic differential operator, defined as in (1.3) and with con-
stant coeflicients, i.e. such that

A'(x) = A" for every x e RV,

with A e M™ i=1,...,N. We remark that when ./ = ./ = curl, i.e., when
v = V¢ for some ¢ € W“(Q; R™), and if Q is connected, then d = m x N, and

loc
o/ -quasiconvexity reduces to Morrey’s notion of quasiconvexity (see [1], [4], [15],

[17]).

The first identification of the effective energy associated to periodic integrands
evaluated along .o “-free fields was provided in [5], by Braides, Fonseca and Leoni.
Their homogenization results were later generalized in [11], where Fonseca and
Kromer worked under weaker assumptions on the energy density f. Recently,
Matias, Morandotti, and Santos extended the previous results to the case p =1
[16], whereas Kreisbeck and Krémer performed in [13] simultaneous homogeniza-
tion and dimension reduction in the framework of .«Z “-quasiconvexity.

This paper is devoted to extending the results in [11] to the framework of
o/ -quasiconvexity with variable coefficients. To be precise, in [11] the authors
studied the homogenized energy associated to a family of functionals of the type

Fy(u,) = JQ f<x,§,ug(x)) dx,
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where Q is a bounded, open subset of RY, u, — u weakly in L”(Q; Rd) and the
sequence {u,} satisfies a differential constraint of the form .7 “u, = 0 for every .

We analyze the analogous problem in the case in which .«/ depends on the
space variable and the differential constraint is replaced by the condition

Au, — 0 strongly in W~7(Q;R').

Our analysis leads to a limit homogenized energy of the form:

o fQ JShom (X, U(x)> dx if </u=0,
5h0m(u) = ) ) J
+0o0 otherwise in L?(Q; R%),

where fiom : Q@ x R? — [0, +00) is defined as

from(x,€) = liminf inf ij(x, ny,& + oly)) dy.

n—+ow vel
Our main result is the following.

Theorem 1.2. Let 1 < p < +co0. Let A" € Cre ARV M), i=1,... N, and as-
sume that </ satisfies the constant rank condztzon (1.4). Let f:Qx RN xR - R
be a function satisfying

f(x,-, &)  is measurable, (1.6)
f(,»,) is continuous, (1.7)
f(x,-,&) is Q-periodic, (1.8)

0<f(xy8<C1+[E)

for all (x,&) € Qx R?, and for a.e. y € RY. (1.9)

Then for every u € L?(Q; RY) there holds

inf{lim ian f<x,§,ug(x)> dx :u, —u  weakly in L”(Q;R?)
Q

&e—

and fu, — 0 strongly in WP (Q; [R{l)}

= inf{lim supJ f(x,%,ug(x)) dx :u, —u  weakly in L”(Q;R?)
Q

e—0

and Au, — 0 strongly in W17(Q; [REI)}

= Ehom ().
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As in [10] and [11], the proof of this result is based on the unfolding operator,
introduced in [6], [7] (see also [21], [22]). In contrast with [11], Theorem 1.1 (i.e. the
case in which .7 = /), here we are unable to work with exact solutions of the
system .«Zu, = 0, but instead we consider sequences of asymptotically .«7-vanishing
fields. This is due to the fact that for .o/-quasiconvexity with variable coefficients
we do not project directly on the kernel of the differential constraint, but construct
an “approximate” projection operator P such that for every field v € L?, the
W17 norm of ./ Pv is controlled by the W1 norm of v itself (for a detailed
explanation we refer to [20], Subsection 2.1).

In [10] the issue of defining a projection operator was tackled by imposing an
additional invertibility assumption on .oZ and by exploiting the divergence form
of the differential constraint. We do not add this invertibility requirement here,
instead we use the fact that in our framework the differential operator depends
on the “macro” variable x but acts on the “micro” variable y (see (1.5)). Hence
it is possible to define a pointwise projection operator IT(x) along the argument of
[12], Lemma 2.14 (see Lemma 4.1).

As a corollary of our main result we recover an alternative proof of the relax-
ation theorem [5], Theorem 1.1 in the framework of .o7-quasiconvexity with vari-
able coefficients, that is we obtain the identification (see Corollary 4.10)

L) Q. f (x,u(x)) dx = Z(u, D)

for every open subset D of Q, and for every u € L?(Q;R?) satisfying .«Zu = 0,
where the functional 7 is defined as

Z(u, D) := inf{lim iglfJ f(xu,(x)) tu, — u  weakly in L”(Q; R™)
& D

and .«Zu, — 0 strongly in W~17(Q; Rl)}.
(1.10)

We point out here that a proof of this relaxation theorem follows directly combin-
ing [5], Proof of Theorem 1.1 with the arguments in [20]. The interest in Corollary
4.10 lies in the fact that it is obtained as a by-product of our homogenization
result, and thus by adopting a completely different proof strategy.

In analogy to [10] one might expect to be able to apply an approximation
argument and extend the results in Theorem 4.3 to the situation in which 4’ €
whoe (RN M), i=1...,N, which is the least regularity assumption in order
for o7 to be well defined as a differential operator from L? to W~1?. We were
unable to achieve this generalization, mainly because the projection operator
here plays a key role in the proof of both the liminf and the limsup inequalities.
In order to work with approximant operators ./ having smooth coefficients, we
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would need to finally construct an “approximate projection operator’” P associ-
ated to ./, whereas the projection argument provided in [20] applies only to the
case of smooth differential constraints.

The article is organized as follows. In Section 2 we establish the main assump-
tions on the differential operator .o/ and we recall some preliminary results on
two-scale convergence. In Section 3 we recall the definition of .o/-quasiconvex
envelope and we construct some examples of .«/-quasiconvex functions. Section
4 is devoted to the proof of our main result.

Notation. Throughout this paper, Q C R” is a bounded open set, O(Q) is the set
of open subsets of Q, Q denotes the unit cube in R" centered at the origin and
with normals to its faces parallel to the vectors in the standard orthonormal basis

of RV, {ey,...,ex}, ie.,
o (1 1Y
N 2°2)

Given 1 < p < 400, we denote by p’ its conjugate exponent, that is

I 1

p D

Whenever a map u € L?, C”, ..., is Q-periodic, that is
ulx+e)=ulx) i=1,...,N

for a.e. x € RY, we write u € Ll Coerr- - s respectively. We will implicitly iden-
tify the spaces L”(Q) and ng’er(RN ). We will designate by <-,-> the duality prod-
uct between W17 and Wol’p/.

We adopt the convention that C will denote a generic constant, whose value

may change from expression to expression in the same formula.

2. Preliminary results

In this section we introduce the main assumptions on the differential operator ./
and we recall some preliminary results about .o7-quasiconvexity and two-scale
convergence.

2.1. Preliminaries. Fori=1,..., N, consider the matrix-valued functions 4’ €
C*(RY;M"™). For 1 < p < +co and u € L”(Q;RY), we set

A = ZAi(x) 3 € Wb (Q; R).



Homogenization for .o/ (x)-quasiconvexity

For every xo € Q and u € L?(Q; R?) we define

A (%) -—ZN:A"( )yt !
Xo)u 1= X0 o, € (Q;R).

i=1

We will also consider the operators

oA W —ZA 6wa);y

and

o, w —ZA 5yl

for every we L?(Qx Q;R?).  Finally, for every xpeQ and for
LP(Q x 0; RY), we set

N
, ow(x, y)
oy = Al —_
= Do) S
and
N
i 5”7()(77 y)
éZ{y(XO)W = IZI:A (XO)T.

For every x € RV, /. € RV\{0}, let A(x, 1) be the linear operator
N .
A(x, 2) = A'(x)h e M.
i1

We assume that .o satisfies the following constant rank condition:

N

285

w e

rank(z Ai(x)/li) =7 forsomer e N and for all x e RV, 2 e RM\{0}. (2.1)

i=1

For every x € RY, 2 € R¥\{0}, let P(x,2) : RY — R be the linear projection on

Ker A(x, 2), and let Q(x, 4) : R’ — R? be the linear operator given by
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Q(x, )A(x, )¢ = & = P(x, )¢ forall ¢ e RY,
Q(x,)¢=0 if £ ¢ Range A(x, 4).

~

The main properties of P(-,-) and Q(-,-) are stated in the following proposition
(see [20], Subsection 2.1).

Proposition 2.1. Under the constant rank condition (2.1), for every x € R the oper-
ators P(x,-) and Q(x,-) are, respectively, 0-homogeneous and (—1)-homogeneous.
Moreover, P € C*(RY x RM\{0}; M) and Q@ € C*(RY x RM\{0}; M),

2.2. Two-scale convergence. We recall here the definition and some properties
of two-scale convergence. For a detailed treatment of the topic we refer to, e.g.,
[2], [14], [19]. Throughout this subsection 1 < p < +c0.

Definition 2.2. If v e L?(Q x Q;R?) and {u,} € Lg(Q;IRd), we say that {u,}
weakly two-scale converges to vin L?(Q x Q; RY), u, oy if

J w003 as = || cts-pt s

for every ¢ € L7 (Q; C2 (RY; R)). ,
V&zle say that {u,} strongly two-scale converges to v in L?(Q x Q; RY), u, —> v,

. S
if u, — v and

y_{% (et Lr(Q;rY) = ||UHLP(QXQ;R">'

Bounded sequences in L?(€; RY) are pre-compact with respect to weak two-
scale convergence. To be precise (see [2], Theorem 1.2),

Proposition 2.3. Let {u,} C L?(Q;R?) be bounded. — Then, there exists v e
LP(Q x Q;RY) such that, up to the extraction of a (non relabeled) subsequence,
U, oy weakly two-scale in L?(Q x Q; R?), and, in particular

Uy — J v(x,y)dy  weakly in L”(Q;RY).
9]

The following result will play a key role in the proof of the limsup inequality
(see [11], Proposition 2.4, Lemma 2.5 and Remark 2.6).

Proposition 2.4. Let v e L?(Q; Coer(RY; RY)) 0r v e L2 (RY; C(Q;RY)). Then,
the sequence {v,} defined as
X
v(x) = v(x, E)
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is p-equiintegrable, and
Vg i strongly two-scale in L”(Q; R?).

2.3. The unfolding operator. We collect here the definition and some properties
of the unfolding operator (see e.g. [7], [6], [21], [22]).

Definition 2.5. Let u € L?(Q;R?). For every ¢ > 0, the unfolding operator
T,: L’(Q;RY) — LP (RN, LE (RY; Rd)) is defined componentwise as

-
To(u)(x, ) = u(s H +ely — Lyj)) forae xeQand ye RY, (2.2)

where u is extended by zero outside Q and |-| denotes the least integer part.

The next proposition and the subsequent theorem allow to express the notion
of two-scale convergence in terms of L? convergence of the unfolding operator.

Proposition 2.6 (see [7], [22]). T, is a nonsurjective linear isometry from LP(Q;R?)
to LP(RY x Q; RY).

The following theorem provides an equivalent characterization of two-scale
convergence in our framework (see [22], Proposition 2.5 and Proposition 2.7,
[14], Theorem 10).

Theorem 2.7. Let Q be an open bounded domain and let v e LP(Q x Q; RY).
Assume that v is extended to be 0 outside Q. Then the following conditions are
equivalent:

(i) u, = weakly two scale in LP(Q x Q; RY),
(ii) T, — v weakly in LP(RY x Q; RY).
Moreover,
w2y strongly two scale in L (Q x Q; RY)
if and only if
T, — v  strongly in LP(RY x Q; RY).

The following proposition is proved in [11], Proposition A.1.
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Proposition 2.8. For every u € L?(Q; R?) (extended by 0 outside ),
[l — Tsu”Lﬁ(R”xQ;R") -0

as ¢ — 0.

3. .o/-quasiconvex functions

In this section we recall the notion of .«7-quasiconvexity and .«7-quasiconvex enve-
lope, and we provide some examples of .o/-quasiconvex functions in the case in
which ¢/ has variable coefficients.

We start by recalling the main definitions when o7 = .o/¢, where o7 is a first
order differential operator with constant coefficients, that is, for every u e
Lr(;RY),

N
: 0
A u(x) = Al gi’f) e WP (R,
i=1 !

with A7 e M fori=1,...,N.

Definition 3.1. Let f: Q x RY — [0, +c0) be a Carathéodory function, let .o/¢
be a first order differential operator with constant coefficients, and consider the
set

N
oW
Ceonst = {W € CS;(RN; [REd) : JQ w(y)dy =0 and E A! 8)(});) = 0}.
i=1 !

The .o/ “-quasiconvex envelope of f is the function Q7'f : Q x RY — [0, 400),
given by

07 f(x,&) = inf{J f(xE+w(y)dy:we Cconst}, (3.1)

0

for a.e. x € Q and for all & € R.
We say that f is .o7 “-quasiconvex if

f(x,¢6) = Q"Q/Ff(x, &) forae. xeQandforall & e RY.

Similarly, in the case in which .o/ depends on the space variable, the definitions
of .e/-quasiconvex envelope and .«/-quasiconvex function read as in Definition 1.1.
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We stress that .«/-quasiconvexity and pointwise .o7 (x)-quasiconvexity are related
by the following ““fixed point™ relation:

O f(x,&) = 07Nf(x,&) forae. x e Qand forall ¢ € RY. (3.2)

The remaining part of this section is devoted to illustrating these concepts with
some explicit examples of .Z-quasiconvex functions. We first exhibit an example
where .o7-quasiconvexity reduces to .7 “-quasiconvexity for a suitable operator .o7 ¢
with constant coefficients.

Example 3.2. Let 1 < p < 400 and define
f(x, &) :=a(x)b(é) fora.e. x e Qandevery ¢ € RY,
with a € L?(Q) and b € C(RY) A L?(RY). 1In order for f to be ./-quasiconvex,

the function b must satisfy

b(E+w(y))dy:we U Cx}.

0 xXeQ

b(&) = inf{J

Consider the case in which C, is the same for every x, for example when the differ-
ential constraint is provided by the operator:

N
Aw(x) = Z M(x)A! owlx)

i=1

b

ax,;

where M : Q — M"/ and det M(x) > 0 for every x € Q. In this case,

w(y)dy =0 and o/ ‘w = 0}

per

Ce = {w e €= (RV;RY) : J
9

for every x, where

N o4
of ‘w(x) = Z Al ngix)

i=1

Hence, f is .«Z-quasiconvex if and only if b is .7 “-quasiconvex.

In the previous example, .o/-quasiconvexity could be reduced to .o7¢-
quasiconvexity owing to the fact that the class C, was constant in x. We provide
now an example where an analogous phenomenon occurs, despite the fact that C,
varies with respect to x. To be precise, we consider the case in which .7 is
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a smooth perturbation of the divergence operator. In this situation, the .o7-
quasiconvex envelope of f coincides with its convex envelope.

Example 3.3. We consider a smooth perturbation of the divergence operator in a
set Q C R?, that is

0
AU = (a(ox) 1>Vu for every u € LP(€); [Rz), I < p<+oo0,

with a € C(Q) and

<a(x) <1 forevery x € Q.

N —

We notice that
ker A(x,2) = {& € R? : a(x)A1 &) + &, = 0},
and therefore

rank A(x,A) =1 forevery x € Q and A € R?\{0}.

In this situation, the class C, depends on x, since we have

" owi(y)  owa(y)
_ © (2. @2 . 1
C.= {w € Coor(RTRY) JQ w(y)dy =0 and a(x) oy + I 0},

although
U ker A(x, 1) = R2.

JeS!

Let now f : R? — [0, +00) be a continuous map. By [12], Proposition 3.4, it fol-
lows that Q., f(£) coincides with the convex envelope of f evaluated at &, exactly
as in the case of the divergence operator (see [12], Remark 3.5 (iv)).

We conclude this section with an example in which the notion of .o/-
quasiconvexity can not be reduced to .o “-quasiconvexity with respect to a con-
stant operator .oZ°€.

Example 3.4. Here we consider a smooth perturbation of the curl operator in a
set Q C R, Let o7 : L?(Q; R?) — W~12(Q; R*) be given by

61/12 6141

&fu:—al(x)a—x] a—xz,
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where a; € C(Q) is not constant, and satisfies

<a(x)<1 forevery x € Q.

N —

We first notice that

ker A(x,2) == {& € R? : Lia1(x)& = Ahé)}
={¢e R?:¢& = ady and &) = aay (x)A1, 0 € R},

hence
rank A(x,A) =3 foreveryxe Q, A e S

The class C, depends on x and there holds

Cx= {w e CX(R*R?) : J w(y)dy = 0 and a1 (x) owa(y) _ awl(y)}

e 0 oy 0y
. 0
= {we CamaRY: | W)y =0m() = @ LY,
Q Y1
and wy(y) = o9(y) where ¢ € C2. ([R?z)}. (3.3)
v per

Let now g¢:QxR>— [0,400) be a quasiconvex function and let
f:Qx R? = [0,+00) be defined as

f(x,8):=g¢ (x, (él,Q)) for a.e. x € Q and for every & € R%.

ai(x)
We claim that
0uf(x,8) = f(x,¢&) fora.e. x e Qand forevery £ € R2.

Indeed, by (3.3) there holds

inf J f(x,&+w(y)dy
0

weCy

. dp(y) ap(y) . o
= 1nf{ JQf(X, <fl + al(x) o N +5—yz>> dy:pe Cper(RZ)}
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—in . S| op(y) op(y) c0e C” (R
= f{Lg( ,(a](x)+ e G+ o ))dy-qo Cper(R)}

ofe )

for a.e. x € Q and for every ¢ € R?, where Qg denotes the quasiconvex envelope
of the function g. The claim follows by the definition of f and the quasiconvexity
of g.

4. A homogenization result for .o7-free fields

In this section we prove a homogenization result for oscillating integral energies
under weak L? convergence of .oZ-vanishing maps. Fix 1 < p < +o0 and consider
a function f: Q x RY x R? — [0, +0) satisfying (1.6)—(1.9).

In analogy with the case of constant coefficients (see [11], Definition 2.9), we
define the class of .o7-free fields as the set

F = {u € L?(Q x O;RY) : /v =0 and &/XJ o(x, ) dy = 0}, (4.1)
0

where both the previous differential conditions are in the sense of W =17,
We aim at obtaining a characterization of the homogenized energy

&—

inf{lim ian f <x,f , us(x)> dx:u, —u  weakly in L7(Q; RY)
Q &
and .«Zu, — 0 strongly in W ~17(Q; Rl)}. (4.2)
We start with a preliminary lemma, which will allow us to define a point-

wise projection operator. We will be using the notation introduced in Sections 2
and 3.

Lemma 4.1. Let 1 < p<+4o. Let A'e CZ(RY; M), i=1....N, and

per
assume that the associated first order differential operator </ satisfies (2.1). Then,

for every x € Q there exists a projection operator
T(x) : LP(Q;RY) — LP(Q; RY)

such that
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(P1) TI(x) is linear and bounded, and vanishes on constant maps,

(P2) T(x) o TI(x)y () = T(x)¢(y) and o, (x)(TI(x)(y)) =0 in W 'P(Q:R')
for a.e. x € Q, for every € L?(Q; RY),

(P3) there exists a constant C = C(p) > 0, independent of x, such that

W) = YD Lo (gmey < Cllty (D)0, 1)

for a.e. x € Q, for every y € L?(Q; R?) with IQ v(y)dy =0,

(P4) if {y,} is a bounded p-equiintegrable sequence in LP(Q;R?), then
{T1(x)y,(»)} is a p-equiintegrable sequence in L?(Q x Q; RY),

(P5) ifpe C'(Q;C (RY; [R?d)) then the map ¢y, defined by

per

on(x,y) =I(x)p(x,y) forevery x e Qand y e RY,

satisfies gy € C! (Q; Cc%

2 (RY;RY).

Proof. For every x € Q, let TI(x) be the projection operator provided by [12],
Lemma 2.14. Properties (P1) and (P2) follow from [12], Lemma 2.14.
In order to prove (P3), fix x € Q and y € ngr(lREN; RY). Let A, P and Q be

the operators defined in Subsection 2.1. Writing the operator IT(x) explicitly, we
have

<}N)627ziy~/l7

=
=
=
N

I

=
¥
3/)
<

2eZ"\{0}

where

t/}(/l) = JQ Yy(y)e 4 dy for every 1 e Z¥\{0}

are the Fourier coefficients associated to .
By the (—1)-homogeneity of the operator Q (see Proposition 2.1) we deduce
~ . )4
W) =TI =] 32 aln A D@
LezZM\{0}

> 1 @<xv %)A(x, I(2) e

JezM\{0} 4]

P

(4.3)

For 1 < p < 2, by the smoothness of Q@ and by applying first Holder’s inequality
and then Hausdorff-Young inequality, we obtain the estimate
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W(y) = )y

. NP/DP
<(max o) (X o) ( X e
LeZ™,|2|=1 AGZN\{O}l | LezV\{0}
/ !’
<c( Y 1meaOIr)" < ClAOIL, g (4.4)
AGZN\{O}
where we used the fact that

A A ()] < Clasy () () (4.5)

for every x € Q and A € Z"\{0}, by the definition of the Fourier coefficients, and
where both constants in (4.4) and (4.5) are independent of 1 and x.
Consider now the case in which p > 2. By (4.3) we have

V() = T(x)g()]”
S(ieg}vax I\Q(x,i)ll)p( > |/117>m( > |A(x,}u)x/}(/1)|”)

Jal=1

LeZ"\{0} LezM\{0}
<C( Z v(A) |1’>
lezV \{0}
<c( sup |A\<x,x>¢<z>|f’*2) S AP (4.6)
/leZN\{O} /IGZN\{O}

By the definition of Fourier coefficients and by Holder’s inequality we have

A DY ()] < Cllety ()W D)l Loggi ey
for every x € Q and 1 € ZV\{0}. In view of [12], Theorem 2.9,
> A = 1AW om):
LezM\{0}
Therefore by (4.6), applying again Holder’s inequality,

W (y) = () (y)I"
< Clty (W g 14 O La(gury < CUA WD gm0y (A7)

where the constant C is independent of x and y. Property (P3) follows by (4.4)
and (4.7) via a density argument.
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(P4) follows directly from (P3), arguing as in the proof of [12], Lemma 2.14

(iv).
Let now ¢ € C'(Q; CZ (RV;RY)). The regularity of the map ¢y is a direct

per
consequence of Proposition 2.1, the definition of IT and the regularity of .</.

Indeed,
(PH(X, y) = Z P(X’ /1)(5()6, /1)827ziy~/17 (48)
2e2V\{0}
for every x € Q and y € RY, where
02) = | olov e > de
0

for every x € Q and 4 € ZV\{0}. By the regularity of ¢ and by [12], Theorem 2.9
we obtain the estimate

N

(422 > Pl 2)1/232

LezZ™\{0} i=1

L2(0;RY)

for every x € Q, hence by Proposition 2.1 and Cauchy-Schwartz inequality there
holds

[P(x, 2)g(x, 2)e*™|
5.€7M\{0}, |2 =n

<C > |p(x,4)

2eZ2™"\{0}, |2 =n

ol > o) (X% #)

2eZM\{0},|A|=n 2.eZN\{0}, || =n
1/2

C( > #) (4.9)

2e2™\{0}, |2 =n

1/2

IA

IA

By (4.9) the series in (4.8) is uniformly convergent, and hence ¢y is continuous.
The differentiability of ¢ follows from an analogous argument. O

For every v € L?(Q x Q; RY), let

Sy = {{u.} € LP(Q;RY) : u, =y weakly two-scale in L”(Q x Q; RY)
and .«Zu, — 0 strongly in W ~"7(Q; R")}. (4.10)



296 E. Davoli and I. Fonseca
Let also

S={J S :veLr(QxQR)}. (4.11)
We provide a characterization of the set S.

Lemma 4.2. Let ve L?(Q x Q;RY). Let </ be a first order differential opera-
tor with variable coefficients, satisfying (2.1).  The following conditions are
equivalent:

(Cl) ve ZF (see (4.1)),
(C2) S, is nonempty.

Proof. We first show that (C2) implies (C1). Let ve L?(Q x Q;R?) and let
{u.} € S,. Consider a test function y € WOI’”(Q; R’). Then

{Au, (Y — 0 ase— 0.

On the other hand,

tuyi= =3 [ (L) w0+ 400 24

2 o, » )dx (4.12)
and by Proposition 2.3, up to the extraction of a (not relabeled) subsequence,

U, — JQ v(x,y)dy  weakly in L”(Q;RY). (4.13)
Passing to the limit in (4.12) yields

&/xJ v(x,y)dy =0 in W IP(Q;R).
0

In order to deduce the second condition in the deﬁmtlon of 7, we consider a
sequence of test functions {ep(2)y(x)}, where ve WP (Q; RY) and Y e CX(Q).
Since this sequence is uniformly bounded in W » (Q; RY), we have

()

as ¢ — 0, where
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(sl

oS (Fhe o st o) 50

3 A 22 (v e

Passing to the subsequence of {u,} extracted in (4.13), the first line of the previous
expression converges to zero. By the definition of two-scale convergence, the sec-
ond line converges to

and thus

N
. ou(x, ) =
<ZA ) i ’¢>W*1-”(Q;R’>-,Wol‘p/(Q;R[) =Y

for a.e. x € Q, that is
=0 in WP(Q;R!) forae. xeQ.

This completes the proof of (C1).
Assume now that (Cl) holds true, i.e., ve #. In order to construct the
sequence {u,}, set

v1(x, y) =v(x,y) — JQ v(x,z) dz.

We first assume that v; € C!'(Q; CL (RY; [RE‘])). Defining

per
uy(x) = J v(x, y)dy + v <x, g) for a.e. x € Q,
0

by Proposition 2.4 we have u, i strongly two-scale in L?(Q x Q; RY). More-
over, by the definition of .# and Propositions 2.3 and 2.4,
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iivl 'x“ A > i(@%([ U(x,y)dy+v1<X,g>>
W g (x3) = ZA et =0

weakly in L?(Q; R’). Hence v satisfies (C2).

In the general case in which v; € L?(Q x Q; RY), we first need to approximate
vy in order to keep the periodicity condition during the subsequent regularization.
To this purpose, we extend v; to 0 outside Q x Q, we consider a sequence
{9;} € CX(Q) such that 0 < ¢; < 1 and p; — 1 pointwise, and we define the maps

(]
N
NE
= |~
RsY
Il Il
M= I[V]=
Iz; S

vl (x, y) = 9;(y)vi(x,y) forae xeQandye Q.
Extend these maps to Q x RY by periodicity. It is straightforward to see that

v] — v strongly in L?(Q; L’ (RV;RY)) (4.14)

by the dominated convergence theorem. Moreover
||, 0] w-iogrly — 0 strongly in L7(Q). (4.15)
Indeed, by (4.14), and since .2/, v = 0,
||,52/)(x)v{(x, M-y — 0 forae xeQ,

and

L D, g < CIOIE 1015 P2, g < o6 DI g

for a.e. x € Q. Thus (4.15) follows by the dominated convergence theorem.
Convolving first with respect to y and then with respect to x we construct a
sequence {v]"'} € C*(Q; C%(RY; R?)) such that

per

v}/ — v/ strongly in L”(€; L2 (RY;RY)), (4.16)

and

|00\l -1 0ty — O strongly in L7(€), (4.17)

as 6 — 0. In view of (4.14)-(4.17), a diagonal argument provides a subsequence
{6(j)} such that {v‘f(f)’f} satisfies

{07 o strongly in L (: L, (RY: RY) (@.15)
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and
1,00 |l s ity — O strongly in L7 (Q). (4.19)

Set

Wi ) =11 (oM ) = | o) )

0

fora.e. x e Qand y € Q. By Lemma 4.1 we have w/ e C*(Q; CZ (RY; RY)),

per
Adyw! =0 in w-Lbr(Q; R forae. x € Q, (4.20)

and

J_ J o 00).J 0(j),J
[|w vl”u @xord) < C(HW v+ JQ (%, ) y‘ Lr@x o)

)N 5(4).J ‘ )
+ HUI U1 ngl (x,y)dy Lo(xg:RY

< (| 1Ay g

0(j),J 0(j),J
+HU1 - _JQvl "0y dy‘u (@x0; R"))
Therefore, in view of (4.18) and (4.19),
w/ — v strongly in L?(Q x Q; RY). (4.21)

We set
ul(x) = J v(x, y)dy +w’ <x, g) fora.e. x € Q.
0

By Proposition 2.4 and (4.21),
u’ =y strongly two-scale in L?(Q x Q; RY) (4.22)

as ¢ — 0 and j — +o0, in this order. Moreover, by (4.20) and since v € Z,

il = ZA ax,< x>.
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By (4.21), Proposition 2.4, and the compact embedding of W ~!? into L”, we con-
clude that

Aul — ,Q/J vi(x,y)dy =0 (4.23)
0

strongly in W ~12(Q; R'), as ¢ — 0 and j — +oc0, in this order. By (4.22), (4.23),
and Theorem 2.7 it follows in particular that

/ETOO llil%(HTe”zj - UHL”(QXQ;R") + ||<Q/u{||W*1~I’(Q;R’)) =0.

Attouch’s diagonalization lemma [3], Lemma 1.15 and Corollary 1.16 provide us
with a subsequence {j(¢)} such that, setting u, := u/ (8), there holds

T.u, 25y strongly two-scale in L?(Q x Q; RY)
and
Ju, — 0 strongly in W*I*f’(Q; [Rl).
The thesis follows applying again Theorem 2.7. O
In order to state the main result of this section we introduce the classes
U= {ueL’(Q;RY) : o/u=0} (4.24)

and
W= {w e LP(Q x O;RY) : J w(x,y)dy =0 and o/,w = O}. (4.25)
Q
It is clear that v € & if and only if

Jv(x,y)dye% and U—J v(x,y)dy e W .
Q 0

Let hom : L7(Q; RY) — L?(Q; R?) be the functional

lim infnﬁwtoc infwe“lf’” IQ IQf(xa ny, u(x) + W(X, y)) dy dx
éahom(”) = ifue @/, (426)
+o0 otherwise in L?(Q; RY).

We now provide a first characterization of (4.2).
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Theorem 4.3. Under the assumptions of Theorem 1.2, for every u € L?(Q;R?)
there holds

inf{lim ian f(x,f,ug(x)> dx :u, —u  weakly in L?(Q;R?)
Q &

e—0

and fu, — 0 strongly in W17 (Q; [R{l)}

= inf{lim supJ f<x,§,ug(x)> dx :u, —u  weakly in L?(Q;R?)
Q

e—0

and Au, — 0 strongly in W17(Q; IRI)}
= Epom (). (4.27)

We subdivide the proof of Theorem 4.3 into the proof of a limsup inequality
(Corollary 4.5) and a liminf inequality (Propositions 4.6 and 4.7).

We first show how an adaptation of the construction in Lemma 4.2 yields an
outline for proving the limsup inequality in (4.27).

Proposition 4.4. Under the assumptions of Theorem 1.2, for every ne N, u € U
and w € W there exists a sequence {u;} € Sy, (see (4.10)) such that

u, — u  weakly in L”(Q; RY), (4.28)
lim supj f <x,x , ug(x)> dx < J J S (x,ny,u(x) +w(x, y)) dydx. (4.29)
e—0  JQ é alo

Proof. Step 1: We first assume that u € C(Q;RY) and w e C'(Q; CL (RV;RY)).

per
Arguing as in [11], Proof of Proposition 2.7 we introduce the auxiliary function

g(x, y) = f(x,ny,u(x) + w(x, y))

for every x € Q and for a.e. y € R". By definition, g € C(Q; L2, (RY)). Hence,
setting

ge(x) :== (x, 1) fora.c. x € Q,
ne

Proposition 2.4 yields

limJ f(x,f,u(x) +w <x, 1)) dx = limJ ge(x) dx = J J g(x, y)dydx
&e—0 Q & ne e—0 Q QJo

= JQ JQf(x, ny,u(x) + w(x, y)) dy dx.
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Define
X
u(x) == u(x) +w (x, —> for a.e. x € Q.
ne
By the periodicity of w in the second variable and by the definition of #",
Uy — U+ J w(x,y)dy =u  weakly in L”(Q;RY).
0

By Proposition 2.4, u, uw strongly two-scale in L?(Q x Q; RY). Finally
(recalling the definitions of the classes % and #") by the regularity of w and by
Proposition 2.4,

6w X
) Al Al —
A, = Z ax[ < ) Z JQ x,y)dy =0
weakly in L?(Q; R’) and hence strongly in W ~"7(Q; R’), due to the compact em-
bedding of L? into W17,

Step 2: Consider the general case in which v € % and w € #". Arguing as in the
second part of the proof of Lemma 4.2 (up to (4.21)), we construct a sequence
{w/} e CH(Q; C) (RY; RY)) such that

w/ —u+w  strongly in L7 (Q; LD (RY;RY)), (4.30)
and

Aw! =0 in WLP(Q;R') for ae. x € Q, for every j.

Set

ul(x) := w’ <x, x) fora.e. x € Q.
ne

By Proposition 2.4, there holds
u’ Zutow strongly two-scale in L”(Q x Q; RY), (4.31)

as¢ — 0 and j — +o0, in this order. In addition, arguing as in the proof of (4.23),
we have

oul — 0 strongly in W17 (Q;R') (4.32)

as ¢ — 0 and j — 400, in this order.
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To conclude, it remains to study the asymptotic behavior of the energies asso-
ciated to the sequence {u/}. Consider the functions

gj(x7 y) = f(xa ny, Wj(xv y))

and

Arguing as in Step 1, we obtain

lim limJ f<x,f,ug(x)) dx
Q &

Jj—+00 e—0

J=t o0 £=0 J=+o

= lim lim JQ g/(x)dx = lim Lz JQ g’ (x, y) dy dx
= JQ JQf(x, ny, u(x) + w(x, y)) dydx (4.33)

where we used the periodicity of g/, together with (1.9) and (4.30). In view of
(4.31)—(4.33), Attouch’s diagonalization lemma [3], Lemma 1.15 and Corollary
1.16, and Theorem 2.7, we obtain a subsequence {j(¢)} such that u, := u/ ) satis-
fies both (4.28) and (4.29). O

Proposition 4.4 yields the following limsup inequality.

Corollary 4.5. Under the assumptions of Theorem 1.2, for every u € L?(Q; RY)

inf{lim supJ f (x,x , uc(x)> dx:u, —u  weakly in LP(Q;RY)
Q &

e—0
and <tu, — 0 strongly in WP (Q; Rl)}
< é"~hom(u).

We now turn to the proof of the liminf inequality in Theorem 4.3. For simplic-
ity, we subdivide it into two intermediate results.

Proposition 4.6. Under the assumptions of Theorem 1.2, for every sequence

&n— 0%, ue ¥ and {u,} € L?(Q;R?Y) with u, — 0 weakly in L?(Q;R?) and
Lu, — 0, there exists a p-equiintegrable family of functions

Y i={vy,:v,ne N}
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such that " is a bounded subset of L?(Q; RY), for every v e N and as n — +oo

vy — 0 weakly in L?(Q; Rd),
Ay, — 0 strongly in W(Q; R') for every 1 < q < p.

Furthermore,

lim inf L f(x, X u(x) + u,,(x)) dx

n—-+o0 En

> sup{lim ian £ (x, vnx, u(x) + vy, (x)) dx}.
Q

veN \ n—+w

Proof. The proof follows the argument of [11], Proof of Proposition 3.8. We
sketch the main steps for the convenience of the reader.

Step 1: We first truncate our sequence in order to achieve p-equiintegrability.
Without loss of generality, up to translations and dilations we can assume that
Q C Q. Arguing as in [12], Proof of Lemma 2.15, we construct a p-equiintegrable
sequence {i,} € L”(Q;R“) such that

i, —u, — 0 strongly in LY(Q; RY) for every 1 < g < p,

i, — 0  weakly in L?(Q; RY),

A, — 0 strongly in W14(Q; R) for every 1 < ¢ < p,

and

lim inf Jgf<x,x Ju(x) + u,,(x)) dx > liminf Jgf(x,x Ju(x) + ftn(x)> dx.

n—-+oo &n n—+0 En

Step 2: we consider the sequence

If {l%,,n} is a sequence of integers (without loss of generality we can assume that
it is increasing as n increases), then there is nothing to prove and we simply
set

Uy ko= { uy if k= ]'gv,na
0  otherwise.
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In the case in which {IEM} is not a sequence of integers, we define

kv.n = 0\’,” 5
’ Ve,
where
1
Hv.n = Véy LJ
’ Ve,
In particular
Opn—1 asn— +o0. (4.34)

An adaptation of [11], Lemma 2.8 applied to {#,} yields a p-equiintegrable
sequence {i,} € L?(Q;R?) such that

it, — i, — 0  strongly in L”(Q; RY),
i, — 0  weakly in L”(Q\Q; RY),
i, — 0  strongly in W19(Q; R!) for every 1 < ¢ < p. (4.35)

Arguing as in [11], Proof of Proposition 3.8 we obtain

n—-+0o0 n n——+o0

lim inf j f<x, Si et u,,(x)) dx > lim infj 1 (3, Viey o, u(x) + vy, (%)) dx,
Q Q

where

Oy ko, , (X) == 1,(0, ,x) fora.e. xeQ,
ve N and n € N are large enough so that 6, ,Q C Q. Setting

I Y if n==rk,,,
v L= .
0 otherwise,

the sequence {v,,} is uniformly bounded in L?(Q;RY), p-equiintegrable, and
satisfies

vy — 0  weakly in L”(Q; [R?d)
as n — +oo. To conclude, it remains only to show that
Ay, — 0 strongly in W=19(Q; RY) for every 1 < ¢ < p (4.36)

asn — —+o0.
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Let ¢ as above be fixed, and let ¢ € WO1 ’q/(Q; R’). A change of variables
yields

|<”inl’>kma ¢>|
N o N i
_)L(;A(mnw Zl L 10(0,,%) - 9(x)) i
1

N
il YV o\~ a(ﬂ ( )
A ity
J(IMQ ; <9v,n) (y) 6)(1 ev,n
N )
0A" [y \_ y
2 o <9v,n ity () -w(gm)> dy|.

For n big enough 0, ,Q C Q. Hence, by (4.34), adding and subtracting the
quantity

Ovlyrzjﬂnar@(ﬁ;m(ym”(y b 6x,< ) ENI: S “’((&))dy’

we deduce the upper bound

—A"( %)
Hv,n C(I(Q;M/Xd)

6A’ oA' [y
ayl 6)(7,’ va

QT

v,n

’<ﬂu\un7 (p>|

||12”||L‘/(Q; [Rd) H(pH Wol'q/(Q; [R[)

Hl’_lﬂHLlI(Q; [Rd) ||¢|| u/ul-q'(Q; [R’)

Co(Q; M)
+ cnmnW*W(g;wwnWO].(,/(Q;R,).
Property (4.36) follows now by (4.34) and (4.35). 0

To complete the proof of the liminf inequality in (4.27) we apply the unfolding
operator (see Subsection 2.3) to the set ¥~ constructed in Proposition 4.6.

Proposition 4.7. Under the assumptions of Theorem 1.2, for every u € U and every

SJamily v~ ={v,, : v,n € N} as in Proposition 4.6 there holds

y—-+0o0 n—-+o0

lim inf lim ian £ (x,vnx, u(x) + vy 5(x)) dx = Enom (1)
Q
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Proof. Fix u € % and let {v,,:v,ne N} be p-equiintegrable and bounded in
L7(Q; RY), with

vyn— 0  weakly in L?(Q; RY) (4.37)
and

v, , — 0  strongly in W~19(Q; R’) for every 1 < ¢ < p, (4.38)

as n — 400, for every v e N. Fix Q' cc Q and for z € Z" and n € N, define

z 1
Oy.: -—;+;Q7

and
7" ={ze7":0,.nQ #0}.

We consider the maps
1 1
T\ )0y, 0(xX, y) == 0y N [vx] +;y forae. xeQ, yeQ,

where we have extended the sequence {v, ,} to zero outside Q. A change of vari-
ables yields

J 1 (x, vnx,u(x) + vy, (x)) dx
Q

v

Z JQ _f(x, vnx, u(x) + vy, u(x)) dx

zeZ"’

VNZJ f z—i-z,ny,u(E—i-X)—i-vv,n(z—}—Z) dy
o \v v Y Y

VX
S (B o mateon) + Tt ) v
ze2'90n-J0 v

B
VX

S (B oty + Tyt v

sez2' Q00" JO v

Y

where the last inequality is due to (1.9). By [11], Proposition 3.6 (i) and Proposi-
tion 2.8 we conclude that



308 E. Davoli and 1. Fonseca

[, v ) + v,0(0)) v

Q
= Oy ROZ) Dy, 2,n dy dx, 4.39
- +:;"JQV, mQM[Qf(x w M(X)—i—l;’ ’ (y)) yax ( )

where

~ z
Uv,z,n(y) = Tl/vvv,n <_ay>

v

forae. ye Q,and g, — 0 as v — +oo. The sequence {0, - ,} is p-equiintegrable
by [11], Proposition A.2, and is uniformly bounded by (4.37) and Proposition 2.6,
since

. 1
J |Uv,:,n(y)|pdy:_NJ |Uv,n(x)|p dx.
0 vV

v,z

By the boundedness of {v, , : v,n € N} in L?(Q;R?), and by (4.37) there holds
ﬁv,z,n —0 weakly n L‘”(Q, Rd) (440)

asn — +oo, forevery z € Z", v € N. Denoting by y _~q' the characteristic func-
tions of the sets O, - N Q' we claim that

=0 (441
py =0 (44D

lim sup lim supH H;z@(x) Z ){Ql,)__mg’(x)ﬁv,z,n(y)H
vez'

v—+00 n—+o0 w-ta(Q;R')

for every 1 < ¢ < p. Indeed, fix 1 < ¢ < p, and let € WOI""/(Q; R). Then

(ot rent)] = [, S G 42) A

i=1
N
=V JQ‘ Z ’(%) Uy n(x) g—;}pj(vx —z)dx

)z =1

Adding and subtracting to the previous expression the quantity

vV JQt éAi(x)vv,n(x) g—}l}pj(vx —z)dx,

and setting ¢ (x) := (vx — z) for a.e. x € Q, we obtain the estimate
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(o)
N
<V Z(A(%) — Ai(x)> Uy n(X) %(vx —z) ,
i=1 L’[(Qv,z;[R]) yl L1 (Qv‘,:'«,R])
o . .
N-1 A o
o 0x1( G (X))HW“’(Q» S

A change of variables yields the upper bound

Vv
i,

L‘/'(Qv.:;R’) v

= N7 Wl gy

Thus, by the regularity of the operators A,

'<,%(§)v!//>|
< oV IHZ ’

K (A7 (x)vy,n(x))

Xi

0; M) ||UV’"||L4(Qv.:;Rd)Hlp”Wol'q/(Q;Rl)

+ v Wl .y (4.42)

‘Wl'q(Q\,:i,R]

Using again the Lipschitz regularity of the operators A4°, i=1,...,N, we
”ﬁv,z.nHLq(Q;R’)

deduce
(z)
Y/ L (0 mi)

Z\ .
y<;>vv_w<y>u
W-ha(Q;R')

ﬁvA,Z,nHLq(Q; R')

N
12y ()0 2w (D) | 1000, SZ

i 1L (QsM ™)

- Hwy (%) ﬁv,z‘an (4.43)
WO RY)

for a.e. x € Q, .. Hence, by (4.42) and (4.43), we obtain
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N N EAC LT

zeZ"
1) q
<> 5l Zl o Il g
> Noeal)]|
+ J 2 (‘) Oyzn(y dx
zez" Y QnznQ’ "\ " w-l4(Q;RY)
C . q C
= W HgZ:vXQV"ZNQ,(X)UV’Z’H(J})‘ L9(Qx 0;RY) + ﬁ HUV-,HHL‘/(Q;R“’)
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Property (4.41) follows now by (4.37) and (4.38), and by the compact embedding
of L” into W=1»,
Consider the maps

H(X) (ﬁv.z,n(y) - JQ Av,z,n(é) dé) for x € Qv,: N Q/,
Won(%2) =4 = [T (byzn(p) = [ brzn(E)dE)dy  Z€Z5 V€0
0 otherwise in Q.

By Lemma 4.1 the sequence {w, ,} is p-equiintegrable, and
Adywy , =0 in W’I’P(Q; IRI) fora.e. x € Q,

for all v,n € N. In particular, {w, ,} C #". We claim that

asn — +oo, v— o0, forevery 1 < ¢ < p.
In fact, by Lemma 4.1 there holds

W6 9) = 3 o, e (X)80n(3)]| —0 (4.44)

zeZ LLI<QXQ:'|R‘I)
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Therefore
3 0,00 (H(x) (30-0(3) - JQ Bz l(&) dE) - ﬁv,z,n<y>> Zq(mg;m
<C(§J\ A3z g
+4§z: JQ r\Q’J br.zn(y) qu)' (4.45)

The first term in the right-hand side of (4.45) converges to zero as n — 400 and
v — +00, in this order, owing to (4.41). The second term in the right-hand side
of (4.45) converges to zero as n — 400 and v — 400, in this order, by the domi-
nated convergence theorem, owing to (4.40) and the uniform boundedness in L”
of {0, . ,}. Hence, both the left-hand side of (4.45) and the quantity

J {Z X0, ~or(x )(ﬁw,n(J’) - JQ Oy, 2 n(&) df) } dy — 0,

ze?"

converge to zero as n — 400 and v — +o0, and we obtain (4.44).
Up to the extraction of a (not relabeled) subsequence, we can assume that

lim inf lim inf )" J J (e, my,u(x) + by, 2 (9)) dy dx
cZ" Q —OQ/ Q

V—+00 n—+o0

= lim liminf ZJ J f(x, ny, u(x) +ﬁv,zﬁn(y)) dy dx. (4.46)
cezvJ0,.:0Q" JO

V—+00 n—+0o0

Hence, in view of (4.44) and (4.46) we can extract a subsequence {n(v)} such
that

V—+00 n—+o0

lim liminf J J £ (e, ny, u(x) + by, - u(p)) dy dx (4.47)
EEVARA Y nQ"JQ

= lim Z JQ“:QQ/ JQf(x,n(v)y,u(x) + Dy - () () dy dx, (4.48)

V—+00
z

and
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Wy n(v) ()C, y) - Z XQ“_.mQ’(x)ﬁ\nz,n(v)(y) —0 Strongly in Lq(Q X Q; Rd)a
zeZV

(4.49)

for every 1 < ¢ < p. Going back to (4.39), by [11], Proposition 3.5 (ii), (4.47) and
(4.49),

lim inf lim ian £ (3, vnx, u(x) + vy, (x)) dx
)

V—+00 n—+ow

V—400

> lim infj J £ (x,0(v) p, u(x) 4+ wy ) (x, »)) dy dx.
o' Jo

By the p-equiintegrability of {w, )} and by (1.9), letting |Q\Q'| tend to zero, we
conclude

V—+00 n—+00

lim inf lim ian S (o, v, u(x) + vy, (x)) dx
o

> lim infj J F(x,n(v)y, u(x) 4+ wy ) (X, »)) dy dx
QJo

V—+00

> liminf inf J J f(x,n(v)y,w(x,y)) dydx
QJo

V=400 weW

n—+w weW

> liminf inf J J £ (x,ny,w(x, y)) dydx = Enom(u). O
QJo

Proof of Theorem 4.3. The proof follows by combining Corollary 4.5 with Propo-
sitions 4.6 and 4.7. ]

Corollary 4.8. Under the same assumptions of Theorem 4.3, for every u € Uy

coéhom(u) = Ehom () 1= JQ fhom (x, u(x)) dx,
where

fhom (X, u(x)) = liminf inf JQf(x7 ny,u(x) + o(y)) dy,

n—+0w vely
and Cy is the class defined in (1.5).

Proof. We omit the proof of this corollary as it follows from [11], Remark 3.3 (ii)
and by adapting the arguments in [11], Corollary 3.2 and Lemma 4.9 below. []

Proof of Theorem 1.2. The thesis results from Theorem 4.3 and Corollary 4.8.
[
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We conclude this section by showing that Theorem 4.3 yields a relaxation
result in the framework of .o7-quasiconvexity with variable coefficients. Before
stating the corollary, we prove a preliminary lemma which guarantees the measur-
ability of the function x — Q. f (x,u(x)) for every u e L”(Q; RY).

Lemma 4.9. Let 1 < p < 400, u € L?(Q; Rd), let o/ be as in Theorem 1.2, and let
f:Qx R = [0,+000) be a Carathéodory function satisfying

0<f(x,&)<C(1+|¢P) forae xeQxR? and for all ¢ € R?.
Then the map
x = Quf (x,u(x))
is measurable in Q.

Proof. We first remark that

r

O f (x,u(x)) = (ion£ )Qf%f(x,u(x)) fora.e. x € Q, (4.50)

where

o f (xu(x)) = inf{J S (x,u(x) +w(p))dy:we Cand [|wl g < r},

0

and C, is the class defined in (1.5). Clearly

0L f (x,u(x)) = Quf (x,u(x))

for a.e. x € Q, for every r € N. Moreover, for every ¢ > 0 there exists w, € C, such
that

Quf (v u(x)) > ij(x, u(x) + we(y)) dy — ¢

S Q!;'SHLMQ:R")f(x, u(x)) —&= rlgg Q’Q,/f(x,u(x)) - &

which in turn implies the second inequality in (4.50).
By (4.50) it is enough to show that x — Q7 f (x, u(x)) is measurable for every
r e N. We claim that

0", f (x,u(x)) = sup Q'f (x,u(x)) fora.e. xeQ, (4.51)
neN
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where
07f (x,u(x)) = inf{JQf(x, u(x) + () dy + 1A, MW oo
we LI(Q; R, jQ w(y)dy = 0 and [wlg.pny < 7).

Clearly,
Q;’,"f(x, u(x)) < Q;ff(x, u(x))

for a.e. x € Q, for all n € N. To prove the opposite inequality, fix x € Q, and for
every n e N, let w, € L?(Q; R?), with Jown(y)dy =0 and [yl (g, pe) <T. be
such that

J £t ) oty 5l g
< 0f (x,u(x)) +% < f(x,u(x)) +% (4.52)

(the last inequality holds because 0 € Cy for every x € Q). Since {w,} is uniformly
bounded in L?(Q; RY) and by (4.52)

HJ%}’(X)WWHW*LP(Q;R’) -0

as n— 4oo, there exists a map we LP(Q;RY), with J"Q w(y)dy =0,
Wl oo rey < 1 and o/, (x)w = 0 such that

wy, —w  weakly in L?(Q; RY).

By [5], Lemma 3.1 we can construct a sequence {w,} such that IQ wo(y)dy =0,
oy (x)w, = 0 for every n € N, and

lim inf JQ S (x,u(x) + wa(p)) dy < liminf JQ 1 u(x) +wa(p)) dy

n—+o0 n—-+o0
rn

< sup 07" (x,u(x)).

neN

In view of (4.50) we have

00 f (x,u(x)) < Quf (x,u(x)) < JQ f(x,u(x) +wa(p))dy foreveryne N,
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and we obtain the second inequality in (4.51). By the measurability of

x = 05'f (x,u(x))

for every r,n € N (we can reduce it to a countable pointwise infimum of measur-
able functions), we deduce the measurability of

X QL f (x,u(x))
for every r € N, which in turn implies the thesis. O

For every D € O(Q) and u € L?(Q;R?), define

Z(u, D) := inf{limian S (x,uy(x)) s uy — u  weakly in L7 (Q; R™)
n——+00 D

and .Zu, — 0  strongly in W17 (Q; IRI)}.
(4.53)

Corollary 4.8 provides us with the following integral representation of Z.

Corollary 4.10. Let 1 < p < 400 and let </ be as in Theorem 1.2. Let f : Q x R?
— [0,+00) be a Carathéodory function satisfying

0<f(x,&) <C(1+ &) forae xeQ, and forall £ € R,

Then
L) Q. f (x,u(x)) dx = Z(u,D)

forall D € O(Q) and u € L?(Q; R?) with .o/u = 0.
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