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1. Linearization

We are going to start by discussing linearization. We loosely define linearization

as mapping instances of discrete, set-theoretical, geometric, topological, and even

real-life structures (the latter cannot be fully described in a purely mathematical

language) to elements of a linear structure. A linear structure has addition in the

background, or, equivalently, has the structure of an abelian group. Often, a vec-

tor space over a field appears as the background structure, allowing, among other

benefits, to use convenient and powerful tools of linear algebra.

To convince the reader of the ubiquity of linearization let us provide some

examples. We give two examples from real life and several from mathematics.

The real-life examples are

• The Price map

• PageRank

1.1. The Price map. To naively define the Price map let us start with the semir-

ing of non-negative integers Zþ ¼ f0; 1; 2; . . .g. Consider the set Items, which is

the union of sets of Goods and Services:

Items ¼ GoodsAServices:



To value goods and services, in the simplest possible case, we set up a map

Price : Items ! Zþ:

Setting price of a sandwich, for instance, to 6, we value the sandwich at $6 (using

dollars as the currency, for example).

A more refined version of this setup would map an item together with the data

of location and time to an element of Zþ:

Price : ðitem; time; locationÞ ! Zþ;

since the price of an item might depend on where and when it is o¤ered for sale.

Thousands of books have been written on economics and finance, studying the

Price map in great detail. This one-page example cannot even attempt to start

on Economics 101. Instead, we would like to point out that the Price map is an

example of linearization. Various objects varying from simple to incredibly so-

phisticated are mapped to elements of Zþ. Applying this map loses almost all

the information about the objects, retaining only a nonnegative integer.

Most characteristics of an item are lost, but the Price map is incredibly

convenient. It also needs a developed framework to function well (Money,

Government, Enforcement).

The structure of the Price map is enhanced by enlarging its target to

• Z (with sinister consequences),

• 1
N
Z (where N ¼ 100 is a common choice),

• A more refined approximation to Q.

Enlarging the target of the map to Z, that is, allowing negative prices, is a natural

step from both the real-life and mathematical perspectives. This sometimes leads,

in our interactions with the Price map, to unpleasant consequences, such as being

in debt.

Upon a brief reflection, it becomes clear that the structure of Z as a commuta-

tive ring is not fully necessary for the Price map. We rarely if ever encounter

objects measured in dollars squared $2, indicating that the multiplication in the

target Z can be avoided. Rather, it seems enough to make Z, the target of the

Price map, a free rank one module over the ring Z. The natural order < on this

module is, of course, of paramount importance.

That the target is a module rather than a ring becomes further obvious when

fractions are introduced, by enlarging Z to

1

N
Z ¼ a

N
; a a Z

� �
:
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N ¼ 100 is a common choice (dollars and cents). Notice that 1
N
Z is not naturally

a ring. We can view it as a subset of the ring

Z
1

N

� �
¼ a

Nn
; a a Z; n a Zþ

� �
;

but this subset is not closed under multiplication, indicating, again, that the target

of the Price map is a module rather than a ring. Thus, the enhanced target 1
N
Z of

the Price map is a Z-module together with the order <.

Further enhancement would take us from 1
N
Z to Q (viewed as a module over

itself ), or even to R, with the natural order < extended to Q and R. Various

approximations to Q and R, such as the floating point type, are used as practical

implementations of this enhancement.

In all cases, the target carries a natural linear structure (abelian semigroup Zþ
in the initial example, and abelian groups Z, 1

N
Z, and Q in the generalizations).

Problem 1.1. Find and implement modifications of the Price map to other, more

refined, targets.

For instance, is there a useful modification such that the analogue of the addi-

tion operation on the target is noncommutative? Is there a modification where the

target is (a free module over) a noncommutative ring?

Bitcoin is a recent perplexing example of the Price and Money framework

where the target structure is a subset of Zþ that monotonically grows with time

and was designed to be bounded from above at all times by approximately 20.3

million [7]. Bitcoins are awarded for solving hard meaningless instances of a com-

putational problem, increasing in complexity as more bitcoins are minted, which

results in the above upper bound. This artificial upper bound on the total number

of bitcoins is only partially resolved by introducing fractional bitcoins.

1.2. PageRank. Already back in the late 90’s the structure of the Internet was

incredibly complex. The PageRank idea [6] was to take the Internet—the set of

all webpages together with their content and data—and forget almost everything

about it, reducing it to a directed graph, the web graph. Vertices of the web graph

G are webpages and there is an oriented edge from i to j if iA j and there is a link

from i to j.

This first step converts an enormously complicated structure to a simple one, at

least on the theoretical level. The second step is linearization. We form the web

matrix A. Its rows and columns are labelled by vertices, and the entry

aji ¼
1

Ni
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if there is an edge from i to j, where Ni is the number of oriented edges out of i.

Otherwise aji ¼ 0.

Assuming irreducibility (there is a path from any i to any j), we can consider

the maximum eigenvalue and the unique (up to scaling) eigenvector with this

eigenvalue—the PageRank vector v. In greater generality, this is known as the

Perron–Frobenius eigenvalue and eigenvector.

In this linearization we form a real vector space V with the basis labelled by

webpages and convert the web graph G to a linear transformation on V given by

the matrix A. Coe‰cients of the maximum eigenvector v are positive and rank the

webpages by a measure of their popularity.

Just like the Price map, this conversion of the entire Internet to a linear trans-

formation and its maximum eigenvector loses almost the entire informational con-

tent of the Internet, yet it proved to carry phenomenal value.

We conclude our discussion of real-life linearizations with an exercise and a

project for the reader.

Exercise 1.2. Find more examples of real-life linearizations.

Problem 1.3. Discover a new real-life linearization and develop it.

1.3. Representation theory as linearization. The notion of a group G acting

on a set X is one of the earliest fundamental concepts we encounter in modern

algebra. A very natural generalization of a (left) group action on a set is that of

a monoid (a semigroup with the unit element) G acting on a set X , via a map

G � X ! X

subject to the associativity and unitality constraints.

The notion of an action of a monoid on a set admits a linearization. Lineari-

zation of a monoid is a ring R, linearization of a set on which a monoid acts is that

of a (left) module M over R, with the action being a bilinear map

R�M ! M

subject to the usual axioms. Study of modules over rings, also known as represen-

tation theory, is of utmost importance in modern mathematics.

Transformation from ðG;XÞ to ðR;MÞ can be achieved in two steps. First,

linearize monoid G to the semigroup algebra FG, where F is a field and elements

of FG are finite linear combinations of elements of G with coe‰cients in F . Lin-

earize X to the F -vector space FX with basis X . Algebra FG acts on its module

FX . This action is often much more interesting than the corresponding action of

G on X , as we can see, for example, from the case when G is the symmetric group
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Sn. Orbits of group-theoretical actions of Sn on sets are classified by conjugacy

classes of subgroups of Sn, while actions of FSn on F -vector spaces (representa-

tions of the symmetric group) constitute a beautiful theory with many applications

to geometry, topology and algebra.

Furthermore, some parts of representation theory, especially representations

of simple Lie algebras, quantum groups, and Hecke algebras, can be categorified.

This note does not discuss such categorifications, instead restricting to more topo-

logical examples that include the Euler characteristic of a topological space and

the Jones polynomial.

2. Euler characteristic and homology of topological spaces

The Euler characteristic can be thought of a map from the set of su‰ciently nice

topological spaces to the ring of integers

w : Nice topological spaces ! Z

At first, it is defined naively for only, say, finite simplicial complexes. The latter

are spaces given by starting with finitely many disjoint simplices of various dimen-

sions and identifying their subsimplices via linear maps. If the resulting simplicial

complex M has jMjn simplices of dimension n, the Euler characteristic of M is

wðMÞ ¼ jMj0 � jMj1 þ jMj2 � � � � ¼
X
n

ð�1ÞnjMjn;

the alternating sum of the number of simplices in M of various dimensions.

Theorem 2.1. wðMÞ is an invariant of M.

There are various ways in which w is an invariant. The simplest way to phrase

the invariance is as the independence of wðMÞ on the choice of the simplicial

decomposition of M, but, in fact, it has a much stronger invariance property,

depending only on the homotopy type of M.

We can think of the Euler characteristic map w as a linearization. A set of suf-

ficiently well-behaved topological spaces, those that have a realization as finite

simplicial complexes, is mapped to integers. Almost all topological information

about a space is lost under this map, but it does provide an invariant of the space.

Simple operations of the disjoint union and direct product of spaces correspond to

addition and multiplication on their Euler characteristics:

wðM tNÞ ¼ wðMÞ þ wðNÞ; wðM �NÞ ¼ wðMÞwðNÞ:
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The Euler characteristic is a useful but rather basic invariant of topological

spaces. It can be enhanced by keeping track of the boundaries of simplices. The

boundary of an n-simplex is a union of its nþ 1 facets, each an ðn� 1Þ-simplex.

The boundary operation can be though of as assigning to an n-simplex the set of

its facets, subsimplices of codimension 1. We linearize the boundary operation by

taking a simplex v to the linear combination of its facets, withe1 coe‰cients, that

is, signs

qðvÞ ¼
X

efaceðvÞ:

Signs come from keeping track of orientations of v and its facets.

The intuitive observation

The boundary of the boundary is empty

linearizes to

qq ¼ 0

or q2 ¼ 0. This happens since each ðn� 2Þ-simplex on the boundary of v appears

twice in the expansion of q2ðvÞ, with opposite signs, leading to q2ðvÞ ¼ 0 for all v,

thus q2 ¼ 0.

To make this more formal, let Sn be the set of all n-simplices of the decompo-

sition, and Vn ¼ Q3Sn4, a Q-vector space with basis Sn. (Instead of Q one can

use Z, R, or any commutative ring). Extend q in a linear fashion to a map

Vn ! Vn�1. The result is a complex

� � � !q Vnþ1 !
q
Vn !

q
Vn�1 !

q � � � :

Since q2 ¼ 0, we can define the n-th homology groups of the complex V :

HnðVÞ ¼ ðker q : Vn ! Vn�1Þ=ðim q : Vnþ1 ! VnÞ;

by taking the quotient of the subspace of Vn which is the kernel of the boundary

map by the image of Vnþ1 under q.

This construction allows one to define homology groups HnðMÞ of a simplicial

complex M as HnðVÞ, for the above complex V of vector spaces. An important

result establishes that HnðMÞ are isomorphic to homology groups (singular ho-

mology) defined in a more invariant way, via the complex generated in degree n

by all continuous maps from a fixed n-complex to M, and the boundary operator

given by essentially the same formula as above.
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Singular homology, which we also denote HnðMÞ, has the benefit of being

defined for any topological space M. To M we associate the total homology

groups

HðMÞ ¼ 0
nb0

HnðMÞ:

HðMÞ is a graded vector space (or an abelian group, if the ground ring in Z).

Theorem 2.2. The Euler characteristic

wðMÞ ¼
X
nb0

ð�1Þn dimHnðMÞ:

Thus, we can recover the Euler characteristic w from a more refined

invariant—simplicial or singular homology groups. The benefits of homology

groups over the Euler characteristic are plentiful; what follows is a rather

incomplete list.

(1) Singular homology groups are defined for all topological spaces, not only nice

ones (which in our case meant finite simplicial complexes).

(2) They carry much higher informational content than the Euler characteristic.

(3) Homology groups are functorial. To a continuous map of topological spaces

f : X ! Y there is associated a homomorphism of group (or vector spaces)

f� : HnðXÞ ! HnðYÞ

These homomorphisms together form a functor

Top !H GrAb

from the category of topological spaces and continuous maps to the category

of graded abelian groups.

(4) Any commutative ring can be used for coe‰cients (the most common choices

are Z, Q, Z=nZ, R, C).

(5) Beyond functoriality, homology carries additional structures. One of them

(comultiplication) is easier to understand on the dual object to H�ðMÞ, the
cohomology groups H �ðMÞ, which are naturally a graded super-commutative

ring for any M.

(6) Homology and cohomology generalize to extraordinary (co)homology

theories, carrying even more information.
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Passing from the Euler characteristic to homology of topological spaces is an

example of categorification. Homology functor

Top !H GrAb

lifts the Euler characteristic (linearization) map

ðNiceÞ Topological Spaces !w Integers

We now provide a very basic categorification dictionary which helps to explain the

lifting of integer-valued invariants that categorification provides.

Structure Elements and

operations

Categorification

Zþ n, m

nþm

n �m

vector spaces V , W

direct sum V aW

tensor product V nW

Z n, m

n�m

complexes V , W of vector spaces

cone of a map f : W ! V

Q n=m It is an open problem to categorify division

Let us start with the first of the three rows in this dictionary. Category Vect of

finite-dimensional vector spaces over a field categorifies the semiring Zþ of non-

negative integers. To an object V of Vect we assign its dimension dimðVÞ a Zþ.
Direct sum and tensor product of vector spaces decategorify to the addition and

multiplication of nonnegative integers

dimðV aWÞ ¼ dimðVÞ þ dimðW Þ; dimðV nW Þ ¼ dimðVÞn dimðWÞ:

Upon decategorification, all information about the morphisms (and most informa-

tion about the objects) is lost.

In this model example, decategorification maps objects of the additive monoi-

dal category Vect to elements of the semiring Zþ. Instead of Vect the category of

finitely-generated free abelian groups can be used as well, with the rank of the free

group taking place of dimension.

The semiring Zþ naturally sits inside the ring Z. To lift subtraction of integers

to the categorical level, we enlarge the category from vector spaces to that of com-

plexes of vector spaces. A possible natural restriction is to require that complexes

are bounded and finite-dimensional in each degree. This can be relaxed to requir-

ing that the total homology groups of a complex are finite-dimensional, so that the

Euler characteristic of an object in this category is well-defined.
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At first, the morphisms in this category are just homomorphisms of complexes

(linear maps of vector spaces in each degree that intertwine di¤erentials in the two

complexes). To get a useful category, morphisms need to be modified—we mod

out by the ideal of null-homotopic morphisms. The resulting category C of com-

plexes modulo chain homotopies is triangulated, and its Grothendieck group is the

corresponding group of a triangulated category. Tensor product of vector spaces

naturally extends to complexes, respecting the ideal of null-homotopic morphisms,

and leads to a tensor structure on C. The Grothendieck group K0ðCÞ of C ac-

quires the structure of a ring, and there is a natural ring isomorphism

KðCÞGZ:

This isomorphism is induced by the map that takes an object V of C to its Euler

characteristic wðVÞ.
The analogue of the subtraction operation on integers is the cone of a map of

complexes. Given a map f : V ! W of complexes, shift the source complex V

one step to the left, form direct sums of vector spaces V n�1aWn, over all n,

and define the di¤erential in the new complex as �dV þ dW þ f . The cone com-

plex Coneð f Þ has Euler characteristic the di¤erence of those for W and V :

w
�
Coneð f Þ

�
¼ wðW Þ � wðVÞ:

Category C is one of the most fundamental and useful monoidal triangulated

categories with the Grothendieck group Z. In the hierarchy of structures we built

out of integers the next object, in complexity, is the ring of rational numbers Q,

which, unlike integers, allows division by a nonzero number. At this point we

are already at a limit of current mathematical knowledge—it is not known how

to categorify division and the ring of rational numbers Q. We record this as an

open problem.

Problem 2.3. Describe a triangulated monoidal category C with the Grothen-

dieck ring isomorphic to Q.

Even the following apparently simpler problem appears to be open (an

approach to the n ¼ 2 case is being considered in [5]).

Problem 2.4. Construct a triangulated monoidal category C with the Grothen-

dieck ring isomorphic to Z 1
n

� �
.

3. Jones polynomial and its categorification

3.1. Jones polynomial and the Kau¤man bracket. Knots and links are smooth

or piecewise-linear embeddings of a single circle S1 (knots) or a disjoint union
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of finitely-many circles (links) into R3, with the embeddings considered up to

isotopies. They appear toyish at first glance, but in the past few decades have

been related to an amazing plethora of deep structures in mathematics and math-

ematical physics.

On such structure is the Jones polynomial [2]. It is an invariant of links that

assigns a Laurent polynomial JðLÞ in a single variable q to an oriented link in R3,

and can be thought as a map

J : Links ! Z½q; q�1�

from the set of oriented links in R3 to a linear structure—the ring of Laurent poly-

nomials Z½q; q�1�.
The Jones polynomial is uniquely determined by the conditions:

• The Jones polynomial of the trivial knot is qþ q�1,

• For any three links that di¤er only in the neighbourhood of a small ball as

depicted below, there is a linear relation on their Jones polynomials

q2J

	 

� q�2J

	 

¼ ðq� q�1ÞJ

� �
: ð1Þ

Shortly after the discovery of the Jones polynomial, Louis Kau¤man [3] found

a recursive construction of the polynomial that allows an elementary proof that

the polynomial is well-defined and provides a wealth of other structural informa-

tion. His construction is known as the Kau¤man bracket.

To define the Kau¤man bracket, take a generic projection D of an oriented

link L onto the plane R2 (generic in the sense of not having triple intersection

points and tangency points) and temporarily forget about the orientation of L.

If projection D has no crossings, we define its Kau¤man bracket

3D4 ¼ ðqþ q�1Þc;

where c is the number of components (circles) in the projection.

7! ðqþ q�1Þa of circles

D having crossings is an interesting case. We pick a crossing of D and define

the bracket of D recursively, as a linear combination of brackets of projections

with one crossing less:

¼ � q�1
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If projection D has n crossings, the full expansion of 3D4 will have 2n terms,

each of the form eqaðqþ q�1Þb for some a a Z and b a Zþ: This construction

uniquely determines 3D4 for any generic diagram D. To get a link invariant,

recall that L is oriented and define

JðDÞ ¼ ð�1ÞxðDÞ
q2xðDÞ�yðDÞ3D4; ð2Þ

where xðDÞ and yðDÞ is the number of negative and positive crossings

of D.

Theorem 3.1 (L. Kau¤man). The resulting polynomial JðDÞ does not depend on a

choice of projection D of a link L and equals the Jones polynomial JðLÞ.

The theorem claims the invariance of JðDÞ under the Reidemeister moves of

link diagrams and has a direct computational proof. Kau¤man’s bracket gives

the easiest way to see that the Jones polynomial is well-defined.

3.2. Graded complexes. We now move on to categorification of the Jones

polynomial. It takes values in Z½q; q�1�, and we start by realizing this ring as the

Grothendieck ring of a suitable category. Recall that the ring Z was lifted, at

first, to the category of finite-dimensional vector spaces, and later, to the cate-

gory of complexes of vector spaces. Analogous lifting of Z½q; q�1� is realized via

graded vector spaces. Consider the category GVect with objects—graded finite-

dimensional vector spaces (say, over Q)

V ¼ 0
n AZ

Vn ¼ � � �aV�2aV�1aV0aV1aV2a � � �

In particular, only finitely many of Vn’s are nonzero. Morphisms in GVect are

linear maps V ! W that preserve the grading, that is, take Vn to Wn for all n.

To V assign its graded dimension

gdimðVÞ ¼
X
n AZ

dimðVnÞ � qn a Z½q; q�1�:

One can ‘‘add’’ and ‘‘multiply’’ graded vector spaces, by forming their direct sum

and tensor product. These operations turn GVect into a linear monoidal category.

Its Grothendieck ring is naturally Z½q; q�1�, and variable q becomes a grading shift

upon this lifting.

gdimðVÞ, for a graded vector space V , has non-negative coe‰cients. To allow

arbitrary integer coe‰cients we need to pass to complexes, while maintaining the
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grading. A complex of graded vector spaces V is a bigraded vector space

V ¼ 0
n;m AZ

Vm
n

with a di¤erential q : V ! V , q2 ¼ 0, that respects additional grading, that is,

restricts to

q : Vm
n ! Vm

n�1

for all n, m. We can think of V as the direct sum of complexes of vector spaces

Vm ¼ � � � !q Vm
nþ1 !

q
Vm

n !q Vm
n�1 !

q � � �

in each q-degree m.

To a complex of graded vector spaces V we associate homology groups

Hm
n ðVÞ ¼ ðker q : Vm

n ! Vm
n�1Þ=ðim q : Vm

nþ1 ! Vm
n Þ

Homology of V is a bigraded vector space

HðVÞ ¼ 0
n;m AZ

Hm
n ðVÞ:

As for complexes, we pick a suitable category C to work with, by requiring that

homomorphisms and homotopies of graded complexes respect the extra grading

m, and imposing the finite-dimensionality condition dim
�
HðVÞ

�
< l.

For an object V of C the Euler characteristic of each complex Vm ¼ 0
n AZ V

m
n

is an integer

wðVmÞ ¼
X
n

ð�1Þn dim
�
Hm

n ðVÞ
�
:

If Vm, and not just its homology, is finite-dimensional, the Euler characteristic can

be computed from the spaces themselves,

wðVmÞ ¼
X
n

ð�1Þn dimðVm
n Þ:

We make these integers into coe‰cients of a Laurent polynomial

wðVÞ ¼
X
m

wðVmÞ � qm ¼
X
m;n

ð�1Þn dim
�
Hm

n ðVÞ
�
� qm:
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When V is finite-dimensional, we also have

wðVÞ ¼
X
n;m

ð�1Þn dimðVm
n Þ � qm

3.3. Categorification. The idea behind categorification of the Jones polynomial

JðLÞ is to look at the formula for the Kau¤man bracket 3D4 of a diagram D and

consistenly lift all the terms there into a complex CðDÞ of graded vector spaces

with the Euler characteristic 3D4.
Key term in the construction is qþ q�1, the Kau¤man bracket of a simple

circle in the plane, also equal to the Jones polynomial of the unknot. We lift this

polynomial to the graded vector space

A ¼ Q � 1aQ � X

with basis elements denoted 1 and X , with degrees

deg 1 ¼ �1; degX ¼ 1:

Graded dimension of A is qþ q�1. The complex associated to the simple circle

diagram will be just A, placed in homological degree 0:

0 ! A ! 0:

To a crossingless diagram with two circles we assign AnA, which has a basis

f1n 1; 1nX ;X n 1;X nXg: In general, to a diagram which consists of k dis-

joint, perhaps nested, circles we associate Ank, which has the graded dimension

ðqþ q�1Þk.
We next move on to diagrams with a single crossing. For such a diagram D

its Kau¤man bracket 3D4 is the di¤erence of two terms, one coming from a two-

circle diagram, the other from a one-circle diagram, corresponding to two dif-

ferent ways to simplify (resolve) D into crossingless diagrams. One such example

is depicted below.

In the Kau¤man formula for 3D4, the single circle diagram enters with the

coe‰cient �q�1, and the two-circle one with coe‰cient 1. To interpret 3D4 as
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the Euler characteristic, we place An2 in homological degree 0, A in homological

degree 1, and look for the di¤erential to make this into a complex.

0 ! AnA !M A ! 0

We label the di¤erential M, for multiplication, since that’s what it looks like. To

interpret q�1 in the formula, we need to shift the internal grading of A down by 1.

Since we want homology to be an invariant of a knot, and not just its diagram,

the homology of the above complex should be isomorphic to A, perhaps up to an

overall grading shift, that we can take care of later. Therefore, M is surjective

and, moreover, it must preserve the internal degree. The table below lists the

degrees of basis elements of the two spaces, with f�1g denoting the degree shift

down by 1.

Degree Basis of AnA Basis of Af�1g

2 X nX

1

0 X n 1, 1nX X

�1

�2 1n 1 1

M is now constrained to essentially a unique map, given below.

X nX 7! 0

X n 1; 1nX 7! X

1n 1 7! 1

This map makes A into a commutative associative algebra with the unit ele-

ment 1.

The other case for a single crossing complex is when the �q�1 coe‰cient in the

Kau¤man formula appears with the ðqþ q�1Þ2 term. A possible diagram when

this happens is depicted below.
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By analogy with the previous case, we want to lift the formula for 3D4 to a

complex

0 ! A !D AnAf�1g ! 0

with the di¤erential denoted by D, since it resembles comultiplication. The de-

grees for basis elements of these vector spaces are listed in the table below.

Degree Basis of A Basis of AnAf�1g

1 X X nX

0

�1 1 X n 1, 1nX

�2

�3 1n 1

The di¤erential should preserve the internal grading. This and other natural

conditions, including that the homology of this complex should be isomorphic to

A, modulo a bigrading shift, leads to a formula for D:

X ! X nX

1 ! 1nX þ X n 1

Maps M and D turn A into a commutative Frobenius algebra—a commutative

unital algebra equipped with a nondegenerate symmetric trace form. Such alge-

bras are in a bijection with 2-dimensional topological quantum field theories,

that is, monoidal functors from the category of 2-dimensional cobordisms between

1-manifolds to the category of vector spaces. A is, in addition, graded, and the

degree of the map associated to a cobordism S equals minus the Euler character-

istic of S.

An arbitrary diagram D with n crossing has 2n resolutions into crossingless

diagrams. With each resolution we associate Ank, where k is the number of

circles in it. These powers of A can be naturally placed into the vertices of an

n-dimensional cube. Every edge of a cube corresponds to an elementary modifica-

tion of a resolution, converting a k-circle planar diagram to a ðke 1Þ-circle
diagram. This modification (which can be realized by a cobordism between the

circle diagrams) induces a map between corresponding tensor powers of A (the

map is either M or D times the identity on the remaining circles).

Furthermore, for every square face of the cube, two compositions of maps

assigned to its edges commute, due to M and D being structure maps of a two-

dimensional TQFT.
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Taking direct sums of tensor powers of A (with the suitably shifted internal

grading) along the hyperplanes orthogonal to the main diagonal of the cube and

defining the di¤erential to be a signed sum of the edge maps of the cube nets us

a complex of graded vector spaces CðDÞ. The Euler characteristic of CðDÞ is the
Kau¤man bracket 3D4.

One then shifts the bigrading of CðDÞ to match the coe‰cient in the formula

(2) and gets the complex CðDÞ associated to a planar diagram D. Its homology is

denoted HðDÞ and carries a bigrading.

Theorem 3.2. HðDÞ depends only on the underlying link L and not on its diagram

D. The Euler characteristic of HðDÞ is the Jones polynomial JðLÞ.

Denoting HðDÞ by HðLÞ, we obtain a homology theory of links in R3. It can

be naturally thought of as a categorification of the Jones polynomial (the term

categorification was originally introduced by Louis Crane and Igor Frenkel in a

related context [1]).

Since its discovery, this homology theory of links has been greatly developed

and thoroughly understood by many people. Below is a very brief list of some of

the benefits and structures stemming from the homology theory H.

• H contains large amount of information about knots and links and gives rise

to new structural relations between low-dimensional topology and algebra.

• H is functorial and extends to an invariant of link cobordisms (Jacobsson,

Bar–Natan, Khovanov, Clark–Morrison–Walker).

• H carries homological operations (Lipshitz–Sarkar, Kriz–Kriz–Po).

• Other link polynomials have also been categorified, including the Alexander

polynomial (Ozsváth–Rasmussen–Szabó), the HOMFLYPT polynomial and

more general Reshetikhin–Turaev invariants.

• H relates to several areas of mathematics (geometric representation theory,

symplectic topology, algebraic geometry, the Langlands program).

• H appears in mathematical physics (Gukov–Schwarz–Vafa, Witten).

We would like to emphasize that the overall structure is built in two steps.

First step is constructing the Jones polynomial, which we can think of as an exam-

ple of linearization, in this case going from links, topological objects (which admit

a discrete combinatorial interpretation) to elements of a linear structure, the ring

of Laurent polynomials. The second step is categorification, lifting linear invari-

ants of links to vector spaces and homology groups. It is possible that categorifi-

cation can be thought of as a kind of second linearization, but we will not try to

carefully phrase here what this might mean.

We conclude with an exercise and a problem for the reader.
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Exercise 3.3. Can the following structures and operations be interpreted as

linearizations?

• Passing from a topological space to the ring of continuous functions on it.

• Quantization.

• Quantum computation.

Problem 3.4. Discover new linearizations and categorifications and develop

them.
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