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Abstract. A homogenization result for a family of oscillating integral energies

ue 7!
ð
W

f x;
x

e
; ueðxÞ

� �
dx; e ! 0þ

is presented, where the fields ue are subjected to first order linear di¤erential constraints
depending on the space variable x. The work is based on the theory of A-quasiconvexity
with variable coe‰cients and on two-scale convergence techniques, and generalizes the
previously obtained results in the case in which the di¤erential constraints are imposed by
means of a linear first order di¤erential operator with constant coe‰cients. The identifica-
tion of the relaxed energy in the framework of A-quasiconvexity with variable coe‰cients
is also recovered as a corollary of the homogenization result.
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1. Introduction

In this paper we continue the study of the problem of finding an integral represen-

tation for limits of oscillating integral energies

ue 7!
ð
W

f x;
x

ea
; ueðxÞ

� �
dx;

where f : W� RN � Rd ! ½0;þlÞ has standard p-growth, W � RN is a bounded

open set, e ! 0, and the fields ue : W ! Rd are subjected to x-dependent



di¤erential constraints of the type

XN
i¼1

Ai x

eb

� �
queðxÞ
qxi

! 0 strongly in W�1;pðW;R lÞ; 1 < p < þl; ð1:1Þ

or in divergence form

XN
i¼1

q

qxi

 
Ai x

eb

� �
ueðxÞ

!
! 0 strongly in W �1;pðW;R lÞ; 1 < p < þl; ð1:2Þ

with AiðxÞ a LinðRd ;R lÞ for every x a RN , i ¼ 1; . . . ;N, d; lb 1, and where a, b

are two nonnegative parameters. Di¤erent regimes are expected to arise, depend-

ing on the relation between a and b.

We recently analyzed in [10] the limit case in which a ¼ 0, b > 0, the energy

density is independent of the first two variables, and the fields fueg are subjected

to (1.2). We will consider here the case in which a > 0, b ¼ 0 and (1.1), i.e., the

energy density is oscillating but the di¤erential constraint is fixed and in ‘‘non-

divergence’’ form. The situation in which there is an interplay between a and b

will be the subject of a forthcoming paper.

The key tool for our study is the notion of A-quasiconvexity with variable

coe‰cients, characterized in [20]. A-quasiconvexity was first investigated by

Dacorogna in [8] and then studied by Fonseca and Müller in [12] in the case of

constant coe‰cients (see also [9]). More recently, in [20] Santos extended the anal-

ysis of [12] to the case in which the coe‰cients of the di¤erential operator A

depend on the space variable.

In order to illustrate the main ideas of A-quasiconvexity, we need to intro-

duce some notation. For i ¼ 1 . . . ;N, consider matrix-valued maps Ai a
ClðRN ;M l�dÞ, where for l; d a N, M l�d stands for the linear space of matrices

with l rows and d columns, and for every x a RN define A as the di¤erential

operator such that

Au :¼
XN
i¼1

AiðxÞ quðxÞ
qxi

; x a W ð1:3Þ

for u a L1
locðW;RdÞ, where qu

qxi
is to be interpreted in the sense of distributions.

We require that the operator A satisfies a uniform constant-rank assumption

(see [18]), i.e., there exists r a N such that

rank
XN
i¼1

AiðxÞwi ¼ r for every w a Sn�1; ð1:4Þ

uniformly with respect to x, where SN�1 is the unit sphere in RN .
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The definitions of A-quasiconvex function and A-quasiconvex envelope in the

case of variable coe‰cients read as follows:

Definition 1.1. Let f : W� Rd ! R be a Carathéodory function, let Q be the unit

cube in RN centered at the origin,

Q ¼ � 1

2
;
1

2

� �N

;

and denote by Cl
perðRN ;RdÞ the set of smooth maps which are Q-periodic in RN .

For every x a W consider the set

Cx :¼
n
w a Cl

perðRN ;RdÞ :
ð
Q

wðyÞ dy ¼ 0;
XN
i¼1

AiðxÞ qwðyÞ
qyi

¼ 0
o
: ð1:5Þ

For a.e. x a W and x a Rd , the A-quasiconvex envelope of f in x a W is defined as

QA f ðx; xÞ :¼ inf
nð

Q

f
�
x; xþ wðyÞ

�
dy : w a Cx

o
:

f is said to be A-quasiconvex if f ðx; xÞ ¼ QA f ðx; xÞ for a.e. x a W and x a Rd .

Denote by Ac a generic di¤erential operator, defined as in (1.3) and with con-

stant coe‰cients, i.e. such that

AiðxÞCAi
c for every x a RN ;

with Ai
c a M l�d , i ¼ 1; . . . ;N. We remark that when A ¼ Ac ¼ curl, i.e., when

v ¼ ‘f for some f a W 1;1
loc ðW;RmÞ, and if W is connected, then d ¼ m�N, and

A-quasiconvexity reduces to Morrey’s notion of quasiconvexity (see [1], [4], [15],

[17]).

The first identification of the e¤ective energy associated to periodic integrands

evaluated along Ac-free fields was provided in [5], by Braides, Fonseca and Leoni.

Their homogenization results were later generalized in [11], where Fonseca and

Krömer worked under weaker assumptions on the energy density f . Recently,

Matias, Morandotti, and Santos extended the previous results to the case p ¼ 1

[16], whereas Kreisbeck and Krömer performed in [13] simultaneous homogeniza-

tion and dimension reduction in the framework of Ac-quasiconvexity.

This paper is devoted to extending the results in [11] to the framework of

A-quasiconvexity with variable coe‰cients. To be precise, in [11] the authors

studied the homogenized energy associated to a family of functionals of the type

FeðueÞ :¼
ð
W

f x;
x

e
; ueðxÞ

� �
dx;
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where W is a bounded, open subset of RN , ue * u weakly in LpðW;RdÞ and the

sequence fueg satisfies a di¤erential constraint of the form Acue ¼ 0 for every e.

We analyze the analogous problem in the case in which A depends on the

space variable and the di¤erential constraint is replaced by the condition

Aue ! 0 strongly in W�1;pðW;R lÞ:

Our analysis leads to a limit homogenized energy of the form:

EhomðuÞ :¼
Ð
W fhom

�
x; uðxÞ

�
dx if Au ¼ 0;

þl otherwise in LpðW;RdÞ;

(

where fhom : W� Rd ! ½0;þlÞ is defined as

fhomðx; xÞ :¼ lim inf
n!þl

inf
v A Cx

ð
Q

f
�
x; ny; xþ vðyÞ

�
dy:

Our main result is the following.

Theorem 1.2. Let 1 < p < þl. Let Ai a Cl
perðRN ;M l�dÞ, i ¼ 1; . . . ;N, and as-

sume that A satisfies the constant rank condition (1.4). Let f : W� RN � Rd ! R

be a function satisfying

f ðx; �; xÞ is measurable; ð1:6Þ
f ð�; y; �Þ is continuous; ð1:7Þ
f ðx; �; xÞ is Q-periodic; ð1:8Þ
0a f ðx; y; xÞaCð1þ jxjpÞ

for all ðx; xÞ a W� Rd ; and for a:e: y a RN : ð1:9Þ

Then for every u a LpðW;RdÞ there holds

inf

�
lim inf

e!0

ð
W

f x;
x

e
; ueðxÞ

� �
dx : ue * u weakly in LpðW;RdÞ

and Aue ! 0 strongly in W �1;pðW;R lÞ
�

¼ inf

�
lim sup

e!0

ð
W

f x;
x

e
; ueðxÞ

� �
dx : ue * u weakly in LpðW;RdÞ

and Aue ! 0 strongly in W�1;pðW;R lÞ
�

¼ EhomðuÞ:
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As in [10] and [11], the proof of this result is based on the unfolding operator,

introduced in [6], [7] (see also [21], [22]). In contrast with [11], Theorem 1.1 (i.e. the

case in which A ¼ Ac), here we are unable to work with exact solutions of the

system Aue ¼ 0, but instead we consider sequences of asymptotically A-vanishing

fields. This is due to the fact that for A-quasiconvexity with variable coe‰cients

we do not project directly on the kernel of the di¤erential constraint, but construct

an ‘‘approximate’’ projection operator P such that for every field v a Lp, the

W �1;p norm of APv is controlled by the W �1;p norm of v itself (for a detailed

explanation we refer to [20], Subsection 2.1).

In [10] the issue of defining a projection operator was tackled by imposing an

additional invertibility assumption on A and by exploiting the divergence form

of the di¤erential constraint. We do not add this invertibility requirement here,

instead we use the fact that in our framework the di¤erential operator depends

on the ‘‘macro’’ variable x but acts on the ‘‘micro’’ variable y (see (1.5)). Hence

it is possible to define a pointwise projection operator PðxÞ along the argument of

[12], Lemma 2.14 (see Lemma 4.1).

As a corollary of our main result we recover an alternative proof of the relax-

ation theorem [5], Theorem 1.1 in the framework of A-quasiconvexity with vari-

able coe‰cients, that is we obtain the identification (see Corollary 4.10)ð
D

QA f
�
x; uðxÞ

�
dx ¼ I ðu;DÞ

for every open subset D of W, and for every u a LpðW;RdÞ satisfying Au ¼ 0,

where the functional I is defined as

I ðu;DÞ :¼ inf
n
lim inf

e!0

ð
D

f
�
x; ueðxÞ

�
: ue * u weakly in LpðW;RmÞ

and Aue ! 0 strongly in W �1;pðW;R lÞ
o
:

ð1:10Þ

We point out here that a proof of this relaxation theorem follows directly combin-

ing [5], Proof of Theorem 1.1 with the arguments in [20]. The interest in Corollary

4.10 lies in the fact that it is obtained as a by-product of our homogenization

result, and thus by adopting a completely di¤erent proof strategy.

In analogy to [10] one might expect to be able to apply an approximation

argument and extend the results in Theorem 4.3 to the situation in which Ai a
W 1;lðRN ;M l�dÞ, i ¼ 1 . . . ;N, which is the least regularity assumption in order

for A to be well defined as a di¤erential operator from Lp to W�1;p. We were

unable to achieve this generalization, mainly because the projection operator

here plays a key role in the proof of both the liminf and the limsup inequalities.

In order to work with approximant operators Ak having smooth coe‰cients, we
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would need to finally construct an ‘‘approximate projection operator’’ P associ-

ated to A, whereas the projection argument provided in [20] applies only to the

case of smooth di¤erential constraints.

The article is organized as follows. In Section 2 we establish the main assump-

tions on the di¤erential operator A and we recall some preliminary results on

two-scale convergence. In Section 3 we recall the definition of A-quasiconvex

envelope and we construct some examples of A-quasiconvex functions. Section

4 is devoted to the proof of our main result.

Notation. Throughout this paper, W � RN is a bounded open set, OðWÞ is the set
of open subsets of W, Q denotes the unit cube in RN centered at the origin and

with normals to its faces parallel to the vectors in the standard orthonormal basis

of RN , fe1; . . . ; eNg, i.e.,

Q ¼ � 1

2
;
1

2

� �N

:

Given 1 < p < þl, we denote by p 0 its conjugate exponent, that is

1

p
þ 1

p 0 ¼ 1:

Whenever a map u a Lp;Cl; . . . , is Q-periodic, that is

uðxþ eiÞ ¼ uðxÞ i ¼ 1; . . . ;N

for a.e. x a RN , we write u a Lp
per;C

l
per; . . . , respectively. We will implicitly iden-

tify the spaces LpðQÞ and Lp
perðRNÞ. We will designate by 3� ; �4 the duality prod-

uct between W�1;p and W
1;p 0

0 .

We adopt the convention that C will denote a generic constant, whose value

may change from expression to expression in the same formula.

2. Preliminary results

In this section we introduce the main assumptions on the di¤erential operator A

and we recall some preliminary results about A-quasiconvexity and two-scale

convergence.

2.1. Preliminaries. For i ¼ 1; . . . ;N, consider the matrix-valued functions Ai a
ClðRN ;M l�dÞ. For 1 < p < þl and u a LpðW;RdÞ, we set

Au :¼
XN
i¼1

AiðxÞ quðxÞ
qxi

a W �1;pðW;R lÞ:
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For every x0 a W and u a LpðW;RdÞ we define

Aðx0Þu :¼
XN
i¼1

Aiðx0Þ
quðxÞ
qxi

a W �1;pðW;R lÞ:

We will also consider the operators

Axw :¼
XN
i¼1

AiðxÞ qwðx; yÞ
qxi

and

Ayw :¼
XN
i¼1

AiðxÞ qwðx; yÞ
qyi

for every w a LpðW�Q;RdÞ. Finally, for every x0 a W and for w a
LpðW�Q;RdÞ, we set

Axðx0Þw :¼
XN
i¼1

Aiðx0Þ
qwðx; yÞ

qxi

and

Ayðx0Þw :¼
XN
i¼1

Aiðx0Þ
qwðx; yÞ

qyi
:

For every x a RN , l a RNnf0g, let Aðx; lÞ be the linear operator

Aðx; lÞ :¼
XN
i¼1

AiðxÞli a M l�d :

We assume that A satisfies the following constant rank condition:

rank
�XN

i¼1

AiðxÞli
�
¼ r for some r a N and for all x a RN ; l a RNnf0g: ð2:1Þ

For every x a RN , l a RNnf0g, let Pðx; lÞ : Rd ! Rd be the linear projection on

KerAðx; lÞ, and let Qðx; lÞ : R l ! Rd be the linear operator given by
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Qðx; lÞAðx; lÞx :¼ x� Pðx; lÞx for all x a Rd ;

Qðx; lÞx ¼ 0 if x B Range Aðx; lÞ:

The main properties of Pð� ; �Þ and Qð� ; �Þ are stated in the following proposition

(see [20], Subsection 2.1).

Proposition 2.1. Under the constant rank condition (2.1), for every x a RN the oper-

ators Pðx; �Þ and Qðx; �Þ are, respectively, 0-homogeneous and ð�1Þ-homogeneous.

Moreover, P a ClðRN � RNnf0g;Md�dÞ and Q a ClðRN � RNnf0g;Md�lÞ.

2.2. Two-scale convergence. We recall here the definition and some properties

of two-scale convergence. For a detailed treatment of the topic we refer to, e.g.,

[2], [14], [19]. Throughout this subsection 1 < p < þl.

Definition 2.2. If v a LpðW�Q;RdÞ and fueg a LpðW;RdÞ, we say that fueg
weakly two-scale converges to v in LpðW�Q;RdÞ, ue *

2�s
v, ifð

W

ueðxÞ � j x;
x

e

� �
dx !

ð
W

ð
Q

vðx; yÞ � jðx; yÞ dy dx

for every j a Lp 0�
W;Cl

perðRN ;RdÞ
�
.

We say that fueg strongly two-scale converges to v in LpðW�Q;RdÞ, ue �!
2�s

v,

if ue *
2�s

v and

lim
e!0

kuekL pðW;Rd Þ ¼ kvkL pðW�Q;Rd Þ:

Bounded sequences in LpðW;RdÞ are pre-compact with respect to weak two-

scale convergence. To be precise (see [2], Theorem 1.2),

Proposition 2.3. Let fueg � LpðW;RdÞ be bounded. Then, there exists v a
LpðW�Q;RdÞ such that, up to the extraction of a (non relabeled ) subsequence,

ue *
2�s

v weakly two-scale in LpðW�Q;RdÞ, and, in particular

ue *

ð
Q

vðx; yÞ dy weakly in LpðW;RdÞ:

The following result will play a key role in the proof of the limsup inequality

(see [11], Proposition 2.4, Lemma 2.5 and Remark 2.6).

Proposition 2.4. Let v a Lp
�
W;CperðRN ;RdÞ

�
or v a Lp

per

�
RN ;CðW;RdÞ

�
. Then,

the sequence fveg defined as

veðxÞ :¼ v x;
x

e

� �
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is p-equiintegrable, and

ve �!
2�s

v strongly two-scale in LpðW;RdÞ:

2.3. The unfolding operator. We collect here the definition and some properties

of the unfolding operator (see e.g. [7], [6], [21], [22]).

Definition 2.5. Let u a LpðW;RdÞ. For every e > 0, the unfolding operator

Te : L
pðW;RdÞ ! Lp

�
RN ;Lp

perðRN ;RdÞ
�
is defined componentwise as

TeðuÞðx; yÞ :¼ u e
x

e

	 

þ eðy� bycÞ

� �
for a:e: x a W and y a RN ; ð2:2Þ

where u is extended by zero outside W and b�c denotes the least integer part.

The next proposition and the subsequent theorem allow to express the notion

of two-scale convergence in terms of Lp convergence of the unfolding operator.

Proposition 2.6 (see [7], [22]). Te is a nonsurjective linear isometry from LpðW;RdÞ
to LpðRN �Q;RdÞ.

The following theorem provides an equivalent characterization of two-scale

convergence in our framework (see [22], Proposition 2.5 and Proposition 2.7,

[14], Theorem 10).

Theorem 2.7. Let W be an open bounded domain and let v a LpðW�Q;RdÞ.
Assume that v is extended to be 0 outside W. Then the following conditions are

equivalent:

(i) ue *
2�s

v weakly two scale in LpðW�Q;RdÞ,

(ii) Teue * v weakly in LpðRN �Q;RdÞ.

Moreover,

ue �!2�s
v strongly two scale in LpðW�Q;RdÞ

if and only if

Teue ! v strongly in LpðRN �Q;RdÞ:

The following proposition is proved in [11], Proposition A.1.
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Proposition 2.8. For every u a LpðW;RdÞ (extended by 0 outside W),

ku� TeukL pðRN�Q;Rd Þ ! 0

as e ! 0.

3. A-quasiconvex functions

In this section we recall the notion of A-quasiconvexity and A-quasiconvex enve-

lope, and we provide some examples of A-quasiconvex functions in the case in

which A has variable coe‰cients.

We start by recalling the main definitions when A ¼ Ac, where Ac is a first

order di¤erential operator with constant coe‰cients, that is, for every u a
LpðW;RdÞ,

AcuðxÞ :¼
XN
i¼1

Ai
c

quðxÞ
qxi

a W�1;pðW;R lÞ;

with Ai
c a M l�d for i ¼ 1; . . . ;N.

Definition 3.1. Let f : W� Rd ! ½0;þlÞ be a Carathéodory function, let Ac

be a first order di¤erential operator with constant coe‰cients, and consider the

set

Cconst :¼
n
w a Cl

perðRN ;RdÞ :
ð
Q

wðyÞ dy ¼ 0 and
XN
i¼1

Ai
c

qwðyÞ
qyi

¼ 0
o
:

The Ac-quasiconvex envelope of f is the function QA c

f : W� Rd ! ½0;þlÞ,
given by

QA c

f ðx; xÞ :¼ inf
nð

Q

f
�
x; xþ wðyÞ

�
dy : w a Cconst

o
; ð3:1Þ

for a.e. x a W and for all x a Rd .

We say that f is Ac-quasiconvex if

f ðx; xÞ ¼ QA c

f ðx; xÞ for a:e: x a W and for all x a Rd :

Similarly, in the case in which A depends on the space variable, the definitions

of A-quasiconvex envelope and A-quasiconvex function read as in Definition 1.1.
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We stress that A-quasiconvexity and pointwise AðxÞ-quasiconvexity are related

by the following ‘‘fixed point’’ relation:

QA f ðx; xÞ ¼ QAðxÞf ðx; xÞ for a:e: x a W and for all x a Rd : ð3:2Þ

The remaining part of this section is devoted to illustrating these concepts with

some explicit examples of A-quasiconvex functions. We first exhibit an example

where A-quasiconvexity reduces to Ac-quasiconvexity for a suitable operator Ac

with constant coe‰cients.

Example 3.2. Let 1 < p < þl and define

f ðx; xÞ :¼ aðxÞbðxÞ for a:e: x a W and every x a Rd ;

with a a LpðWÞ and b a CðRdÞBLpðRdÞ. In order for f to be A-quasiconvex,

the function b must satisfy

bðxÞ ¼ inf
nð

Q

b
�
xþ wðyÞ

�
dy : w a

[
x AW

Cx

o
:

Consider the case in which Cx is the same for every x, for example when the di¤er-

ential constraint is provided by the operator:

AwðxÞ :¼
XN
i¼1

MðxÞAi
c

qwðxÞ
qxi

;

where M : W ! M l�l and detMðxÞ > 0 for every x a W. In this case,

Cx ¼
n
w a Cl

perðRN ;RdÞ :
ð
Q

wðyÞ dy ¼ 0 and Acw ¼ 0
o

for every x, where

AcwðxÞ :¼
XN
i¼1

Ai
c

qwðxÞ
qxi

:

Hence, f is A-quasiconvex if and only if b is Ac-quasiconvex.

In the previous example, A-quasiconvexity could be reduced to Ac-

quasiconvexity owing to the fact that the class Cx was constant in x. We provide

now an example where an analogous phenomenon occurs, despite the fact that Cx

varies with respect to x. To be precise, we consider the case in which A is
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a smooth perturbation of the divergence operator. In this situation, the A-

quasiconvex envelope of f coincides with its convex envelope.

Example 3.3. We consider a smooth perturbation of the divergence operator in a

set W � R2, that is

Au :¼ aðxÞ 0

0 1

� �
‘u for every u a LpðW;R2Þ; 1 < p < þl;

with a a CðWÞ and

1

2
a aðxÞ < 1 for every x a W:

We notice that

kerAðx; lÞ ¼ fx a R2 : aðxÞl1x1 þ l2x2 ¼ 0g;

and therefore

rankAðx; lÞ ¼ 1 for every x a W and l a R2nf0g:

In this situation, the class Cx depends on x, since we have

Cx ¼
n
w a Cl

perðR2;R2Þ :
ð
Q

wðyÞ dy ¼ 0 and aðxÞ qw1ðyÞ
qy1

þ qw2ðyÞ
qy2

¼ 0
o
;

although [
l AS1

kerAðx; lÞ ¼ R2:

Let now f : Rd ! ½0;þlÞ be a continuous map. By [12], Proposition 3.4, it fol-

lows that QA f ðxÞ coincides with the convex envelope of f evaluated at x, exactly

as in the case of the divergence operator (see [12], Remark 3.5 (iv)).

We conclude this section with an example in which the notion of A-

quasiconvexity can not be reduced to Ac-quasiconvexity with respect to a con-

stant operator Ac.

Example 3.4. Here we consider a smooth perturbation of the curl operator in a

set W � R2. Let A : LpðW;R2Þ ! W�1;pðW;R4Þ be given by

Au ¼ �a1ðxÞ
qu2

qx1
þ qu1

qx2
;
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where a1 a CðWÞ is not constant, and satisfies

1

2
a a1ðxÞa 1 for every x a W:

We first notice that

kerAðx; lÞ :¼ fx a R2 : l1a1ðxÞx2 ¼ l2x1g

¼ fx a R2 : x2 ¼ al2 and x1 ¼ aa1ðxÞl1; a a Rg;

hence

rankAðx; lÞ ¼ 3 for every x a W; l a S1:

The class Cx depends on x and there holds

Cx ¼
n
w a Cl

perðR2;R2Þ :
ð
Q

wðyÞ dy ¼ 0 and a1ðxÞ
qw2ðyÞ
qy1

¼ qw1ðyÞ
qy2

o
¼
n
w a Cl

perðR2;R2Þ :
ð
Q

wðyÞ dy ¼ 0;w1ðyÞ ¼ a1ðxÞ
qjðyÞ
qy1

;

and w2ðyÞ ¼
qjðyÞ
qy2

;where j a Cl
perðR2Þ

o
: ð3:3Þ

Let now g : W� R2 ! ½0;þlÞ be a quasiconvex function and let

f : W� R2 ! ½0;þlÞ be defined as

f ðx; xÞ :¼ g

 
x;

x1
a1ðxÞ

; x2

� �!
for a:e: x a W and for every x a R2:

We claim that

QA f ðx; xÞ ¼ f ðx; xÞ for a:e: x a W and for every x a R2:

Indeed, by (3.3) there holds

inf
w A Cx

ð
Q

f
�
x; xþ wðyÞ

�
dy

¼ inf

ð
Q

f

 
x; x1 þ a1ðxÞ

qjðyÞ
qy1

; x2 þ
qjðyÞ
qy2

� �!
dy : j a Cl

perðR2Þ
( )
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¼ inf

ð
Q

g

 
x;

x1
a1ðxÞ

þ qjðyÞ
qy1

; x2 þ
qjðyÞ
qy2

� �!
dy : j a Cl

perðR2Þ
( )

¼ Qg

 
x;

x1
a1ðxÞ

; x2

� �!

for a.e. x a W and for every x a R2, where Qg denotes the quasiconvex envelope

of the function g. The claim follows by the definition of f and the quasiconvexity

of g.

4. A homogenization result for A-free fields

In this section we prove a homogenization result for oscillating integral energies

under weak Lp convergence of A-vanishing maps. Fix 1 < p < þl and consider

a function f : W� RN � Rd ! ½0;þlÞ satisfying (1.6)–(1.9).

In analogy with the case of constant coe‰cients (see [11], Definition 2.9), we

define the class of A-free fields as the set

F :¼
n
v a LpðW�Q;RdÞ : Ayv ¼ 0 and Ax

ð
Q

vðx; yÞ dy ¼ 0
o
; ð4:1Þ

where both the previous di¤erential conditions are in the sense of W �1;p.

We aim at obtaining a characterization of the homogenized energy

inf

�
lim inf

e!0

ð
W

f x;
x

e
; ueðxÞ

� �
dx : ue * u weakly in LpðW;RdÞ

and Aue ! 0 strongly in W �1;pðW;R lÞ
�
: ð4:2Þ

We start with a preliminary lemma, which will allow us to define a point-

wise projection operator. We will be using the notation introduced in Sections 2

and 3.

Lemma 4.1. Let 1 < p < þl. Let Ai a Cl
perðRN ;M l�dÞ, i ¼ 1 . . . ;N, and

assume that the associated first order di¤erential operator A satisfies (2.1). Then,

for every x a W there exists a projection operator

PðxÞ : LpðQ;RdÞ ! LpðQ;RdÞ

such that
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(P1) PðxÞ is linear and bounded, and vanishes on constant maps,

(P2) PðxÞ �PðxÞcðyÞ ¼ PðxÞcðyÞ and AyðxÞ
�
PðxÞcðyÞ

�
¼ 0 in W�1;pðQ;R lÞ

for a.e. x a W, for every c a LpðQ;RdÞ,
(P3) there exists a constant C ¼ CðpÞ > 0, independent of x, such that

kcðyÞ �PðxÞcðyÞkL pðQ;Rd ÞaCkAyðxÞcðyÞkW �1; pðQ;R lÞ

for a.e. x a W, for every c a LpðQ;RdÞ with
Ð
Q
cðyÞ dy ¼ 0,

(P4) if fcng is a bounded p-equiintegrable sequence in LpðQ;RdÞ, then

fPðxÞcnðyÞg is a p-equiintegrable sequence in LpðW�Q;RdÞ,
(P5) if j a C1

�
W;Cl

perðRN ;RdÞ
�
then the map jP, defined by

jPðx; yÞ :¼ PðxÞjðx; yÞ for every x a W and y a RN ;

satisfies jP a C1
�
W;Cl

perðRN ;RdÞ
�
.

Proof. For every x a W, let PðxÞ be the projection operator provided by [12],

Lemma 2.14. Properties (P1) and (P2) follow from [12], Lemma 2.14.

In order to prove (P3), fix x a W and c a Cl
perðRN ;RdÞ. Let A, P and Q be

the operators defined in Subsection 2.1. Writing the operator PðxÞ explicitly, we
have

PðxÞcðyÞ :¼
X

l AZNnf0g
Pðx; lÞĉcðlÞe2piy�l;

where

ĉcðlÞ :¼
ð
Q

cðyÞe�2piy�l dy; for every l a ZNnf0g

are the Fourier coe‰cients associated to c.

By the ð�1Þ-homogeneity of the operator Q (see Proposition 2.1) we deduce

jcðyÞ �PðxÞcðyÞjp ¼
��� X
l AZNnf0g

Qðx; lÞAðx; lÞĉcðlÞe2piy�l
���p

¼
���� X
l AZNnf0g

1

jljQ x;
l

jlj

� �
Aðx; lÞĉcðlÞe2piy�l

����p: ð4:3Þ

For 1 < p < 2, by the smoothness of Q and by applying first Hölder’s inequality

and then Hausdor¤–Young inequality, we obtain the estimate
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jcðyÞ �PðxÞcðyÞjp

a

�
max

l AZN ; jlj¼1
kQðx; lÞk

�p� X
l AZNnf0g

1

jljp
�� X

l AZNnf0g
jAðx; lÞĉcðlÞjp

0
�p=p 0

aC
� X
l AZNnf0g

jAðx; lÞĉcðlÞjp
0
�p=p 0

aCkAyðxÞcðyÞkp

L pðQ;Rd Þ; ð4:4Þ

where we used the fact that

jAðx; lÞĉcðlÞjaCj dAyðxÞcðyÞAyðxÞcðyÞðlÞj ð4:5Þ

for every x a W and l a ZNnf0g, by the definition of the Fourier coe‰cients, and

where both constants in (4.4) and (4.5) are independent of l and x.

Consider now the case in which pb 2. By (4.3) we have

jcðyÞ �PðxÞcðyÞjp

a

�
max

l AZN ; jlj¼1
kQðx; lÞk

�p� X
l AZNnf0g

1

jljp 0

�p=p 0� X
l AZNnf0g

jAðx; lÞĉcðlÞjp
�

aC
� X
l AZNnf0g

jAðx; lÞĉcðlÞjp
�

aC
�

sup
l AZNnf0g

jAðx; lÞĉcðlÞjp�2
� X

l AZNnf0g
jAðx; lÞĉcðlÞj2: ð4:6Þ

By the definition of Fourier coe‰cients and by Hölder’s inequality we have

jAðx; lÞĉcðlÞjaCkAyðxÞcðyÞkL pðQ;R lÞ

for every x a W and l a ZNnf0g. In view of [12], Theorem 2.9,

X
l AZNnf0g

jAðx; lÞĉcðlÞj2 ¼ kAyðxÞcðyÞk2L2ðQ;R lÞ:

Therefore by (4.6), applying again Hölder’s inequality,

jcðyÞ �PðxÞcðyÞjp

aCkAyðxÞcðyÞkp�2

L pðQ;R lÞkAyðxÞcðyÞk2L2ðQ;R lÞaCkAyðxÞcðyÞkp

L pðQ;R lÞ ð4:7Þ

where the constant C is independent of x and y. Property (P3) follows by (4.4)

and (4.7) via a density argument.
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(P4) follows directly from (P3), arguing as in the proof of [12], Lemma 2.14

(iv).

Let now j a C1
�
W;Cl

perðRN ;RdÞ
�
. The regularity of the map jP is a direct

consequence of Proposition 2.1, the definition of P and the regularity of A.

Indeed,

jPðx; yÞ :¼
X

l AZNnf0g
Pðx; lÞĵjðx; lÞe2piy�l; ð4:8Þ

for every x a W and y a RN , where

ĵjðx; lÞ :¼
ð
Q

jðx; xÞe�2pix�l dx

for every x a W and l a ZNnf0g. By the regularity of j and by [12], Theorem 2.9

we obtain the estimate

�
4p2

X
l AZNnf0g

jlj2jĵjðx; lÞj2
�1=2

a
XN
i¼1

qj

qyi
ðx; yÞ

���� ����
L2ðQ;Rd Þ

aC

for every x a W, hence by Proposition 2.1 and Cauchy-Schwartz inequality there

holds X
l AZNnf0g; jljbn

jPðx; lÞĵjðx; lÞe2piy�lj

aC
X

l AZNnf0g; jljbn

jĵjðx; lÞj

aC
� X
l AZNnf0g; jljbn

jĵjðx; lÞj2jlj2
�1=2� X

l AZNnf0g; jljbn

1

jlj2
�1=2

aC
� X
l AZNnf0g; jljbn

1

jlj2
�1=2

: ð4:9Þ

By (4.9) the series in (4.8) is uniformly convergent, and hence jP is continuous.

The di¤erentiability of jP follows from an analogous argument. r

For every v a LpðW�Q;RdÞ, let

S v :¼ ffueg � LpðW;RdÞ : ue *
2�s

v weakly two-scale in LpðW�Q;RdÞ

and Aue ! 0 strongly in W �1;pðW;R lÞg: ð4:10Þ
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Let also

S :¼
[

S v : v a LpðW�Q;RdÞ
�
: ð4:11Þ

We provide a characterization of the set S .

Lemma 4.2. Let v a LpðW�Q;RdÞ. Let A be a first order di¤erential opera-

tor with variable coe‰cients, satisfying (2.1). The following conditions are

equivalent:

(C1) v a F (see (4.1));

(C2) S v is nonempty.

Proof. We first show that (C2) implies (C1). Let v a LpðW�Q;RdÞ and let

fueg � S v. Consider a test function c a W
1;p
0 ðW;R lÞ. Then

3Aue;c4 ! 0 as e ! 0:

On the other hand,

3Aue;c4 :¼ �
XN
i¼1

ð
W

qAiðxÞ
qxi

ueðxÞ � cðxÞ þ AiðxÞueðxÞ �
qcðxÞ
qxi

� �
dx ð4:12Þ

and by Proposition 2.3, up to the extraction of a (not relabeled) subsequence,

ue *

ð
Q

vðx; yÞ dy weakly in LpðW;RdÞ: ð4:13Þ

Passing to the limit in (4.12) yields

Ax

ð
Q

vðx; yÞ dy ¼ 0 in W �1;pðW;R lÞ:

In order to deduce the second condition in the definition of F, we consider a

sequence of test functions

ej
�
x
e

�
cðxÞ

�
, where j a W

1;p 0

0 ðQ;RdÞ and c a Cl
c ðWÞ.

Since this sequence is uniformly bounded in W
1;p 0

0 ðW;RdÞ, we have

Aue; ej
�
e

� �
c

� �
! 0

as e ! 0, where
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Aue; ej
�
e

� �
c

� �

¼ �e
XN
i¼1

ð
W

 
qAiðxÞ
qxi

ueðxÞ � j
x

e

� �
cðxÞ þ AiðxÞueðxÞ � j

x

e

� �
qcðxÞ
qxi

!
dx

�
XN
i¼1

ð
W

AiðxÞueðxÞ �
qj

qxi

x

e

� �
cðxÞ dx:

Passing to the subsequence of fueg extracted in (4.13), the first line of the previous

expression converges to zero. By the definition of two-scale convergence, the sec-

ond line converges to

�
XN
i¼1

ð
W

ð
Q

AiðxÞvðx; yÞ � qjðyÞ
qyi

cðxÞ dy dx;

and thus

DXN
i¼1

AiðxÞ qvðx; �Þ
qyi

; j
E
W �1; pðQ;R lÞ;W 1; p 0

0
ðQ;R lÞ

¼ 0

for a.e. x a W, that is

Ayv ¼ 0 in W�1;pðQ;R lÞ for a:e: x a W:

This completes the proof of (C1).

Assume now that (C1) holds true, i.e., v a F. In order to construct the

sequence fueg, set

v1ðx; yÞ ¼ vðx; yÞ �
ð
Q

vðx; zÞ dz:

We first assume that v1 a C1
�
W;C1

perðRN ;RdÞ
�
. Defining

ueðxÞ :¼
ð
Q

vðx; yÞ dyþ v1 x;
x

e

� �
for a:e: x a W;

by Proposition 2.4 we have ue �!
2�s

v strongly two-scale in LpðW�Q;RdÞ. More-

over, by the definition of F and Propositions 2.3 and 2.4,
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XN
i¼1

AiðxÞ queðxÞ
qxi

¼
XN
i¼1

AiðxÞ q

qxi

 ð
Q

vðx; yÞ dyþ v1 x;
x

e

� �!

¼
XN
i¼1

AiðxÞ qv
qxi

x;
x

e

� �
*
XN
i¼1

AiðxÞ q

qxi

ð
Q

vðx; yÞ dy ¼ 0

weakly in LpðW;R lÞ. Hence v satisfies (C2).

In the general case in which v1 a LpðW�Q;RdÞ, we first need to approximate

v1 in order to keep the periodicity condition during the subsequent regularization.

To this purpose, we extend v1 to 0 outside W�Q, we consider a sequence

fjjg a Cl
c ðQÞ such that 0ajj a 1 and jj ! 1 pointwise, and we define the maps

v
j
1ðx; yÞ :¼ jjðyÞv1ðx; yÞ for a:e: x a W and y a Q:

Extend these maps to W� RN by periodicity. It is straightforward to see that

v
j
1 ! v1 strongly in Lp

�
W;Lp

perðRN ;RdÞ
�

ð4:14Þ

by the dominated convergence theorem. Moreover

kAyv
j
1kW �1; pðQ;R lÞ ! 0 strongly in LpðWÞ: ð4:15Þ

Indeed, by (4.14), and since Ayv ¼ 0,

kAyðxÞv j
1ðx; �ÞkW �1; pðQ;R lÞ ! 0 for a:e: x a W;

and

kAyðxÞv j
1ðx; �Þk

p

W �1; pðQ;R lÞaCkjjk
p

LlðQÞkv1ðx; yÞk
p

L pðQ;Rd ÞaCkv1ðx; yÞkp

L pðQ;Rd Þ

for a.e. x a W. Thus (4.15) follows by the dominated convergence theorem.

Convolving first with respect to y and then with respect to x we construct a

sequence fvd; j1 g a Cl
�
W;Cl

perðRN ;RdÞ
�
such that

v
d; j
1 ! v

j
1 strongly in Lp

�
W;Lp

perðRN ;RdÞ
�
; ð4:16Þ

and

kAyv
d; j
1 kW �1; pðQ;R lÞ ! 0 strongly in LpðWÞ; ð4:17Þ

as d ! 0. In view of (4.14)–(4.17), a diagonal argument provides a subsequence

fdð jÞg such that fvdð jÞ; j1 g satisfies

v
dð jÞ; j
1 ! v1 strongly in Lp

�
W;Lp

perðRN ;RdÞ
�

ð4:18Þ
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and

kAyv
dð jÞ; j
1 kW �1; pðQ;R lÞ ! 0 strongly in LpðWÞ: ð4:19Þ

Set

w jðx; yÞ :¼ PðxÞ
�
v
dð jÞ; j
1 ðx; yÞ �

ð
Q

v
dð jÞ; j
1 ðx; yÞ dy

�
for a.e. x a W and y a Q. By Lemma 4.1 we have w j a Cl

�
W;Cl

perðRN ;RdÞ
�
,

Ayw
j ¼ 0 in W�1;pðQ;R lÞ for a:e: x a W; ð4:20Þ

and

kw j � v1kp

L pðW�Q;Rd ÞaC
����w j � v

dð jÞ; j
1 þ

ð
Q

v
dð jÞ; j
1 ðx; yÞ dy

���p
L pðW�Q;Rd Þ

þ
���vdð jÞ; j1 � v1 �

ð
Q

v
dð jÞ; j
1 ðx; yÞ dy

���p
L pðW�Q;Rd Þ

�
aC

�ð
W

kAyðxÞvdð jÞ; j1 ðx; yÞkp

W �1; pðQ;R lÞ dx

þ
���vdð jÞ; j1 � v1 �

ð
Q

v
dð jÞ; j
1 ðx; yÞ dy

���p
L pðW�Q;Rd Þ

�
:

Therefore, in view of (4.18) and (4.19),

w j ! v1 strongly in LpðW�Q;RdÞ: ð4:21Þ

We set

u j
e ðxÞ :¼

ð
Q

vðx; yÞ dyþ w j x;
x

e

� �
for a:e: x a W:

By Proposition 2.4 and (4.21),

u j
e �!

2�s
v strongly two-scale in LpðW�Q;RdÞ ð4:22Þ

as e ! 0 and j ! þl, in this order. Moreover, by (4.20) and since v a F,

Au j
e ¼

XN
i¼1

AiðxÞ qw
j

qxi
x;
x

e

� �
:
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By (4.21), Proposition 2.4, and the compact embedding of W �1;p into Lp, we con-

clude that

Au j
e ! A

ð
Q

v1ðx; yÞ dy ¼ 0 ð4:23Þ

strongly in W �1;pðW;R lÞ, as e ! 0 and j ! þl, in this order. By (4.22), (4.23),

and Theorem 2.7 it follows in particular that

lim
j!þl

lim
e!0

ðkTeu
j
e � vkL pðW�Q;Rd Þ þ kAu j

e kW �1; pðW;R lÞÞ ¼ 0:

Attouch’s diagonalization lemma [3], Lemma 1.15 and Corollary 1.16 provide us

with a subsequence f jðeÞg such that, setting ue :¼ u
jðeÞ
e , there holds

Teue �!
2�s

v strongly two-scale in LpðW�Q;RdÞ

and

Aue ! 0 strongly in W�1;pðW;R lÞ:

The thesis follows applying again Theorem 2.7. r

In order to state the main result of this section we introduce the classes

U :¼ fu a LpðW;RdÞ : Au ¼ 0g ð4:24Þ

and

W :¼
n
w a LpðW�Q;RdÞ :

ð
Q

wðx; yÞ dy ¼ 0 and Ayw ¼ 0
o
: ð4:25Þ

It is clear that v a F if and only ifð
Q

vðx; yÞ dy a U and v�
ð
Q

vðx; yÞ dy a W:

Let ~EEhom : LpðW;RdÞ ! LpðW;RdÞ be the functional

~EEhomðuÞ :¼
lim infn!þl infw AW

Ð
W

Ð
Q
f
�
x; ny; uðxÞ þ wðx; yÞ

�
dy dx

if u a U;

þl otherwise in LpðW;RdÞ:

8><>: ð4:26Þ

We now provide a first characterization of (4.2).
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Theorem 4.3. Under the assumptions of Theorem 1.2, for every u a LpðW;RdÞ
there holds

inf

�
lim inf

e!0

ð
W

f x;
x

e
; ueðxÞ

� �
dx : ue * u weakly in LpðW;RdÞ

and Aue ! 0 strongly in W �1;pðW;R lÞ
�

¼ inf

�
lim sup

e!0

ð
W

f x;
x

e
; ueðxÞ

� �
dx : ue * u weakly in LpðW;RdÞ

and Aue ! 0 strongly in W �1;pðW;R lÞ
�

¼ ~EEhomðuÞ: ð4:27Þ

We subdivide the proof of Theorem 4.3 into the proof of a limsup inequality

(Corollary 4.5) and a liminf inequality (Propositions 4.6 and 4.7).

We first show how an adaptation of the construction in Lemma 4.2 yields an

outline for proving the limsup inequality in (4.27).

Proposition 4.4. Under the assumptions of Theorem 1.2, for every n a N, u a U

and w a W there exists a sequence fueg a Suþw (see (4.10)) such that

ue * u weakly in LpðW;RdÞ; ð4:28Þ

lim sup
e!0

ð
W

f x;
x

e
; ueðxÞ

� �
dxa

ð
W

ð
Q

f
�
x; ny; uðxÞ þ wðx; yÞ

�
dy dx: ð4:29Þ

Proof. Step 1: We first assume that u a CðW;RdÞ and w a C1
�
W;C1

perðRN ;RdÞ
�
.

Arguing as in [11], Proof of Proposition 2.7 we introduce the auxiliary function

gðx; yÞ :¼ f
�
x; ny; uðxÞ þ wðx; yÞ

�
for every x a W and for a.e. y a RN : By definition, g a C

�
W;Lp

perðRNÞ
�
. Hence,

setting

geðxÞ :¼ g x;
x

ne

� �
for a:e: x a W;

Proposition 2.4 yields

lim
e!0

ð
W

f

 
x;
x

e
; uðxÞ þ w x;

x

ne

� �!
dx ¼ lim

e!0

ð
W

geðxÞ dx ¼
ð
W

ð
Q

gðx; yÞ dy dx

¼
ð
W

ð
Q

f
�
x; ny; uðxÞ þ wðx; yÞ

�
dy dx:
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Define

ueðxÞ :¼ uðxÞ þ w x;
x

ne

� �
for a:e: x a W:

By the periodicity of w in the second variable and by the definition of W,

ue * uþ
ð
Q

wðx; yÞ dy ¼ u weakly in LpðW;RdÞ:

By Proposition 2.4, ue �!
2�s

uþ w strongly two-scale in LpðW�Q;RdÞ. Finally

(recalling the definitions of the classes U and W) by the regularity of w and by

Proposition 2.4,

Aue ¼
XN
i¼1

AiðxÞ qw
qxi

x;
x

ne

� �
*
XN
i¼1

AiðxÞ q

qxi

ð
Q

wðx; yÞ dy ¼ 0

weakly in LpðW;R lÞ and hence strongly in W�1;pðW;R lÞ, due to the compact em-

bedding of Lp into W �1;p.

Step 2: Consider the general case in which u a U and w a W. Arguing as in the

second part of the proof of Lemma 4.2 (up to (4.21)), we construct a sequence

fw jg a C1
�
W;C1

perðRN ;RdÞ
�
such that

w j ! uþ w strongly in Lp
�
W;Lp

perðRN ;RdÞ
�
; ð4:30Þ

and

Ayw
j ¼ 0 in W�1;pðW;R lÞ for a:e: x a W; for every j:

Set

u j
e ðxÞ :¼ w j x;

x

ne

� �
for a:e: x a W:

By Proposition 2.4, there holds

u j
e �!

2�s
uþ w strongly two-scale in LpðW�Q;RdÞ; ð4:31Þ

as e ! 0 and j ! þl, in this order. In addition, arguing as in the proof of (4.23),

we have

Au j
e ! 0 strongly in W�1;pðW;R lÞ ð4:32Þ

as e ! 0 and j ! þl, in this order.
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To conclude, it remains to study the asymptotic behavior of the energies asso-

ciated to the sequence fu j
e g. Consider the functions

g jðx; yÞ :¼ f
�
x; ny;w jðx; yÞ

�
and

g j
e ðxÞ :¼ g j x;

x

ne

� �
:

Arguing as in Step 1, we obtain

lim
j!þl

lim
e!0

ð
W

f x;
x

e
; u j

e ðxÞ
� �

dx

¼ lim
j!þl

lim
e!0

ð
W

g j
e ðxÞ dx ¼ lim

j!þl

ð
W

ð
Q

g jðx; yÞ dy dx

¼
ð
W

ð
Q

f
�
x; ny; uðxÞ þ wðx; yÞ

�
dy dx ð4:33Þ

where we used the periodicity of g j
e , together with (1.9) and (4.30). In view of

(4.31)–(4.33), Attouch’s diagonalization lemma [3], Lemma 1.15 and Corollary

1.16, and Theorem 2.7, we obtain a subsequence f jðeÞg such that ue :¼ u
jðeÞ
e satis-

fies both (4.28) and (4.29). r

Proposition 4.4 yields the following limsup inequality.

Corollary 4.5. Under the assumptions of Theorem 1.2, for every u a LpðW;RdÞ

inf

�
lim sup

e!0

ð
W

f x;
x

e
; ueðxÞ

� �
dx : ue * u weakly in LpðW;RdÞ

and Aue ! 0 strongly in W�1;pðW;R lÞ
�

a ~EEhomðuÞ:

We now turn to the proof of the liminf inequality in Theorem 4.3. For simplic-

ity, we subdivide it into two intermediate results.

Proposition 4.6. Under the assumptions of Theorem 1.2, for every sequence

en ! 0þ, u a U and fung a LpðW;RdÞ with un * 0 weakly in LpðW;RdÞ and

Aun ! 0, there exists a p-equiintegrable family of functions

V :¼ fvn;n : n; n a Ng
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such that V is a bounded subset of LpðW;RdÞ, for every n a N and as n ! þl

vn;n * 0 weakly in LpðW;RdÞ;

Avn;n ! 0 strongly in W�1;qðW;R lÞ for every 1 < q < p:

Furthermore,

lim inf
n!þl

ð
W

f x;
x

en
; uðxÞ þ unðxÞ

� �
dx

b sup
n AN

n
lim inf
n!þl

ð
W

f
�
x; nnx; uðxÞ þ vn;nðxÞ

�
dx
o
:

Proof. The proof follows the argument of [11], Proof of Proposition 3.8. We

sketch the main steps for the convenience of the reader.

Step 1: We first truncate our sequence in order to achieve p-equiintegrability.

Without loss of generality, up to translations and dilations we can assume that

W � Q. Arguing as in [12], Proof of Lemma 2.15, we construct a p-equiintegrable

sequence f~uung a LpðW;RdÞ such that

~uun � un ! 0 strongly in LqðW;RdÞ for every 1 < q < p;

~uun * 0 weakly in LpðW;RdÞ;

A~uun ! 0 strongly in W �1;qðW;R lÞ for every 1 < q < p;

and

lim inf
n!þl

ð
W

f x;
x

en
; uðxÞ þ unðxÞ

� �
dxb lim inf

n!þl

ð
W

f x;
x

en
; uðxÞ þ ~uunðxÞ

� �
dx:

Step 2: we consider the sequence

~kkn;n :¼
1

nen
:

If f~kkn;ng is a sequence of integers (without loss of generality we can assume that

it is increasing as n increases), then there is nothing to prove and we simply

set

vn;k :¼ ~uun if k ¼ ~kkn;n;

0 otherwise:

�
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In the case in which f~kkn;ng is not a sequence of integers, we define

kn;n :¼
yn;n

nen
;

where

yn;n :¼ nen
1

nen

	 

:

In particular

yn;n ! 1 as n ! þl: ð4:34Þ

An adaptation of [11], Lemma 2.8 applied to f~uung yields a p-equiintegrable

sequence fung a LpðQ;RdÞ such that

~uun � un ! 0 strongly in LpðW;RdÞ;

~uun * 0 weakly in LpðQnW;RdÞ;

Aun ! 0 strongly in W �1;qðQ;R lÞ for every 1 < q < p: ð4:35Þ

Arguing as in [11], Proof of Proposition 3.8 we obtain

lim inf
n!þl

ð
W

f x;
x

en
; uþ unðxÞ

� �
dxb lim inf

n!þl

ð
W

f
�
x; nkn;nx; uðxÞ þ vn;kn; nðxÞ

�
dx;

where

vn;kn; nðxÞ :¼ unðyn;nxÞ for a:e: x a W;

n a N and n a N are large enough so that yn;nW � Q. Setting

vn;n :¼
vn;kn; n if n ¼ kn;n;

0 otherwise;

�
the sequence fvn;ng is uniformly bounded in LpðW;RdÞ, p-equiintegrable, and

satisfies

vn;n * 0 weakly in LpðW;RdÞ

as n ! þl. To conclude, it remains only to show that

Avn;n ! 0 strongly in W �1;qðW;R lÞ for every 1 < q < p ð4:36Þ

as n ! þl.
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Let q as above be fixed, and let j a W
1;q 0

0 ðW;R lÞ. A change of variables

yields

j3Avn;kn; n ; j4j

¼
���ð

W

�XN
i¼1

AiðxÞunðyn;nxÞ �
qjðxÞ
qxi

þ
XN
i¼1

qAiðxÞ
qxi

unðyn;nxÞ � jðxÞ
�
dx
���

¼ 1

yN
n;n

�����
ð
yn; nW

 XN
i¼1

Ai y

yn;n

� �
unðyÞ �

qj

qxi

y

yn;n

� �

þ
XN
i¼1

qAi

qxi

y

yn;n

� �
unðyÞ � j

y

yn;n

� �!
dy

�����:
For n big enough yn;nW � Q. Hence, by (4.34), adding and subtracting the

quantity

1

yN
n;n

ð
yn; nW

 XN
i¼1

AiðyÞunðyÞ �
qj

qxi

y

yn;n

� �
þ
XN
i¼1

qAi

qxi
ðyÞunðyÞ � j

y

yn;n

� �!
dy;

we deduce the upper bound

j3Avn;n; j4j

aC
XN
i¼1

AiðyÞ � Ai y

yn;n

� ����� ����
C 0ðQ;M l�d Þ

kunkLqðQ;Rd ÞkjkW 1; q 0
0

ðW;R lÞ

þ C
XN
i¼1

qAi

qyi
ðyÞ � qAi

qxi

y

yn;n

� ����� ����
C 0ðQ;M l�d Þ

kunkLqðQ;Rd ÞkjkW 1; q 0
0

ðW;R lÞ

þ CkAunkW �1; qðW;R lÞkjkW 1; q 0
0

ðW;R lÞ:

Property (4.36) follows now by (4.34) and (4.35). r

To complete the proof of the liminf inequality in (4.27) we apply the unfolding

operator (see Subsection 2.3) to the set V constructed in Proposition 4.6.

Proposition 4.7. Under the assumptions of Theorem 1.2, for every u a U and every

family V ¼ fvn;n : n; n a Ng as in Proposition 4.6 there holds

lim inf
n!þl

lim inf
n!þl

ð
W

f
�
x; nnx; uðxÞ þ vn;nðxÞ

�
dxb ~EEhomðuÞ:
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Proof. Fix u a U and let fvn;n : n; n a Ng be p-equiintegrable and bounded in

LpðW;RdÞ, with

vn;n * 0 weakly in LpðW;RdÞ ð4:37Þ

and

Avn;n ! 0 strongly in W�1;qðW;R lÞ for every 1 < q < p; ð4:38Þ

as n ! þl, for every n a N. Fix W 0 �� W and for z a ZN and n a N, define

Qn; z :¼
z

n
þ 1

n
Q;

and

Z n :¼ fz a ZN : Qn; zBW 0A jg:

We consider the maps

T1=nvn;nðx; yÞ :¼ vn;n
1

n
bnxc þ 1

n
y

� �
for a:e: x a W; y a Q;

where we have extended the sequence fvn;ng to zero outside W. A change of vari-

ables yieldsð
W

f
�
x; nnx; uðxÞ þ vn;nðxÞ

�
dx

b
X
z AZ n

ð
Qn; z

f
�
x; nnx; uðxÞ þ vn;nðxÞ

�
dx

¼ nN
X
z AZ n

ð
Q

f

 
z

n
þ y

n
; ny; u

z

n
þ y

n

� �
þ vn;n

z

n
þ y

n

� �!
dy

¼
X
z AZ n

ð
Qn; z

ð
Q

f
bnxc
n

þ y

n
; ny;T1=nuðx; yÞ þ T1=nvn;nðx; yÞ

� �
dy dx

b
X
z AZ n

ð
Qn; zBW 0

ð
Q

f
bnxc
n

þ y

n
; ny;T1=nuðx; yÞ þ T1=nvn;nðx; yÞ

� �
dy dx;

where the last inequality is due to (1.9). By [11], Proposition 3.6 (i) and Proposi-

tion 2.8 we conclude that
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ð
W

f
�
x; nnx; uðxÞ þ vn;nðxÞ

�
dx

bsn þ
X
z AZ n

ð
Qn; zBW 0

ð
Q

f
�
x; ny; uðxÞ þ v̂vn; z;nðyÞ

�
dy dx; ð4:39Þ

where

v̂vn; z;nðyÞ :¼ T1=nvn;n
z

n
; y

� �
for a.e. y a Q, and sn ! 0 as n ! þl. The sequence fv̂vn; z;ng is p-equiintegrable

by [11], Proposition A.2, and is uniformly bounded by (4.37) and Proposition 2.6,

since ð
Q

jv̂vn; z;nðyÞjp dy ¼ 1

nN

ð
Qn; z

jvn;nðxÞjp dx:

By the boundedness of fvn;n : n; n a Ng in LpðW;RdÞ, and by (4.37) there holds

v̂vn; z;n * 0 weakly in LpðQ;RdÞ ð4:40Þ

as n ! þl, for every z a Z n, n a N. Denoting by wQn; zBW 0 the characteristic func-

tions of the sets Qn; zBW 0, we claim that

lim sup
n!þl

lim sup
n!þl

��� ���AyðxÞ
X
n AZ n

wQn; zBW 0 ðxÞv̂vn; z;nðyÞ
���
W �1; qðQ;R lÞ

���
LqðWÞ

¼ 0 ð4:41Þ

for every 1 < q < p. Indeed, fix 1 < q < p, and let c a W
1;q 0

0 ðQ;R lÞ. Then

Ay
z

n

� �
v̂vn; z;n;c

� ����� ���� ¼ ð
Q

XN
i¼1

Ai z

n

� �
vn;n

z

n
þ y

n

� �
� qcðyÞ

qyi
dy

�����
�����

¼ nN
ð
Qn; z

XN
i¼1

Ai z

n

� �
vn;nðxÞ �

qc

qyi
ðnx� zÞ dx

�����
�����:

Adding and subtracting to the previous expression the quantity

nN
ð
Qn; z

XN
i¼1

AiðxÞvn;nðxÞ �
qc

qyi
ðnx� zÞ dx;

and setting fn
z ðxÞ :¼ cðnx� zÞ for a.e. x a W, we obtain the estimate
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Ay
z

n

� �
v̂vn; z;n;c

� ����� ����
a nN

XN
i¼1

 
Ai z

n

� �
� AiðxÞ

!
vn;nðxÞ

�����
�����
LqðQn; z;R

lÞ

qc

qyi
ðnx� zÞ

���� ����
Lq 0 ðQn; z;R

lÞ

þ nN�1 q

qxi

�
AiðxÞvn;nðxÞ

����� ����
W �1; qðQn; z;R

lÞ
kfn

zkW 1; q 0
0

ðQn; z;R
lÞ:

A change of variables yields the upper bound

qc

qyi
ðnx� zÞ

���� ����
Lq 0 ðQn; z;R

lÞ
þ
kfn

zkW 1; q 0
0

ðQn; z;R
lÞ

n
a

C

nN=q 0 kckW 1; q 0
0

ðQ;R lÞ:

Thus, by the regularity of the operators Ai,

Ay
z

n

� �
v̂vn; z;n;c

� ����� ����
aCnN=q�1

���XN
i¼1

qAi

qxi

���
LlðQ;M l�d Þ

kvn;nkLqðQn; z;R
d ÞkckW 1; q 0

0
ðQ;R lÞ

þ CnN=q q

qxi

�
AiðxÞvn;nðxÞ

����� ����
W �1; qðQn; z;R

lÞ
kck

W
1; q 0
0

ðQ;R lÞ: ð4:42Þ

Using again the Lipschitz regularity of the operators Ai, i ¼ 1; . . . ;N, we

deduce

kAyðxÞv̂vn; z;nðyÞkW �1; qðQ;R lÞa
XN
i¼1

AiðxÞ � Ai z

n

� ����� ����
LlðQ;M l�d Þ

kv̂vn; z;nkLqðQ;R lÞ

þ Ay
z

n

� �
v̂vn; z;nðyÞ

���� ����
W �1; qðQ;R lÞ

a
C

n

���XN
i¼1

qAi

qxi

���
LlðQ;M l�d Þ

kv̂vn; z;nkLqðQ;R lÞ

þ Ay

z

n

� �
v̂vn; z;nðyÞ

���� ����
W �1; qðQ;R lÞ

ð4:43Þ

for a.e. x a Qn; z. Hence, by (4.42) and (4.43), we obtain
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X
z AZ n

ð
Qn; zBW 0

kAyðxÞv̂vn; z;nðyÞkq

W �1; qðQ;R lÞ dx

a
X
z AZ n

C

nq

ð
Qn; zBW 0

���XN
i¼1

qAi

qxi

���q
LlðQ;M l�d Þ

kv̂vn; z;nkq

LqðQ;Rd Þ dx

þ
X
z AZ n

ð
Qn; zBW 0

Ay

z

n

� �
v̂vn; z;nðyÞ

���� ����q
W �1; qðQ;R lÞ

dx

a
C

nq

���X
z AZ n

wQn; zBW 0 ðxÞv̂vn; z;nðyÞ
���q
LqðW�Q;Rd Þ

þ C

nq
kvn;nkLqðW;Rd Þ

þ C

nq

X
z AZ n

ð
Qn; zBW 0

ðxÞv̂vn; z;n
���XN

i¼1

qAivn;n

qxi

���
W �1; qðQn; z;R

lÞ

a
C

nq

���X
z AZ n

wQn; zBW 0 ðxÞv̂vn; z;nðyÞ
���q
LqðW�Q;Rd Þ

þ C

nq
kvn;nkLqðW;Rd Þ

þ CnN=q
���XN

i¼1

qAivn;n

qxi

���
W �1; qðW;R lÞ

Property (4.41) follows now by (4.37) and (4.38), and by the compact embedding

of Lp into W �1;p.

Consider the maps

wn;nðx; yÞ :¼
PðxÞ

�
v̂vn; z;nðyÞ �

Ð
Q
v̂vn; z;nðxÞ dx

�
for x a Qn; zBW 0;

�
Ð
Q
PðxÞ

�
v̂vn; z;nðyÞ �

Ð
Q
v̂vn; z;nðxÞ dx

�
dy z a Z n; y a Q;

0 otherwise in W:

8><>:
By Lemma 4.1 the sequence fwn;ng is p-equiintegrable, and

Aywn;n ¼ 0 in W�1;pðQ;R lÞ for a:e: x a W;

for all n; n a N. In particular, fwn;ng � W. We claim that

���wn;nðx; yÞ �
X
z AZ n

wQn; zBW 0 ðxÞv̂vn; z;nðyÞ
���
LqðW�Q;Rd Þ

! 0 ð4:44Þ

as n ! þl, n ! þl, for every 1 < q < p.

In fact, by Lemma 4.1 there holds
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���PðxÞ
�
v̂vn; z;nðyÞ �

ð
Q

v̂vn; z;nðxÞ dx
�
� v̂vn; z;nðyÞ

���q
LqðQ;Rd Þ

aC
�
kAyðxÞv̂vn; z;nðyÞkq

W �1; qðQ;R lÞ þ
���ð

Q

v̂vn; z;nðyÞ dy
���q�:

Therefore����X
z AZ n

wQn; zBW 0 ðxÞ
�
PðxÞ

�
v̂vn; z;nðyÞ �

ð
Q

v̂vn; z;nðxÞ dx
�
� v̂vn; z;nðyÞ

�����q
LqðW�Q;Rd Þ

aC
�X
z AZ n

ð
Qn; zBW 0

kAyðxÞv̂vn; z;nðyÞkq

W �1; qðQ;R lÞ dx

þ
X
z AZ n

ð
Qn; zBW 0

���ð
Q

v̂vn; z;nðyÞ dy
���q dx�: ð4:45Þ

The first term in the right-hand side of (4.45) converges to zero as n ! þl and

n ! þl, in this order, owing to (4.41). The second term in the right-hand side

of (4.45) converges to zero as n ! þl and n ! þl, in this order, by the domi-

nated convergence theorem, owing to (4.40) and the uniform boundedness in Lp

of fv̂vn; z;ng. Hence, both the left-hand side of (4.45) and the quantityð
Q

nX
z AZ n

wQn; zBW 0 ðxÞPðxÞ
�
v̂vn; z;nðyÞ �

ð
Q

v̂vn; z;nðxÞ dx
�o

dy ! 0;

converge to zero as n ! þl and n ! þl, and we obtain (4.44).

Up to the extraction of a (not relabeled) subsequence, we can assume that

lim inf
n!þl

lim inf
n!þl

X
z AZ n

ð
Qn; zBW 0

ð
Q

f
�
x; ny; uðxÞ þ v̂vn; z;nðyÞ

�
dy dx

¼ lim
n!þl

lim inf
n!þl

X
z AZ n

ð
Qn; zBW 0

ð
Q

f
�
x; ny; uðxÞ þ v̂vn; z;nðyÞ

�
dy dx: ð4:46Þ

Hence, in view of (4.44) and (4.46) we can extract a subsequence fnðnÞg such

that

lim
n!þl

lim inf
n!þl

X
z AZ n

ð
Qn; zBW 0

ð
Q

f
�
x; ny; uðxÞ þ v̂vn; z;nðyÞ

�
dy dx ð4:47Þ

¼ lim
n!þl

X
z AZ n

ð
Qn; zBW 0

ð
Q

f
�
x; nðnÞy; uðxÞ þ v̂vn; z;nðnÞðyÞ

�
dy dx; ð4:48Þ

and
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wn;nðnÞðx; yÞ �
X
z AZ n

wQn; zBW 0 ðxÞv̂vn; z;nðnÞðyÞ ! 0 strongly in LqðW�Q;RdÞ;

ð4:49Þ

for every 1 < q < p. Going back to (4.39), by [11], Proposition 3.5 (ii), (4.47) and

(4.49),

lim inf
n!þl

lim inf
n!þl

ð
W

f
�
x; nnx; uðxÞ þ vn;nðxÞ

�
dx

b lim inf
n!þl

ð
W 0

ð
Q

f
�
x; nðnÞy; uðxÞ þ wn;nðnÞðx; yÞ

�
dy dx:

By the p-equiintegrability of fwn;nðnÞg and by (1.9), letting jWnW 0j tend to zero, we

conclude

lim inf
n!þl

lim inf
n!þl

ð
W

f
�
x; nnx; uðxÞ þ vn;nðxÞ

�
dx

b lim inf
n!þl

ð
W

ð
Q

f
�
x; nðnÞy; uðxÞ þ wn;nðnÞðx; yÞ

�
dy dx

b lim inf
n!þl

inf
w AW

ð
W

ð
Q

f
�
x; nðnÞy;wðx; yÞ

�
dy dx

b lim inf
n!þl

inf
w AW

ð
W

ð
Q

f
�
x; ny;wðx; yÞ

�
dy dx ¼ EhomðuÞ: r

Proof of Theorem 4.3. The proof follows by combining Corollary 4.5 with Propo-

sitions 4.6 and 4.7. r

Corollary 4.8. Under the same assumptions of Theorem 4.3, for every u a UF

~EEhomðuÞ ¼ EhomðuÞ :¼
ð
W

fhom
�
x; uðxÞ

�
dx;

where

fhom
�
x; uðxÞ

�
¼ lim inf

n!þl
inf
v A Cx

ð
Q

f
�
x; ny; uðxÞ þ vðyÞ

�
dy;

and Cx is the class defined in (1.5).

Proof. We omit the proof of this corollary as it follows from [11], Remark 3.3 (ii)

and by adapting the arguments in [11], Corollary 3.2 and Lemma 4.9 below. r

Proof of Theorem 1.2. The thesis results from Theorem 4.3 and Corollary 4.8.

r
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We conclude this section by showing that Theorem 4.3 yields a relaxation

result in the framework of A-quasiconvexity with variable coe‰cients. Before

stating the corollary, we prove a preliminary lemma which guarantees the measur-

ability of the function x 7! QA f
�
x; uðxÞ

�
for every u a LpðW;RdÞ.

Lemma 4.9. Let 1 < p < þl, u a LpðW;RdÞ, let A be as in Theorem 1.2, and let

f : W� Rd ! ½0;þlÞ be a Carathéodory function satisfying

0a f ðx; xÞaCð1þ jxjpÞ for a:e: x a W� Rd ; and for all x a Rd :

Then the map

x 7! QA f
�
x; uðxÞ

�
is measurable in W.

Proof. We first remark that

QA f
�
x; uðxÞ

�
¼ inf

r A ð0;þlÞ
Qr

A f
�
x; uðxÞ

�
for a:e: x a W; ð4:50Þ

where

Qr
A f
�
x; uðxÞ

�
:¼ inf

nð
Q

f
�
x; uðxÞ þ wðyÞ

�
dy : w a Cx and kwkL pðQ;Rd Þa r

o
;

and Cx is the class defined in (1.5). Clearly

Qr
A f
�
x; uðxÞ

�
bQA f

�
x; uðxÞ

�
for a.e. x a W, for every r a N. Moreover, for every e > 0 there exists we a Cx such

that

QA f
�
x; uðxÞ

�
b

ð
Q

f
�
x; uðxÞ þ weðyÞ

�
dy� e

bQ
kwekL pðQ;Rd Þ
A f

�
x; uðxÞ

�
� eb inf

r AN
Qr

A f
�
x; uðxÞ

�
� e;

which in turn implies the second inequality in (4.50).

By (4.50) it is enough to show that x 7! Qr
A f
�
x; uðxÞ

�
is measurable for every

r a N. We claim that

Qr
A f
�
x; uðxÞ

�
¼ sup

n AN
Q

r;n
A f
�
x; uðxÞ

�
for a:e: x a W; ð4:51Þ
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where

Q
r;n
A f
�
x; uðxÞ

�
¼ inf

nð
Q

f
�
x; uðxÞ þ wðyÞ

�
dyþ nkAyðxÞwðx; �ÞkW �1; pðQ;R lÞ :

w a LpðQ;RdÞ;
ð
Q

wðyÞ dy ¼ 0 and kwkL pðQ;Rd Þa r
o
:

Clearly,

Qr;n
A f
�
x; uðxÞ

�
aQr

A f
�
x; uðxÞ

�
for a.e. x a W, for all n a N. To prove the opposite inequality, fix x a W, and for

every n a N, let wn a LpðQ;RdÞ, with
Ð
Q
wnðyÞ dy ¼ 0 and kwnkL pðQ;Rd Þa r, be

such that ð
Q

f
�
x; uðxÞ þ wnðyÞ

�
dyþ nkAyðxÞwnkW �1; pðQ;R lÞ

aQ
r;n
A f
�
x; uðxÞ

�
þ 1

n
a f

�
x; uðxÞ

�
þ 1

n
ð4:52Þ

(the last inequality holds because 0 a Cx for every x a W). Since fwng is uniformly

bounded in LpðQ;RdÞ and by (4.52)

kAyðxÞwnkW �1; pðQ;R lÞ ! 0

as n ! þl, there exists a map w a LpðQ;RdÞ, with
Ð
Q
wðyÞ dy ¼ 0,

kwkL pðQ;Rd Þa r and AyðxÞw ¼ 0 such that

wn * w weakly in LpðQ;RdÞ:

By [5], Lemma 3.1 we can construct a sequence f~wwng such that
Ð
Q
~wwnðyÞ dy ¼ 0,

AyðxÞ~wwn ¼ 0 for every n a N, and

lim inf
n!þl

ð
Q

f
�
x; uðxÞ þ ~wwnðyÞ

�
dya lim inf

n!þl

ð
Q

f
�
x; uðxÞ þ wnðyÞ

�
dy

a sup
n AN

Q
r;n
A f
�
x; uðxÞ

�
:

In view of (4.50) we have

Qr
A f
�
x; uðxÞ

�
aQA f

�
x; uðxÞ

�
a

ð
Q

f
�
x; uðxÞ þ ~wwnðyÞ

�
dy for every n a N;
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and we obtain the second inequality in (4.51). By the measurability of

x 7! Qr;n
A f
�
x; uðxÞ

�
for every r; n a N (we can reduce it to a countable pointwise infimum of measur-

able functions), we deduce the measurability of

x 7! Qr
A f
�
x; uðxÞ

�
for every r a N, which in turn implies the thesis. r

For every D a OðWÞ and u a LpðW;RdÞ, define

I ðu;DÞ :¼ inf
n
lim inf
n!þl

ð
D

f
�
x; unðxÞ

�
: un * u weakly in LpðW;RmÞ

and Aun ! 0 strongly in W�1;pðW;R lÞ
o
:

ð4:53Þ

Corollary 4.8 provides us with the following integral representation of I .

Corollary 4.10. Let 1 < p < þl and let A be as in Theorem 1.2. Let f : W� Rd

! ½0;þlÞ be a Carathéodory function satisfying

0a f ðx; xÞaCð1þ jxjpÞ for a:e: x a W; and for all x a Rd :

Then ð
D

QA f
�
x; uðxÞ

�
dx ¼ I ðu;DÞ

for all D a OðWÞ and u a LpðW;RdÞ with Au ¼ 0.
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