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Abstract. A class of abstract nonlinear evolution quasi-variational inequality (QVI) prob-
lems in function space is considered. The framework developed includes constraint sets
of obstacle and gradient type. The paper addresses the existence, uniqueness and approxi-
mation of solutions when the constraint set mapping is of a special form. Uniqueness
is addressed through contractive behavior of a nonlinear mapping whose fixed points are
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1. Introduction

The Signorini Problem is a linear elastostatic problem that was introduced by

Fichera in [10] and it is the first variational inequality (VI) in the scientific

literature. However, the term ‘‘variational inequality’’ was coined by Lions and

Stampacchia in their seminal work [27] where the first abstract approach establish-

ing existence, uniqueness and approximation techniques for VIs was developed.

In the aforementioned paper, not only the extension of the famous Lax–Milgram

result is established (leading to the renowned Lions–Stampacchia Theorem) but

also semi-coercive and parabolic problems are studied.

In [6], Brézis introduced the concept of a pseudo-monotone operator and

successfully applied it to parabolic VIs. In the same monograph, Brézis consid-

ered the use of an infinitesimal generator of a C0-semigroup to describe the ‘‘time

derivative’’ of the problem. This approach provided access to monotonicity tech-

niques, known for elliptic problems, to treat evolution VIs. In this setting, the



entire theory is built on the relationship between the closed, convex, non-empty

constraint set and the C0-semigroup that gives rise to the unbounded operator

related to the time derivative.

Quasi-variational inequalites (QVIs) were introduced by Bensoussan and Lions

in [5] and [25] to formulate impulse control problems and have applications to sev-

eral phenomena. This type of problems arises in diverse areas of applied sciences

that include game theory, solid mechanics, elastoplasticity and superconductivity.

For an account of models and their analytical properties we refer, e.g., to [30], [8],

[13], [26], [31], [33], [22] and the monographs [3], [21], [34] as well as the references

therein.

The scientific literature is rather scarce when it comes to QVIs in function

space. More specifically, in function space most of the literature concerning

QVIs is devoted to two types of problems: the obstacle- and the gradient-type

constrained problem. While the first one studies problems where the state (or

solution) to the QVI has to satisfy pointwise constraints on a given subset of the

domain, the second type of problem determines a pointwise bound on the norm

of the gradient of such a solution. The di¤erent constraint structure in these

two problems developed into two completely di¤erent mathematical approaches:

obstacle-type problems have been attacked by means of increasing monotonicity

techniques (fixed point type results for increasingly monotonic mappings such

as Birkho¤, Tartar or Kolodner fixed point theorems) for the solution mapping

with respect to the obstacle (see [4], [11], [12], [23], [39]); problems with gradient-

type constraints have been treated by means of compactness results. This was

done either by the direct combination of continuity of the solution mapping with

respect to the upper bound on the gradient constraint in composition with some

completely continuous operator such as in [22], [15] or by fine properties of com-

pactness in Lesbesgue–Bochner spaces as in [36], [2]. An alternative approach to

gradient constrained problems is based on generalized equations, with the QVI

problem becoming a particular case; see [17], [20]. For finite dimensional prob-

lems, recently a technique based on generalized KKT conditions was pursued

in [9]. The latter approach, however, seems unlikely to be applicable in infinite

dimensions for the problem class under investigation in our paper.

Although existence of solutions to QVIs in function space may be obtained by

a variety of fixed point type theorems (e.g., Schauder in [22], Leray–Schauder in

[28] and see [3] for diverse applications for monotonically increasing mappings),

uniqueness results for QVI problems seem to be more di‰cult to obtain. In the

obstacle-type QVI, uniqueness under assumptions which are rather straightfor-

ward to verify was obtained by Laetsch in [23] and a contraction type result was

obtained by Hanouzet and Joly in [12]. For the gradient-type problem a result

of uniqueness based on contraction was given in [15] together with the numerical

implementation of a newly developed solution algorithm. The di‰culty in obtain-
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ing uniqueness results for QVIs comes from a variety of sources: for example,

using Schauder’s fixed point theorem, uniqueness results usually require di¤erenti-

ability (see [19]) of the mapping under investigation (di¤erentiability properties,

however, are usually di‰cult, if not impossible, to obtain for the mappings in-

volved in QVIs) and in the case of some gradient constrained problems (see for

example [33]) it is known that the physical system does not posses a unique steady

state or fixed point.

In [16], the pseudomonotonicity and C0-semigroup approach of Brézis was

applied to parabolic QVIs in combination with approximation methods for infin-

itesimal generators (similar to the analytical forms of the Trotter–Kato theorem).

The result is an approximation theorem that is suitable for numerical implementa-

tion when the constraint set mapping is of gradient-type and the set is causal,

i.e., the solution to the QVI at time t depends only on previous time instances.

However, this approach cannot be applied to non-causal sets. The present paper

addresses such non-causal problems.

In this paper we study an abstract version of a parabolic QVI which contains

both, the obstacle- and gradient-type constrained problems, respectively. Within

a unified framework we provide existence and uniqueness results based on a

contraction type property. The result can be considered as an extension of the

one obtained in [15] for elliptic QVIs. We also provide a proof of convergence

in function space of a semi-discrete scheme that is suitable for numerical imple-

mentation. The result is based on monotone operator theory, the previous

contraction result and semismooth Newton methods for solving the associated

subproblems. We end this paper by providing numerical tests involving the

Laplace and the p-Laplace (for p ¼ 3) operator, respectively, and for gradient

constrained problems.

The rest of the paper is organized as follows. In Section 2 we state the class of

QVI problems under consideration, how this framework includes both problems

with obstacle- and gradient-type constraints, and how QVIs arise in the modeling

of many physical phenomena. Since solutions to QVIs can be considered as fixed

points of a certain mapping S, in Theorem 3.2 of Section 3 we show that the map-

ping under investigation is contractive given small data or given a small Lipschitz

constant of the nonlinear mapping associated with the bound in the constraint.

Also in Section 3, a class of examples with obstacle and gradient constraints is

addressed and it is shown how the previous contraction result applies to these

cases. In Section 4 we state an abstract framework to deal with approximating

problems to the QVI of interest. We show in detail that the scheme includes

the semi-discrete version of the parabolic QVI under investigation with either the

obstacle- or gradient-type constraint. Theorem 4.5 in Section 4 states how the

mapping S (whose fixed point are solutions to the QVI) and its discretized version

are related through the weak topology on the state space. Theorem 4.5 together
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with Proposition 4.1 are used in Corollary 3.3 to show that the algorithm used in

the numerical implementation is convergent. Numerical tests are carried out in

Section 5 and a discussion of the results, as well as, an outlook on future research

directions are given in Section 6.

1.1. Notation. Throughout this paper, for a Banach space X its norm is written

as j � jX and for f a X 0 (the topological dual of X ) we denote f ðxÞ :¼ ð f ; xÞX 0;X

or f ðxÞ :¼ ð f ; xÞX for x a X , unless X ¼ V with V the state space selected for

the problems. In the latter case, for the sake of brevity and simplicity, we write

ð f ; vÞ for f a V 0 and v a V as duality pairing. If H is a Hilbert space and we

identify it with its dual H �, then we denote the duality pairing as 3 f ; x4H for

f a H � and x a H.

The natural and real numbers are denoted by N and R, respectively, and by

Rþ we denote the set of positive real numbers and Rþ
0 ¼ RþA f0g.

For v0 a X and R > 0 we use BRðv0Þ :¼ fv a X : jv� v0jX < Rg (or BRðv0;XÞ)
and its closure in X by BRðv0Þ (or BRðv0;XÞ). We denote the strong convergence

of a sequence fung � X to u a X by un ! u. Weak convergence is written as

un * u. The Lebesgue measure of a measurable set W is denoted as jWj, and we

say that a property holds ‘‘a.e. in W’’, if it is true in W except for a subset W0 � W

such that jW0j ¼ 0. For a real-valued function v, we define vþ ¼ maxð0; vÞ in the

pointwise sense, that is, vþ ¼ v if v is nonnegative and zero otherwise.

Let I ¼ ð0;TÞ, with 0 < T al, and X be a Banach space. A function

f : I ! X is Bochner measurable, if there is a sequence f fng of simple X -valued

functions such that limn!l fnðtÞ ¼ f ðtÞ a.e. in I (see [14]). We denote by

LpðI;XÞ the (Lebesgue–Bochner) space of Bochner measurable X -valued map-

pings with domain I such that
Ð
I j f ðtÞj

p
X dt < l and the integral is taken in the

sense of Lebesgue.

Let W � RN , with Nb 2, be a bounded and open domain. We write LpðWÞ
(or LpðW;RÞ) for the usual Lebesgue spaces of real-valued functions, and

Ll
n ðWÞ :¼ fv a LlðWÞ : vðxÞb n > 0 a:e: x a Wg. We denote by W

1;p
0 ðWÞ for

1 < p < l the Sobolev space of weakly di¤erentiable functions in LpðWÞ with

zero value at the boundary qW (in the sense of the trace), whose weak derivatives

also belong to LpðWÞ (see [1] for a definition of the Sobolev space). It is endowed

with the norm jvj
W

1; p
0

¼
�Ð

W j‘vðxÞjp dx
�1=p

.

Since we will deal with convergence of closed and convex subsets of reflexive

Banach spaces, we make use of Mosco convergence (see [29], [35]).

Definition 1.1 (Mosco convergence). Let K and Kn, for each n a N, be non-

empty, closed and convex subsets of X , a reflexive Banach space. We say that

the sequence fKng converges to K in the sense of Mosco as n ! l if:

(i) Ev a K , bvn a Kn : vn ! v in X .

(ii) If vn a Kn and vn * v in X with n a N 0 � N, then v a K .
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2. Problem formulation

Let V be a reflexive separable Banach space and H be a separable Hilbert space

so that ðV;H;V 0Þ is a Gelfand triple, i.e., the embedding V ,! H is dense and

continuous, H is identified with its dual H 0 and hence the embedding H 0 ¼
H ,! V 0 is also continuous (see [7]). For f a V 0 and v a V the duality pairing

ð f ; vÞ is supposed to be the continuous extension of 3� ; �4H on H�V; so that

there is a sequence fhng � H for which ð f ; vÞ ¼ limn!l3hn; v4H uniformly on

bounded sets of V.

Unless stated otherwise, V ¼ LpðI;VÞ and H ¼ L2ðI;HÞ, where pb 2,

I ¼ ð0;TÞ for 0 < T < l and ðV ;H;V 0Þ a Gelfand triple with V a separable

reflexive Banach space and H a separable Hilbert space. Also, if T ¼ l, then

we take V ¼ L2ðI;VÞ and H ¼ L2ðI;HÞ. In this case, since I ¼ ð0;TÞ is s-finite,
there is a concrete characterization of the dual of V as V 0 ¼ Lp 0 ðI;V 0Þ by the

Phillips Theorem (see [38] or [14]).

We assume that the (usually nonlinear) map A : V ! V 0 is

H1. uniformly monotone, i.e., there are constants c > 0 and r > 1 such that,

�
AðuÞ �AðvÞ; u� v

�
b cju� vj rV; for all u; v a V;

H2. hemicontinuous, i.e., the real-valued function z 7!
�
Aðuþ zvÞ;w

�
is continu-

ous for z a ½0; 1� for all u; v;w a V;

H3. bounded, i.e., it maps bounded sets in V into bounded sets in V 0.

Since V is assumed to be reflexive, then H1 together with H2 imply that A

is pseudomonotone (see [38]), i.e., if un * u and limn!l

�
AðunÞ; un � u

�
a 0; then�

AðuÞ; u� v
�
a limn!l

�
AðunÞ; un � v

�
, for all v a V, and demicontinuous, i.e., if

un ! u in V, then AðunÞ ! AðuÞ in the weak-star topology and hence

AðunÞ * AðuÞ in V 0 (due to the reflexivity of V).

In order to introduce some form of ‘‘time derivative’’, we make use of C0-

semigroup theory. To the best of our knowledge, this approach was pioneered

(for variational problems associated with monotone operators) by Brézis (see [6]).

For that matter, we assume in the following that �L be the infinitesimal generator

of a C0-semigroup SðtÞ in V, H and V 0 with domains DðL;VÞ, DðL;HÞ and

DðL;V 0Þ, respectively (see [32] for the concept of a C0-semigroup). Additionally,

we assume that SðtÞ is a C0-semigroup of contractions in H. Summarising, we

suppose that for t a ½0;lÞ, SðtÞ belongs LðVÞ, LðHÞ and LðV 0Þ, such that

jSðtÞjLðHÞa 1 for all tb 0 and in addition

(a) Sð0Þ ¼ I ¼ id, the identity operator in V, H and V 0;

(b) Sðtþ rÞ ¼ SðtÞSðrÞ for all t; rb 0;
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(c) Ev a V, limt#0 SðtÞv ¼ v in V and the same holds true when V is exchanged

for H and V 0.

The domain DðL;VÞ is defined as

DðL;VÞ :¼ v a V : lim
t#0

SðtÞv� v

t
exists in V

� �
;

where DðL;HÞ and DðL;V 0Þ are defined similarly. The perhaps most common

example is stated next.

Example 2.1. Let V ¼ LpðI;XÞ, for I ¼ ð0;TÞ with 0 < T al, with X a

Banach space. For f a V, let SðtÞ be defined by

�
SðtÞ f

�
ðtÞ ¼ f ðt� tÞ; t < t < T ;

0; otherwise:

�

Clearly Sð0Þ ¼ I ¼ id, Sðt1 þ t2Þ ¼ Sðt1ÞSðt2Þ and limt#0 SðtÞ f ¼ f in V. Hence

SðtÞ is a C0-semigroup over V. Moreover, SðtÞ is a C0-semigroup of contrac-

tions (since jSðtÞ f jVa j f jV) which is not uniformly continuous. Its domain is

determined by

DðL;VÞ ¼ fv a V : v is absolutely continuous; v 0 a V and vð0Þ ¼ 0g;

where v 0 is the pointwise strong derivative; for a proof see [16] or [24].

Suppose that C is a closed and convex subset of V, 0 a C, and that there exist

r > 0 such that Brð0;VÞ � C. Consider the (usually nonlinear) map F : C !
En � E where

E :¼ Ll
�
I;LlðWÞ

�M
; En :¼ Ll

�
I;LlðWÞ

�M�1 � Ll
�
I;Ll

n ðWÞ
�

and

Ll
n ðWÞ :¼ fj a LlðWÞ : jðxÞb n > 0 a:e: in Wg;

where M a N. If j ¼ fjmg
M
m¼1 a E, then we define jjjE :¼

PM
m¼1 jjmjLlðI;LlðWÞÞ as

its norm. It should be noted that for j a En we have jjjEb n > 0.

Also, consider the set-valued map K : E ! 2V such that the map

K
�
Fð�Þ

�
: C ! 2V satisfies that K

�
FðvÞ

�
is a closed and convex subset of V

and 0 a K
�
FðvÞ

�
, for each v a C. Let f a V 0 and A : V ! V 0, then we define

the problem (P) as the following parabolic QVI.

Problem (P)

Find u a K
�
FðuÞ

�
BDðL;V 0Þ :

�
LuþAðuÞ � f ; v� u

�
b 0;

Ev a K
�
FðuÞ

�
: ðPÞ
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The space V is considered to be a Banach space of mappings of the type

f : I ! V where I ¼ ð0;TÞ with 0 < T al and V is a separable reflexive Banach

space. Then a general form of Kð�Þ is given by

K
�
FðvÞ

�
¼
�
w a V : wðtÞ a K

�
FðvÞ; t

�
a:e: t a I

�
; ð1Þ

where K : E� I ! 2V and, for each w a V and t a I, K
�
FðwÞ; t

�
is a closed and

convex subset of V with 0 a K
�
FðwÞ; t

�
.

The following problem will be called the weak form of problem (P).

Problem (wP)

Find u a K
�
FðuÞ

�
:
�
Lvþ AðuÞ � f ; v� u

�
b 0;

Ev a K
�
FðuÞ

�
BDðL;V 0Þ: ðwPÞ

If u is a solution to (P), then it is also a solution (wP) and if u solves (wP) and

u a DðL;V 0Þ then it also solves (P) (see [24]).

2.1. Typical constraint sets. The two most important forms for the constraint

set K are the following ones.

Gradient-type. Let G a LðV ;W Þ, a bounded linear operator with domain in

V and image in W , a Banach space of functions over some domain W � RN and

range in R l be given. In this case, F : V ! En with En ¼ Ll
�
I;Ll

n ðWÞ
�
and

Kgradðv; tÞ :¼
�
y a V : jðGyÞðxÞjR l a

�
FðvÞðtÞ

�
ðxÞ a:e: in W

�
:

Obstacle-type. Let K a LðV ;XÞ, where X is a Banach space of func-

tions with domain in W and range in R. Consider in this case F : V ! En
with En ¼ Ll

�
I;LlðWÞ

�
� Ll

�
I;Ll

n ðWÞ
�
, such that FðvÞ ¼

�
F1ðvÞ;F2ðvÞ

�
, with�

F1ðvÞðtÞ
�
ðxÞa

�
F2ðvÞðtÞ

�
ðxÞ a.e. for t a I and x a W and with

Kobsðv; tÞ :¼
�
y a V :

�
F1ðvÞðtÞ

�
ðxÞa ðKyÞðxÞa

�
F2ðvÞðtÞ

�
ðxÞ a:e: in W

�
: ð2Þ

The most common operators for the previous two types of constraint sets

are given by G ¼ ‘ and K ¼ I ¼ id. Hence, the condition FðCÞ � En � E deter-

mines that naFðvÞ a.e. in the gradient constrained case, and naF2ðvÞ a.e. for

F ¼ ðF1;F2Þ (with F1a 0aF2 a.e.) in the obstacle-type constraint. This im-

plies that we are ruling out the possibility of zero gradients and the possibility of

obstacles in contact, i.e., F1ðxÞ ¼ uðxÞ ¼ F2ðxÞ on a set of nonzero measure.

Both of these situations, although perhaps not critical with respect to the proof of

existence of solutions, create di‰culties in the numerical approximation approach

and the uniqueness of solutions to QVIs under consideration.
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2.2. Practical applications. Several practical applications of parabolic QVIs of

the type considered here are discussed next.

2.2.1. The magnetization of superconductors. The magnetization of type-II

superconductors has been studied by means of Bean’s critical-state model.

Prigozhin (in [33]) has shown that Bean’s critical state model is equivalent to a

QVI with gradient constraints. In the case of a stationary model with longitudinal

geometry (W is a domain in R2), the main unknown hz is the z-component of the

magnetic field (see [36] or [22] for the elliptic case). In this case, the constraint set

is determined as

KðvÞ :¼ fy a W
1;p
0 ðWÞ : jð‘yÞðxÞjRN a jcðjvþ hejÞ a:e: in Wg;

where pb 2, he is related to the density of external currents and jc is an operator

associated with the critical current density value. Defining u ¼ h� he, the perti-

nent QVI problem is given by: Find u a KðuÞ such that

u 0 � r0
m
DpðuÞ � f ; v� u

� �
b 0 Ev a KðuÞ;

with KðvÞ :¼ fw a V : wðtÞ a KðvÞg, r0 > 0 a constant related to the scalar resis-

tivity, m > 0, Dp is the p-Laplacian, i.e.,

�
�DpðwÞ; v

�
:¼
ð
W

j‘wjp�2‘w � ‘v dx;

with u 0 a V 0 and uð0Þ ¼ u0 a W
1;p
0 ðWÞ, and where f is also related to external

currents.

2.2.2. Damped elastic membrane with compliant obstacles. Let W be some do-

main in RN with N ¼ 1 or N ¼ 2. Consider an elastic homogeneous membrane,

whose displacement is denoted by u and which is zero at t ¼ 0, that occupies the

entire domain W and that has zero displacement on the boundary, i.e., ujqW ¼ 0.

Suppose that the membrane is loaded by the uniformly distributed force f and

that there are two obstacles F1a 0aF2 a.e. such that F1a uaF2 a.e. on W

constraining the deflection of the membrane. In this case, consider V ¼ L2ðI;VÞ
and H ¼ L2ðI;HÞ, where ðV ;H;V 0ÞC

�
H 1

0 ðWÞ;L2ðWÞ;H�1ðWÞ
�
. Also, we have

KC id a L
�
H 1

0 ðWÞ;H 1
0 ðWÞ

�
(where K is as in (2)) leading to

K ¼ fy a H 1
0 ðWÞ : F1ðxÞa yðxÞaF2ðxÞ a:e: in Wg:

If we neglect inertia and suppose the membraned damped, then a simplified

model for the evolutionary dynamics of the problem is given by: Find
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u a K :¼ fv a V : vðtÞ a Kg with u 0 a V 0 and uð0Þ ¼ 0 such that�
u 0 � DðuÞ � f ; v� u

�
b 0; Ev a K:

The associated QVI version of the above parabolic VI modeling the damped

obstacle problem can be considered as the problem where the obstacles F1, F2

are not ‘‘fixed’’ but rather depend on the displacement of the membrane u (for ex-

ample, this situation would consider that when the membrane is in contact with

some obstacle, the latter su¤ers a force exerted by the membrane that determines

its movement). In this case we also have KC id a L
�
H 1

0 ðWÞ;H 1
0 ðWÞ

�
. However,

for v a V, let FðvÞ :¼
�
F1ðvÞ;F2ðvÞ

�
with

�
F1ðvÞ;F2ðvÞ

�
a LlðWÞ � Ll

n ðWÞ such
that F1ðvÞa 0aF2ðvÞ a.e. for all v a V. Hence, we obtain

KðvÞ :¼
�
y a H 1

0 ðWÞ :
�
F1ðvÞ

�
ðxÞa yðxÞa

�
F2ðvÞ

�
ðxÞ a:e: in W

�
:

Then, the QVI problem amounts to finding u a K
�
FðuÞ

�
with u 0 a V 0 and

uð0Þ ¼ 0 such that�
u 0 � DðuÞ � f ; v� u

�
b 0; Ev a K

�
FðuÞ

�
:

3. Conditions for u 7! S(A, f ,K(F(u))) to be contractive

Let f , K and SðtÞ, the C0-semigroup that is generated by �L, satisfy conditions

so that SðA; f ;KÞ is well defined as the unique solution to

Find u a DðL;VÞBK :
�
LuþAðuÞ � f ; v� u

�
b 0; Ev a K: ð3Þ

Conditions for this to hold are for example given by f a DðL;V 0Þ, K ¼
fv a V : vðtÞ a K a:e:g with K some closed, convex set in V with 0 a K and SðtÞ
given by Example 2.1 (see for example [24], [6]). When K is not constant, we

assume that each evaluation KðvÞ satisfies the previous condition. If t 7! KðtÞ is
not constant, and KðtÞ is of the obstacle- or gradient-type, then regularity and

growth conditions on the obstacle or gradient bounds are required in order to

ensure existence and uniqueness of the solution to (3) (see, for example, Section

5.2 in [16]). In the setting of Theorem 3.2 below, for the gradient constraint

case, this would require second-order in time regularity and more stringent growth

conditions on the function f.

Note, however, that weaker forms of solutions could be considered in (3).

Then analogous results to the ones developed subsequently hold true for the

appropriate QVI formulation. In fact, if there is a unique solution ~SSðA; f ;KÞ to:

Find u a VBK; qtu a V 0 :
�
qtuþAðuÞ � f ; v� u

�
b 0; Ev a K; ð4Þ
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with uð0Þ ¼ 0, where qtu denotes the weak partial derivative in time of u, and

where K ¼ K
�
FðvÞ

�
for any v a C, then Theorem 3.2 and Corollary 3.3 also

hold for ~SS.

In this section we establish conditions for contractibility of the solution map-

ping u 7! S
�
A; f ;K

�
FðuÞ

��
. We start with some preliminary results of stability

and continuity of A 7! SðA; f ;KÞ.

Proposition 3.1. Let A1 and A2 satisfy H1 (with c1 > 0, r1 > 1 and c2 > 0, r2 > 1,

respectively), H2 and H3, then

jSðA2; f ;KÞ � SðA1; f ;KÞjVaM
�
dðA2;A1Þ

�1=ðr�1Þ
;

where r ¼ minðr1; r2Þ, for some M > 0, and

dðA2;A1Þ :¼ sup
v ABRð0;VÞ

jA2ðvÞ �A1ðvÞjV 0 ;

with R :¼ max
�
ðj f jV 0=c1Þ1=ðr1�1Þ; ðj f jV 0=c2Þ1=ðr2�1Þ�

.

Proof. Without loss of generality suppose that r2a r1. Define ui ¼ SðAi; f ;KÞ
for i ¼ 1; 2. Since ui solves (P), it also solves (wP). Let v ¼ 0 in (wP), then�
AiðuiÞ; ui

�
a ð f ; uiÞ and hence juijVaR (by the uniform monotonicity of Ai for

i ¼ 1; 2). Since u1; u2 a K, we have

�
Lu1 þA1ðu1Þ � f ; u2 � u1

�
b 0 and

�
Lu2 þA2ðu2Þ � f ; u1 � u2

�
b 0:

Hence, from these two inequalities, we infer

�
Lðu2 � u1Þ; u2 � u1

�
þ
�
A2ðu2Þ �A2ðu1Þ; u2 � u1

�
a
�
A1ðu1Þ �A2ðu1Þ; u2 � u1

�
:

If w a DðL;V 0ÞBK, then

ðLw;wÞ ¼ lim
t#0

1

t

�
I � SðtÞw;w

�
¼ lim

t#0

1

t

�
jwj2H � 3SðtÞw;w4H

�
b 0;

since SðtÞ is a C0-semigroup of contractions over H.

Then, due to the uniform monotonicity of A2, we have

c2ju2 � u1jr2Va
�
A2ðu2Þ �A2ðu1Þ; u2 � u1

�
a
�
A1ðu1Þ �A2ðu1Þ; u2 � u1

�
:
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Since juijVaR, we find
�
A1ðu1Þ � A2ðu1Þ; u2 � u1

�
a dðA2;A1Þju2 � u1jV, which

implies

ju2 � u1jVa ð2R=c2Þ1=ðr2�1Þ�
dðA2;A1Þ

�1=ðr2�1Þ
: r

We now state the main result of the paper which guarantees the contractivity

of the map u 7! S
�
A; f ;K

�
FðuÞ

��
under certain conditions. The result can be

seen as the extension of the one in [15] for elliptic QVIs to the parabolic case.

Theorem 3.2. Let VCLpðI;VÞ with I ¼ ð0;TÞ, where ðV ;H;V 0Þ is a Gelfand

triple and 1 < p < l if jIj < l (and p ¼ 2 if jIj ¼ l). In addition, suppose

(i) A : V ! V 0 satisfies H1 with minð2; pÞb r > 1 if jIj < l (and r ¼ 2 if

jIj ¼ l), H2, H3 and is homogeneous of order bb 1, i.e., for fixed s > 0, we

have sbAðvÞ ¼ AðsvÞ for all v a V.

(ii) f a Lr 0 ðI;V 0Þ � Lp 0 ðI;V 0Þ, such that ð f ; vÞ ¼
Ð
I

�
f ðtÞ; vðtÞ

�
V
dt for all v a

VCLpðI;VÞ, where 1=rþ 1=r 0 ¼ 1 and 1=pþ 1=p 0 ¼ 1.

(iii) K : E ! 2V, satisfies that if j a En � E, then aKðjÞ ¼ KðajÞ for all a > 0.

(iv) F : C � V ! En � E is defined as FðuÞ ¼ GðuÞf with f ¼ ffmg
M
m¼1 a EC

Ll
�
I;LlðWÞ

�M
and G : C ! R such that there exists

(a) g > 0 with

gaGðuÞ; Eu a BRð0;VÞ;

where R :¼ ðj f jLr 0 ðI;V 0ÞÞ
1=ðr�1Þ

.

(b) LG > 0 for which

jGðvÞ � GðwÞjaLGjv� wjV; Ev;w a BRð0;VÞ:

Then, the map u 7! S
�
A; f ;K

�
FðuÞ

��
satisfies S

�
A; f ;K

�
Fð�Þ

��
: BRð0;VÞ !

BRð0;VÞ and		S�A; f ;K�Fðu2Þ
��

� S
�
A; f ;K

�
Fðu1Þ

��		
V
aLSð f Þju2 � u1jV;

for all u1; u2 a BRð0;VÞ and some LSð f Þ > 0 such that limj f j
Lr 0 ðI;V 0Þ!0 LSð f Þ ¼ 0.

Moreover, LSð f Þ ¼ OðLGÞ implying limLG!0 LSð f Þ ¼ 0.

Proof. First, note that S
�
A; f ;K

�
FðvÞ

��
a DðL;VÞBK

�
FðvÞ

�
, for each v a

BRð0;VÞ � C, is well defined as the unique solution to (3) (with K ¼ K
�
FðvÞ

�
)

by the initial hypotheses and the first paragraph of this section.

Let j a En, j a RangeðFÞ, and denote KCKðjÞ. Also, define ui ¼
SðA; fi;KÞ for i ¼ 1; 2. Then,�

Lðu2 � u1Þ þAðu2Þ �Aðu1Þ; u2 � u1
�
a ð f2 � f1; u2 � u1Þ:
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The uniform monotonicity of A and ðLw;wÞb 0, Ew a DðL;V 0ÞBK imply (as

in the proof of Proposition 3.1) that

cju2 � u1jrVa ð f2 � f1; u2 � u1Þ:

Young’s inequality states
Ð
W jgvj dxa e r

0

r 0

Ð
W jgjr

0
dxþ 1

re r

Ð
W jvjr dx, for all g a

Lr 0 ðWÞ, v a LrðWÞ, and all e > 0. Now, since pb r, we obtain by Young’s and

Hölder’s (when p > r) inequalities

cju2 � u1jrVa ð f2 � f1; u2 � u1Þ ¼
ð
I

�
ð f2 � f1ÞðtÞ; ðu2 � u1ÞðtÞ

�
V
dt

a
er

0

r 0

ð
I

jð f1 � f2ÞðtÞjr
0

V 0 dtþ
1

rer

ð
I

jðu1 � u2ÞðtÞjrV dt

a
er

0

r 0

ð
I

jð f1 � f2ÞðtÞjr
0

V 0 dtþ
jIjðp�rÞ=p

rer


 ð
I

jðu1 � u2ÞðtÞjpV dt
�r=p

:

Hence for a su‰ciently large e > 0

ju2 � u1jVa

e r
0

r 0

c� jIjð p�rÞ=p

re r


 �
0
B@

1
CA
1=r
 ð

I

jð f1 � f2ÞðtÞjr
0

V 0 dt
�1=r

:

In the case when jIj ¼ l (and then p ¼ r ¼ 2 by the initial hypotheses), we

similarly have

cju2 � u1j2Va
e2

2

ð
I

jð f1 � f2ÞðtÞj2V 0 dtþ
1

2e2


 ð
I

jðu1 � u2ÞðtÞj2V dt
�
;

and again for e > 0 large enough,

ju2 � u1jVa

e2

2

c� 1
2e2

� �
 !1=2
 ð

I

jð f1 � f2ÞðtÞj2V 0 dt
�1=2

:

Therefore,

jSðA; f1;KÞ � SðA; f2;KÞjVaM1j f2 � f1jr
0=r

Lr 0 ðI;V 0Þ; ð5Þ

where M1 > 0 depends on c, p, r and jIj if the latter is finite, otherwise it depends
only on c (given that p ¼ r ¼ 2 if jIj ¼ l).

Suppose that m > 0, then m1�bA (for bb 1) satisfies H1, H2 and H3, mf a V 0

and mK is closed, convex and 0 a mK. Hence, we find
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SðA; f ;KÞ � SðA; f ; mKÞ ¼
�
SðA; f ;KÞ � Sðm1�bA; mf ; mKÞ

�
þ
�
Sðm1�bA; mf ; mKÞ � SðA; mf ; mKÞ

�
þ
�
SðA; mf ; mKÞ � SðA; f ; mKÞ

�
¼ I þ II þ III : ð6Þ

(where all evaluations of the mapping S are well defined).

Consider I . Let u ¼ SðA; f ;KÞ, then
�
LuþAðuÞ � f ; v� u

�
b 0, Ev a K.

Since L is a linear operator, and A is homogeneous of order bb 1, for

m > 0 we have
�
LðmuÞ þ m1�bAðmuÞ � mf ;w� mu

�
b 0, Ew a mK, i.e., mu ¼

Sðm1�bA; mf ; mKÞ. Then,

jI jVaYI ð f Þj1� mj;

where YI ð f Þ ¼ jSðA; f ;KÞjV, and as argued before (see the proof of Proposi-

tion 3.1) jSðA; f ;KÞjVa ðj f jV 0=cÞ1=ðr�1Þ. Since pb r > 1, we infer r 0b p 0 > 1,

and hence Lr 0 ðI;V 0Þ ,! V 0CLp 0 ðI;V 0Þ, where the embedding is continuous.

Consequently, we obtain limj f j
Lr 0 ðI;V 0Þ!0 YI ð f Þ ¼ 0.

In order to find a bound on II , we apply Proposition 3.1. In this case A and

m1�bA satisfy H1 with the same r and with c and m1�bc, respectively. Then,

jII jVaYII ð f Þj1� mb�1j1=ðr�1Þ; YII ð f Þ :¼

 2R

c
sup

w ABRð0;VÞ
jAðwÞjV 0

�1=ðr�1Þ
;

with Ra ðm1=ðr�1Þ þ mb=ðr�1ÞÞðj f jV 0=cÞ1=ðr�1Þ (where R is the one in Proposition

3.1). Since A maps bounded sets in V into bounded sets in V 0 (Hypothesis H3),

arguing as in the previous paragraph, we have limj f j
Lr 0 ðI;V 0Þ!0 YII ð f Þ ¼ 0.

We now use (5) to bound III . This yields (note that 1
r�1 ¼ r 0

r
)

jIII jVaYIII ð f Þj1� mj1=ðr�1Þ;

where YIII ð f Þ ¼ M1j f jr
0=r

Lr 0 ðI;V 0Þ and hence limj f j
Lr 0 ðI;V 0Þ!0 YIII ð f Þ ¼ 0.

Suppose that m a ð0; m� for some fixed m > 0. Since 2b r > 1 and bb 1,

it holds that j1� mb�1j1=ðr�1Þ
a d1j1� mj and j1� mj1=ðr�1Þ

a d2j1� mj for some

d1 > 0 and d2 > 0 (depending only on m) for all m a ð0; m�. Then, from (6), we

observe that

jSðA; f ;KÞ � SðA; f ; mKÞjVaYð f Þj1� mj;

where Yð f Þ :¼ YI ð f Þ þ d1YII ð f Þ þ d2YIII ð f Þ.
We have that KCKðjÞ for some j a En and that mKðjÞ ¼ KðmjÞ, and

we write, for the sake of brevity, SðjÞ :¼ SðA; f ;KÞ and SðmjÞ :¼ SðA; f ; mKÞ.
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Since j a En, we have jjjEb n > 0, and hence

jSðjÞ � SðmjÞjVa
Yð f Þ
n

j1� mj jjjEa
Yð f Þ
n

jj� mjjE:

Finally, let j ¼ Gðu2Þf and m ¼ Gðu1Þ=Gðu2Þ. Since u1; u2 a C, and hence, since

u 7! GðuÞ is Lipschitz on C (with Lipschitz constant LG by assumption), we have

		S�Gðu2Þf�� S
�
Gðu1Þf

�		
V
a

Yð f Þ
n

jGðu2Þf� Gðu1ÞfjEa
Yð f ÞjfjELG

n
ju2 � u2jV:

Therefore u 7! S
�
A; f ;K

�
FðuÞ

��
is Lipschitz continuous and contractive for all

su‰ciently small f . Moreover, the Lipschitz constant of S, LSð f Þ, is proportional
to LG. r

Remark 1. It should be noted that the map u 7! S
�
A; f ;K

�
FðuÞ

��
is nonlinear

(even in the case when A is linear, due to the constraints) and hence the contrac-

tive behavior (and consequently the existence of a unique solution) should be

expected only for small data, i.e., small f in the Lr 0 ðI;V 0Þ-sense. Given the struc-

ture of the constraint mapping v 7! K
�
FðvÞ

�
required for the previous theorem,

one might think that small f forces the system into ‘‘inactivity’’, i.e., that u ¼
S
�
A; f ;K

�
FðuÞ

��
belongs to the interior of K

�
FðuÞ

�
and, hence, the problem

being dealt with is no longer a proper QVI but satisfies LuþAðuÞ � f ¼ 0.

This, however, is not the case! Indeed, for any f , one can choose a small enough

LG to obtain the contractive behavior of the map S (and hence uniqueness).

Remark 2. The Lipschitz constant of G, LG, controls how much v 7! FðvÞ ¼ GðvÞf
changes on the ball BRð0;VÞ. If LG ¼ 0, then the QVI problem reduces to a VI,

which has a unique solution. In this sense, as LG # 0, it is expected that the prop-

erties of (P) resemble more and more the ones of a VI. The previous theorem is

evidence of such a behavior. In addition, the Lipschitz behavior of G implies the

same for S. On the other hand, di¤erentiability properties of S are in general not

implied by di¤erentiability of G.

The following corollary is a direct consequence of the previous result and

determines a direct and natural way for approximating solutions to the QVI of

interest. The proof is simply an application of Theorem 3.2 and Banach’s fixed

point principle.

Corollary 3.3. Suppose the hypotheses of Theorem 3.2 are satisfied and that

j f jLr 0 ðI;V 0Þ is small enough. Define

TðvÞ :¼ S
�
A; f ;K

�
FðvÞ

��
;
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and consider un ¼ Tðun�1Þ for n a N and u0 a BRð0;VÞ. Then, the sequence fung
converges (at least, linearly) in the strong topology of V to u�, the unique solution

u ¼ TðuÞ.

Remark. Note that even though the approach of the paper is not concentrated

on existence results for QVIs, the result in Corollary 3.3 neither contains nor is

contained in general existence results like the ones in [17].

Theorem 3.2 and Corollary 3.3 now allow to establish the existence and

uniqueness of solutions to certain classes of parabolic QVIs, and they provide

a way of approximating these. Furthermore, note that the two aforemen-

tioned results also hold for ~SS as defined in (4) under minor changes, provided
~SS
�
A; f ;K

�
FðwÞ

��
is well defined for each w a BRð0;VÞ. In this case, we observe

that there is a unique solution to u ¼ ~SS
�
A; f ;K

�
FðuÞ

��
, i.e., u satisfies the QVI:

u a VBK
�
FðuÞ

�
; qtu a V 0 :

�
qtuþAðuÞ � f ; v� u

�
b 0; E a K

�
FðuÞ

�
:

A class of examples for the gradient type and obstacle type constrained are

given in the following.

Example 3.4. Let p ¼ 2, V ¼ L2ðI;VÞ with I ¼ ð0;TÞ and ðV ;H;V 0Þ ¼�
H 1

0 ðWÞ;L2ðWÞ;H�1ðWÞ
�
. Let A : V ! V 0 be the time realization of the

Laplacian, i.e., AðvÞðtÞ ¼ A
�
vðtÞ
�
with A ¼ �D for all v a V, which satisfies H1

(with r ¼ 2 and c ¼ 1), H2 and H3 and is homogeneous of order b ¼ 1. Let

f a L2ðI;V 0Þ so that ð f ; vÞ ¼
Ð
I

�
f ðtÞ; vðtÞ

�
V
dt.

Consider K : En � E ! 2V where En ¼ Ll
�
I;Ll

n ðWÞ
�
, E ¼ Ll

�
I;LlðWÞ

�
and

KðjÞ ¼
�
v a L2

�
I;H 1

0 ðWÞ
�
:
		�‘vðtÞ�ðxÞ		

R l a
�
jðtÞ

�
ðxÞ a:e: for t a I; x a W

�
;

which satisfies that aKðjÞ ¼ KðajÞ for all a > 0, j a En. Let

GðuÞ ¼ kjCðuÞj þ n; with C a V 0 and Eu a V;

k > 0 and fC 1 such that FðuÞ ¼ GðuÞf ¼ GðuÞ. In this case, we observe that

for all u a L2
�
I;H 1

0 ðWÞ
�
, the set K

�
FðuÞ

�
is a closed and non-empty subset

of L2
�
I;H 1

0 ðWÞ
�
and contains 0. Then, by Theorem 3.2, the mapping u 7!

S
�
A; f ;K

�
FðuÞ

��
is Lipschitz continuous and contractive on some ball provided

that j f jL2ðI;V 0Þ (or k > 0) is small enough.

Example 3.5. Consider again p ¼ 2, V ¼ L2ðI;VÞ with I ¼ ð0;TÞ and

ðV ;H;V 0Þ ¼
�
H 1

0 ðWÞ;L2ðWÞ;H�1ðWÞ
�
. Let A : V ! V 0 be AðvÞðtÞ ¼ A

�
vðtÞ
�

with A ¼ �D as in the previous example and let f a L2ðI;V 0Þ with ð f ; vÞ ¼Ð
I

�
f ðtÞ; vðtÞ

�
V
dt.
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Determine K : En � E ! 2V where En ¼ Ll
�
I;LlðWÞ

�
� Ll

�
I;Ll

n ðWÞ
�
, E ¼

Ll
�
I;LlðWÞ

�
� Ll

�
I;LlðWÞ

�
and

Kðj1; j2Þ ¼
�
v a V :

�
j1ðtÞ

�
ðxÞa

�
vðtÞ
�
ðxÞa

�
j2ðtÞ

�
ðxÞ a:e: for t a I; x a W

�
;

which satisfies that aKðjÞ ¼ KðajÞ for all a > 0, j ¼ ðj1; j2Þ a En. Consider

Fð�Þ defined as

FðvÞ ¼ GðvÞð�jc2j; jc1j þ eÞ;

with ci a Ll
�
I;LlðWÞ

�
, e > 0 and

GðvÞ ¼ kjCðuÞj þ d; with C a V 0 and Eu a V;

k > 0 and edb n > 0. Hence, we have F : V ! En � E. Also, by Theorem 3.2,

the mapping u 7! S
�
A; f ;K

�
FðuÞ

��
is Lipschitz continuous and contractive on

some ball provided that j f jL2ðI;V 0Þ (or k > 0) is small enough.

3.1. Approximations in a general setting. The previous result may also be

useful when the constraint map F has a di¤erent structure compared to the

one required in Theorem 3.2. In fact, in some cases it is possible to construct a

sequence of approximating problems for which the theory still applies. Indeed,

we sketch such an approximation procedure in what follows. For this purpose

we confine ourselves to the obstacle type example with FðvÞ :¼
�
0;F2ðvÞ

�
and

where F2 : H
1
0 ðWÞ ! ðn;þlÞ is Lipschitz continuous with constant LF and a

forcing term f ðtÞ ¼ f a L2ðWÞ, for all t a ½0;T �.
Let In ¼ ½tn�1; tnÞ for n ¼ 1; 2; . . . ;N, tn :¼ nT=N, and consider the se-

quence of maps fLng with Ln : L
2
�
In;H

1
0 ðWÞ

�
! ðn;þlÞ defined by LnðvÞ :¼

1
jInj
Ð
In
F2

�
vðtÞ
�
dt. Note that each Ln is Lipschitz continuous with constant

LF. Also, if w a L2
�
ð0;TÞ;H 1

0 ðWÞ
�
, then standard integration results yield that

1
h

Ð sþh

s
F2

�
vðtÞ
�
dt ! F2

�
vðsÞ

�
as h # 0 for almost all s a ð0;TÞ. Since j f jL2ðIn;L2ðWÞÞ

¼ jInj1=2j f jL2ðWÞ, then for su‰ciently large N, j f jL2ðIn;L2ðWÞÞ gets arbitrarily

small. Then, Theorem 3.2 and Corollary 3.3 can be applied to TðvÞ :¼
S
�
A; f ;K

�
LnðvÞ

��
(or ~TTðvÞ :¼ ~SS

�
A; f ;K

�
LnðvÞ

��
) on V :¼ L2

�
In;H

1
0 ðWÞ

�
, for

n ¼ 1. Provided the maps S and ~SS are also uniquely defined for non-zero initial

conditions (under certain assumptions on u0), the same procedure can be repeated

for n > 1, provided that j f jL2ðWÞ and ju0jH 1
0
ðWÞ are su‰ciently small. In this way

one approximates the solution to the original problem.

Note, however, that the well-posedness of the maps S (and ~SS) with non-zero

boundary conditions uð0Þ ¼ u0A 0 may be a challenging problem in its own

right (see [20], Section 5.4 in [16] and [24]), which requires additional studies as

N ! l.
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In the gradient constrained case of magnetization of superconductors, the

upper bound of the gradient constraint operator jc is in general a superposi-

tion (or Nemytskii) operator such that the scheme above is not directly applicable.

However, an approximation of the magnetization problem for p ¼ 2 can be

obtained when jc : H
1
0 ðWÞ ! L2ðWÞ is replaced by ĵjcðvÞ ¼ jcðSvÞ with Sv ¼

1
jWj
Ð
vðxÞ dx. In this case, the above procedure can be applied with the obvious

changes.

4. A semi-discrete scheme

Let fXng be a sequence of Banach spaces related to a Banach space X by the

following extension and projection operators.

Assumption 1. For n a N, there are Pn a LðX ;XnÞ and En a LðXn;XÞ such that

A1. For all n a N, we have jPnjLðX ;XnÞa 1 and jEnjLðXn;XÞa 1.

A2. jEnPnv� vjV ! 0 as n ! l for all v a X .

A3. PnEn is the identity operator in Xn.

Theorem 4.1. Let X and Xn for n a N0 be Banach spaces related by projection

and extension operators Pn and En that satisfy A1 and A3. Let T : X ! X and

Tn : Xn ! Xn be a sequence of contractive operators such that

jTnðxÞ � TnðyÞjXn
a hnjx� yjXn

with h :¼ sup
n AN

hn < 1: ð7Þ

Consider the sequence of operators T̂Tn : X ! X defined as T̂TnðxÞ ¼ EnTnðPnxÞ for
each x a X.

If there exists x0 a X with jTnðPnx0ÞjXn
aK for all n a N and T̂Tn satisfies

lim
n!l

T̂TnðxnÞ ¼ TðxÞ; in X if xn * x in X ; ð8Þ

then the sequence of fixed points

yn ¼ TnðynÞ;

satisfies that fEnyng converges strongly to the unique fixed point of T.

Proof. First we prove that T has a unique fixed point. By the definition of T̂Tn,

and the fact that the norms of En a LðXn;XÞ and Pn a LðX ;XnÞ are uniformly

bounded by 1, we have that

jT̂TnðxÞ � T̂TnðyÞjX a jTnðPnxÞ � TnðPnyÞjXn
a hnjPnx� PnyjXn

a hjx� yjX :
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Then we infer from (8)

jTðxÞ � TðyÞjX ¼ lim
n!l

jT̂TnðxÞ � T̂TnðyÞjX a hjx� yjX ;

i.e., T : X ! X is contractive and hence has a unique fixed point.

Consider the sequence of fixed points yn ¼ TnðynÞ. Since PnEn is the identity,

we have that Enyn ¼ EnTnðPnEnynÞ. Then defining ŷyn :¼ Enyn, we have that

ŷyn ¼ T̂Tnð ŷynÞ. The sequence f ŷyng is uniformly bounded. Indeed, we have

j ŷynjX � jT̂Tnðx0ÞjX a jT̂Tnð ŷynÞ � T̂Tnðx0ÞjX a hj ŷyn � x0jX a hj ŷynjX þ hjx0jX ;

and hence

ð1� hÞj ŷynjX a jT̂Tnðx0ÞjX þ hjx0jX a jTnðPnx0ÞjXn
þ hjx0jX aK þ hjx0jX :

Therefore, ŷyni * y� in X and T̂Tnið ŷyniÞ ! Tðy�Þ by (8). Since ŷyni ¼ T̂Tnið ŷyniÞ, we
obtain y� ¼ Tðy�Þ.

Suppose that there is a subsequence of ŷyn ¼ T̂Tnð ŷynÞ that does not converge

to y�. Then there exists a sequence f ŷynjg such that ŷynj ¼ T̂Tnj ð ŷynj Þ and e > 0 for

which jy� � ŷynj jX b e > 0 for j a N. However, the argument at the beginning of

the proof also applies to f ŷynjg. Thus, there is a subsequence that converges to

some fixed point y of the map T . As there is only one fixed point for T , we have

y ¼ y�. Consequently, all subsequences converge to y�. r

We consider now a semi-discretization scheme that makes the previous exten-

sion of Banach’s fixed point principle useful in the study of parabolic QVIs. The

abstract framework of this section is suitable for numerical methods computing

approximate solutions to (P).

Let V ¼ LpðI;VÞ (with pb 2) where I ¼ ð0;TÞ with 0 < T < l and Vn ¼
V n :¼ V � V � � � � � V (n copies of V ) with norm jwjVn

¼ ðh
Pn

m¼1 jwmjpV Þ
1=p,

h ¼ T
n
, and where w ¼ fwmgn

m¼1 a Vn. We assume that ðV ;H;V 0Þ is a Gelfand

triple and hence ðV;H;V 0Þ and ðVn;Hn;V
0
n Þ are as well, with H ¼ L2ðI;HÞ

and Hn ¼ Hn. Then, consider Pn a LðV;VnÞ and En a LðVn;VÞ defined as

Pnv :¼
n 1

h

ð
Im

vðtÞ dt
on

m¼1
; ðEnwÞðtÞ :¼

Xn
m¼1

wmwImðtÞ; ð9Þ

where v a V, w ¼ fwmgn
m¼1 a Vn and Im ¼

�
ðm� 1Þh;mh

�
for m ¼ 1; . . . ; n (we

also extend the latter to m a Z). We refer to Pn and En as the ‘‘projection’’ and

‘‘extension’’ operators, respectively.
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Proposition 4.2. Let Pn : V ! Vn and En : Vn ! V be as defined in (9), then

A1, A2 and A3 of Assumption 1 are satisfied.

Proof. It follows from the definition of En and Pn that A3 is satisfied. In order

to prove A1, observe that from the definition of En and the norm j � jVn
that

jEnwjV ¼ jwjVn
for w a Vn and by Hölder’s inequality we obtain

jPnvjpVn
¼ h

Xn
m¼1

			 1
h

ð
Im

vðtÞ dt
			p
V
a h1�p

Xn
m¼1


 ð
Im

jvðtÞjV dt
�p

a
Xn
m¼1

ð
Im

jvðtÞjpV dt ¼ jvjpV:

Hence, jEnjLðVn;VÞ; jPnjLðV;VnÞa 1 and A1 holds. Now, we consider A2 and sup-

pose that v a V is of the form v ¼ aw½ta; tbÞ with a a V , 0a ta < tb and ½ta; tbÞ a I.

Then it is elementary to check that EnPnv ! v as n ! l in V. Since EnPn is

linear, then it also holds for step functions v ¼
PN

k¼1 akw½tak ; tbk Þ
with ak a V . Since

step functions are dense in V ¼ LpðI;VÞ, given v a V there is a step function ve
such that jv� veja e

3 . Let nbNðeÞ so that jEnPnve � vejVa e
3 . Then, we have

jEnPnv� vjVa jEnPnðv� veÞjV þ jEnPnve � vejV þ jve � vjVa e;

given that jEnPnjLðV;VÞa jEnjLðVn;VÞjPnjLðV;VnÞa 1. Since e > 0 was arbitrary,

the assertion is proven and A2 holds. Hence, Assumption 1 holds true for our

semi-discrete scheme. r

Also, it is useful to note that from the definition of Pn and En, we observe that

the restriction of the adjoints P 0
n (to Vn) and E 0

n (to V) are given by P 0
njVn

¼ En

and E 0
njV ¼ Pn.

The semi-discrete problem approximating (P) is given as follows.

Problem ðPnÞ:

Find u a Kn

�
FnðuÞ

�
:
�
LnuþAnðuÞ � fn; v� u

�
V 0

n ;Vn
b 0;

Ev a Kn

�
FnðuÞ

�
; ðPnÞ

where fKn;Fn;Ln;An; fng approximate their counterparts fK;F;L;A; f g in (P)

as described in the following paragraphs. We assume throughout this section

that the conditions for the solution mapping u 7! S
�
A; f ;K

�
FðuÞ

��
to be con-

tractive from Theorem 3.2 are satisfied and conditions for S
�
A; f ;K

�
FðvÞ

��
a

DðL;VÞ � DðL;V 0Þ also hold. Further conditions on (P) and (Pn) are stated

next.
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Assumption 2. The following statements are assumed to hold true.

B1. The operator L is the infinitesimal generator of the semigroup of translations on

V and V 0 (and of contractions on H) defined in Example 2.1. Therefore,

DðL;XÞ ¼ fv a X : v is absolutely continuous; v 0 a X and vð0Þ ¼ 0g;

where X is V, H or V 0. The approximated sequence fLng is defined as

Ln ¼ I�Fð1=nÞ
1=n

, where F ð1=nÞw ¼ f0;w1;w2; . . . ;wn�1g a Vn for w ¼ fwign
i¼1

a Vn, i.e., Lnw ¼ fðLnwÞig
n
i¼1 with

ðLnwÞi ¼
w1

1=n
; i ¼ 1;

wi�wi�1

1=n
; 2a ia n:

(

B2. f a DðL;VÞ � DðL;V 0Þ and fn ¼ Pn f .

B3. A is the time realization of a linear uniformly monotone operator A in V,

i.e., AðyÞðtÞ ¼ A
�
yðtÞ

�
for t a I where A : V ! V 0 satisfies H1, H2 and H3.

An : Vn ! V 0
n is defined as AnðwÞ ¼ fAðwiÞgn

i¼1 where w ¼ fwign
i¼1 a Vn. In

this sense, AnCA.

B4. Suppose that f a
�
LlðWÞ

�M�1 � Ll
n ðWÞ so that fðtÞ ¼ f for all t a I sat-

isfies f a En � E with E ¼ Ll
�
I;LlðWÞ

�M
; and En ¼ Ll

�
I;LlðWÞ

�M�1 �
Ll
�
I;Ll

n ðWÞ
�
. Then, we define

FðvÞ ¼ GðvÞf and FnðvÞ ¼ GnðvÞf for all v a V:

Consider g a V � V 0, G : V ! R and Gn : Vn ! R defined as

GðvÞ ¼
			 ðT

0

�
gðtÞ; vðtÞ

�
V 0;V

dt
			þ g

GnðwÞ ¼
			 ðT

0

�
gðtÞ; ðEnwÞðtÞ

�
V 0;V

dt
			þ g; ð10Þ

with g > 0.

B5. The set-valued mappings Kð�Þ and Knð�Þ are defined as

K
�
FðyÞ

�
¼
�
w a V : wðtÞ a K

�
FðyÞ

�
a:e: t a I

�
;

Kn

�
FnðzÞ

�
¼
�
fwmgn

m¼1 a Vn : w
m a K

�
FnðzÞ

�
for m ¼ 1; . . . ; n

�
;

where y a V and zn a Vn. We assume the following type of convergence

(i) If vn a Kn

�
FnðPnwnÞ

�
, wn * w in V and Envn * v in V for n a N 0 � N,

then v a K
�
FðwÞ

�
.
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(ii) If wn * w in V for n a N 0 � N and v a K
�
FðwÞ

�
, then there exists a

sequence fhng � Rþ such limn!l hn ¼ 1 and hnPnv a Kn

�
FnðPnwnÞ

�
for

n a N 0 � N.

Conditions B1 and B2 in Assumption 2 determine that we approximate the

time derivative ‘‘L’’ by a forward di¤erence and invoke a more regular forcing

term f (when compared to the existence proof, but the additional regularity is

needed for the approximation results) and its approximate fn. These assump-

tions are appropriate for the kind of convergence needed in Theorem 4.5: If

v a DðL;V 0ÞBV then limn!l P 0
nLnPnv ¼ Lv in V 0 (see Proposition 1 in [16])

and En fn ¼ EnPn f ! f by A2, Assumption 1. Condition B3 is clearly satisfied

by A being the time realization of A ¼ �D where D is the Laplacian, i.e., it is

satisfied for the operator that arises in most applications. Assumptions B4 and

B5 state the general form for the mappings F and Fn as well as the type of

convergence needed for Kn towards K. In particular, B5 is analogous to Mosco

convergence of sets but written here in a form, which is more suitable for our

approximation scheme. In the following paragraphs we study the implications

of B4 and we show that the gradient-type and obstacle-type problems satisfy B5,

respectively.

We start by considering the relationship between G (the nonlinear functional

in Theorem 3.2) and Gn (the counterpart of G in the approximate problem). By

invoking B4 above, we assume that G and Gn satisfy the conditions necessary for

Theorem 3.2 to hold true. Hence, the solution mapping of the original problem

and its semi-discretized version are Lipschitz continuous and become contractive

for small enough g in the sense of V. The following result relates the weak con-

vergence in V and the functionals G and Gn.

Proposition 4.3. Let vn * v in V. Then GnðPnvnÞ ! GðvÞ.

Proof. Denote ðg;wÞ ¼
Ð T
0

�
gðtÞ;wðtÞ

�
V
dt for w a V. Hence, since P 0

njVn
¼ En,

E 0
njV ¼ Pn and g a V we have that

ðg;EnPnwÞ ¼ ðPng;PnwÞV 0
n ;Vn

¼ ðEnPng;wÞ:

But EnPn converges strongly to the identity by A2 in Assumption 1. Thus,

EnPng ! g in V as n ! l. Then, ðg;EnPnvnÞ ¼ ðEnPng; vnÞ ! ðg; vÞ and hence

GnðPnvnÞ ! GðvÞ follows. r

In the case of the gradient constraint we have that Kn

�
FnðvÞ

�
a 2Vn for v a Vn

and K
�
FðzÞ

�
for z a V are given by

K
�
FðzÞ

�
¼ fw a V : j‘wðtÞjR l aGðzÞf a:e: on W; t a Ig: ð11Þ

Kn

�
FnðvÞ

�
¼ ffwmgn

m¼1 a Vn : j‘wmjR l aGnðvÞf a:e: on W; for 1ama ng;

21Uniqueness and numerical approximation of solutions to parabolic QVIs



and in the case of the obstacle-type problem by

K
�
FðzÞ

�
¼ fw a V : GðzÞf1awðtÞaGðzÞf2 a:e: on W; t a Ig: ð12Þ

Kn

�
FnðvÞ

�
¼ ffwmgn

m¼1 a Vn : GnðvÞf1awm
aGnðvÞf2

a:e: on W; for 1ama ng;

where ‘‘ðxÞ’’ is suppressed for the sake of clarity and brevity.

The following proposition shows that for the gradient-type and obstacle-type

problems, the assumptions B5(i) and B5(ii) hold for the scheme already described

above.

Proposition 4.4. Let Kn

�
Fnð�Þ

�
: Vn ! 2Vn and K

�
Fð�Þ

�
: V ! 2V be as in (11)

or (12). Then, B5(i) and B5(ii) hold.

Proof. Consider B5(i) for the gradient constrained case. Clearly, if vn a
Kn

�
FnðPnwnÞ

�
, then Envn a K

�
FðEnPnwnÞ

�
. Since wn * w in V, then by Propo-

sition 4.3, FðEnPnwnÞ ¼ FnðPnwnÞ ! FðwÞ in E ¼ Ll
�
I;LlðWÞ

�
. This implies

that K
�
FðEnPnwnÞ

�
! K

�
FðwÞ

�
in the sense of Mosco (see [16], [37]) and hence

that v a K
�
FðwÞ

�
.

For the case of the obstacle-type problem, we have that

GðEnPnwnÞf1ðxÞaEnvnðtÞðxÞaGðEnPnwnÞf2ðxÞ;

a.e. for x a W, t a I. Since Envn * v in V, by Mazur’s Lemma there exists a con-

vex combination ~vvn ¼
PNðnÞ

i¼1 liðnÞEivi such ~vvn ! v in V. Then the above inequal-

ity implies that GðEnPnwnÞf1ðxÞa ~vvnðtÞðxÞaGðEnPnwnÞf2ðxÞ. Since GðEnPnwnÞ
! GðwÞ by Proposition 4.3, we have GðwÞf1ðxÞa vðtÞðxÞaGðwÞf2ðxÞ (since

strong convergence in V implies a.e. pointwise convergence (along a subsequence)

in the strong topology of V , for t a I, and in turn pointwise convergence in W

along another subsequence). Hence v a K
�
FðwÞ

�
also for the obstacle-type con-

straint, and B5(i) holds.

We turn our attention to the gradient constrained case. Since wn * v, then

due to the definition of F, we have that FnðPnwnÞ ¼ FðEnPnwnÞ ! FðwÞ in E ¼
Ll
�
I;LlðWÞ

�
(and actually in LlðWÞ since FðvÞ ¼ GðvÞf with f a LlðWÞ and

similarly for Fn) and also FðEnPnwnÞ, FðwÞb n > 0 for n a N 0 � N. Then, it

is possible to prove (see [15]) that there is a sequence hn " 1 such hnFðwÞa
FðEnPnwnÞ for n a N 0 � N. Since v a K

�
FðwÞ

�
, we have

		�‘vðtÞ�ðxÞ		aFðwÞ
a.e. on t a I, x a W. As FðwÞ is constant in time, we have Pnv a Kn

�
FðwÞ

�
.

Hence vn :¼ hnPnv belongs to Kn

�
FnðPnwnÞ

�
, i.e., B5(ii) holds.

Consider now B5(ii) in the obstacle-type case. As before, we have GnðPnwnÞ ¼
GðEnPnwnÞ ! GðwÞ. Hence GðEnPnwnÞfi ! GðwÞfi in LlðWÞ for i ¼ 1; 2. Since
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GðEnPnwnÞf1a 0a naGðEnPnwnÞf2, similarly with the paragraph above, there

exists fhng such hn " 1 with

GðEnPnwnÞf1a hnGðwÞf1a 0a hnGðwÞf2aGðEnPnwnÞf2:

Again, as v a K
�
FðwÞ

�
, we have Pnv a Kn

�
FðwÞ

�
, and vn :¼ hnPnv belongs to

Kn

�
FnðPnwnÞ

�
. r

We are now in the position to state how the solution mappings of (P) and (Pn)

are related by means of the weak topology on V.

Theorem 4.5. Given w a V, let u ¼ TðwÞ a DðL;VÞBK
�
FðwÞ

�
, where TðwÞ is

defined as the solution to

�
LuþAðuÞ � f ; v� u

�
b 0; Ev a K

�
FðwÞ

�
; ð13Þ

and, similarly, un ¼ TnðzÞ a Kn

�
FnðzÞ

�
, with z a Vn, where TnðzÞ denotes the solu-

tion to

�
Lnun þAðunÞ � fn; v� un

�
V 0

n ;Vn
b 0; Ev a Kn

�
FnðzÞ

�
: ð14Þ

Then, if wn * w in V,

EnTnðPnwnÞ ! TðwÞ in V:

Proof. Both maps T : V ! V and Tn : Vn ! Vn are well-defined and single

valued since K
�
FðwÞ

�
and Kn

�
FnðPnwnÞ

�
are closed, convex (in V and Vn,

respectively) and contain 0, respectively.

By definition, un :¼ TnðPnwnÞ a Kn

�
FnðPnwnÞ

�
and the usual monotonicity

trick gives junjVn
a ðj fnjV 0

n
=cÞ1=ðr�1Þ. By assumption B2 we have fn ¼ Pn f , and,

thus, the sequence fj fnjgV 0
n
is uniformly bounded. Indeed, it holds that j fnjV 0

n
¼

j fnjVn
a jPnjLðV;VnÞj f jVa j f jV. Then the sequence fjunjVn

g is bounded uni-

formly, as well. Since we have the uniform bound jEnjLðVn;VÞa 1, the sequence

fEnung is uniformly bounded in V. By the reflexivity of V, there exists a weakly

convergent subsequence, i.e., Enun * u in V for n a N 0 � N. This and B5(i) now

imply that u a K
�
FðwÞ

�
.

Next, define ~AAnð�Þ :¼ P 0
nAðPn�Þ and ~ffn ¼ P 0

n fn, where P 0
n : V

0
n ! V 0. Minty’s

Lemma yields that (14) holds when ‘‘Lun’’ is exchanged by ‘‘Lv’’ with v a
Kn

�
FnðPnwnÞ

�
. Since PnEn ¼ I ¼ id in Vn for all n a N, (14) implies that

�
P 0
nLnvþ ~AAðEnunÞ � ~ffn;Env� Enun

�
b 0; Ev a Kn

�
FnðPnwnÞ

�
: ð15Þ
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Let v a DðL;V 0ÞBK
�
FðwÞ

�
, then by B5(ii) there exists a real-valued sequence

fhng such limn!l hn ¼ 1 for which hnPnv a Kn

�
FnðPnwnÞ

�
. Define vn ¼ hnPnv.

Since EnPn converges strongly to the identity (A2, Assumption 1) and hn ! 1, we

have Envn ! v in V as n ! l. Using v ¼ vn in (15), we obtain�
~AAnðEnunÞ;Enun � u

�
a ðhnP 0

nLnPnv� ~ffn;Envn � EnunÞ

þ
�
~AAnðEnunÞ;Envn � u

�
: ð16Þ

From the first paragraph of the proof, we have that fEnung is bounded in V.

Since A maps bounded sets into bounded sets and the norms of Pn and P 0
n are

uniformly bounded in n a N (jPnjLðV;VnÞa 1 and hence also jP 0
njLðV 0

n ;V
0Þa 1),

we have that f ~AAnðEnunÞg is bounded. By the reflexivity of V 0, there exists a sub-

sequence converging weakly to some g a V 0. Also, we have that P 0
nLnPnv ! Lv

since v a DðL;V 0Þ (see Proposition 1 in [16]) and hence hnP
0
nLnPnv ! Lv as

n ! l. By our hypotheses, we further have ~ffn ¼ P 0
n fn ¼ P 0

nPn f ¼ EnPn f ! f

in V 0 (actually in V) as n ! l. Summarising , we have the following relations:

~AAnðEnunÞ * g; ~ffn ! f ; hnP
0
nLnPnv ! Lv in V 0 and

Enun * u; Envn ! v in V:

Henceforth, taking ‘‘lim’’ in (16), we obtain

lim
n!l

�
~AAnðEnunÞ;Enun � u

�
a ðLv� f þ g; v� uÞ: ð17Þ

Let v ¼ va a DðL;V 0ÞBK
�
FðwÞ

�
with lima!0 va ¼ u and ðLva; va � uÞa 0

(which is possible due to the compatibility of SðtÞ and K
�
FðwÞ

�
, see [24], [6]).

This choice implies limn!l

�
~AAnðEnunÞ;Enun � u

�
a 0. Here we also have assumed

that A is the time realization of a linear uniformly monotone operator A in V

(B3 of Assumption 2), i.e., AðyÞðtÞ ¼ A
�
yðtÞ

�
for t a I and y a V ¼ LpðI;VÞ.

Consequently, we have P 0
nAðPnvÞ ¼ P 0

nA
�
PnvðtÞ

�
and hence

�
P 0
nAðPnyÞ; z

�
¼
ðT
0

Xn
m¼1

�
A

 1
h

ð
Im

yðtÞ dt
�
; zðtÞ

�
V 0;V

wImðtÞ dt

¼
ðT
0

�
A

Xn

m¼1

1

h

ð
Im

yðtÞ dtwImðtÞ
�
; zðtÞ

�
V 0;V

dt

¼
�
AðEnPnyÞ; z

�
:

The relation PnEn ¼ I thus yields P 0
nA
�
PnðEnunÞ

�
¼ AðEnunÞ. This and (17) imply

lim
n!l

�
AðEnunÞ;Enun � u

�
a 0: ð18Þ
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Since the operator A is pseudomonotone (it satisfies H1 and H3 which imply

pseudomonotinicity, see the paragraph that follows the definition of H1–H3 and

see [38] for a proof ) and ~AAnðEnunÞ ¼ P 0
nA
�
PnðEnunÞ

�
¼ AðEnunÞ, we observe

�
AðuÞ; u� z

�
a lim

n!l

�
AðEnunÞ;Enun � z

�
¼ lim

n!l

�
~AAnðEnunÞ;Enun � zn

�
; ð19Þ

for all z a V and fzng such zn ! z in V.

Let z a DðL;V 0ÞBK
�
FðwÞ

�
be arbitrary. Then by B5(ii) there exists a

real-valued sequence fhng with limn!l hn ¼ 1. We next define zn :¼ hnPnz a
Kn

�
FnðPnwnÞ

�
and have Enzn ! z in V. Assigning v ¼ zn in (15), we observe

that

lim
n!l

�
~AAnðEnunÞ;Enun � Enzn

�
a ð f � Lz; u� zÞ:

The above, together with (19), yields that u a K
�
FðwÞ

�
satisfies

�
LzþAðuÞ � f ; z� u

�
b 0; for all z a DðL;V 0ÞBK

�
FðwÞ

�
;

i.e., u solves (wP). The increased regularity of f , the uniform monotonicity of A

and the SðtÞ-invariance of K
�
FðwÞ

�
yield u a DðL;VÞ (see [24], [6]). Hence u

also solves (P).

Finally, from (18), the uniform monotonicity of A and the fact that Enun * u,

we have

c lim
n!l

jEnun � ujrVa lim
n!l

�
AðEnunÞ �AðuÞ;Enun � u

�
a 0;

i.e., Enun ! u in V, along a subsequence.

Suppose that there exists a subsequence of fung :¼ fTnðPnwnÞg which does

not converge to the solution u determined above. Hence, there is e > 0 such that

juni � ujb e for i a N. On the other hand, we can apply the same reasoning as

above to funig which yields the existence of a subsequence of funig converging to

u� that solves Problem (P). Theorem 3.2 and Corollary 3.3 establish uniqueness of

the solution, which implies that u� ¼ u. Thus, the entire sequence fung satisfies

Enun ! u. r

Finally we state the result required for the numerical approximation of the

parabolic QVI of interest.

Corollary 4.6. Let fn ¼ Pn f ¼ f f mgn
m¼1, and let, for each n a N, un ¼ fumgn

m¼1 a
Vn be the unique solution to
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um a K
�
FnðunÞ

�
:

um � um�1

h
þ AðumÞ � f m; vm � um

� �
V

b 0; Evm a K
�
FnðunÞ

�
; ðNQVIÞ

u1 ¼ 0;

for m ¼ 2; . . . ; n and with h ¼ T=n. Then,

Enun ! u�; in V as n ! l;

where u� solves (P).

Proof. Combining Theorem 4.1 and Theorem 4.5 proves the assertion. r

4.1. Solution algorithm. The previous results yield Algorithm 1 below for com-

puting the solution to (NQVI). In its statement the term ‘‘Suitable Convergence

Criteria’’ refers to a stopping rule associated with the fixed point equation

u ¼ Sn

�
A; fn;Kn

�
FnðuÞ

��
. In our case, and following [16], we use a criterion

based on the linear convergence of the approximate sequence defined in Step 3 of

Algorithm 1; see (SPconv:) below.

Algorithm 1

Require: n a N, fn a V 0
n , A : Vn ! V 0

n and Kn

�
Fnð�Þ

�
: Vn � f1; 2; . . . ; ng ! 2Vn

1: Initialization. Set l :¼ 1 and v1 :¼ 0.

2: while Suitable Convergence Criteria have not been met do

3: Compute vlþ1 ¼ Sn

�
A; fn;Kn

�
FnðvlÞ

��
.

4: Set l :¼ lþ 1.

5: end while

6: Set un :¼ vlþ1.

5. Numerics

In this section we are concerned with computing an approximate solution to (P)

by means of solving the approximating problem (NQVI), where the operator A is

the time realization of the p-Laplacian, with p ¼ 2 or p ¼ 3. We use I ¼ ð0; 1Þ
and W ¼ ð0; 1Þ � ð0; 1Þ in all examples below. The state space is given by

V ¼ LpðI;VÞ with V ¼ W
1;p
0 ðWÞ with the Gelfand triple structures ðV;H;V 0Þ

and ðV ;H;V 0Þ with H ¼ L2ðI;HÞ and H ¼ L2ðWÞ. All our test examples are of

gradient-type.
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The discretization in time is realised by considering (NQVI) where the uni-

form mesh size is given by h ¼ T=n on I ¼ ð0; 1Þ. Our finite di¤erence approx-

imation scheme in space has M 2 uniformly distributed nodes implying the mesh

size k ¼ 1=ðM þ 1Þ in each coordinate direction. At a node xij ¼ ðxi; xjÞ, with
xi ¼ ik and xj ¼ jk for 1a i; jaM, we approximate wðxijÞ, for w a V , by

wij ¼ wðxi; xjÞ and denote by wk the corresponding discrete approximation of w

on the given mesh. We approximate the V -norm by jwkjpV :¼
PM

i; j¼1 jðD�w
kÞjpijk2

with ðD�w
kÞij ¼ 1

k
ðwij � wði�1Þ j ;wij � wið j�1ÞÞ> and jðuk; vkÞ>j2ij ¼ u2ij þ v2ij. The

approximation of the V-norm is given by jvjpVn
¼
Pn

j¼1 hjvkj j
p
V with v ¼

P
j v

k
j wIj .

The discretization of the second order elliptic operator �Dp : W
1;p
0 ðWÞ !

W �1;p 0 ðWÞ is based on a second order accurate five-point centered di¤erence

scheme. More details on this scheme can be found in [18], [15].

In all the examples, we have f ðtÞ ¼ gðtÞc, where g a C1ðIÞ with gð0Þ ¼ 1 and

c a W
1;p
0 ðWÞBClðWÞ. In particular, we choose cðx; yÞ ¼ N

�
xyðx� 1Þðy� 1Þ

�2
with N a normalization constant such that cð1=2; 1=2Þ ¼ 1. The forcing term is

then given by

f ðt; x; yÞ ¼ r1ð1� e�r3t
r2 Þcðx; yÞ;

where r1; r2; r3 > 0 are chosen di¤erently for each example.

For the sequence fvlg generated as in Step 3 of Algorithm 1, we define the

linear convergence coe‰cient sequence fmlg by ml :¼ jvlþ2 � vlþ1jVn
=jvlþ1 � vljVn

.

The convergence criteria of Algorithm 1 are considered satisfied as soon as for

some l > l0

maxl�l0ar; saljmr � msj < e1;
jv2�v1jV
1�ml

Ql
i¼1 m

i < e2;

)
ðSPconv:Þ

with some prescribed l0 a N, e1 > 0 and e2 > 0. Then, Algorithm 1 is stopped. In

our numerical tests, using l0 ¼ 4, e1 ¼ 1e-2 and e2 ¼ 1e-4, the conditions in

ðSPconv:Þ are satisfied for l ¼ 8 in Examples 1 and 2, and l ¼ 14 for Example 3.

For a detailed explanation of these convergence criteria we refer to [15]. The

values of the linear convergence coe‰cients fmlg satisfy mla 0:15 in the first

example and mla 0:13 in the second one for la 8. The behavior of these coe‰-

cients is stable under mesh refinements for h ¼ 2�n for n ¼ 5; 6; 7 (i.e., there are no

substantial di¤erences on the bounds for fmlg under mesh refinements). Although

Example 3 does not fall into the scope of Theorem 3.2 (the p-Laplacian for p ¼ 3

does not satisfies the necessary hypothesis for the theorem to hold) the algorithm

nevertheless exhibits linear convergence. On the other hand, this behavior appears

unstable under perturbations of the forcing term. In fact (slight) variations of f

(for example considering Example 3 with the forcing term of Examples 2 and 1)
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make the algorithm non-convergent. This is substantially di¤erent for elliptic

QVIs; compare [15].

The computation in Step 3 of Algorithm 1 is based on a penalty-method

combined with a semismooth Newton iteration. This approach was successfully

applied in [15] and [16] and the reader is referred to these references for further

details. In our examples, we stop the Newton iteration when the norm of the

distance between two successive iterates is below NewtonTol=1e-5. The total

number of iterations for the semismooth Newton algorithm, using the continua-

tion technique for the penalty parameter described in [15], remained stable under

mesh refinements. The behavior in each time step is analogous to the one reported

in [15].

The computational domain consists of M 2 uniformly distributed nodes in

W ¼ ð0; 1Þ � ð0; 1Þ, where M ¼ 128 and the mesh size is k ¼ 1/(M+1)). The

time interval I ¼ ð0; 1Þ is discretized uniformly with mesh size h ¼ 1/100.

5.1. Example 1. Let A ¼ �D, with r1 ¼ 0:1, r2 ¼ 2 and r3 ¼ 10 and with

FðvÞðtÞ determined by

FðvÞ ¼
�			 ð1

0


 ð
W

vðs; xÞ dx
�
ds
			þ 0:001

��
0:2þ 0:8cðx; yÞ

�

The forcing term t 7! f ðtÞ at t ¼ 0:01; 0:12; 1 is shown in Figures 1(a), 1(b) and

1(c), and the approximate solution, t 7! uðtÞ, to the QVI is depicted at the same

time steps in Figures 1(d), 1(e) and 1(f ). The behavior of the norm of the gradient

t 7! j‘uðtÞj is shown in Figures 1(g), 1(h) and 1(i), also at the same time steps,

and finally the approximation of the active set t 7! AðtÞ ¼ fx a W : j‘uðt; xÞj �
FðuÞðxÞ ¼ 0g at times t ¼ 0:12; 1 is depicted in Figures 1( j) and 1(k).

The spatial part of the gradient bound FðvÞ is proportional to ð0:2þ 0:8cÞ
with the latter being a concave function with maximum in the center of the square

and minimum on the sides of the square. We also note that the finite di¤erence

scheme is an implicit one. Therefore whenever the solution at a time step is inac-

tive in W, it is the solution of an elliptic problem where the second order operator

is the Laplacian. Since solutions of such problems satisfy maximum principles for

the gradient (i.e. the supremum of the norm of the gradient is obtained at the

boundary) it is expected that the solution hits activity starting from regions on

the sides of the square (this is observed in Figure 1( j)). On the other hand, f

forces the norm of the gradient of the solution to keep growing (in the inactive

parts) as time evolves such that the solution at t ¼ 1 has a large active set as can

be seen in Figure 1(k). Finally, due to the constraint, the maximum of the norm

of the gradient is no longer found on the boundaries as it would be expected in the

unconstrained version of the problem.
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5.2. Example 2. Let A ¼ �D, with r1 ¼ 0:1, r2 ¼ 2 and r3 ¼ 10 and with

FðvÞðtÞ determined by

FðvÞðtÞ ¼
�			 ð1

0


 ð
W

vðs; xÞ dx
�
ds
			þ 0:001

��
1� 0:2cðx; yÞ

�
:

Figure 1. x 7! f ðt; xÞ for t ¼ 0:01, t ¼ 0:12 and t ¼ 1 in 1(a), 1(b) and 1(c), respectively.
x 7! uðt; xÞ for t ¼ 0:01, t ¼ 0:12 and t ¼ 1 in 1(d), 1(e) and 1(f ), respectively. x 7!
j‘uðt; xÞj for t ¼ 0:01, t ¼ 0:12 and t ¼ 1 in 1(g), 1(h) and 1(i), respectively. 1( j) Active
set at time t ¼ 0:12. 1(k) Active set at time t ¼ 1
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The forcing term t 7! f ðtÞ is the same as in Example 1. The approximated

solution, t 7! uðtÞ, to the QVI at the time steps t ¼ 0:01; 0:12; 1 is shown in Figures

2(a), 2(b) and 2(c). The behavior of the norm of the gradient t 7! j‘uðtÞj is

displayed in Figures 2(d), 2(e) and 2(f ), also at the same time steps. Finally, the

approximation of the active set t 7! AðtÞ ¼ fx a W : j‘uðt; xÞj �FðuÞðxÞ ¼ 0g at

times t ¼ 0:12; 1 can be observed in Figures 2(g) and 2(h).

In this example, the spatial part of the gradient bound FðvÞ is proportional to
ð1� 0:2cÞ, which is a convex function with a minimum in the center of the square

and maximum on the boundary of the square. As discussed in the previous exam-

ple, in each time step without activity, the maximum of the norm of the gradient is

expected at the boundaries. However, given the convexity of the constraint, the

approximate solution to the QVI hits activity in a region inside the domain as

can be seen in Figures 2(g).

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 2. x 7! uðt; xÞ for t ¼ 0:01, t ¼ 0:15 and t ¼ 1 in 2(a), 2(b) and 2(c), respectively.
j‘uðt; xÞj for t ¼ 0:01, t ¼ 0:15 and t ¼ 1 in 2(d), 2(e) and 2(f ), respectively. 2(g) Active
set at time t ¼ 0:15. 2(h) Active set at time t ¼ 1
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5.3. Example 3. Let A ¼ �Dp, with p ¼ 3, with r1 ¼ 0:01, r2 ¼ 2 and r3 ¼ 0:15

and with FðvÞðtÞ determined by

FðvÞðtÞ ¼
�			 ð1

0


 ð
W

vðs; xÞ dx
�
ds
			þ 0:001

�

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 3. x 7! f ðt; xÞ for t ¼ 0:01, t ¼ 0:89 and t ¼ 0:94 in 3(a), 3(b) and 3(c), respectively.
x 7! uðt; xÞ for t ¼ 0:01, t ¼ 0:89 and t ¼ 0:94 in 3(d), 3(e) and 3(f ), respectively. j‘uðt; xÞj
for t ¼ 0:01, t ¼ 0:89 and t ¼ 0:94 in 3(g), 3(h) and 3(i), respectively. 3( j) Active set at time
t ¼ 0:89. 3(k) Active set at time t ¼ 0:94
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The forcing term t 7! f ðtÞ at t ¼ 0:01; 0:12; 1 is shown in Figures 3(a), 3(b)

and 3(c), and the approximate solution, t 7! uðtÞ, to the QVI is depicted at the

same time steps in Figures 3(d), 3(e) and 3(f ). The behavior of the norm of

the gradient t 7! j‘uðtÞj is shown in Figures 3(g), 3(h) and 3(i), also at the

same time steps, and finally the approximation of the active set t 7! AðtÞ ¼
fx a W : j‘uðt; xÞj �FðuÞðxÞ ¼ 0g at times t ¼ 0:89; 0:94 can be observed in

Figures 3( j) and 3(k).

6. Discussion and further research

In Theorem 3.2 a contraction result for the mapping v 7! S
�
A; f ;K

�
FðvÞ

��
is

provided, when FðvÞ ¼ GðvÞf for some f and G a Lipschitz continuous functional.

Given the structure of the proof of the aforementioned theorem, it is not trivial

to extend the result to operators of higher rank, as for example when FðvÞ ¼Pn
i GiðvÞfi. Another open question is wether the class of operators A, under

which a contractive behavior is observed, can be extended to operators such

as the p-Laplacian. Theorem 3.2 is an extension of a result in [15] for elliptic

QVIs where several numerical tests show the linear convergence behavior for the

p-Laplacian case, when p ¼ 3. Such a good convergence behavior seems much

more delicate to obtain in the parabolic case as stated in §5.

The structure of the constraint sets K
�
FðvÞ

�
¼
�
w a V : wðtÞ a K

�
FðvÞ

�
a:e:

t a I
�

under the hypothesis of Theorem 3.2, i.e., with FðvÞ ¼ GðvÞf and G a

nonlinear Lipschitz continuous functional, implies at time t that the information

on the bound FðvÞ of the state variable uðtÞ comes from the entire interval I. A

scheme for causal sets, i.e., when the solution to the QVI at time t, uðtÞ, can be

obtained as a solution to a QVI where the constraint set depends only on the

set fv : v ¼ uðtÞ for 0a ta tg was developed on [16]. However, it is not known

under what conditions on these types of constraints solutions are unique. An

answer to this question is of paramount importance.

The axiomatic approximation scheme developed in §4 appears to be suitable

to be extended to a fully discretized scheme. For parabolic VIs, such a path was

followed by Glowinski, Lions and Trémolières in [11]. However, in the QVI case

the discretization of the constraint set mapping v 7! K
�
FðvÞ

�
requires special

attention, and conditions for this discretization to be useful for approximation

methods are currently unkwown.
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