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1. Introduction

This note is an extended version of my plenary talk at the AMS-EMS-SPM Inter-

national Meeting 2015 in Porto. Most of it is aimed at a very general audience.

The last sections are more technical and written in a language that assumes a good

knowledge of algebraic geometry. We hope that it will be of use for people in the

field.

Di¤erential forms originally show up when integrating or di¤erentiating on

manifolds. However, the concept also makes perfect sense on algebraic varieties

because the derivative of a polynomial is a polynomial.

The object has very many important uses. The one we are concentrating on is

as a source of invariants used in order to classify varieties. This approach was

very successful for smooth varieties, but the singular case is less well-understood.

We explain how the use of the h-topology (introduced by Suslin and Voevod-

sky to study motives) gives a very good object also in the singular case, at least

in characteristic zero. The approach unifies other ad-hoc notions and simplifies



many proofs. We also explain the necessary modifications in positive characteris-

tic and the new problems that show up.

Readers who already know about algebraic di¤erential forms and are con-

vinced that they are important are invited to jump directly to Section 5.

2. Di¤erential forms on algebraic varieties

2.1. Back to calculus. We are all familiar with the notion of a (partial) deriva-

tive of a function f : ða; bÞ ! R or more generally f : U ! R with U � Rn open.

While there is no denying that this a very useful object—even one of the most

importants objects of mathematics—the notion is not very satisfactory from the

point of view of the geometric disciplines or physics: it depends on the choice of

a coordinate on U !

Di¤erential forms were introduced in order to circumvent this problem. We

put

df ¼
Xn

i¼1

qf

qxi
dxi:

A simple computation with the chain rule now shows that df is independent of the

choice of coordinate system on U . Hence it generalizes to all smooth manifolds:

Locally, the di¤erential of a function is given by the above formula. As this is

independent of the choice of coordinate, we get a global object. It has a geometric

interpretation as a smooth section of the cotangent bundle T �M of the smooth

manifold M.

Definition 2.1. Let M be a smooth manifold. We let W1
M be the space of smooth

di¤erential forms on M.

The pattern repeats itself when going to higher derivatives. In order to get a

coordinate independent derivative of a di¤erential form, we introduce 2-forms.

Definition 2.2. Let M be a smooth manifold, qb 0 we put

W
q
M ¼5

q

W1
M

and call its elements q-forms on M or di¤erential forms of degree q.

In the case q ¼ 0 this is read as the algebra of smooth functions on M.

By taking their direct sum we obtain the prototype of a di¤erential graded

algebra: graded, with a product, and a di¤erential.
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(1) The product is defined by the wedge product ðo;o 0Þ 7! obo 0. Its key prop-

erty is graded commutativity

obo 0 ¼ ð�1ÞdegðoÞ degðo
0Þo 0bo:

(2) The di¤erential is a map d : Wq
M ! W

qþ1
M which agrees with f 7! df in degree

0 and is uniquely determined by the formula

obo 0 7! dobo 0 þ ð�1ÞdegðoÞobdo 0

in higher degrees. In local coordinates, we get the formula

f dxj1b� � �bdxjq 7!
X
i

qf

qxi
dxibdxj1b� � �bdxjq

with the computation rule dxibdxi ¼ 0. Its key property is

d � d ¼ 0:

In other words, di¤erential forms form a complex.

Observation 2.3. Derivatives of polynomials are polynomials.

This means that the notion of a di¤erential form, its origin in analysis not with-

standing, makes perfect sense in algebraic geometry!

2.2. Algebraic geometry. In order to make this exposition self-contained we

make a detour into the basics of algebraic geometry. For the purposes of this

note, it su‰ces to work over an algebraically closed field k, e.g., the complex num-

bers C. All ideas and problems can be understood in this case.

Approximate Definition 2.4. Let k be an algebraically closed field. A variety

consists of a topological space together with a ring of algebraic functions. In

detail:

(1) An a‰ne variety is given as

V ¼ Vð f1; . . . ; fmÞ ¼ fx a kn j fiðxÞ ¼ 0 for all ig

for a choice of f1; . . . ; fm a k½X1; . . . ;Xn�.
(2) We call

k½V � ¼ k½X1; . . . ;Xn�=3 f1; . . . ; fm4

the ring of algebraic functions on V .
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(3) The variety V is non-singular of dimension n�m if the matrix

qfi

qXj

ðxÞ
� �

i; j

a Mn�mðkÞ

has rank m for all x a V .

(4) A subset U � V is called open if VnU is itself an a‰ne variety.

(5) A variety X is a topological space together with an open covering X ¼
U1A � � �AUN and for every i a choice of homeomorphisms of Ui to an a‰ne

algebraic variety Vi and a compatible choice of algebraic transition functions.

(6) A general variety X is non-singular if all Vi are non-singular.

• Polynomials define functions on kn, hence also on V . All elements of the

ideal ð f1; . . . ; fnÞ vanish on V , hence elements of k½V � induce set-theoretic

functions on V with values in k, and this is how we think of them. Note,

however, that the element of k½V � is not fully determined by this function.

• The case m ¼ 0 is allowed. We call this variety a‰ne n-space An. It is

non-singular.

• The non-singularity condition asks for the rank to be the maximum of what

is possible. This condition is the same that (over R or C) guarantees that

Vð f1; . . . ; fnÞ is a submanifold.

• It is not di‰cult to see that we have defined a topology on V .

• The prototype of a non-a‰ne variety is projective space Pn ¼ ðknþ1 � f0gÞ=P
where xP y if x ¼ ly for some l a k�. Its standard cover by the sets Ui of

points whose i-coordinate does not vanish is the required cover by a‰ne vari-

eties, in this case by copies of An. Hence it is non-singular.

We hope that the above is enough to help people very far from algebraic geometry

to understand what we want to say. At the same time, this may be confusing for

those actually do know the correct definitions.

Remark 2.5. We are cheating here in a couple of ways.

(1) Di¤erent choices of f1; . . . ; fm can define the same subset of kn. The way we

have set things up, they define, however, a di¤erent ring of algebraic functions

and hence a di¤erent variety. This is not the standard approach in textbooks

on algebraic geometry, but saves us from discussing vanishing ideals and

Hilbert’s Nullstellensatz. It means that k½V � may have nilpotent elements,

something we are not used to from analysis. Actually, more advanced alge-

braic geometry is set up to handle such rings.
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(2) By variety we really mean a separated scheme of finite type over an algebrai-

cally closed field.

(3) Our approximate definition is very close to the standard definition of a mani-

fold by an atlas, avoiding sheaves. It is not complete because we have not dis-

cussed how open subsets of a‰ne varieties are given the structure of an a‰ne

variety. This can be fixed with a bit of e¤ort. The real gap is that a separated-

ness condition is missing. (It replaces the Hausdor¤ property in the analytic

setting.) One often avoids this problem by restricting to quasi-projective vari-

eties: those which are open subsets of closed subsets of Pn.

We are now all set in order to define di¤erential forms.

Definition 2.6. Let V ¼ Vð f1; . . . ; fmÞ � An be an a‰ne variety. The set of alge-

braic di¤erential forms on V is the k½V �-module generated by symbols dX1; . . . ; dXn

with relations df1; . . . dfm

W1
V ¼ 3dX1; . . . ; dXn4k½V �=3df1; . . . ; dfm4:

For qb 0 we define

W
q
V ¼5

q

W1
V :

Its elements are called q-forms or (algebraic) di¤erential forms of degree q.

It comes with a derivation (a k-linear map satisfying the Leibniz rule)

d : k½V � ! W1
V ; f 7! df ¼

X
i

qf

qXi

dXi:

In fact, it can be characterized by a universal property: d is the universal k-linear

derivation of k½V �. From the universal property or by direct computation, we see

that the module W1
V and the derivation d are independent of the choice of coor-

dinates on V .

Example 2.7 (a‰ne plane). Consider the a‰ne plane A2 ¼ k2 with coordinates

X , Y . Then:

W1
A2 ¼ 3dX ; dY4k½X ;Y �:

This is a free module of rank 2.

Example 2.8 (hyperbola). Let G ¼ VðXY � 1Þ � A2. We have

G ¼ fðx; yÞ a k2 j xy ¼ 1g;
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hence it can be identified with k� via projection to the first coordinate. We have

k½G� ¼ k½X ;Y �=ðXY � 1Þ ¼ k½X ;X �1� with X�1 ¼ Y :

We work out the module of di¤erential forms. We have dðXY � 1Þ ¼ X dY þ
Y dX and hence by definition

W1
G ¼ 3dX ; dY4k½X ;X �1�=3Y dX þ X dY4:

We rewrite using 0 ¼ X dY þ Y dX in W1
G:

dY ¼ �X �1Y dX ¼ �X �2 dX :

This means that the generator dY is not needed and we get

W1
G ¼ k½X ;X �1� dX :

This is a free module of rank 1.

Note that in these two examples the rank of W1
V is equal to the dimension.

This is no accident, but the correct general statement is more complicated.

Remark 2.9. Again we are cheating, this time by not discussing the non-a‰ne

case, even though we want to consider it later on. The correct point of view is to

see W
q
V as a quasi-coherent sheaf on V rather than simply a module. Evaluating

on a‰ne open subvarieties brings us in the special case disussed before. Over non-

a‰ne varieties we need to distinguish between the sheaf Wq
V and its global sections

W
q
V ðVÞ. The problem does not appear in the analytic situation because the sheaf

of smooth di¤erential forms on a paracompact manifold is determined by its

global sections.

Di¤erential forms play a key role in algebraic geometry, in particular in the

quest to classify algebraic varieties.

(1) They are a rich source of discrete invariants. We will discuss this in more

detail in the next section.

(2) Once the discrete invariants are fixed, we need to understand how algebraic

varieties vary in families. This is addressed by deformation theory. It turns

out that it also uses di¤erential forms and their cohomology.

(3) In good cases, sets of isomorphism classes of algebraic varieties with fixed dis-

crete invariants are themselves paramentrized by algebraic varieties. Follow-

ing Gri‰ths we study these moduli spaces via period maps to generalized

Grassmanians. Rougly these period maps are defined by integrating di¤eren-

tial forms.
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3. Application: source of invariants

We now want to discuss three examples of discrete invariants of algebraic varietes

defined using di¤erential forms.

3.1. Genus. As before let k be an algebraically closed field, e.g., C. Let C be a

non-singular projective curve over k.

Example 3.1 (planar curves). Let f a k½X ;Y ;Z� be a non-constant homogeneous

polynomial, C ¼ Vð f Þ � P2 the set of zeroes of f . This defines a projective

curve. It is non-singular if the gradient qf
qX

; qf
qY

; qf
qZ

� �
does not vanish on C.

In the case of the complex numbers, a non-singular projective curve defines

a projective 1-dimensional complex manifold, i.e., a compact Riemann surface.

Recall that orientable compact surfaces are classified (as topological spaces) by

their genus, the number of ‘‘holes’’.

Definition 3.2. Let C be as above. Then

g ¼ dimk W
1
CðCÞ

is called the genus of C.

Example 3.3. Let C be projective planar curve given by the equation Y 4 ¼
X 3Z þ XZ3 þ Z4. It is non-singular and has genus 3.

In the case k ¼ C we recover the topological notion. Hence we have found a

completely algebraic definition of the genus. In can be used over all fields, includ-

ing those of positive characteristic.

Example 3.4. Let C ¼ P1. It has an a‰ne cover by U0 ¼ A1 with coordinate X

and U1 ¼ P1nf0gGA1 with coordinate Y ¼ X �1. Di¤erential forms on U0 are

given by the module k½X � dX , di¤erential forms on U1 by k½Y � dY . We have

dY ¼ dX �1 ¼ �X �1 dX on the intersection. A global di¤erential form is given

by a pair PðXÞ dX , QðYÞ dY (with polynomials P, Q) such that PðXÞ ¼
QðX �1ÞX�1. The only solution is P ¼ Q ¼ 0. We have g ¼ 0. Indeed, over the

complex numbers P1 ¼ ĈC is a sphere and hence has topological genus 0.

Remark 3.5. The genus is well-defined. By this we mean that it is always finite.

This is a key step in the proof of the famous Theorem of Riemann-Roch. Note

that this contrasts with the examples given in the last section, where the spaces of

di¤erential forms were of finite rank over k½V � and hence infinite dimensional as

k-vector spaces. Both these examples were a‰ne, whereas the above definition is

in the projective case!
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3.2. De Rham cohomology. We now restrict to base fields k of characteristic 0

and non-singular k-varieties X . Recall that we have a complex

W0
X !

d 0

W1
X !

d 1

W2
X !

d 2

� � �

i.e., d i � d i�1 ¼ 0. Hence we can define its cohomology:

Definition 3.6. Let X be non-singular. We define algebraic de Rham cohomology

of X as hypercohomology of the above complex of sheaves of vector spaces

Hi
dRðXÞ ¼ H iðX ;W�X Þ:

Example 3.7. Assume X is in addition a‰ne. Then the definition simplifies to

Hi
dRðXÞ ¼ kerðd iÞ=imðd i�1Þ:

We get numbers from these vector spaces by taking dimensions.

Example 3.8. Let X ¼ C be a non-singular projective curve. Then

dimk H
1
dRðCÞ ¼ 2g

with g the genus defined above. Hence we have found another, completely alge-

braic way of defining the genus of a curve.

Example 3.9 (hyperbola). Let G ¼ VðXY � 1Þ � A2 be again the hyperbola.

Recall that we are working in characteristic 0. The de Rham complex has the

shape

W�G ¼ ½k½X ;X�1� !d k½X ;X �1� dX �:

The only functions with derivative zero are the constant ones, hence

H 0
dRðGÞ ¼ kerðdÞ ¼ k:

For iA�1 the monome X i dX has a preimage under d. It is given by 1
iþ1X

iþ1.
(Note that this is where we need characteristic 0.) For i ¼ �1 the preimage would

be logðXÞ, but this is not algebraic. Hence

H 1
dRðGÞ ¼ k½X ;X �1� dX=imðdÞ ¼ k

dX

X
:

Let us now specialise to k ¼ C. Then G ¼ C� is homotopy equivalent to the unit

circle 1, hence its singular cohomology is concentrated in degrees 0 and 1. Again

de Rham cohomology reproduces the topological invariant.
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These examples of curves fit into a much more general pattern.

Theorem 3.10. Let k ¼ C, X a non-singular algebraic variety. Then there is a

canonical isomorphism

H i
dRðXÞGHi

singðX an;CÞ

where X an is the complex manifold defined by X.

This isomorphism is known as period isomorphism. It has an explicit descrip-

tion by integrating di¤erential forms over simplices.

Again this is a completely algebraic way of defining these topological

invariants. The story continues with the construction of a mixed Hodge structure

on singular cohomology of X by Deligne.

Remark 3.11. If k ¼ Q, the period isomorphism contains a lot of very interesting

arithmetic information. By base change to C, it induces

Hi
dRðXÞnQ CGHi

singðX an;QÞnQ C:

The period matrix is defined as the matrix of this isomorphism in a rational basis

on both sides. Its entries depend on the choice of bases, but their Q-linear span

does not. These are the period numbers of HiðXÞ. The set of all periods contains

many interesting numbers like
ffiffiffi
2
p

, p, zð3Þ, but is still countable. There are deep

and long standing conjectures on their transcendence properties. Researchers in

mathematical physics are also interested in period numbers because values of

Feynman integrals are also period numbers. The formal properties of the algebra

of period numbers are best understood in the light of the theory of motives. The

book [HMS] aimed at a better understanding of this relation was actually the

starting point of the present project on di¤erential forms.

3.3. Kodaira dimension. We are back to the case of a ground field of any

characteristic. Let X be a non-singular projective algebraic variety of dimension d.

Definition 3.12. Let o ¼ Wd
X be the canonical sheaf on X .

We are going to give the definition of the Kodaira dimension of X in terms of

o. The definition is probably not immediately accessible without some knowledge

of algebraic geometry. The outcome is an element in the set

f�l; 0; . . . ; dg:

It is instructive to see what happens in the case X ¼ C a non-singular projective

curve. We have three cases:
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• kðCÞ ¼ �l, g ¼ 0;

• kðCÞ ¼ 0, g ¼ 1;

• kðCÞ ¼ 1, gb 2.

This is precisely the classification of surfaces into parabolic (or positive cur-

vature), elliptic (or flat) and hyperbolic (or negative curvature) ones. Again an

important property from di¤erential geometry has found a completely algebraic

definition.

To conclude, we give the formal definition: For nb 1 consider the finite di-

mensional vector space onnðXÞ. Let s0; . . . ; sN be a basis. This defines a rational

map

pn : X ! PN ; x 7! ½s0ðxÞ : � � � : sNðxÞ�:

More abstractly, pn is the rational map to projective space defined by the line

bundle onn. It is regular outside the vanishing set of s0; . . . ; sN , possibly nowhere.

Definition 3.13. The Kodaira dimension kðXÞ is defined as the maximum of

dim pnðXÞ for nb 1.

The maximum exists because the dimension of pnðXÞ is bounded by

dimX ¼ d.

Example 3.14. Let again C be a non-singular projective curve.

(1) If the genus is 0, then C is the projective line. We have o ¼ Oð�2Þ by

Riemann-Roch and hence onn ¼ Oð�2nÞ does not have non-trivial global sec-
tions for any n. This gives Kodaira dimension �l.

(2) If the genus is 1, then C is an elliptic curve. The canonical bundle is trivial,

i.e., o ¼ O. The space onnðCÞ ¼ OðCÞ ¼ k is 1-dimensional for all n. Hence

pn is the constant map to a point and kðCÞ ¼ 0.

(3) If gb 2, then the degree of o is positive, again by Riemann-Roch. From this

we work out that for high enough n, the map pn becomes injective and

kðCÞ ¼ 1.

4. Problems and solutions in the singular case

4.1. Di¤erential forms in the singular case. We now turn to the case of singular

varieties. Note that the definitions we gave in earlier sections are also possible

in the singular case. This is true for the notion of algebraic di¤erential forms

(Definition 2.6) as well as the di¤erent discrete invariants we deduced from it in
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Section 3. However, these invariants do no longer capture the properties we want

to capture. At the root of all these problems is a simple fact: W1
V is no longer a

vector bundle in the singular case.

Remark 4.1. We are not entitled to be surprised by this fact. It is true by

definition: Definition 2.4 is basically saying that a variety is non-singular if W1
V

is a vector bundle.

We consider the simplest example of a singular variety.

Example 4.2 (coordinate cross). Let V be given by the equation XY ¼ 0 in A2.

Its Jacobi matrix

qXY

qX
;
qXY

qY

� �
¼ ðY ;XÞ

vanishes in ð0; 0Þ a V . Hence the variety is singular. By Definition 2.6 we have

W1
V ¼ 3dX ; dY4k½X ;Y �=XY=3X dY þ Y dX4:

In other words

o ¼ X dY ¼ �Y dY

is a non-zero di¤erential form on V which vanishes when restricted to the comple-

ment of ð0; 0Þ. This is true because outside of the origin either X or Y is invertible,

but multiplication by X or Y kills o because of the relation XY ¼ 0.

Moreover, dXbdY is a non-vanishing 2-form on V . This is something we do

not expect to happen on a 1-dimensional variety.

We need to fix a bit terminology here.

Definition 4.3 ([HKK] Definition 2.3). A class o in W
q
V is called torsion, if there is

a dense open U � V such that ojU ¼ 0. The module W
q
V is called torsion free, if

the only torsion class is o ¼ 0.

Example 4.4. o ¼ X dY is a non-trivial torsion class in W1
VðXYÞ.

Remark 4.5. If V is a‰ne and integral, then a class o is torsion in the sense of the

above definition if there is an f a k½V � such that fo ¼ 0, i.e., it is a torsion ele-

ment in the module theoretic sense. There a competing candidates for the general-

isation to general varieties, see the discussion in [HKK], Warning 2.5. The above

is most useful for our needs.
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Depending on the setting and the intended application, di¤erent replacements

of di¤erential forms are in use. Among them are the following examples:

(1) torsion free di¤erentials: W
q
X=torsion;

(2) reflexive di¤erentials: the OX -double dual of W
q
X ;

(3) the Du Bois complex.

All are useful in certain applications, e.g, when classifying algebraic varieties up

to isomorphism or up to birational equivalence (minimal model program) or in

studying certain types of singularities. We are going to explain these notions in

more detail. Readers outside of algebraic geometry are invited to jump directly

to Section 5.

4.2. Torsion free di¤erentials.

Definition 4.6. Let k be a field, X a separated scheme of finite type over X . Let

T q be the OX -sub module of torsion elements of Wq
X . By abuse of terminology we

call

W
q
X=T

q

the module of torsion free di¤erentials.

Note that the module is obviously torsion free. However, it is still not a vector

bundle.

Example 4.7. Let k ¼ C. Consider the variety X ¼ X1;2 ¼ A2=e1, the quotient

of A2 under the operation of ðx; yÞ 7! ð�x;�yÞ. It is explicitly given as the a‰ne

variety with k½X � ¼ f f a k½T1;T2� j f ðT1;T2Þ ¼ f ð�T1;�T2Þg. It has torsion free

W1
X , but it is not reflexive (isomorphic to its OX -double dual) by [GR] Proposition

4.1 and 4.3.

One of the reasons this notion is useful is that it is well-behaved under

morphisms. This was shown in the context of analytic spaces by Ferrari ([Fer70]).

The algebraic argument can be found in [Keb13b]. The proof is based on resolu-

tion of singularities.

Proposition 4.8 ([Keb13b] Corollary 2.7). Let k be a field of characteristic 0 and

f : X ! Y a morphisms of reduced k-varieties. Then f induces a natural pull-back

f � : Wq
Y=Tq ! W

q
X=Tq:

Remark 4.9. This is false if k has positive characteristic [HKK] Example 3.6.

The issue is not so much resolution of singularities, but the existence of insepara-

ble morphisms!
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The notion was used by Kebekus in [Keb13b] in order to study di¤erential

forms on rationally chain connected varieties. An earlier application is in Nami-

kawa’s study of deformations of singular holomorphic symplectic varieties, see

[N01].

4.3. Reflexive di¤erentials.

Definition 4.10. Let k be a field and X a k-variety. We define the sheaf of reflex-

ive di¤erentials as

W
½q�
X ¼HomOX

�
HomOX

ðWq
X ;OX Þ;OX

�
:

The sheaf of reflexive di¤erentials is reflexive, i.e., isomorphic to its double

dual. However, it still does not form a vector bundle in general.

Example 4.11. An explicit example is again the variety X ¼ A2=e1. More gen-

erally, this is the case for any singular variety which is klt (this stands for Kawa-

mata log terminal): if W
½1�
X is a vector bundle, then so is the tangent bundle. By the

Zariski–Lipman conjecture proved in [GKKP11], Theorem 6.1 for klt singular-

ities, this implies that the variety is smooth.

Remark 4.12. (1) If X is non-singular, then W
½q�
X ¼ W

q
X .

(2) If X is normal, let j : X sm ! X be the inclusion of the non-singular locus. Its

complement has codimension at least 2. Then

W
½q�
X ¼ j�W

q
X sm :

This means that reflexive di¤erentials on normal varieties are particularly

simple to handle. Proving assertions on reflexive di¤erentials is equivalent to

proving assertions on the smooth locus.

(3) On the downside, reflexive di¤erentials are not functorial.

The objects were first introduced by Knighten ([Kni73]) under the name of

Zariski di¤erentials. The above terminology was coined by Kebekus and Kovács

([KeK08]). See the survey [Keb13b] on their use in modern birational geometry,

and how their use is implicit in the work of Viehweg.

4.4. Du Bois complex. The definition of the Du Bois complex is inspired by

Deligne’s construction of the mixed Hodge structure on singular cohomology in

[Del74].
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Definition 4.13. Let k be a field of characteristic 0. Let X be k-variety. Let

p : X� ! X be proper hypercover with all Xi smooth. We put

W
q
X ¼ Rp�W

q
X�

as an object in the derived category of coherent sheaves on X .

Du Bois showed in [DuB81] the well-definedness of this object. The notion

was coined by Steenbrink [S83].

Remark 4.14. (1) If X is smooth, then p can be chosen as the identity and

W
q
X ¼ W

q
X ½0� viewed as complex concentrated in degree 0.

(2) If X is proper, then by construction H iðX ;Wq
X Þ computes the q-th step of the

Hodge filtration on H
iþq
singðX an;CÞ.

Definition 4.15 ([S83] (3.5)). A variety X is called Du Bois if W0
X ¼ OX .

This is a fairly general class of singularities containing all singularities of the

minimal model program, e.g., rational ([Kov99]), log-canonical ([KK10])

singularites. For a thorough discussion of these singularities and more, see

[Kol13]. The Du Bois hypothesis is used to deduce vanishing theorems, a key

tool in birational geometry, in particular the minimal model program.

5. A new approach in the singular case

Key Idea 5.1. We propose to address the singular case by changing the topology.

This is meant in the sense of a Grothendieck topology. Note that all algebraic

varieties are topological spaces (see Definition 2.4), but the topology is very weak.

E.g., all non-empty open subsets of An are dense. The intersection of two such

is again dense. Ca. 1960 Grothendieck suggested to generalize the notion of

topology. We replace the system of open subsets by a broader class of morphisms

V ! X .

Example 5.2. Let X be a topological manifold. We obtain a Grothendieck topol-

ogy by allowing all f : V ! X which are local homeomorphisms.

Definition 5.3. Let C be a category. A basis for a Grothendieck topology on C is

given by covering families, i.e., collections of morphisms in C

ðji : Vi ! UÞi A I ;
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satisfying the following axioms:

• An isomorphism j : V ! U is a covering family with an index set containing

only one element.

• If ðji : Vi ! UÞi A I is a covering family, and f : V ! U a morphism in C,

then for each i a I there exists the pullback diagram

V �U Vi ���!Fi
Vi

Fi

???y
???yji

V U������!f

in C, and ðFi : V �U Vi ! VÞi A I is a covering family of V .

• If ðji : Vi ! UÞi A I is a covering family of U , and for each Vi there is given a

covering family ðj i
j : V

i
j ! ViÞj A JðiÞ, then

ðji � j i
j : V

i
j ! UÞi A I ; j a JðiÞ

is a covering family of U .

After fixing a Grothendieck topology, we have given a new meaning to the

word ‘‘local’’. That some statement holds locally in the Grothendieck topology

means that it holds after passing to a covering family. Once we have a Grothen-

dieck topology, standard concepts for topological spaces like sheaves make sense.

The idea was extremely successful in algebraic geometry.

The topology that we are going to use was introduced by Voevodsky in 1996

([Voe96]). He called it the h-topology where h seems to stand for homology

because it is very natural from the point of view singular homology.

Approximate Definition 5.4. Consider the category Schk of k-varieties. The

h-topology on Schk is generated by

• open covers;

• ~XX ! X proper and surjective.

Properness is a strong compactness condition. In the analytic setting it means

that preimages of compact subsets are compact.

Here is the original version:

Definition 5.5 ([Voe96] Section 3.1). A morphism of schemes p : X ! Y is called

topological epimorphism if Y has the quotient topology of X . It is a universal

topological epimorphism if any base change of p is a topological epimorphism.
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The h-topology on the category ðSch=XÞh of separated schemes of finite type

over X is the Grothendieck topology with coverings finite families fpi : Ui ! Yg
such that

S
i Ui ! Y is a universal topological epimorphism.

By [Voe96] Theorem 3.1.9 the approximate definition is also correct, if under-

stood correctly.

What makes the h-topology so nice, is the fact that every variety is h-locally

non-singular. This is the famous resolution of singularities.

Theorem 5.6 (Hironaka 1964 [Hi64]). Let k be a field of characteristic 0 and X a

k-variety. Then there is p : ~XX ! X proper surjective with X non-singular.

Remark 5.7. In positive characteristic, the above statement is still true by de

Jong’s [dJ96]. However, looking in more detail the map p can be chosen bira-

tional in Hironaka’s case, but not in de Jong’s. We will see later that this makes

a significant di¤erence in our application to di¤erential forms.

We can now introduce our main player: h-di¤erentials. They are h-locally

given by algebraic di¤erentials.

Definition 5.8. Let Wq
h be the sheafification of

X 7! WqðXÞ

in the h-topology.

This means concretely:

W
q
hðXÞ ¼ ker

�
W1ðX0Þ ���!p�

1
�p�

2
W1ðX1Þ

�
where

• X0 ! X is an h-cover with X0 non-singular;

• X1 ! X0 �X X0 is an h-cover with X1 non-singular.

Here the fibre product X0 �X X0 replaces the intersections of open sets that we

would use in the ordinary topology. An h-di¤erential form is h-locally given by

a di¤erential form on a non-singular variety such that the data is compatible on

‘‘intersections’’, at least h-locally.

We are going to describe the results on h-di¤erentials in more detail in the next

section. Let us sum up the main points now.
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Remark 5.9 (characteristic 0). Let k be a field of characteristic 0.

• Neither the module of di¤erential forms nor their cohomology and other

related invariants change in the non-singular case.

• They are always torsion free.

• h-di¤erentials agree with reflexive di¤erentials in the case of certain mild sin-

gularities and with torsion free di¤erentials in certain other cases.

• They are always related to the complex of Du Bois di¤erentials.

• They can be used to define algebraic de Rham cohomology in the singular

case.

It thus turns out that the notion unifies the ad hoc definitions given before and

simplifies proofs. It also also very natural, once one is familiar with the notion of

a Grothendieck topology.

Remark 5.10. So why have they now been used before? One answer is that they

have, see Section 8 on earlier work. The other is that the h-topology is a very un-

usual topology. In contrast to the étale or the flat topology it really changes the

topology. In the language of algebraic geometry: it is not sub-canonical. Working

h-locally, we can not longer distinguish between the a‰ne line and the standard

cuspidal singularity given by Y 2 ¼ X 3. Depending on the intended application

this will be a feature (making life easier) or a bug (destroying what we want to

study).

The situation is more complicated in positive characteristic p. The new prob-

lem is introduced by the Frobenius morphism F : x 7! xp. Its di¤erential is

dF ðxÞ ¼ dxp ¼ pxp�1 ¼ 0:

Corollary 5.11 ([HKK] Lemma 6.1). W
q
h ¼ 0.

We can get around this by replacing the h-topology by weaker versions like the

cdh- or the eh-topology.

• good news: W
q
X ðXÞ ¼ W

q
cdhðXÞ ¼ W

q
ehðXÞ if X is non-singular ([HKK]

Theorem 5.11).

• bad news: torsion still exists and it is not functorial ([HKK] Corollary 5.16,

5.17)

Algebraic geometry in positive characteristic is much less well understood than in

characteristic 0. We hope that cdh-di¤erentials and their variations will turn out

to be a valuable tool.
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6. Results in characteristic 0

We explain the main results of [HJ] obtained with C. Jörder. Throughout this

section, k is a field of characteristic 0.

6.1. Descent. Our first main result establishes that h-di¤erentials behave like

ordinary di¤erentials in the non-singular case. This is a minimal requirement for

the theoy that generalizes a well-established and successful tool.

The category of h-sheaves is abelian. We can derive the left exact functor

GðX ; �Þ of sections on X and obtain h-cohomology. We denote it Hi
hðX ; �Þ. Ordi-

nary sheaf cohomology on the topological space X is denoted HiðX ; �Þ.

Theorem 6.1 ([HJ] Theorem 3.6, Corollary 6.5). Let X be a non-singular

k-variety. Then

H i
hðX ;Wq

hÞ ¼ HiðX ;Wq
X Þ:

In particular (the case i ¼ 0), we have W
q
hðXÞ ¼ W

q
X ðXÞ in the non-singular

case; a fact that was mentioned before.

The main tool in working in the h-topology is the blow-up sequence. Consider

a commutative diagram

E ���! ~XX???y
???y

Z ���! X

with ~XX ! X proper birational, i.e., proper surjective and an isomorphism over a

dense open subset of X , Z ! X a closed immersion, E the preimage of Z; subject

to the condition that ~XXnE ! XnZ is an isomorphism. Following Voevodsky, we

call this a a blow-up square.

For h-cohomology, the blow-up square induces a long exact sequence. Indeed,

fZ ! X ;Y ! Xg is an h-cover, hence it induces the standard Čech spectral

sequence. In this particular case, it degenerates into a single exact sequence

� � � ! Hi
hðX ;Wq

hÞ ! Hi
hðZ;W

q
hÞaHi

hð ~XX ;Wq
hÞ ! Hi

hðZ;W
q
hÞ ! Hiþ1

h ðX ;Wq
hÞ ! � � �

Combining this sequence with the Descent Theorem 6.1 and standard proper-

ties of di¤erential forms and their cohomology on non-singular varieties, we can

deduce many simple properties, e.g., (see [HJ] Proposition 4.2, Corollary 6.8):

Hi
hðX ;Wq

hÞ ¼ 0 for i > dimX or q > dimX
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A particularly nice application, showing the strength of these techniques, is

well-definedness of rational singularities. Recall that a variety X has rational sin-

gularities, if there is a proper birational morphism p : ~XX ! X with ~XX non-singular

such that

Rp�O ~XX ¼ OX ½0�:

We want to show independence of the choice of resolution. This means that we

have shown that the condition is satisfied in the special case where X is also non-

singular and connected. Let d be its dimension. By Serre duality, this is equiva-

lent to showing

Rp�W
d
~XX
¼ Wd

X ½0�:

This is equivalent to

Hið ~XX ;Wd
~XX
Þ ¼ HiðX ;Wd

X Þ

for all such X and p. Rewriting this as h-cohomology, the equality is immediate

from the blow-up sequence with Z the exceptional locus of p.

Remark 6.2. Looking more closely, this is not a new proof. One can use strong

resolution of singularities to reduce to the case where p is the blow-up in a non-

singular center. Then everything can be done by explicit computation. The same

argument goes into the proof of the Descent Theorem 6.1. The same pattern

repeats itself in other results. While the argument is probably not new, its presen-

tation is streamlined.

6.2. An alternative description. The descent theorem allows us to give a topol-

ogy free description of h-di¤erentials, which is very intersting from a conceptual

point of view.

Let Smk be the category of non-singular (also called smooth) varieties over k.

Theorem 6.3 ([HJ] Theorem 1). Let X be a variety. Specifying an h-form

o a W
q
hðXÞ is equivalent to specifying a form of a WqðYÞ for every f : Y ! X

with Y non-singular, in a compatible way for all X-morphisms of non-singular

varieties.

W
q
hðXÞG ðof Þf :Y!X a

Y
f :Y!X
Y smooth

W
q
Y ðYÞ

Y 0

f

???y f 0

Y ���!
f

X

¼) f�of ¼ of 0

									

9>>>=
>>>;
:

8>>><
>>>:  ���

���
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In fancier language: W
q
h agrees with the right presheaf extension of Wq from

Sm to Sch. The extension theorem then can be read as saying that the extension

is an h-sheaf. This is an intrinsic property of the presheaf Wq. From this point of

view, we can justify the somewhat arbitrary decision to use the h-topology in treat-

ing di¤erential forms.

We will see below that this approach is particularly fruitful in positive

characteristic.

6.3. Special cases. We now want to list some cases where h-di¤erentials agree

with ad hoc replacements introduced before.

We call a variety a normal crossings variety if it is isomorphic to a divisor with

normal crossings in some non-singular variety.

Lemma 6.4 ([HJ] Proposition 4.9). Let X be a normal crossings scheme. Then

h-di¤erentials agree with torsion free di¤erentials (see Definition 4.6)

W
q
hðXÞ ¼ ðW

q=TqÞðXÞ:

Theorem 6.5 ([HJ] Theorem 5.4). Let X be a klt base space. Then h-di¤erentials

agree with reflexive di¤erentials (see Definition 4.10)

W
q
hðXÞ ¼ W½q�ðXÞ:

The letters klt stand for Kawamata log terminal. By klt base space we meant

that there is a divisor on X such that ðX ;DÞ is klt. We do not choose to go into

the definition of klt singularities here, see [KM98] Definition 2.34. They are mild

singularities characterized in terms of the canonical sheaf. They are of particular

importance in the minimal model program.

As an immediate consequence, we recover a result of Kebekus (see [Keb13b]).

Corollary 6.6 ([HJ] Corollary 5.6). Let f : X ! Y be a morphism of klt base

spaces. Then there is a natural pull-back on reflexive di¤erential forms

f � : W
½q�
Y ! W

½q�
X :

Proof. The sheaf Wq
h is a presheaf. r

Behind the comparison theorem is a general structural result, which is of inde-

pendent interest. Roughly, a variety over k is called rationally chain connected,

if any two closed points can be linked by a chain of P1’s. We refer to [Kol96]

Section IV.3 for the formal definition.
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Theorem 6.7 ([HJ] Theorem 5.12). Let f : X ! Y be a proper surjective mor-

phism such that for every closed point y a Y, the fibre Xy is geometrically rationally

chain connected. Then

f � : Wq
hðYÞ !

G
W

q
hðXÞ

is an isomorphism.

The main input into this is the fact that there are no global di¤erential forms

on P1. The comparsion result for reflexive forms in Theorem 6.5 follows via deep

structural results on the geometry of the desingularization of klt spaces and their

consequences for di¤erential forms (see [HM07], [GKKP11]).

Finally, basically by construction, h-di¤erentials are very well suited to treat-

ing Hodge theory.

We denote Schh the category of separated schemes of finite type over k

equipped with the h-topology. We denote XZar the category of open subsets of X

with the set of coverings given by the set ordinary coverings by Zariski open

subsets. The inclusion functor induces a morphism of sites

rX : Schh ! XZar

(think: a continuous map; preimages of open sets are open, preimages of covers

are covers).

Proposition 6.8 ([HJ] Theorem 7.12). Let X be a variety. Then

RrX�W
q
h a Dþ

�
ShðXZarÞ

�
is canonically isomorphic to the Du Bois complex W

q
X (see Definition 4.15).

6.4. De Rham cohomology. We have defined algebraic de Rham cohomology

for non-singular varieties above (see Definition 3.6). We are now able to extend

this easily to the singular case.

Definition 6.9. Let X be a variety. We define algebraic de Rham cohomology of

X as hypercohomology of the de Rham complex in the h-topology

Hi
dRðXÞ ¼ H i

hðX ;W�hÞ:

Remark 6.10. It follows directly from Theorem 6.1 that this agrees with the stan-

dard definition in the non-singular case. The first definition in the singular case is

due to Hartshorne (see [Har75]). He needs to embedd X into a non-singular vari-

ety Y and considers cohomology the completion of the de Rham complex on Y
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with respect to the ideal of the embedding. Another definition via smooth proper

hypercovers comes as a byproduct of Deligne’s construction of the mixed Hodge

structure on cohomology of a singular cohomology (see [Del74]). There are even

more advanced approaches via the theory of mixed Hodge modules or the de

Rham realization on triangulated motives. All definitions agree. We feel that

the above is the simplest.

Properties of de Rham cohomology of non-singular varieties now translate to

the singular case.

Proposition 6.11 ([HJ] Corollary 7.6). Let X a variety over C. Then there is a

natural isomorphism

H i
dRðXÞGHi

singðX an;CÞ:

As in Remark 3.11 this allows us to define a period isomorphism for varieties

over Q. This point of view is explained in full detail in [HMS]. As mentioned

before, this was actually the starting point of the present project.

7. Results in positive characteristic

We report on joint work with S. Kebekus and S. Kelly. Throughout the section,

k is a perfect field of positive characteristic p.

7.1. Topologies. As mentioned in Section 5, the existence of Frobenius implies

that W
q
h ¼ 0 in positive characteristic. This means that we have to work in a

weaker topology instead.

A cover is called completely decomposed if every (possibly non-closed) point

has a preimage with the same residue field. An étale cover is called Nisnevich

cover if it is completely decomposed.

Definition 7.1 ([VSF] Chapter 4, Definition 3.2). The cdh-topology on Schk is the

Grothendieck topology generated by Nisnevich covers and the covers defined by

abstract blow-up squares (see Section 6.1).

Example 7.2. If X is non-singular and ~XX ! X is proper and birational, then it

defines a cdh-cover (see [HKK] Proposition 2.13).

Remark 7.3. Alternatively, one can work with the eh-topology (generated by

proper cdh-covers and étale covers) or the rh-topology (generated by proper cdh-

covers and Zariski covers). So far all our results hold in all three topologies.
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Moreover, under the assumption that resolutions of singularities exist (see [HKK]

Proposition 5.13)

W
q
rh ¼ W

q
cdh ¼ W

q
eh:

An unconditional argument can be found in [HK]. Hence we concentrate on the

best known case of the cdh-topology in this exposition.

7.2. Descent.

Theorem 7.4 ([HKK] Theorem 5.11). Let X be non-singular. Then

W
q
cdhðXÞ ¼ WqðXÞ:

The main point about this result is that it is unconditional, i.e., it does not

assume that resolutions of singularities exist. We will explain in Section 7.4 some

the concepts going into the proof.

Note that this is a lot weaker than Theorem 6.1 as we do not know about

cohomology, but only about sections.

The blow-up sequence is still available, but much less useful because the exis-

tence of a birational desingularization is an open question. On the other hand, its

existence has unexpected consequences. It is easy to write down a blow-up square

E ���! ~XX???y
???y

Z ���! X

with ~XX , Z and E non-singular, but E ! Z an inseparable finite cover, see [HKK]

Example 5.15. This means that the restriction map WqðZÞ ! WqðEÞ vanishes.
The blow-up sequence starts

0! W
q
cdhðXÞ ! Wqð ~XXÞaWqðZÞ ! WqðEÞ

This implies that any class in Wqð ~XXÞ which vanishes along E gives rise to a torsion

class on X !

Proposition 7.5 ([HKK] Corollary 5.16, 5.17). The torsion subgroup T
q
cdhðXÞ �

W
q
cdhðXÞ is non-trivial in general. Moreover, T

q
cdh is not functorial in X.

Remark 7.6. This means that passing to W
q
cdh is an improvement on the original

notion of a di¤erential form on a singular variety, but it does not address the very

first objection that we had—that there are torsion forms.

359Di¤erential forms



7.3. What about alterations?. It is tempting to try to build a stronger topology

which also uses alterations as covers. The advantage would be that every variety

would be locally non-singular. The short answer is that this approach does not

work.

In [HKK] Section 6 we introduce the sdh-topology. It has the covers generated

by étale covers and proper h-covers such that every point has a preimage such that

the residue field extension is separable. By [HKK] Example 6.5 we find a finite

sdh-cover of a non-singular variety by a non-singular variety, such that the rami-

fication locus and its preimage are also non-singular. However, in this example

the sheaf condition for the sdh-topology is not satisfied.

Proposition 7.7 ([HKK] Proposition 6.6). The presheaf W1 does not satisfy sdh-

descent on non-singular varieties.

7.4. dvr-di¤erentials and Riemann–Zariski spaces. We return to the alterna-

tive point of view developed in Section 6.2 now in positive characteristic.

Definition 7.8. Let X be a k-variety. We define Wq
dvrðXÞ as the presheaf extension

of Wq from the category of non-singular k-varieties Sm to Sch.

More explicitly, Wq
dvrðXÞ is given by the formula of Theorem 6.3.

We now want to explain the notation W
q
dvr.

Definition 7.9. (1) Let Dvr be the subcategory of the category of k-schemes with

objects of the form SpecR with R essentially of finite type over k and R either

a field or a discrete valuation ring.

(2) For X a Schk let ValX be the category of X -schemes SpecR! X with R

either a finitely generated field extension of k or a valuation ring of a (possibly

non-discrete) k-valuation of such a field.

Example 7.10. (1) The spectra of fields in Dvr and Valk are the spectra of func-

tion fields of non-singular k-varieties.

(2) Let x a X be a point of codimension 1. The normalization of OX ;x is a semi-

local ring whose localisations are discrete valuation rings with closed point

over x.

(3) Let k ¼ k. We get a non-discrete valuation ring on the rational function field

in two variables by the following procedure: choose a sequence of smooth

projective surfaces with function field K and a sequence of points xn a Xn by

putting X0 ¼ P2, x0 an arbitrary closed point, pn : Xn ! Xn�1 the blow-up

with center in xn�1, xn a closed point of the exceptional fibre of pn. Then

R ¼
Sl

n¼0 OXn;xn is a valuation ring. (See [Ha77] Excercises II.4.12 and V.5.6).
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Doing algebraic geometry in terms of valuations is a very old idea going back

to Zariski. Indeed it is well-known that the points of a non-singular projective

curve can be identified with the set of k-valuations on the function field. They

are all discrete in this case. More generally:

Definition 7.11 ([ZS75], §17, p. 110). Let A be an integral finitely generated

k-algebra with quotient field K . The Riemann–Zariski space RZðAÞ, as a set, is

the set of (not necessarily discrete) valuation rings of K . To a finitely generated

sub-A-algebra A 0 of K is associated the set EðA 0Þ ¼ fR a RZðAÞ jA 0 � Rg and

one defines a topology on RZðAÞ taking the EðA 0Þ as a basis.

This topological space is quasi-compact, in the sense that every open cover

admits a finite subcover [ZS75], Theorem 40. The idea of using Riemann–Zariski

spaces in treating cdh-di¤erentials is due to Kelly.

Definition 7.12. Let Wq
val be the right Kan extension of Wq from Valk to Schk,

i.e., for X a Schk we put

W
q
valðXÞ ¼ lim �

ValX

Wq

¼ fðoY ÞY AValX
joY jY 0 ¼ oY 0 for all Y

0 ! Y over Xg

Remark 7.13. Actually, by Theorem 7.16 below, an element of Wq
valðXÞ is already

uniquely determined by its values on all Y ¼ Spec
�
kðxÞ

�
where x a X is a (not

necessarily closed) point of X .

Proposition 7.14 ([HKK] Proposition 4.14, [HK]). (1) The presheaf Wq
dvr on Sch is

equal to the right Kan extension of Wq from Dvr to Schk.

(2) The presheaf W
q
cdh on Sch is equal to W

q
val.

Theorem 7.15 ([HKK], Observation 5.3, Proposition 5.12, Theorem 5.11, Propo-

sition 5.13). The presheaf W
q
dvr is a cdh-sheaf.

Let X be a variety. Then the natural map

W
q
cdhðXÞ ! W

q
dvrðXÞ

is injective and an isomorphism if X is non-singular. It is always an isomorphism if

we assume weak resolution of singularities.

Actually, we deduce the Descent Theorem 7.4 from this. The proof of Theo-

rem 7.15 uses the geometry of Riemann–Zariski spaces and a key fact about dif-

ferential forms on valuation rings.
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Theorem 7.16 ([HKK] Remark A.2). Let R be a (possibly non-descrete) valuation

ring with quotient field K. Then Wq is torsion free on SpecR, i.e., the map

WqðRÞ ! WqðKÞ

is injective.

Proof. The essential case is q ¼ 1. It is due to Gabber and Romero, [GR03]

Corollary 6.5.21. The general case follows with a bit of commuative algebra, see

[HKK] Lemma A.4. r

Another consequence is that we understand the local behaviour of Wq
cdh.

Corollary 7.17 ([HK]). Let X a Schk. The Zariski-sheaf W
q
cdhjXZar

on X is a

coherent OX -module.

The case of 0-di¤erentials is simpler than the general case.

Lemma 7.18. Let X be normal. Then

OcdhðXÞ ¼ OX ðXÞ:

Proof. Elements in kðXÞ which are integral on all discrete valuation rings of kðXÞ
always extend to an open subset such that the codimension is at least 2. In the

normal case functions on such an open extend to all of X . r

This is particularly useful because all varieties are cdh-locally normal.

Definition 7.19 ([HK]). Let rX be the restriction form ðSchkÞcdh to XZar. We call

X Du Bois if

RrX�Ocdh ¼ OX ½0�:

If cohomological descent holds and X admits a smooth proper hypercover

(e.g. in characteristic 0) this agrees with Steenbrink’s original definition given

earlier, see Definition 4.15. The advantage is that we can make an unconditional

definition.

7.5. Open questions. The main open question concerns the analogue of

Theorem 6.1.

Conjecture 7.20. Let X be non-singular over a perfect field k. Then

H i
cdhðX ;Wq

cdhÞ ¼ HiðX ;Wq
X Þ:
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Under strong resolution of singularities this was shown by Geisser in [Gei06]

Theorem 4.7. The case i ¼ 0 is our Theorem 7.4.

By specialising to X a‰ne the conjecture immediately implies:

Conjecture 7.21. Let X be non-singular and a‰ne. Let p : ~XX ! X be proper and

birational and an isomorphism outside Z � X with preimage E. Then the map

W
q
cdhð ~XXÞaW

q
cdhðZÞ ! W

q
cdhðEÞ

is surjective.

Lemma 7.22 ([HK]). Conjecture 7.21 follows from Conjecture 7.20. It holds

unconditionally for q ¼ dimX.

Proof. By the blow-up sequence, we have the exact sequence

0! W
q
cdhðXÞ ! W

q
cdhð ~XXÞaW

q
cdhðZÞ ! W

q
cdhðEÞ ! H 1

cdhðX ;Wq
cdhÞ

By Conjecture 7.20, the last term is equal to H 1ðX ;Wq
X Þ. As X is a‰ne, this

vanishes.

The case of q ¼ dimX is obvious because WdimX ðEÞ ¼ 0. r

Actually, we expect a stronger result comparison:

Conjecture 7.23. Let X, ~XX, Z, E be as in Conjecture 7.21. Then

W
q
cdhðZÞ ! W

q
cdhðEÞ

is an isomorphism.

This stronger statement is true in characteristic 0 by Theorem 6.7 because

E ! Z has geometrically rationally chain connected fibres. It is not obvious

what the correct condition in positive characteristic is.

8. Earlier work

(1) Deligne in 1974 ([Del74]) was using proper h-covers in his definition of a

mixed Hodge structure on singular cohomology of singular algebraic varieties.

Subsequently, Hodge theory was and is a most important tool in the study of

algebraic varieties. However, the step to turning it into an actual Grothen-

dieck topology was not made for a long time.

(2) In 1996 Voevodsky together with Suslin and Friedlander defined and studied

the h-topology and the related weaker topologies cdh (completely decomposed
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h) and qfh (quasi-finite h) (see [Voe96], [VSF]). The same papers also establish

many of the basic properties. His aim was the definition of an algebraic ver-

sion of singular homology. This eventually led to his definition of geometric

motives over a field. In this, they switched to an alternative point of view with

finite correspondences and only the Nisnevich topology. This seems to be the

reason that the h-topology itself was a bit forgotten.

(3) Geißer in 2006 (see [Gei06]) introduced the eh-topology and studied its

properties. He was considering special values of z-functions of varieties over

finite fields. As part of this project, he also considered W
q
eh and was able to

show under resolution of singularities that their cohomology agrees with ordi-

nary sheaf cohomology in the non-singular case.

(4) Lee in 2009 (see [Lee09]) studied the h-sheafification of Wq on the category

of non-singular varieties of characteristic 0 and established cohomological

descent. This is very similar to Theorem 6.1. His approach is technially

made more complicated by the fact that the category of non-singular varieties

does not have fibre products. He also obtained a description of Du Bois di¤er-

entials analoguous to Proposition 6.8.

(5) In a series of papers Cortiñas, Haesemeyer, Schlichting, Walker and Weibel

2008–2013 ([CHSWei08], [CHWei08], [CHWaWei09], [CHWaWei10],

[CHWaWei11], [CHWaWWe13]) studied homotopy invariance properties of

algebraic K-theory. On the way they also studied W
q
cdh in characteristic 0. In

particular they already obtained the cdh-versions of Theorem 6.1 and the com-

parison statement with reflexive di¤erentials (Theorem 6.5) for toric varieties.

(6) Beilinson in 2012 (see [B12]) gave a spectacular application by giving a new

proof of the p-adic comparison theorem between étale and algebraic de

Rham cohomology. His approach is a lot more subtle as he is working in

mixed characteristic. His starting point is the contangent complex instead of

the sheaf of di¤erential forms, which is then p-adically completed in a derived

way.

What all these papers have in common is that they are interested in algebraic

de Rham cohomology and other homotopy invariant cohomology theories. All are

explicitly or in spirit related to motives. What we want to advertise is applying

these same techniques also in a non-homotopy invariant setting: the individual Wq.
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[CR11] A. Chatzistamatiou, K. Rülling, Higher direct images of the structure
sheaf in positive characteristic. Algebra Number Theory 5 (2011), no. 6,
693–775.
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[CHWaWei09] G. Cortiñas, C. Haesemeyer, M. Walker, C. Weibel, The K-theory of
toric varieties. Trans. Amer. Math. Soc. 361 (2009), no. 6, 3325–3341.

[CHWaWei10] G. Cortiñas, C. Haesemeyer, M. Walker, C. Weibel, Bass’ NK groups
and cdh-fibrant Hochschild homology. Invent. Math. 181 (2010), no. 2,
421–448.
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[HK] A. Huber, S. Kelly, More on di¤erential forms in positive characteristic,
in preparation.

[HMS] A. Huber, S. Müller-Stach, with contributions of B. Friedrich and J. von
Wangenheim, Periods and Nori motives, book in preparation, first draft
2015, second version 2016. to appear: Ergebnisse der Mathematik und
ihrer Grenzgebiete, Springer Verlag.
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